
Hop Doubling Label Indexing for Point­to­Point Distance
Querying on Scale­Free Networks

Minhao Jiang†, Ada Wai­Chee Fu‡, Raymond Chi­Wing Wong†, Yanyan Xu‡

†The Hong Kong University of Science and Technology ‡The Chinese University of Hong Kong
{mjiangac, raywong}@cse.ust.hk {adafu, yyxu}@cse.cuhk.edu.hk

ABSTRACT

We study the problem of point-to-point distance querying for mas-

sive scale-free graphs, which is important for numerous applica-

tions. Given a directed or undirected graph, we propose to build

an index for answering such queries based on a novel hop-doubling

labeling technique. We derive bounds on the index size, the com-

putation costs and I/O costs based on the properties of unweighted

scale-free graphs. We show that our method is much more effi-

cient and effective compared to the state-of-the-art techniques, in

terms of both querying time and indexing costs. Our empirical

study shows that our method can handle graphs that are orders of

magnitude larger than existing methods.

1. INTRODUCTION
We study the problem of point-to-point distance querying for

massive scale-free networks or graphs. Given a scale-free graph

G = (V,E), we aim to answer queries about the distance of a

shortest path from a vertex s to a vertex t in the graph. Such query-

ing is a basic building block in the solutions of many practical prob-

lems including page similarity in web graphs, keyword search on

RDF graphs [21], and network analysis such as betweenness cen-

trality computation [23]. Indirectly it is useful for community de-

tection and locating influential users in the network. We give our

problem definition as follows.

Problem Definition. Let G = (V,E) be a directed unweighted

graph, with vertex set V and edge set E. Each edge (u, v) ∈ E
has a length of distG(u, v) = 1. Given an edge (u, v), we say that

v is an out-neighbor of u, and u is an in-neighbor of v. A path

p = (v1, ..., vl) is a sequence of l vertices in V such that for each

vi(1 ≤ i < l), (vi, vi+1) ∈ E. (We also denote p by v1 ❀ vl.)
The length of a path p, denoted by ℓ(p), is the sum of the lengths of

the edges on p. Given u, v ∈ V , the distance from u to v, denoted

by distG(u, v), is the minimum length of all paths from u to v. If

no path u ❀ v exists, then distG(u, v) = ∞. A path u ❀ v with

a length of distG(u, v) is a shortest path from u to v. We study the

following problem: given a static directed unweighted scale-free

graph G = (V,E), construct a disk-based index for processing

This work is licensed under the Creative Commons Attribution­
NonCommercial­NoDerivs 3.0 Unported License. To view a copy of this li­
cense, visit http://creativecommons.org/licenses/by­nc­nd/3.0/. Obtain per­
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st ­ 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 12
Copyright 2014 VLDB Endowment 2150­8097/14/08.

point-to-point (P2P) distance queries, where a P2P distance query

dist(s, t) is : given s, t ∈ V , find distG(s, t).
Although distance querying can be readily handled by Dijkstra’s

algorithm [16], the emergence of large networks such as social net-

works, RDF graphs, and phone networks has created new chal-

lenges. The problem of P2P distance querying has been well stud-

ied for road networks. Some previous works include [3, 28, 19, 9,

27, 29, 31]. For other graph types, many indexing methods have

been proposed. However, the previous works of [12, 14, 15, 20, 30,

33, 34] can only handle relatively small graphs due to high index

construction cost and large index storage space. For the 2 largest

real graphs tested in these studies, we have |V |=581K and |E|/|V |
= 2.45 [12], and |V | = 694K and |E|/|V | = 0.45 [20], respectively.

The more recent works of IS-Label in [18] and the pruned land-

mark labeling (PLL) scheme in [7] can handle bigger graphs. Both

are 2-hop labeling methods [15].

Challenges. While the labeling technique has been adopted by

the state-of-the-art indexing algorithms, there are some major chal-

lenges related to this technique. The first challenge is that no exist-

ing work has been able to provide a guarantee of a small label size.

The total label size is O(|V |2) and in the worst case, this is the

same size as that of a pairwise distance table. For general graphs,

it is shown that there exist graphs G = (V,E) for which any 2-hop

labeling index must have a total size of Ω(|E||V |1/2) [15]. This

high index space complexity will be impractical for large graphs.

