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Abstract— In this paper, a comprehensive design and analysis
of multiple-input multiple-output (MIMO) full-duplex (FD)
relaying systems in a multi-cell environment is investigated,
where a multi-antenna amplify-and-forward FD relay station
serves multiple half-duplex (HD) multi-antenna users. The
pivotal obstacles of loopback self-interference (LI) and mul-
tiple co-channel interferers (CCI) at the relay and destina-
tion when employing FD relaying in cellular networks are
addressed. In contrast to the HD relaying mode, the CCI in the
FD relaying mode is predicted to double since the uplink and
downlink communications are simultaneously scheduled via the
same channel. In this paper, the optimal layout of transmit
(receive) precoding (decoding) weight vectors which maximizes
the overall signal-to-interference-plus-noise ratio is constructed
by a suitable optimization problem, and then a closed-form sub-
optimal formula based on null space projection is presented.
The proposed hop-by-hop rank-1 zero-forcing (ZF) beamforming
vectors are based on added ZF constraints used to suppress
the LI and CCI channels at the relay and destination, i.e., the
source and relay perform transmit ZF beamforming, while the
relay and destination employ receive ZF combining. To this
end, unified accurate expressions for the outage probability
and ergodic capacity are derived in closed form. In addition,
simpler tight lower bound formulas for the outage probability
and ergodic capacity are presented. Moreover, the asymptotic
approximations for outage probability are considered to gain
insights into system behavior in terms of the diversity order
and array gain. Numerical and simulation results show the
accuracy of the presented exact analytical expressions and the
tightness of the lower bound expressions. The case of hop-
by-hop maximum-ratio transmission/maximal-ratio combining
beamforming is included for comparison purposes. Furthermore,
our results show that while multi-antenna terminals improve
the system performance, the detrimental effect of CCI on FD
relaying is clearly seen. Therefore, our findings unveil that MIMO

Manuscript received January 4, 2018; revised April 30, 2018 and
June 29, 2018; accepted July 29, 2018. Date of publication August 6, 2018;
date of current version December 14, 2018. This work was supported in
part by the U.K. Engineering and Physical Sciences Research Council under
Grant EP/N020391/1, and in part by the European Commission under the
5GPPP project 5GXcast (H2020-ICT-2016-2 call, grant number 761498). This
paper was presented in part at the IEEE GLOBECOM, Washington DC,
USA, December 2016. The associate editor coordinating the review of this
paper and approving it for publication was W. Chen. (Corresponding author:

Ahmed Almradi.)

A. Almradi and P. Xiao are with the 5G Innovation Centre, Institute for
Communication Systems, University of Surrey, Guildford GU2 7XH, U.K.
(e-mail: a.m.almradi@surrey.ac.uk; p.xiao@surrey.ac.uk).

K. A. Hamdi is with the School of Electrical and Electronic Engineer-
ing, The University of Manchester, Manchester M13 9PL, U.K. (e-mail:
k.hamdi@manchester.ac.uk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCOMM.2018.2863723

FD relaying could significantly improve the system performance
compared to its conventional MIMO HD relaying counterpart.

Index Terms— MIMO relaying, full-duplex relaying, half-
duplex relaying, beamforming, zero-forcing (ZF), outage
probability, ergodic capacity, co-channel interference.

I. INTRODUCTION

T
RADITIONAL dual-hop relaying networks and base sta-

tions operate in the half-duplex (HD) mode, thereby two

orthogonal channels (i.e., in a time division duplex or fre-

quency division duplex manner) are essential to initiate

communications. Lately, full-duplex (FD) relaying received

upsurge of research interest due to its capability to increase

spectral efficiency (see e.g., [1]–[8]), which is solely because

of the fact that full-duplex nodes receive and re-transmit

the information symbol over the same time and frequency,

consequently, efficiently employing the spectrum resources

of the network. However, the main hurdle of FD terminals

is the loopback self-interference (LI) brought about by the

signal infiltration from the terminal’s transmission to its own

reception, specifically, the huge power differences between

the one transmitted from the FD terminal and its received

signal (the received signal is extremely weaker than that of the

transmitted one due to the heavy path loss and fading), which

surpass the dynamic range of the analoge-to-digital converter.

Therefore, LI alleviation and elimination is indispensable for

the implementation of FD mode operation [1]–[5], [9].

The explosive growth in demand for wireless commu-

nication devices with higher throughput (a principal merit

of 5G wireless communication systems) led to the implemen-

tation of short range systems, such as small-cell networks,

WiFi, and Femtocells, where the cell-edge path loss is lower

than that of the traditional cellular networks. Therefore, the

transmission power and distance between devices have been

greatly reduced. This considerable amendment alongside the

developments in antennas and radio-frequency (RF) circuit

design render full-duplex communications feasible as the

LI mitigation problem becomes viable. Various LI attenuation

approaches have been proposed in the literature which may be

classified into three phases: propagation (passive) domain LI

cancelation, analog and digital (active) domain LI cancelation,

and spatial domain LI cancelation (in the presence of multiple

receive and/or transmit antennas at the FD node) [2], [4]–[12].

Owing to the significant hardware adjustment, high cost and
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power required by the terminal to operate in the FD mode,

only infrastructure base stations are upgraded to operate on

the FD mode, while user terminals persist to operate in the

HD mode.

Synergistic conjunction of multiple-input-multiple-output

(MIMO) techniques with FD relaying systems delivers a new

dimension of LI suppression in the spatial domain, and also

can provide higher capacity in contrast to its HD relay-

ing rival (see e.g., [7], [8], [10], [13]). Hence, when a

FD relaying networks with multi-antenna terminals is present,

joint optimization of precoding and decoding at the transmitter

and receiver, respectively, can be utilized to diminish the

LI impact at the relay. Owing to its deployment simplicity and

analytical tractability, zero-forcing (ZF) technique is employed

to totally nullify the LI interference and terminate the closed-

loop between the relay input and output. Several papers

have investigated the spatial LI alleviation issue, for instance,

in [7] and [13], a new precoding and decoding vector design

relies on the conventional singular value decomposition (SVD)

of the LI channel is introduced to cancel out the LI at the

relay, Riihonen et al. [7] further considered various spatial LI

elimination methods, more specifically, the antenna selection,

beam selection, and null space projection techniques have

been studied. In addition, a joint beamforming and com-

bining weights layout for the maximization of the overall

signal-to-interefernce-plus-noise ratio (SINR) is investigated

in [8], thereby a closed-form overall SINR is presented.

Namely, the receive ZF precoding with maximum-ratio trans-

mission (MRT), and the maximal-ratio combining (MRC) with

transmit ZF schemes have been introduced. More recently,

Ngo et al. [6] exploited the theory of massive MIMO at the

receiver and the transmiter to greatly minimize the LI effect,

where the ZF/ZF and MRC/MRT schemes are used at the

decode-and-forward (DF) FD relay. In [10], several transmit

and receive heuristic filters which maximizes the overall

signal-to-noise ratio (SNR) for the MIMO FD relaying systems

are presented. The null space projection via SVD is utilized

by Tsimenidis and Rawi [14] to suppress the LI interference.

Note that the SVD based approach in [7] and [14] is considered

under specific assumptions on the number of relay receive and

transmit antennas. However, to our best knowledge, the effect

of co-channel interference (CCI)1 on the overall performance

of FD relaying with multiple-antenna terminals has not been

investigated yet, i.e., the general case of multiple antenna

terminals with CCI at the relay and destination, utilizing

transmit (receive) ZF beamforming (combining) has not been

analyzed in the literature for both HD and FD relaying modes.2

Note that ZF beamforming is employed particularly due to its

1The frequency reuse to improve the spectrum efficiency of wireless
networks causes the harmful effect of CCI in the FD multi-cell environment.

2It is to be emphasized that the performance of MIMO half-duplex relaying
systems with CCI at the relay and/or destination has been studied in [15]–[22].
However, all these system set-ups are limited to one or two single antenna
terminals (except for [18] and [21]), resulting in a simplified analytical
expressions. Meanwhile, [18] and [21] investigated the performance analysis
of transmit antenna selection (TAS)/MRC and MRT/MRC, respectively.
However, due to the presence of CCI, MRC and MRT are sub-optimal schemes
as they treat the interference as additive noise. Therefore, this paper presents
a more sophisticated null space projection scheme in order to suppress the
CCI at the relay and destination.

robustness against the severe effects of CCI and fading, where

this is achieved by steering the transmitted signal along the

strongest eigenmodes of the source → relay (S → R) and

relay → destination (R → D) null-space-projected channels.

In the context of traditional HD relaying networks,

the impact of CCI due to frequency reuse on the system

performance has been extensively studied in the literature

(see e.g., [15]–[22]). However, FD relaying networks are more

susceptible to CCI because of the higher frequency reuse in

contrast to its conventional HD relaying rival. For instance,

in the case of multi-cell framework where FD relay base

stations and HD users, an extremely greater level of CCI is

noticed from nearby cells in comparison to the HD relaying

networks [1], [23]–[25]. Therefore, it is of theoretical and

practical significance to analyze the deleterious impact of CCI

on the performance of FD relaying networks. Alves et al. [24]

and Sharma et al. [25] investigated the effect of CCI on the

performance of FD relaying networks, namely, the outage

probability of a DF FD relay with single antenna nodes

has been presented. In [23], the average spectral efficiency

of a stochastic geometry small cell networks, when both

the base stations and user equipments operate in FD mode

(i.e., terminals have dedicated antennas for transmission and

reception) is presented. Note that all these previous works

are restricted to single antenna terminals. More recently,

Almradi and Hamdi [26], [27] investigated the impact of CCI

on the performance of MIMO FD relaying systems, where a

single antenna terminals are considered. However, the imple-

mentation of multiple antenna terminals enhance reliability

and improve capacity, further, it is a powerful approach that

can be used to mitigate the LI and CCI effects at the relay

and destination.

Inspired by the above stated limitations, this paper provides

a thorough investigation for the impact of LI and CCI at

the relay and destination on the performance of amplify-

and-forward FD relaying networks with multi-antenna nodes

by employing hop-by-hop ZF beamforming. Furthermore, the

case of hop-by-hop MRT/MRC beamforming is also presented

as a benchmark.

The major contributions of the paper are outlined as:

1) The design of precoding and decoding vectors which

maximizes the overall SINR is formulated by proper

optimization problem. Since the optimal precoding and

decoding weight vectors do not yield a mathematically

tractable overall SINR formula, a sub-optimal solution

based on added ZF (null space projection) constraints

is proposed.3 The hop-by-hop ZF beamforming weight

vectors are designed to suppress the CCI and LI at the

FD relay, and the CCI at the destination as follows:

the receive ZF combining filter at the relay is adjusted

to terminate the CCI interferers at the relay, and the

transmit ZF beamforming filter at the relay is intended

3It is widely common that the ZF technique totally terminates the CCI
and results in noise enhancement at low interference-to-noise ratio (INR).
Meanwhile, minimum mean square error (MMSE) strikes a balance between
CCI interference suppression and noise amplification. It should be noted that
the ZF scheme is optimal in the high INR regime, i.e., the MMSE and
ZF performances match at the asymptotically high INR regime.
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Fig. 1. The MIMO FD relaying system model.

to suppress the LI at the relay, while the receive ZF com-

bining filter at the destination is aimed to cancel out

the CCI interferers at the destination. Therefore, simple

closed-form overall SINR expression is presented based

on the derived closed-form transmit/receive ZF beam-

forming/combining vectors. Meanwhile, the hop-by-hop

MRT/MRC beamforming scheme is introduced for com-

parison purposes.

2) A unified accurate closed-form formula for the outage

probability of multi-antenna FD relaying networks

with LI and CCI is presented, where hop-by-

hop ZF beamforming is performed. In addition,

a simple outage probability lower-bound expression

is formulated in closed-form. Besides, the asymptotic

behavior of the considered system is also included,

and shown to achieve a diversity order of

min (NS (NR − MR) , (NT − 1) (ND − MD)), where

NS and ND are the number of antennas at the source

and destination, NT and NR are the number of

FD relay transmit and receive antennas, and MR and

MD are the number of CCI interferers at the relay and

destination, respectively.

3) A unified accurate closed-form ergodic capacity formula

for the MIMO FD relaying systems with LI and CCI is

derived, further, a simple ergodic capacity lower-bound

formula is also included.

The layout of the remaining bit of this paper is as follows.

In Sec. II, the system model is introduced. In Sec. III,

we address the instantaneous overall SINR. In Sec. IV,

we study the outage probability analysis. In Sec. V, the ergodic

capacity analysis is presented. Numerical results are provided

in Sec. VI. Finally, Sec. VII concludes the paper.

II. THE SYSTEM MODEL

We study a MIMO FD amplify-and-forward (AF) relaying

system, where a source S with NS transmitting antennas is

communicating with a destination D having ND receiving

antennas through a multi-antenna FD relay R with NR receiv-

ing antennas and NT transmitting antennas, where the relay is

subject to loopback self-interference (LI) and MR co-channel

interferers (CCI), while the destination is subject to MD CCI

as depicted in Fig. 1. Throughout this paper, the following

assumptions are considered: 1) It is assumed that the source

does not have a direct link to the destination due to heavy path

loss and shadowing since the main focus of our work is on

network coverage extension. 2) A single MIMO full-duplex

AF relay station is considered with MIMO half-duplex users

(i.e., HD source and destination), where the full-duplex relay

receives and re-transmits its information at the same time over

the same frequency. 3) Channels are modeled as quasi-static

block flat fading and remain constant over the block time T ,

and varies independently and identically from one block to the

next. The S → R channel is represented by H1 which is a

NR × NS matrix, the R → D channel is represented by H2

which is a ND×NT matrix, the ith interference channel at the

FD node is denoted by hi which is a NR × 1 vector, and the

jth interferer channel at the destination is denoted by gj which

is ND × 1 vector entries follow independent and identically

distributed random variables (i. i. d.) and distributed according

to CN (0, 1), while the relay → relay (R → R) residual

LI channel is represented by HR which is a NR × NT

matrix, and represents the residual error by imperfect

LI suppression deployed via the passive and active domain

LI cancelation at the FD node, with entries follow i. i. d. ran-

dom variables and distributed according to CN
(
0, σ2

R

)
, where

σ2
R reflects the amount of LI suppression. Perfect channel

state information (CSI) of the S → R channel H1 and the

ith interferer channel hi with i = 1, . . . , MR are assumed

to be available at the source and relay, while full CSI of the

R → D channel H2, the R → R residual LI channel HR

and the jth interferer channel gi with i = 1, . . . , MD

are assumed to be available at the relay and destination.

4) In order to completely eliminate the CCI channel at the

relay and destination, the number of relay receive antennas

is assumed to be greater than the number of interferers at

the relay (i.e., NR > MR), similarly, the number of antennas

at the destination is assumed to be greater than the number

of interferers at the destination (i.e., ND > MD). Likewise,

in order to entirely suppress the LI channel at the relay, the

number of relay transmit antennas is supposed to be larger than

one (i.e., NT > 1). These are essential conditions for ensuring

the feasibility of the proposed hop-by-hop ZF scheme.

III. THE INSTANTANEOUS OVERALL SINR

At time instant n, the received signal at the relay after

receive combining vector can be written as

zR [n] = w
†
RyR [n]

= w
†
R

(

H1wSxS [n] + HRwT xR [n]

+

MR∑

i=1

hixi [n] + nR [n]

)

, (1)

where xS [n] is the transmitted signal with average power

ES = E [xS [n]x⋆
S [n]], and E (·) denotes the expectation

operator, (·)⋆
denotes the conjugate operator, xR [n] is the

relay signal with average power ER = E [xR [n] x⋆
R [n]], xi [n]

is the ith interference signal at the FD node with average

power ER
i = E [xi [n] x⋆

i [n]], nR [n] is an NR × 1 vector

which denotes the additive white Gaussian noise (AWGN) at

the relay, distributed according to nR [n] ∼ CN
(
0, σ2INR

)
,
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wR is the receive combining weight vector at the relay

with unit norm, (·)† denotes the conjugate transpose operator,

wS is the transmit beamforming weight vector at the source

with unit norm, and wT is the transmit beamforming weight

vector at the relay with unit norm. Let H = [h1, h2, . . . ,hMR
]

be the CCI matrix at the relay with dimension NR × MR.

Then, the term
∑MR

i=1 w
†
Rhixi [n] in (1) can be re-written as

w
†
RHxI [n] where xI [n] = [x1 [n] , x2 [n] , . . . , xMR

[n]]T ,

where (·)T
denotes the transpose operator.

The relay transmit signal is given as

xR [n] = GzR [n − τ ] , (2)

where τ is the processing delay time needed at the relay for

the FD operation, and G is the channel assisted (variable gain)

relay normalizing constant, and is given by as in (3), as shown

at the top of next page.