The second challenge, which is related to the first, is that no ex-

isting work has been able to give an acceptable bounded complexity

on the computation time and the runtime memory space required

for the label construction. Most existing works are in-memory al-

gorithms and require huge memory consumption. The only existing

work that has bounded memory consumption is IS-Label [18]. IS-

Label builds a hierarchy from the given graph by extracting at each

level an independent vertex set. The remaining graph at each step

is augmented with edges to preserve distances among the remain-

ing vertices. Labels are constructed top-down in the hierarchy. The

hierarchy need not be completed so that a residual graph Gk may

remain in memory and querying is handled by both the labels and a

bi-Dijkstra search in Gk. However, IS-Label has no guarantee of a

small label size, and also no guarantee on the scalability of the la-

bel construction time. Another problem of IS-Label is that to limit

the number of iterations, k, during the label construction, instead

of building a full index, a residual graph Gk is kept in main mem-

ory. However, this is not a pure indexing method since it requires

loading Gk before querying, and the size of Gk can be large.

For the existing in-memory algorithms including [15, 33, 20, 7],

the time complexity ranges from O(|V |2) to O(|E||V |). For the

PLL scheme in [7], the actual time performance is much better than

the O(|E||V |) bound. However, PLL is main memory based and

1203



is not scalable because of a breadth first search process for every

vertex and a pruning process that requires the label index to reside

in memory. Hence, a very large main memory is needed that not

only can hold the input graph but also the entire label index with ex-

tra storage for computation. Using 48GB RAM, the biggest graph

reported in [7] to be handled by PLL is a little over 1GB in size

since the label size is 22GB. Except for IS-Label, all of the above

algorithms assume that the given graph can fit in memory, which

may not be true for massive networks. Hence, scalability remains a

major challenge.

We propose a new indexing method for distance querying to meet

the above challenges. Our design is based on the properties of un-

weighted scale-free graphs, which are prevalent in the real world

[1, 10, 17, 25]. Important applications such as social networks,

web and most of the collected datasets in [1] belong to this type of

graphs. We offer guaranteed complexity bounds on the label size,

the computation costs and I/O costs. With only 4GB RAM, we are

able to build an index for a graph of 9GB in size, with hundreds

of millions of vertices and edges. Our method is based on a novel

iterative process which minimizes the label size growth at each it-

eration, leading to highly effective labeling for the index.

Our main contributions are summarized as follows: (1) We pro-

pose a novel 2-hop labeling indexing method for P2P distance

querying on unweighted directed graphs, and have developed I/O-

efficient algorithms for index construction when the given graph

and the index cannot fit in main memory. (2) Based on the proper-

ties of unweighted scale-free graphs, we derive the following com-

plexity bounds for our index: the index size is O(h|V |), the com-

putational cost is O(|V |logM(|V |/M+ log|V |)), and the I/O cost

is O(|V |log|V |/M × |V |/B), where h is a small constant, M is

the memory size and B is the disk block size. (3) We verify the

performance of our method with experiments on large real-world

scale-free networks.

The paper is organized as follows. Section 2 discusses the rele-

vant properties of scale-free graphs. Section 3 introduces our main

algorithm Hop-Doubling. Section 4 describes the I/O-efficient al-

gorithms. Section 5 introduces the Hop-Stepping strategy for per-

formance enhancement. Section 6 is a discussion about the adapta-

tions to undirected and weighted graphs, and about the use of our

method for general graphs. We report our empirical study in Sec-

tion 7, and conclude in Section 8.

2. 2­HOP LABELING FOR SCALE­FREE

GRAPHS
The 2-hop labeling technique constructs labels for vertices, and

a distance query for s, t can be answered by looking up the labels

of s and t only. Each label is a set of label entries and each la-

bel entry is a pair (v, d) where v ∈ V and d is a distance value.

We say that v is a pivot. For a directed graph G = (V,E), we

create two labels Lin(v) and Lout(v) for each vertex v ∈ V so

that if distG(s, t) 6= ∞, then we can find a pivot u such that

(u, d1) ∈ Lout(s), (u, d2) ∈ Lin(t) and d1 + d2 = distG(s, t),
and there does not exist any u′ such that (u′, d′1) ∈ Lout(s),
(u′, d′2) ∈ Lin(t) and d′1 + d′2 < distG(s, t). We say that the pair

(s, t) is covered by u. Hence, the distance query dist(s, t) can be

answered by looking up Lout(s) and Lin(t) for such a pivot u with

the smallest d1 + d2.