Due to the recursive nature of (1) and (2), the signal

transmitted by the relay is re-written as as in (4), as shown at

the top of next page.

The combined received signal at the destination can be

written as

zD [n] = w
†
DyD [n]

= w
†
D

(

H2wT xR [n] +

MD∑

i=1

giyi [n] + nD [n]

)

, (5)

where wD is the receive combining weight vector at the

destination with unit norm, yi [n] is the ith interferer signal at

the destination with average power ED
i = E [yi [n] y⋆

i [n]] and

nD [n] is the AWGN at the destination and distributed accord-

ing to nD [n] ∼ CN
(
0, σ2IND

)
. Let G = [g1, g2, . . . , gMD

]
be the CCI matrix at the destination with dimension ND×MD.

Then, the term
∑MD

i=1 w
†
Dgiyi [n] in (5) can be re-written as

w
†
DGyI [n] where yI [n] = [y1 [n] , y2 [n] , . . . , yMD

[n]]T .

Therefore, the overall SINR may be expressed as4

γ =
γ1γ2

γ1 + γ2 + 1
, (6)

where

γ1 =
γ1

∣
∣
∣w

†
RH1wS

∣
∣
∣

2

γ2

∣
∣
∣w

†
RHRwT

∣
∣
∣

2

+
∥
∥
∥P

1
2

IR
H†wR

∥
∥
∥

2

+ 1

, (7)

and

γ2 =
γ2

∣
∣
∣w

†
DH2wT

∣
∣
∣

2

∥
∥
∥P

1
2

ID
G†wD

∥
∥
∥

2

+ 1

, (8)

where γ1 = ES

σ2 , γ2 = ER

σ2 , while the interference-to-

noise ratio at the relay is expressed as
∑MR

i=1

∣
∣
∣w

†
Rhi

∣
∣
∣

2
ER

i

σ2 =
∥
∥
∥P

1
2

IR
H†wR

∥
∥
∥

2

, with ‖·‖ denotes the Euclidean norm

operator, and P IR
is a diagonal matrix given as

4Note that the S → R SINR (γ1) and the R → D SINR (γ2) in (7)
and (8) could alternatively be derived straightforwardly from (1) and (5),
respectively. This formulation has been extensively used in the full duplex
relaying literature, see e.g., [10, eq. (6)], [26, eq. (5)], and [28, eq. (11)].

P IR
= diag

(
ρR
1 , ρR

2 , . . . , ρR
MR

)
, ρR

i =
ER

i

σ2 . Similarly, the

interference-to-noise ratio at the destination may be written

as
∑MD

i=1

∣
∣
∣w

†
Dgi

∣
∣
∣

2
ED

i

σ2 =
∥
∥
∥P

1
2

ID
G†wD

∥
∥
∥

2

, where P ID
is a

diagonal matrix defined as P ID
= diag

(
ρD
1 , ρD

2 , . . . , ρD
MD

)
,

and ρD
i =

ED
i

σ2 .

Proof: Please see Appendix A for the proof.

The main goal is to attain an optimal source beam-

forming vector, destination combining vector, and relay

beamforming and combining vectors, i.e., finding w =
{wS , wR, wT , wD} so as to maximize the overall SINR

in (6). Therefore, the optimization problem may be formulated

as follows

w⋆ = argmax
w

γ (in Eq. (6))

s. t. ‖w‖ = 1, (9)

where w⋆ = {w⋆
S , w⋆

R, w⋆
T , w⋆

D}. It is widely common that

in the absence of interference, MRT and MRC at the trans-

mitter and the receiver, respectively, are optimal beamforming

and combining schemes as they yield the maximum overall

SINR [29]–[31]. However, owing to the deleterious frequency

reuse in FD relaying networks, where more detrimental effects

of CCI will be experienced as the amount of CCI is predicted

to double in contrast to its traditional HD relaying counter-

part [1], MRC and MRT become sub-optimal as they treat

the interference as additive noise. Therefore, the existence of

CCI can seriously deteriorate the performance of FD relaying

networks, and hence its mitigation is of practical importance.

Due to the complexity of the optimization formula in (9),

the optimal receive (transmit) decoding (precoding) weight

vectors at the source, MIMO FD relay, and the destination

are nontrivial to obtain in closed-form. Therefore, to derive

a closed-form mathematically tractable overall SINR, a sub-

optimal formula is proposed by inserting a receive and transmit

null space projection constraints to the optimization prob-

lem in (9). These constraints force the loopback self and

co-channel interference terms at the relay and destination to

zero, i.e., w
†
RHRwT = 0, H†wR = 0, and G†wD = 0,

assuming that NR > MR, NT > 1, and ND > MD. To this

end, because of the separability of the attained constraint

problem, this problem may be decoupled into two manageable

problems as follows

w⋆ = argmax
wS, wR

∥
∥
∥w

†
RH1wS

∥
∥
∥

2

s. t. H†wR = 0 & ‖w‖ = 1, (10)

and

w⋆ = argmax
wT , wD

∥
∥
∥w

†
DH2wT

∥
∥
∥

2

s. t. G†wD = 0 & w
†
RHRwT = 0 & ‖w‖ = 1. (11)

Proposition 1: The optimal solution to the constraint opti-

mization problems in (10) and (11) are (respectively) derived

as

w⋆
R =

P H1umax

(

H
†
1PH1

)

∥
∥
∥P H1umax

(

H
†
1PH1

)∥
∥
∥

, (12)
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G =

√
√
√
√

ER

E

(

|zR [n]|2
) =

√
√
√
√

ER

ES

∣
∣
∣w

†
RH1wS

∣
∣
∣

2

+ ER

∣
∣
∣w

†
RHRwT

∣
∣
∣

2

+
∑MR

i=1

∣
∣
∣w

†
Rhi

∣
∣
∣

2

ER
i + σ2

. (3)

xR [n] = Gw
†
R

(

H1wSxS [n − τ ] + HRwTGzR [n − 2τ ] +

MR∑

i=1

hixi [n − τ ] + nR [n − τ ]

)

=

∞∑

j=0

(

w
†
RHRwTG

)j

Gw
†
R

(

H1wSxS [n − jτ − τ ] +

MR∑

i=1

hixi [n − jτ − τ ] + nR [n − jτ − τ ]

)

. (4)

and

w⋆
S = umax

(

H
†
1PH1

)

, (13)

and

w⋆
D =

BH2Dumax

(

DH
†
2BH2D

)

∥
∥
∥BH2Dumax

(

DH
†
2BH2D

)∥
∥
∥

, (14)

and

w⋆
T =

Dumax

(

DH
†
2BH2D

)

∥
∥
∥Dumax

(

DH
†
2BH2D

)∥
∥
∥

, (15)

where umax

(

X†X
)

, X ∈ {PH1, BH2D} is the

right or left singular vector of the channel matrix X†X

corresponding to the strongest eigenmode, i.e., the eigenvector

corresponding to λmax

(

X†X
)

, the largest eigenvalue of the

Wishart matrix X†X . Note that λmax

(

X†X
)

= ‖X‖2
2. The

null space projection matrices P , B, and D are (respectively)

given as P = INR
− H

(

H†H
)−1

H†, B = IND
−

G
(

G†G
)−1

G†, and D = INT
−

H
†

R
P H1w

⋆
S(H

†

R
P H1w

⋆
S)

†

(H
†
RP H1w⋆

S)
†
H

†
RP H1w⋆

S

.

Proof: Please see Appendix B for the proof.

Note that in the proposed ZF beamforming scheme, the opti-

mal source and relay transmit powers are given by their

maximum values, i.e., ES and ER, respectively, as they result

in the maximum overall SINR. This is due to the absence of

the direct link channel between the source and the destination,

while the impact of the relay transmit signal on its received

signal is removed through null space projections, via the added

ZF constraint, w
†
RHRwT = 0.

Therefore, the overall SINR of MIMO FD relaying with

LI and CCI by utilizing hop-by-hop ZF beamforming can be

derived as [32]

γ =
γ1γ2

γ1 + γ2 + 1
, (16)

where γ1 = γ1λmax

(

H
†
1P H1

)

= γ1 ‖P H1‖
2
2, γ2 =

γ2λmax

(

DH
†
2BH2D

)

= γ2 ‖BH2D‖2
2.

Note that the matrices P , B and D are idempotent orthog-

onal projection (null-space projection) matrices (i.e., all their

eigenvalues are either one or zero, where the number of

ones is determined by the rank of the matrix)5 which are

used to eliminate the co-channel interference at the relay,

destination and loopback self-interference channel at the relay,

respectively. For instance, in the case of idempotent orthogonal

projection matrix P , we have tr (P ) = rank (P ) because of

idempotency, where tr (·) denotes the trace operation. Hence,

we have

rank (P ) = rank

(

INR
− G

(

G†G
)−1

G†

)

= rank (INR
) − rank

(

G
(

G†G
)−1

G†

)

. (17)

It can be easily shown that rank (INR
) = NR and

rank

(

G
(

G†G
)−1

G†

)

= rank (G) = MR. Hence,

rank (P ) = NR − MR. Similarly, it can be shown that

rank (B) = ND − MD, and rank (D) = NT − 1.

Therefore, it is easily shown that ‖PH1‖
2
2 and ‖BH2D‖2

2

are the largest eigenvalue of the Wishart matrices PH1

and BH2D with dimensions (NR − MR) × NS and

(ND − MD) × (NT − 1), respectively [8], [15]. Hence,

the cumulative distribution function (CDF) and probability

density function (PDF) of γ1 and γ2, respectively, are given

as [30]

Fγ1
(x) = 1 −

s1∑

i=1

(t1+s1−2i)i
∑

j=t1−s1

j
∑

k=0

ikd1 (i, j)

k!γ1
k

xke
− ix

γ1 , (18)

and

fγ2
(y) =

s2∑

l=1

(t2+s2−2l)l
∑

m=t2−s2

lm+1d2 (l, m)

m!γ2
m+1 yme

− ly
γ2 , (19)

where s1 = min (NS , NR − MR), t1 = max(NS , NR−MR),
s2 = min(NT − 1, ND − MD), t2 = max(NT − 1,

ND − MD), and the coefficients dc (a, b), c = 1, 2 are

given in [30] for some system configurations, and they can

be efficiently evaluated for any arbitrary configurations by

using [31, Algorithm 1].

A. MRT/MRC Scheme

In dual-hop relaying systems, hop-by-hop MRT beamform-

ing is utilized to steer the transmitted signal along the strongest

eigenmode of each hop’s channel (see e.g., [34], [35]).

5It is well known that the rank of an M × N matrix A is rank (A) ≤
min (M, N), where equality holds if and only if A is full rank [33].
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Hence, in the presence of perfect CSI of H1 and H2, and

in the absence of full CSI of HR, H , and G, the first

hop MRT beamformers wS and wR are set to match

vmax

(

H
†
1H1

)

and umax

(

H1H
†
1

)

, the left or right sin-

gular vector of the channel matrix H
†
1H1 and H1H

†
1

(respectively) corresponding to the strongest eigenmode of

the Wishart matrix H
†
1H1 [35, eq. (7)]. Similarly, the sec-

ond hop MRT beamformers wT and wD are set to match

vmax

(

H
†
2H2

)

and umax

(

H2H
†
2

)

, the left or right singular

vector of the channel matrix H
†
2H2 and H2H

†
2 (respectively)

corresponding to the strongest eigenmode of the Wishart

matrix H
†
2H2. Note that MRT beamforming requires full

CSI for H1, H2 only, while ZF beamforming requires full

CSI for H1, H2, HR, H , and G. Meanwhile, in the

absence of HR, H , and G, ZF beamforming reduces to

MRT beamforming.

Therefore, from (6)-(8), the overall SINR for MRT beam-

forming reduces to

γMRT =
γMRT
1 γMRT

2

γMRT
1 + γMRT

2 + 1
, (20)

where γMRT
1 is given as in (21), as shown at the top of next

page, and

γMRT
2 =

γ2 ‖H2‖
2
2

∥
∥
∥P

1
2

ID
G†umax

(

H2H
†
2

)∥
∥
∥

2

+ 1

, (22)

where ‖Hi‖
2
2 = λmax

(

H
†
iHi

)

, the largest eigenvalue of the

Wishart matrix H
†
iH i, i ∈ {1, 2}.

Due to the analytical complexity of evaluating the perfor-

mance of (20), only simulation results are included in this

paper for comparison purposes.

IV. OUTAGE PROBABILITY ANALYSIS

In this section, the information outage probability of MIMO

FD relaying systems with hop-by-hop ZF beamfoming is

investigated. An exact expression for the outage probability

is derived in closed-form. The outage probability is defined

as the probability that the instantaneous mutual information,

I = log2 (1 + γ), drops under a target rate of R0 bits per

channel use6

Pout (R0) = Pr (log2 (1 + γ) < R0)

= Fγ (γT ) . (23)

where γT = 2R0 − 1, and Fγ (·) denotes the CDF of the

overall SINR.

6Note that in contrast to (23), the SINR outage probability can be defined
as the probability that the instantaneous overall γ falls below a threshold γT ;
Pr (γ < γT ) = Fγ (γT ). Note that according to (23), γT in the case of

half-duplex relaying is given as γT = 22R0 − 1.

A. Accurate Outage Probability

The CDF of the overall SINR can be defined as

[34, Appendix I]

Fγ (γT ) = Pr

(
γ1γ2

γ1 + γ2 + 1
< γT

)

= 1 −

∞∫

0

F γ1

(
γT (γT + w + 1)

w

)

fγ2
(γT + w) dw,

(24)

where F γ1
(·) is the complementary CDF of γ1.

Proposition 2: An exact closed-form outage probability

expression for MIMO FD relaying systems with loopback self-

interference, MR and MD co-channel interferers at the relay

and destination, with hop-by-hop ZF beamfoming, can be

expressed as in (25), as shown at the top of next page, where

Kv (z) is the modified bessel function of the second kind of

order v.

Proof: Please see Appendix C for the proof.

B. Outage Probability Lower-Bound

Even though proposition 2 yields an effective ways for

evaluating accurate outage probability, this expression is fairly

involved since no simple insights into the performance of the

system can be attained. The overall SINR in (16) could be

easily upper-bounded by7

γ ≤ γup = min (γ1, γ2) . (26)

Hence, the outage probability lower-bound formula

for multi-antenna FD relaying networks with hop-by-hop

ZF beamfoming can be expressed as

Fγup
(γT ) = 1 −

s1∑

i=1

(t1+s1−2i)i
∑

j=t1−s1

d1 (i, j)
Γ
(

j + 1, iγT

γ1

)

j!

×
s2∑

l=1

(t2+s2−2l)l
∑

m=t2−s2

d2 (l, m)
Γ
(

m + 1, lγT

γ2

)

m!
.

(27)

Proof: Please see Appendix D for the proof.

In the following, the outage probability lower-bound for-

mula in (27) is utilized to attain an asymptotic approxima-

tions for the outage probability of multi-antenna FD relaying

networks with hop-by-hop ZF beamfoming.

1) Asymptotic Approximations: To certify and specify the

attainable diversity order of the multi-antenna FD relaying

networks with with LI, MR and MD co-channel interferers at

the relay and destination, employing hop-by-hop ZF beamfom-

ing, (27) is employed in the asymptotically high SNR reign

by letting γ2 = κγ1, where κ denotes a finite fixed integer

7To simplify the analytical complexity and attain preferable insights into
the system performance, we utilize the well-known fact in the conventional
half-duplex relaying literature that the overall SNR γ = γ1γ2

γ1+γ2+1
could

be firmly upper-bounded as γ1γ2

γ1+γ2
(see e.g., [36, eq. (6)]). Note that

the upper-bound γ1γ2

γ1+γ2
may further be upper-bounded by min (γ1, γ2)

(see e.g., [19, eq. (8)]).



ALMRADI et al.: HOP-BY-HOP ZF BEAMFORMING FOR MIMO FD RELAYING 6141

γMRT
1 =

γ1 ‖H1‖
2
2

γ2

∣
∣
∣u

†
max

(

H1H
†
1

)

HRvmax

(

H
†
2H2

)∣
∣
∣

2

+
∥
∥
∥P

1
2

IR
H†umax

(

H1H
†
1

)∥
∥
∥

2

+ 1

, (21)

Fγ (γT ) = 1 − 2

s1∑

i=1

(t1+s1−2i)i
∑

j=t1−s1

j
∑

k=0

ikd1 (i, j)

k!γ1
k

γk
T e

−i
γT
γ1

k∑

p=0

(
k

p

)

(γT + 1)
p

s2∑

l=1

(t2+s2−2l)l
∑

m=t2−s2

lm+1d2 (l, m)

m!γ2
m+1

× e
−

lγT
γ2

m∑

n=0

(
m

n

)

γm−n
T

(
iγT γ2 (γT + 1)

lγ1

)n−p+1

2

Kn−p+1

(

2

√

ilγT (γT + 1)

γ1γ2

)

, (25)

F∞
γ (γT ) =

∏s1−1
l=0 l!