The set of labels for all vertices is called a 2-hop cover. The

complexity of finding a minimum 2-hop cover is shown to be NP-

hard [15], and known approximate algorithms are also very costly

[20]. However, in the following discussion, we will show that cer-

tain ordering of vertices may give rise to a good 2-hop cover, which

sheds some light on this hard problem.

Figure 1: A road graph GR

L(a) {(a, 0), (b, 1), (c, 2), (d, 1), (e, 1)}
L(b) {(b, 0), (c, 1), (d, 2), (e, 2)}
L(c) {(c, 0), (e, 3)}
L(d) {(d, 0), (c, 3)}
L(e) {(e, 0), (d, 2)}

Table 1: A label index for GR

Figure 2: A star graph GS

L(a) {(a, 0), (b, 1), (c, 1), (d, 1),
(e, 1), (f, 1)}

L(b) {(b, 0), (c, 2), (d, 2)}
L(c) {(c, 0), (d, 2), (e, 2)}
L(d) {(d, 0), (e, 2), (f, 2)}
L(e) {(e, 0), (f, 2), (b, 2)}
L(f) {(f, 0), (b, 2), (c, 2)}

Table 2: A label index for GS

L(a) {(a, 0)}
L(b) {(b, 0), (a, 1)}
L(c) {(c, 0), (a, 2), (b, 1)}
L(d) {(d, 0), (a, 1)}
L(e) {(e, 0), (a, 1)}

Table 3: A small GR index

L(a) {(a, 0)}
L(b) {(b, 0), (a, 1)}
L(c) {(c, 0), (a, 1)}
L(d) {(d, 0), (a, 1)}
L(e) {(e, 0), (a, 1)}
L(f) {(f, 0), (a, 1)}

Table 4: A small GS index

2.1 Ordering of Vertices for Labeling
The importance of the ordering of vertices can be illustrated by

some very simple graphs. In Figure 1, we show a graph GR for rep-

resenting a simple road system. GR is undirected, but we can treat

it as directed since each edge can be seen as bidirectional. Table 1

is a 2-hop cover for GR where L(v) = Lin(v) = Lout(v). The

2-hop cover is minimal, meaning that we cannot delete any label

entry and still maintain the correctness of distance query evalua-

tion. The entries of the form (v, 0) are trivial but are needed for

query answering. In Figure 2, we show a star graph, GS . Table 2

is a 2-hop cover for GS which is also minimal. For example, if we

delete (c, 2) from L(b), then for a query of dist(b, c), we would

return an incorrect distance of 4 from (d, 2) in L(b) and (d, 2) in

L(c). Note that one can add many useless entries to these covers

so that they are still correct but not minimal.

For a given graph, there can be many possible minimal 2-hop

covers, and in Tables 3 and 4, we show smaller minimal 2-hop

covers for GR and GS , which reduce the number of non-trivial

label entries by half or more when compared with those shown in

Tables 1 and 2. Intuitively, for the road network, we are making

use of the hub a, which lies on the shortest paths for many pairs

of vertices. Similarly, we make heavy use of the center a of the

star graph, which has a highest degree. The problem of finding

a minimum 2-hop cover is to find a smallest set of label entries

with pivots that cover the shortest paths for answering all distance

queries, and in these special graphs, the hub or center obviously

hits the most number of shortest paths. We can set a ranking on the

vertices in such a way that higher ranked vertices are likely to hit

more shortest paths, and then use higher ranked vertices for pivots,

as in the examples. This should result in a smaller label size.

The above idea is more formally treated by the notion of canoni-

cal labeling in [4]. If shortest paths are not unique for given s, t, we

may define canonical labeling as follows. Given a total ranking r()
of all vertices in V , a labeling is canonical if a vertex v is a pivot

in Lout(u) if and only if there exists a vertex w such that r(v) is

the highest among all vertices in all shortest paths from u to w, and

similarly for Lin(u). The labeling is minimal since deleting any

pivot creates some uncovered pair of vertices. Canonical labeling

calls for the pruning of any entry (v, d) in Lout(u) if by looking

up Lout(u) and Lin(v) we find a higher rank pivot v′ that gives a

1204



path p = (u, ..., v′, ..., v) with a length ≤ d. This is because if v is

on a shortest path from u to another vertex w which is made up of

p′ = (u, ..., v) of length d and q = (v, ..., w), then v′ will also be

on a shortest path from u to w, which is made up of p and q. Since

r(v′) > r(v), v should not be chosen as a pivot here.