∏s1−1
l=0 (t1 + l)!

(
γT

γ1

)NS(NR−MR)

+

∏s2−1
l=0 l!

∏s2−1
l=0 (t2 + l)!

(
γT

γ2

)(NT−1)(ND−MD)

+ O

((
γT

γ1

)min(NS(NR−MR), (NT−1)(ND−MD))+1
)

. (28)

and γ1 → ∞. Therefore, the asymptotic approximations for

the outage probability can be expressed as in (28), as shown

at the top of this page.

Proof: Please see Appendix E for the proof.

It is straight forward to show from (28) that the achievable

diversity order of the MIMO FD relaying system with LI,

MR and MD co-channel interferers at the relay and des-

tination, utilizing hop-by-hop ZF beamfoming scheme is

min (NS (NR − MR) , (NT − 1) (ND − MD)).

V. ERGODIC CAPACITY ANALYSIS

In this section, we present a rigorous investigation on the

ergodic capacity of MIMO FD relaying systems with LI, MR

and MD co-channel interferers at the relay and destination,

utilizing hop-by-hop ZF beamfoming. The ergodic capacity

is defined as the expected value of the instantaneous mutual

information between the source and destination, and is given

by

C =
1

ln 2
E [ln (1 + γ)]

=
1

ln 2
E

[

ln

(

1 +
γ1γ2

γ1 + γ2 + 1

)]

. (29)

A. Accurate Ergodic Capacity

To lower the analytical evaluation difficulties, the following

lemma is utilized to modify (29) into a better and suitable form

that enables the evaluation of the needed average via familiar

formulas of moment generating functions (MGFs).

Lemma 1: For any two random variables X ≥ 0 and

Y ≥ 0, where X and Y are independent, we have

[26, Lemma 3]

E

[

ln

(

1 +
XY

X + Y + 1

)]

=

∞∫

0

1

z
(1 −MX (z)) (1 −MY (z)) e−zdz, (30)

where MX (z) = E
(
e−zX

)
is the MGF of X , and MY (z) =

E
(
e−zY

)
is the MGF of Y .

Let X = γ1 = γ1 ‖PH1‖
2
2, Y = γ2 = γ2 ‖BH2D‖2

2.

Therefore, the MGFs of γk is given as [34, eq. (20)]

Mγk
(z) =

sk∑

i=1

(tk+sk−2i)i
∑

j=tk−sk

dk (i, j)
(

γk

i
z + 1

)j+1 , (31)

where k ∈ {1, 2}.

Proposition 3: An exact closed-form ergodic capacity

expression for MIMO FD relaying systems with LI, MR and

MD co-channel interferers at the relay and destination, uti-

lizing hop-by-hop ZF beamfoming, can be derived as in (32),

as shown at the bottom of next page, where G., .
., . (. |. ) is the

Meijer’s G-function [37, eq. (9.301)], G
1, 1, 1, 1, 1
1,[1:1], 0, [1:1] (. |. ) is

the extended generalized bivariate Meijer’s G-function [38].

Proof: Please see Appendix F for the proof.

B. Ergodic Capacity Lower-Bound

To get a simple lower-bound formula for the ergodic capac-

ity (29), let us re-write (29) in an easier alternative form as

follows

C = E

[

log2

(
(1 + γ1) (1 + γ2)

γ1 + γ2 + 1

)]

= Cγ1
+ Cγ2

− CγT
, (33)

where Cγi
= E [log2 (1 + γi)], for i ∈ {1, 2}, and CγT

=
E [log2 (1 + γ1 + γ2)]. Here, an easier lower-bound formula

for CγT
is presented by utilizing Jensen’s inequality to CγT

as follows

CγT
≤ log2 (1 + E (γ1) + E (γ2)) . (34)

Hence, a simple ergodic capacity lower-bound formula

for (29) is derived as in (35), as shown at the bottom of next

page, where En (·) denotes the exponential integral function

[39, eq. (5.1.4)].

Proof: Please see Appendix G for the proof.

VI. NUMERICAL RESULTS

In this section, we validate the presented theoretical results

with Monte Carlo simulations. In addition, the impact of
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Fig. 2. Multi-antenna FD relaying outage probability against the first-hop
SNR (γ1) where γ1 = γ2, with R0 = 2 bits/sec/Hz, and for different settings
(NS , NR, MR, NT , ND , MD).

key system parameters on the outage probability and ergodic

capacity performance is investigated. Without loss of gen-

erality, a symmetric settings of per-hop SNR is assumed,

i.e., γ1 = γ2. In addition, the source transmission rate is

set to R0 = 2 bits/sec/Hz. Hence, the pre-defined SNR

threshold is given as8 γT = 2R0 − 1 = 3. Besides, specific

values for NS , NR, MR, NT , ND, and MD for each antenna

configurations are labeled as (NS , NR, MR, NT , ND, MD)
in the figures. For comparison purposes, results for the case

of MIMO HD relaying with CCI at the relay and destination

and hop-by-hop ZF beamforming are included with the con-

straint that the total number of antennas at the HD relay is

N = NR + NT . In addition, the number of interferers at the

FD relay is chosen to be MR, which is doubled compared

to its HD counterpart. Therefore, each antenna configuration

in the case of MIMO HD relaying is denoted in the figures

as HD
(
NS , NR + NT , MR

2 , ND, MD

)
. This refers to the so

called number of antenna preserved condition at the relay.

In Fig. 2, the outage probability of MIMO FD relaying

against the first-hop SNR is presented, where Monte Carlo

simulations of (23) is used to validate the new exact closed-

form, lower-bound, and asymptotic mathematical formulas

8Note that for the HD mode, the SNR threshold is written as
γT = 22R0 − 1 = 15.

in (25), (27), and (28) respectively. It can be observed that the

simulation and proposed exact analytical expression in (25)

provide a perfect match which corroborates the accuracy of

the proposed closed-form analytical expression. Furthermore,

the tightness of the proposed lower-bound and asymptotic

analytical expressions in (27) and (28) are also verified, where

they become identical at high SNRs. It is clearly seen that

increasing the number of antennas and/or the average per-

hop SNR significantly improves the outage probability of

the system. However, the negative impact of the number

of co-channel interferers on the system performance is also

verified. The outage probability of multi-antenna FD relaying

networks in Fig. 2 outperforms its multi-antenna HD relaying

networks counterpart at low SNRs. However, at high SNRs,

the outage probability of multi-antenna HD relaying networks

is superior. The implementations reveal an exciting insight that

is useful in managing the design of multi-antenna FD relaying

networks. The attainable diversity orders in Fig. 2, defined as

min (NS (NR − MR) , (NT − 1) (ND − MD)), are one, one,

two, and four. It is observed that the diversity order is much

significant on the outage probability enhancement in contrast

to the effect of array gain. For example, the frameworks

(1, 2, 1, 2, 2, 1) and (2, 4, 3, 2, 4, 3) have similar diver-

sity orders (one). However, the last has a little performance

improvement resulting from higher array gain. On the other

hand, the settings (1, 2, 1, 2, 2, 1) and (2, 3, 1, 3, 3, 1)
enjoy diversity orders of one and four, respectively. Thereby,

the last benefits from a considerable outage performance

enhancement. Notice that when the average SNRs at the

source and relay are equal, i.e., γ1 = γ2, network set-

tings that have similar diversity order and degrees of free-

dom have similar performance. For instance, the frameworks

(2, 3, 2, 3, 2, 1) and (2, 5, 4, 2, 4, 2) enjoy similar outage

performance. Hence, for outstanding network performance,

the network engineer needs to carefully choose NS , NR,

NT , and ND in order to attain the best feasible diversity

order, more specifically, selecting NS , NR, NT , and ND so

that NS (NR − MR) ≈ (NT − 1) (ND − MD). It is worth

noticing that in the case of fixed infrastructure FD base station

relay, NR and NT could be higher than that of NS and ND

due to space constraints at the mobile users.

Fig. 3 shows the ergodic capacity of MIMO FD relay-

ing against the first-hop SNR. simulations results of (29) is

exploited to affirm the accurate closed-form and lower-bound

mathematical formulas in (32) and (35), respectively. It is seen

C =
γ1 γ2

ln 2

s1∑

i=1

(t1+s1−2i)i
∑

j=t1−s1

j
∑

k=0

d1 (i, j)

iΓ (k + 1)

s2∑

l=1

(t2+s2−2l)l
∑

m=t2−s2

m∑

n=0

d2 (l, m)

lΓ (n + 1)
G

1, 1, 1, 1, 1
1,[1:1], 0, [1:1]

⎛

⎜
⎜
⎝

γ1

i
γ2

l

∣
∣
∣
∣
∣
∣
∣
∣

2
−k; −n

−
0; 0

⎞

⎟
⎟
⎠

, (32)

C ≥
1

ln 2

s1∑

i=1

(t1+s1−2i)i
∑

j=t1−s1

j
∑

k=0

d1 (i, j) e
i

γ1 E1+k

(
i

γ1

)

+
1

ln 2

s2∑

l=1

(t2+s2−2l)l
∑

m=t2−s2

m∑

n=0

d2 (l, m) e
l

γ2 E1+n

(
l

γ2

)

− log2

⎛

⎝1 + γ1

s1∑

i=1

(t1+s1−2i)i
∑

j=t1−s1

d1 (i, j)

j!

1

i
Γ (j + 2) + γ2

s2∑

l=1

(t2+s2−2l)l
∑

m=t2−s2

d2 (l, m)

m!

1

l
Γ (m + 2)

⎞

⎠, (35)
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Fig. 3. Multi-antenna FD relaying ergodic capacity against the first-hop SNR
(γ1) where γ1 = γ2, for different settings (NS , NR, MR, NT , ND , MD).

Fig. 4. Multi-antenna FD and HD relaying outage probabilities against
the first-hop SNR (γ1) where γ1 = γ2, with R0 = 2 bits/sec/Hz,
and for different settings FD (NS , NR, MR, NT , ND, MD) and

HD
�
NS , NR + NT ,

MR

2
, ND , MD

�
.

that the Monte Carlo simulations and presented mathematical

formulas in (32) attain an accurate coincide which corroborates

the precision of the presented accurate closed-form mathe-

matical formula. Furthermore, the closeness of the considered

lower-bound mathematical formula in (35) is confirmed, where

it gets closer at high array gain and/or diversity order. Our

analysis reveals a significant ergodic capacity improvement

as a result of higher diversity order and/or high average per-

hop SNR. Meanwhile, less enhancement is noticed as a conse-

quence of higher array gain. The harmful impact of the amount

of CCI interference on the ergodic capacity performance of

multi-antenna FD relaying networks is obviously noted.

Fig. 4 shows the outage probabilities of multi-antenna

FD and HD relaying networks for several antenna configu-

rations and amount of CCI interferers. We indicate the so

named RF chain maintained status, hence, the HD relaying

mode antennas is defined as N = NR + NT . In addition, as

denoted in [1], the amount of CCI in FD mode networks is

Fig. 5. Multi-antenna FD and HD relaying ergodic capacities against
the first-hop SNR (γ1) where γ1 = γ2, for different settings

FD (NS , NR, MR, NT , ND, MD) and HD (NS , NR + NT ,
MR
2

,
ND, MD).

doubled in contrast to its HD mode rival. It is easily observed

that the multi-antenna FD relaying networks outperforms its

HD relaying counterpart in terms of outage probability at

low SNRs. However, at high SNRs, the outage probability of

multi-antenna HD relaying networks is superior. The harmful

impact of the amount of CCI interference on the outage

performance of multi-antenna FD relaying modes is easily

noticed.

In Fig. 5, an ergodic capacity comparison for multi-antenna

FD and HD relaying networks is presented. When the diver-

sity order is low, it is seen that the ergodic capacity of

multi-antenna FD relaying mode outperforms its HD relaying

mode counterpart at high SNRs. However, at low SNRs,

the performance of multi-antenna HD relaying is superior.

The harmful impact of the amount of CCI interference on

the performance of multi-antenna FD relaying networks is

easily observed. On the other hand, when the diversity order

is high, i.e., min (NS (NR − MR) , (NT − 1) (ND − MD)) is

high, the performance of multi-antenna FD relaying mode

outperforms its HD relaying mode rival at every SNR regime.

Fig. 6 shows comparisons between the ergodic capacity of

ZF and MRT beamforming schemes under different levels

of loopback self interference variances σ2
R and co-channel

interfernce-to-noise ratio ρI . It is clearly seen that at very

low σ2
R and ρI , the ergodic capacity of MRT beamforming

outperforms that of the ZF beamforming at low SNRs, while

at high SNRs, the oppsite is true. Meanwhile, once σ2
R and/or

ρI starts to increase, the ergodic capacity of ZF beamfoming

surpasses that of the MRT beamforming. In addition, a ceiling

effect is observed in the case of MRT beamforming at high

SNRs regardless of the strength of σ2
R and ρI . Moreover,

σ2
R has a stronger impact on the performance as its effect is

linearly proportional to the relay transmit power, resulting in a

ceiling with worse performance. Therefore, in the presence of

moderate to high σ2
R and/or ρI , the performance of ZF beam-

foming always performs better than MRT beamforming. Note

that ZF beamforming is the same regardless of the interference

levels σ2
R and ρI as it uses null space projections to transmit
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Fig. 6. Comparison between the ergodic capacities of ZF and MRT beam-
forming against the first-hop SNR (γ1) where γ1 = γ2, for the system settings

(3, 3, 1, 3, 3, 1), and with differnt loopback self interference variance σ2
R

and co-channel interfernce-to-noise ratio values, when ρR
i = ρD

i = ρI .

Fig. 7. Comparison between the outage probabilities of ZF and MRT
beamforming against the first-hop SNR (γ1) where γ1 = γ2, for the
system settings (3, 3, 1, 3, 3, 1), with R0 = 2 bits/sec/Hz, and for differnt
loopback self interference variance σ2

R
and co-channel interfernce-to-noise

ratio values, when ρR
i = ρD

i = ρI .

and receive in orthogonal spaces to the interferers through

the proposed orthogonally projected channels. Meanwhile, for

comparison purposes, an ergodic capacity upper-bound from

the literature has been included in Fig. 6, where the impact

of CCI has been ignored.9 Therefore, the literature settings in

this case is simply (3, 3, 0, 3, 3, 0).
Fig. 7 presents comparisons between the outage probabil-

ities of ZF and MRT beamforming schemes under different

levels of σ2
R and ρI . Similarly, at very low σ2

R and ρI , it

is shown that the outage performance of MRT beamform-

ing outperforms that of the ZF beamforming at low SNRs,

while at high SNRs, the opposite is true. Meanwhile, once

σ2
R and/or ρI starts to increase, the outage performance

9To our best knowledge, the effect of CCI at the relay and destination on
the performance of MIMO full duplex relaying has not been investigated yet.
However, the performance of MIMO full duplex relaying in the absence of
CCI at the relay and destination has been analyzed in [8].

of ZF beamfoming exceeds that of the MRT beamforming.

In addition, the outage performance of MRT beamforming

reaches an error floor at high SNRs regardless of the strength

of σ2
R and ρI . Furthermore, σ2

R has a more adverse impact

on the outage performance compared to the effect of ρI

as it controls the error floors at high SNRs resulting in a

worse outage performance. On the other hand, the outage

performance of ZF beamfoming is the same regardless of the

interference levels σ2
R and ρI , and improves without bound

with SNR. Note also here that an outage probability lower-

bound from the literature has been introduced in Fig. 7.

VII. CONCLUSIONS

In this paper, the performance of full-duplex relaying sys-

tems with multiple antenna terminals, LI and CCI has been

investigated, where hop-by-hop transmit/receive ZF beam-

forming/combining based on null space projection was pro-

posed so as to maximize the overall SINR and suppress the

LI and CCI at the relay and destination. Exact analytical

formulas for the outage probability and ergodic capacity were

attained in closed-form. In addition, simpler outage probability

and ergodic capacity lower-bound expressions were also intro-

duced, through which the asymptotic outage expression was

presented to explicitly reveal insights such as the achievable

diversity order and array gain. These expressions yield an

efficient ways for the assessment of the outage probability

and ergodic capacity of the considered MIMO FD relaying

systems with LI and CCI. Therefore, the influence of key

system parameters such as the number of antennas at each

terminal, loopback self-interference at the relay, the number of

CCI interferers at the relay and destination, and the source and

relay average transmit power on the system performance were

investigated. Our analysis reveals that although the number

of co-channel interferers is doubled in full-duplex relaying

systems compared to the conventional half-duplex relaying

systems, full-duplex relaying can significantly improve the

system performance. The proposed theoretical framework

provides useful guidelines for practical implementation of

MIMO relaying systems.