Given the importance of ranking as illustrated in the above ex-

amples, we expect good indexing results from a good vertex rank-

ing. The independent set approach of IS-Label [18] effectively

gives low ranking to low degree vertices. This ordering is found

to produce good label sizes. The pruned landmark scheme PLL in

[7] builds labels for an unweighted graph by a breadth first search

(BFS) from vertices ordered in non-increasing degrees. The search

frontiers of BFS are halted at vertices where the label entries are

pruned by previously entered entries as described in the above.

Note that such pruning has also been proposed in [4]. This ordering

by degree is found to be highly effective for many real graphs. In

the next subsection, we will derive reasons behind this effectiveness

for scale-free graphs. We make use of the definition of hitting sets

and a concept similar to the highway dimension introduced in [5,

2] for road networks. However, we should point out that the char-

acteristics of a scale-free graph is very much different from that of

a road network.

2.2 Hitting Sets in Scale­free Graphs
A function f(x) is said to be scale-free if f(bx) = C(b)f(x),

where C(b) is some constant dependent only on b. It is common

to call a graph scale-free if the distribution of vertex degrees of the

graph follows a power law: Prob(a vertex has degree k) ∝ k−α,

where α is a positive real number. This is scale-free since if f(x) =
cx−α, then f(bx) = c(bx)−α = b−αf(x). Typically, 2 ≤ α ≤ 3
[13, 11, 17]. Existing works [10, 17, 1, 25] have shown that many

real world graphs do follow such power law distributions. Based on

the BA model [8] of scale-free graphs, Bollobas et al. [10] proved

that the diameter D of a scale-free random graph is asymptotically

D = log |V |/ log log |V | (1)

Although this is an asymptotical analysis, it gives very accurate

prediction for many real world scale-free graphs [1, 32].

Newman et al. [25] studied the properties of scale-free graphs

by means of generating functions for the probability distribution of

vertex degrees. Let zi be the average number of vertices that are

i hops away from a randomly chosen vertex v. It is shown that

with very high probability, zm = (z2/z1)
m−1z1. Hence zm =

(z2/z1)zm−1. Thus, the expansion factor R can be determined by

the average number of vertices that are 1 or 2 hops from v, respec-

tively, i.e., R = z2/z1. With an expansion factor of R, the diameter

of the graph can be estimated to be D = logR|V | = log|V |/logR.

From Equation (1), the expansion factor is given by

R = log|V | (2)

For a graph G = (V,E) that follows a power law distribution,

Faloutsos et al. [17] derived the following relationship between the

degree degv of a vertex v in G and its rank in terms of the degree.

For a vertex v ∈ V , v has the r(v)-th highest degree in G.

LEMMA 1. [17] The degree, degv, of a vertex v, is a function

of the rank of the vertex, r(v), and the rank exponent, γ, as follows:

degv =
1

|V |γ
(r(v)γ) (3)

In the above, γ is a small real number found to be between −0.8
and −0.7 for many real-world graphs [17]. According to Equation

(3), taking γ = −0.8 for a scale-free graph G1 = (V1, E1), if

|V1|=1M, then less than 500 vertices have degree above 500, and

the top-degree vertex v0 has a degree of 63095. From Equation

(2), the expansion factor is given by R = log |V1| ≈ 20. Since

63095 × 20 > 1M , v0 is expected to reach all vertices within 2

hops.

Let us call the number of hops (edges) on a path its hop length.

Given a set of paths P , a hitting set for P is a set of vertices S
such that each path p in P contains at least one vertex v in S (we

say that p is hit by v). For the above graph G1, a single highest

degree vertex is expected to hit all shortest paths with length ≥ 4.

In general, we make an assumption of a small hitting set for long

shortest paths as follows.