APPENDIX A

PROOF OF EQUATION (6)

Due to the independence between the transmitted signal

xS [n], the ith interference signal xi [n], and the AWGN noise

nR [n], from (4), the relay transmit power is expressed as10

E

(

|xR [n]|2
)

= G2
∞∑

j=0

(∣
∣
∣w

†
RHRwT

∣
∣
∣

2

G2

)j

×

(

ES

∣
∣
∣w

†
RH1wS

∣
∣
∣

2

+

MR∑

i=1

∣
∣
∣w

†
Rhi

∣
∣
∣

2

ER
i + σ2

)

= G2
ES

∣
∣
∣w

†
RH1wS

∣
∣
∣

2

+
∑MR

i=1

∣
∣
∣w

†
Rhi

∣
∣
∣

2

ER
i + σ2

1 −
∣
∣
∣w

†
RHRwT

∣
∣
∣

2

G2

, (36)

10Similar derivations for the case of single antenna nodes could be found
in [40].
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where the well known geometric series
∑∞

j=0 α (x)
j

=
α

1−x
, for |x| < 1 is utilized in order to solve the summation

∑∞
j=0

(∣
∣
∣w

†
RHRwT

∣
∣
∣

2

G2

)j

. Note that from (3), it can be

proved that

∣
∣
∣w

†
RHRwT

∣
∣
∣

2

G2 < 1.

Due to independence between xR [n], yi [n], and nD [n],
from (5), the received power at the destination is written

as

E

(

|zD [n]|2
)

=
∣
∣
∣w

†
DH2wT

∣
∣
∣

2

E

(

|xR [n]|2
)

+ ID

=
∣
∣
∣w

†
DH2wT

∣
∣
∣

2

G2
ES

∣
∣
∣w

†
RH1wS

∣
∣
∣

2

+ IR

1 −
∣
∣
∣w

†
RHRwT

∣
∣
∣

2

G2

+ ID

=
∣
∣
∣w

†
DH2wT

∣
∣
∣

2

G2ES

∣
∣
∣w

†
RH1wS

∣
∣
∣

2

+
∣
∣
∣w

†
DH2wT

∣
∣
∣

2

G2

×
ES

∣
∣
∣w

†
RH1wS

∣
∣
∣

2 ∣
∣
∣w

†
RHRwT

∣
∣
∣

2

G2 + IR

1 −
∣
∣
∣w

†
RHRwT

∣
∣
∣

2

G2

+ ID, (37)

where IR =
∑MR

i=1

∣
∣
∣w

†
Rhi

∣
∣
∣

2

ER
i + σ2 and ID =

∑MD

i=1

∣
∣
∣w

†
Dgi

∣
∣
∣

2

ED
i + σ2.

Upon reforming (37) into a sum of desired signal power,

loopback self interfernce power, co-channel interefernce pow-

ers, and noise powers, we arrive at

E

(

|zD [n]|2
)

=
∣
∣
∣w

†
DH2wT

∣
∣
∣

2

G2ES

∣
∣
∣w

†
RH1wS

∣
∣
∣

2

+
∣
∣
∣w

†
DH2wT

∣
∣
∣

2

G2IR +
∣
∣
∣w

†
DH2wT

∣
∣
∣

2

G2

×
ES

∣
∣
∣w

†
RH1wS

∣
∣
∣

2∣
∣
∣w

†
RHRwT

∣
∣
∣

2

G2+IR

∣
∣
∣w

†
RHRwT

∣
∣
∣

2

G2

1 −
∣
∣
∣w

†
RHRwT

∣
∣
∣

2

G2

+ ID. (38)

Therefore, from (38), the instantanous overall SINR may be

expressed as in (39), as shown at the top of next page, which

upon substituting the relay gain from (3) into (39), reduces

to (40), as shown at the top of next page,

Hence, once dividing the numerator and denominator by

ID

(

ER

∣
∣
∣w

†
RHRwT

∣
∣
∣

2

+ IR

)

and substituting back IR =

∑MR

i=1

∣
∣
∣w

†
Rhi

∣
∣
∣

2

ER
i + σ2 and ID =

∑MD

i=1

∣
∣
∣w

†
Dgi

∣
∣
∣

2

ED
i + σ2

into (40), we arrive at (6), that concludes the proof.

APPENDIX B

PROOF OF PROPOSITION 1

In order to find an explicit expression for the optimal

solution to the optimization problem in (10), the required

solution according to the MRC principle may be expressed in

the following form wR = P H1wS

‖P H1wS‖ , here, the two constraints

are incorporated in this preferable formula, namely, 1) the

projection matrix P which assures that wR ⊥ H (owing to the

fact that H†wR = 0), where, P = INR
−H

(

H†H
)−1

H†,

2) the division by ‖PH1wS‖ assures that the norm of wR

equals one, ‖wR‖ = 1. Therefore, (10) can be re-written

as

w⋆
S = arg max

wS

‖P H1wS‖
2

subject to ‖wS‖ = 1. (41)

This is a well known problem (known as the

squared spectral norm) and its optimal solution is

w⋆
S = umax

(

H
†
1PH1

)

, the eigenvector corresponds

to the largest eigenvalue of the matrix H
†
1P H1,

termed as λmax

(

H
†
1PH1

)

, where ‖PH1w
⋆
S‖

2
=

λmax

(

H
†
1PH1

)

= ‖PH1‖
2
2.

Similarly for (11), let wD = BH2wT

‖BH2wT ‖ , hence

w⋆
T = argmax

wT

‖BH2wT ‖
2

s. t. w
⋆†
S H

†
1PHRwT = 0 & ‖wT ‖ = 1, (42)

where B = IND
−G

(

G†G
)−1

G†. The needed result could

be formulated in the upcoming layout wT = Dz, hence, (42)

can be reformed as11

z⋆ = arg max
z

‖BH2Dz‖2

s. t. ‖Dz‖ = 1, (43)

where D = INT
−

H
†

RP H1w
⋆
S(H

†

RP H1w
⋆
S)

†

(H
†
RP H1w⋆

S)
†
H

†
RP H1w⋆

S

. Similar to (41),

the optimal solution for (43) is z⋆ =
umax(DH

†
2BH2D)

‖Dumax(DH
†
2BH2D)‖

,

where ‖BH2Dz⋆‖2
= λmax

(

DH
†
2BH2D

)

=

‖BH2D‖2
2.

APPENDIX C

PROOF OF PROPOSITION 2

Substituting (18) and (19) into (24) yields (44), shown at

the top of next page.

Applying the binomial expansion (A + B)
N

=
∑N

n=0

(
N

n

)

AN−nBn, equation (44) reduces to (45),

as shown at the top of next page.

The integral I1 is attained by using [37, eq. (3.471.9)],

which upon substituting I1 into (45), results in (25), this

finishes the proof.

11Alternatively, one could choose wT as wT = Dz

‖Dz‖
, in this case, z⋆ =

arg max
z

‖BH2Dz‖2

‖Dz‖2
. Hence, by utilizing Cauchy–Schwarz inequality;

‖BH2Dz‖2 ≤ ‖BH2D‖2
2
‖Dz‖2, similar results could be derived.
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γ =
ES

∣
∣
∣w

†
RH1wS

∣
∣
∣

2 ∣
∣
∣w

†
DH2wT

∣
∣
∣

2

∣
∣
∣w

†
DH2wT

∣
∣
∣

2
(

IR +

�
ES|w†

R
H1wS|

2
+IR

�
|w†

R
HRwT |

2

1

G2 −|w†

R
HRwT |

2

)

+ ID

G2

. (39)

γ =
ES

∣
∣
∣w

†
RH1wS

∣
∣
∣

2

ER

∣
∣
∣w

†
DH2wT

∣
∣
∣

2

ES

∣
∣
∣w

†
RH1wS

∣
∣
∣

2

ID + ER

∣
∣
∣w

†
DH2wT

∣
∣
∣

2
(

ER

∣
∣
∣w

†
RHRwT

∣
∣
∣

2

+ IR

)

+ ID

(

ER

∣
∣
∣w

†
RHRwT

∣
∣
∣

2

+ IR

) . (40)