ASSUMPTION 1. Given an unweighted scale-free graph G =
(V,E), there exist small integers d0 and h, and a set H of the high-

est degree vertices in V , such that ∀u, v ∈ V , if there exist shortest

paths u ❀ v with hop length ≥ d0, then one such path is hit by

one of h vertices in H.

In Assumption 1, |H| ≥ h. Given Equations (1) to (3), we can

show that Assumption 1 holds with d0 = 4 and h = 1 for any

undirected unweighted scale-free graph G = (V,E) with |V | ≥
3, and rank exponent −0.8 ≤ γ ≤ −0.7 (typical values in real

world graphs [17]). The analysis goes as follows. From Lemma

1, the degree of v0 is given by |V |−γ since r(v0) = 1. With an

expansion factor of R, if (degv0 × R) ≥ |V |, then v0 reaches all

vertices in 2 hops. This is the case where (|V |−γ · R) ≥ |V |,
and from Equation 2, R = log |V |; hence the inequality becomes

(|V |−γ−1 · log |V |) ≥ 1, and this holds for all values of |V | ≥ 3
for −0.8 ≤ γ ≤ −0.7. Therefore, when |V | ≥ 3, the highest

degree vertex will reach all other vertices in 2 hops, which means

that each vertex can reach any other vertex within 4 hops. Hence,

d0 = 4 and h = 1.

The above analysis is based on undirected unweighted graphs.

However, the power law distribution is commonly found in directed

graphs by examining the in-degree and out-degree distribution sep-

arately [22, 26]. The study in [25] also considers directed graph,

and by focusing on the vertices that can be reached from a random

vertex, it is found that many results follow as in undirected graphs.

Hence, Assumption 1 is also for directed graphs.

Based on d0, we have two types of shortest paths: long ones (i.e.,

those of hop length at least d0) and short ones (i.e., those of hop

length below d0). We have identified hitting sets for covering the

long shortest paths based on Assumption 1. Next, we will examine

how the shortest paths of hop length shorter than d0 can be handled.

Let P< be the set of all shortest paths p such that ℓ(p) < d0,

and P≥ be the set of all shortest paths p such that ℓ(p) ≥ d0.

The d0-inner-circle of a vertex v is defined to be N<(v) =
{p | p ∈ P< ∧ v ∈ p}. We can visualize N<(v) as the set of all

shortest paths passing through v within a ball with radius d0 cen-

tered at v, where each path has length less than d0. Similarly, the

d0-outer-circle of v is defined as N≥(v) = {p | p ∈ P≥ ∧ v ∈ p}.

We define a neighborhood for vertex v to be used as a hitting set

for short shortest paths through v. Let N(v) = {u|distG(v, u) <
d0∨distG(u, v) < d0}, NH(v) = N(v)∩H, and N ′′(v) ⊆ N(v)
be vertices connected to NH(v) so that for any vertex u ∈ N ′′(v),
there is a shortest path from v to u or from u to v which contains a

vertex in NH (v). Then, the set of vertices of Ne(v) = ((N(v) −
N ′′(v)) ∪NH(v)) is called the H-excluded neighborhood of v. If

there exists a shortest path p = v ❀ u with hop length < d0,

then p is hit by a vertex w, where w ∈ Ne(v) and w ∈ Ne(u).
If we include entries for all vertices in Ne(v) in the label for each

vertex v, such a shortest path will be found from the labels of the 2

1205



endpoint vertices of the path. We make an assumption that Ne(v)
is small.

ASSUMPTION 2. In an unweighted scale-free graph G =
(V,E), for a vertex v, the H-excluded neighborhood of v, Ne(v),
contains at most h vertices.

Given an expansion factor of R, for a scale free graph G =
(V,E), |Ne(v)| for v ∈ V is bounded by Rd0−1. If |V | = 1M ,

then R ≈ 20, and if −0.8 ≤ γ ≤ −0.7, d0 = 4. Then,

|Ne(v)| < 203 = 8000. The actual size of |Ne(v)| is much

smaller than this bound since high degree vertices cover a large

number of edges in G and their expansions are excluded in Ne(v).
The small h value assumption is substantiated by our experimen-

tal results on a large number of real graphs. We say that a graph has

hub dimension h if ∀u ∈ V,∃ a hitting set H< for N<(u) such

that |H<| = O(h) and ∃ a hitting set H≥ for N≥(u) such that

|H≥| = O(h). Intuitively, given hub dimension h, there exists

for each vertex u a set of at most O(h) vertices hitting all shortest

paths passing through u, which bounds the optimal label size of u
by O(h). We state our assumption of small hub dimension.

ASSUMPTION 3. An unweighted scale-free graph has a small

hub dimension h.

In summary, we provide realistic assumptions for unweighted

directed/undirected scale-free graphs. Based on Assumption 3, the

optimal label size is bounded by O(h) for each vertex. Our empiri-

cal study in Section 7 shows that for all the scale-free real-world

and synthetic graphs that we have tested, the label sizes result-

ing from our algorithm are very small compared to the graph size.

Thus, the assumptions above are strongly supported by experimen-

tal results. The remaining question is how to attain this size bound.

2.3 Existing Algorithms with Vertex Ordering
As discussed in Section 2.1, ranking of vertices by their degrees

has been adopted in PLL [7], and less explicitly in IS-Label [18].

However, as noted in Section 1, both of these methods are not scal-

able. For PLL, the in-memory label construction involves many

iterations of breadth first search (BFS), and BFS does not yield to

an efficient external algorithm to date [24]. More importantly, to

be efficient, the label pruning in PLL requires a main memory that

can hold the labeling index, which is typically much bigger than

the given graph. Hence, it is an open problem to derive an algo-

rithm with scalable bounds on memory and computation consump-

tion and that produces bounded index sizes. We will focus on this

problem for scale-free graphs.

In [13], it is shown that high-degree vertices in power-law graphs

are useful for finding approximate shortest paths by a compact rout-

ing scheme. A routing table is built for each vertex v, which keeps

track of shortest paths to high-degree vertices called landmarks and

to vertices closer to v. However, the query evaluation in [13] does

not return exact answers. In the next sections, we shall make use of

vertex degree ordering to derive an I/O efficient algorithm for index

construction for exact querying on a large scale-free graph. Our al-

gorithm does not require the knowledge of h but will seamlessly

attain the label size bound of O(h|V |) and scalable complexities.

3. PROPOSED SOLUTION
Our proposed solution is made up of the three major components

of algorithmic designs. We first give an outline of each component.

1. The basic framework of our label index construction is an

iterative process with two steps in each iteration: (i) label

entry generation based on a set of rules; and (ii) label pruning

to reduce the label size.

2. The second design component is an I/O efficient algorithm

for implementing the iterative process (see Section 4).

3. The third algorithmic design is an enhancement on the per-

formance based on the idea of hop-stepping (see Section 5).

In this section we describe the iterative process of label genera-

tion and pruning. Based on the discussion in Section 2.2, we design

our labeling algorithm with the assumption that the hitting set of the

majority of paths of longer lengths passing through a vertex v is a

small set of h high degree vertices in H. Since each label entry

should correspond to a shortest path, if we place the entries (vh, d)
for vertices vh in H in the relevant vertex labels, they would serve

most querying. Analogously, we should try to avoid creating label

entries for shortest paths p = v ❀ u where vh is in p for some

vertex vh ∈ H, and vh 6∈ {u, v}. From our assumptions, there

are many such paths, and hence many possible label entries, which

will lead to large label sizes. We will introduce the notion of trough

paths for these purposes.

Our strategy is to rank all vertices uniquely according to non-

increasing degrees, with the highest rank given to the highest de-

gree vertex. Next, our algorithm generates label entries to cover

shortest paths with increasing number of hops. There are several

reasons for this strategy. Firstly, we need to search the neighbor-

hood of each vertex for the coverage of short shortest paths. Sec-

ondly, we need short shortest paths involving H for pruning other

paths. Hence, we traverse from short to long paths. Thirdly, the

iterative approach can be realized by I/O efficient algorithms with

scalable I/O complexities, as we will show in Section 5. We will

explain these points in the following discussion.

3.1 Iterative Labeling Algorithm
Given a directed unweighted graph G = (V,E), let

{v1, v2, ..., vn} be a ranking of the vertices in V so that the rank

of vi, denoted by r(vi), is equal to i. We rank the vertices in non-

increasing order of their vertex degrees. Thus, vertex v1 has the

highest degree. We break ties arbitrarily for vertices with the same

degree. Next we introduce the notion of a trough shortest path.