Fγ (γT ) = 1 −
s1∑

i=1

(t1+s1−2i)i
∑

j=t1−s1

j
∑

k=0

ikd1 (i, j)

k!γ1
k

γk
T e

−i
γT
γ1

s2∑

l=1

(t2+s2−2l)l
∑

m=t2−s2

lm+1d2 (l, m)

m!γ2
m+1 e

−
lγT
γ2

×

∞∫

0

w−k (γT + 1 + w)k
e
−i

γT (γT +1)
γ1w

− lw
γ2 (γT + w)m

dw. (44)

Fγ (γT ) = 1 −
s1∑

i=1

(t1+s1−2i)i
∑

j=t1−s1

j
∑

k=0

ikd1 (i, j)

k!γ1
k

γk
T e

−i
γT
γ1

k∑

p=0

(
k

p

)

(γT + 1)
p

s2∑

l=1

(t2+s2−2l)l
∑

m=t2−s2

×
lm+1d2 (l, m)

m!γ2
m+1 e

−
lγT
γ2

m∑

n=0

(
m

n

)

γm−n
T

∞∫

0

wn−pe
−i

γT (γT +1)
γ1w

− lw
γ2 dw

︸ ︷︷ ︸

I1

. (45)

APPENDIX D

PROOF OF EQUATION (27)

Given the overall SINR bound (26), then

Fγup
(γT )

= Pr (min (γ1, γ2) < γT )
= 1 − (1 − Fγ1

(γT )) (1 − Fγ2
(γT ))

= 1 −
s1∑

i=1

(t1+s1−2i)i
∑

j=t1−s1

d1 (i, j) e
−

iγT
γ1

j
∑

k=0

(
iγT

γ1

)k

k!

×
s2∑

l=1

(t2+s2−2l)l
∑

m=t2−s2

d2 (l, m) e
−

lγT
γ2

m∑

n=0

(
lγT

γ2

)n

n!
. (46)

Upon substituting the CDF of γ1 and γ2 and utilizing

[37, eq. (8.352.4)], (46) simplifies to (27), that finishes the

proof.

APPENDIX E

PROOF OF EQUATION (28)

The asymptotic approximations could be attained by tack-

ling the approximate expansion of the incomplete gamma

function [37, eq. (8.354.1)]. Hence, upon using the asymptotic

results of the CDF of the S → R and R → D links

[41, eq. (27)], equation (46) reduces to

F∞
γ (γT )

= 1 −

(

1 −

∏s1−1
l=0 l!

∏s1−1
l=0 (t1 + l)!

(
γT

γ1

)NS(NR−MR)
)

×

(

1 −

∏s2−1
l=0 l!

∏s2−1
l=0 (t2 + l)!

(
γT

γ2

)(NT −1)(ND−MD)
)

. (47)

To this end, simplifying (47) yields (28), that finishes the

proof.

APPENDIX F

PROOF OF PROPOSITION 4

To get a closed-form formula to (29), it is more appropriate

to utilize another formula for the MGF term obtained in (31).

Therefore, given the CDF of γi in (18), an appropriate formula

for the MGF in (31) could be given as [26, eq. (45)]

Mγi
(z) = z

∞∫

0

e−zγiFγi
(γ) dγ. (48)

Hence,

Mγ1
(z) = 1−γ1

s1∑

i=1

(t1+s1−2i)i
∑

j=t1−s1

j
∑

k=0

d1 (i, j)

i

z
(

γ1

i
z + 1

)k+1
,

(49)

and

Mγ2
(z) = 1 − γ2

s2∑

l=1

(t2+s2−2l)l
∑

m=t2−s2

m∑

n=0

d2 (l, m)

l

×
z

(
γ2

l
z + 1

)n+1 . (50)

From (29)-(30), the ergodic capacity can be defined as

C =
1

ln 2
E

[

ln

(

1 +
γ1γ2

γ1 + γ2 + 1

)]

=
1

ln 2

∞∫

0

1

z
(1 −Mγ1

(z)) (1 −Mγ2
(z)) e−zdz. (51)
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Substituting Mγ1
(z) and Mγ2

(z) from (49) and (50) into

(51), we have

C =
γ1 γ2

ln 2

s1∑

i=1

(t1+s1−2i)i
∑

j=t1−s1

j
∑

k=0

d1 (i, j)

i

×
s2∑

l=1

(t2+s2−2l)l
∑

m=t2−s2

m∑

n=0

d2 (l, m)

l

×

∞∫

0

z
1

(
γ1

i
z + 1

)k+1

1
(

γ2

l
z + 1

)n+1 e−zdz

︸ ︷︷ ︸

.

I2

(52)

Since
(

1

1 + λx

)α

=
1

Γ (α)
G

1, 1
1, 1

(

λx

∣
∣
∣
∣

1 − α

0

)

, (53)

the integral I2 in (52) can be simplified to

I2 =
1

Γ (k + 1)

1

Γ (n + 1)

×

∞∫

0

z G
1, 1
1, 1

(
γ1

i
z

∣
∣
∣
∣

−k

0

)

G
1, 1
1, 1

(
γ2

l
z

∣
∣
∣
∣

−n

0

)

e−zdz

︸ ︷︷ ︸

I3

.

(54)

The integral I3 can be simplified by utilizing

[42, eq. (2.6.2)], resulting in

I2 =
1

Γ (k + 1)

1

Γ (n + 1)
G

1, 1, 1, 1, 1
1,[1:1], 0, [1:1]

⎛

⎜
⎜
⎝

γ1

i
γ2

l

∣
∣
∣
∣
∣
∣
∣
∣

2
−k; −n

−
0; 0

⎞

⎟
⎟
⎠

.

(55)

Hence, substituting (55) into (52) yields (32), that finishes

the proof.

APPENDIX G

PROOF OF EQUATION (35)

The evaluation of Cγi
= E [log2 (1 + γi)] = 1

ln 2E

[ln (1 + γi)] can be conducted by utilizing [43, Lemma 1]

which says, for any γi ≥ 0, we have

E [ln (1 + γi)] =

∞∫

0

1

z
(1 −Mγi

(z)) e−zdz, (56)

where Mγi
(z) = E [e−zγi ], i ∈ {1, 2} and are given in (49)

and (50).

Substituting the MGFs from (49) into (56), we obtain

Cγ1
=

γ1

ln 2

s1∑

i=1

(t1+s1−2i)i
∑

j=t1−s1

j
∑

k=0

d1 (i, j)

i

×

∞∫

0

1
(

γ1

i
z + 1

)k+1
e−zdz

︸ ︷︷ ︸

I4

. (57)

The integral I4 is attained by using [37, eq. (9.211.4)],

resulting in

Cγ1
=

1

ln 2

s1∑

i=1

(t1+s1−2i)i
∑

j=t1−s1

j
∑

k=0

d1 (i, j)Ψ

(

1, 1 − k;
i

γ1

)

.

(58)

Utilizing the fact that Ψ
(

1, 1 − k; i
γ1

)

= e
i

γ1 E1+k

(
i

γ1

)

,

(58) reduces to

Cγ1
=

1

ln 2

s1∑

i=1

(t1+s1−2i)i
∑

j=t1−s1

j
∑

k=0

d1 (i, j) e
i

γ1 E1+k

(
i

γ1

)

.

(59)

Similarly,

Cγ2
=

1

ln 2

s2∑

l=1

(t2+s2−2l)l
∑

m=t2−s2

m∑

n=0

d2 (l, m) e
l

γ2 E1+n

(
l

γ2

)

.

(60)

The averages in (34) may be obtained straightforward by

using [37, eq. (3.381.4)], as follows

E

[

γ1 ‖PH1‖
2
2

]

= γ1

s1∑

i=1

(t1+s1−2i)i
∑

j=t1−s1

ij+1d1 (i, j)

j!

∞∫

0

xj+1e−ixdx

= γ1

s1∑

i=1

(t1+s1−2i)i
∑

j=t1−s1

d1 (i, j)

j!

1

i
Γ (j + 2) , (61)

and

E

[

γ2 ‖BH2D‖2
2

]

= γ2

s2∑

l=1

(t2+s2−2l)l
∑

m=t2−s2

lm+1d2 (l, m)

m!γ2
m+1

∞∫

0

ym+1e
− ly

γ2 dy

= γ2

s2∑

l=1

(t2+s2−2l)l
∑

m=t2−s2

d2 (l, m)

m!

1

l
Γ (m + 2) . (62)
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