DEFINITION 1 (TROUGH SHORTEST PATH). A trough path

from v to u is a path passing through only vertices with ranks

smaller than max{r(u), r(v)}. A trough shortest path is a trough

path that is also a shortest path.

For example, in the graph G in Figure 3 (a), if we rank vertices by

non-increasing degrees, then vertex 0 has the highest rank, the path

(3, 7, 2) is a trough shortest path, while (5, 3, 7) is not. We create

labels for each vertex v with the following labeling objectives:

[O1] if there is a trough shortest path from v to u, where r(u) >
r(v), then (u, distG(v, u)) ∈ Lout(v);

[O2] if there is a trough shortest path from u to v, where r(u) >
r(v), then (u, distG(u, v)) ∈ Lin(v).

Notations: Given a label entry e1 = (u, d1) in Lin(v), it im-

plies that r(u) > r(v) and there is a trough path p1 from u to v
of length d1. e1 is called an in-label entry. We also denote e1 by

(u → v, d1). If there is a label entry e2 = (v, d2) in Lout(u), then

r(v) > r(u) and there is a trough path p2 from u to v of length d2.

e2 is called an out-label entry, and is also denoted by (u → v, d2).
In each case, we say that ei covers the path pi. Conversely, given

a label entry (u → v, d), then (u, d) ∈ Lin(v); given (u → v, d),
then (v, d) ∈ Lout(u). When the ranking is immaterial, we write

(u → v, d), which implies r(u) > r(v) or r(u) < r(v).

1206



0

1 2

3
4

5 67

(a)

0

1 2

3
4

5 67

(b)

Figure 3: (a) Given graph G = (V,E) (b) Trough paths covered

after the first iteration (arrows with dotted lines)

Figure 4: Set of label entries generation rules

In our labeling algorithm, initially each vertex v is assigned two

labels Lin(v) = {(v, 0)} and Lout(v) = {(v, 0)}. In the initial-

ization process, for each edge (u, v) ∈ E, if r(u) < r(v), we add

label entry e = (v, distG(u, v)) to Lout(u); if r(u) > r(v), we

add e = (u, distG(u, v)) to Lin(v).
Our algorithm iteratively generates label entries for all vertices

until no more label entries can be formed. The first iteration is

the initialization process. In each remaining iteration, we have a

set of new label entries which have been generated in the previous

iteration, which we denote by prevLabel. Also we have a set of

all label entries generated from all previous iterations, we refer to

this set as allLabel. In each iteration, we adopt 6 rules repeatedly

to generate all the possible label entries for the iteration. The rules

are encoded in Table 5. The first rule is derived from the first row in

the table as follows: ∀(u → v, d) ∈ prevLabel, ∀(u1 → u, d1) ∈
allLabel, generate (u1 → v, d1 + d). Similarly, the other 5 rules

can be derived from the table. The rules are illustrated in Figure 4,

where each solid or dotted arrow indicates a label entry.

prevLabel allLabel generate

Rule 1 (u → v, d) (u1 → u, d1) (u1 → v, d1 + d)
Rule 2 (u → v, d) (u2 → u, d2) (u2 → v, d2 + d)
Rule 3 (u → v, d) (v → u3, d3) (u → u3, d3 + d)
Rule 4 (u → v, d) (v → u4, d4) (u → u4, d4 + d)
Rule 5 (u → v, d) (v → u5, d5) (u → u5, d5 + d)
Rule 6 (u → v, d) (u6 → u, d6) (u6 → v, d6 + d)

Table 5: Set of label entry generation rules

A generated label entry (u → v, d) becomes a new label entry

for the current iteration if there is no existing label entry for u → v,

or d is a smaller distance compared with that in other generated or

existing label entries for u → v. When we generate label entry

e from two label entries e1 and e2, and given that e1 covers path

p1 = (u1, ..., ui) and e2 covers path p2 = (ui, ..., uj), then we say

that e covers the path (u1, ..., ui, ..., uj). We shall show that after

every two iterations, we double the hop length of trough shortest

paths that are covered by the label entries generated. Hence, we

call this method Hop-Doubling Labeling (see Algorithm 1).

EXAMPLE 1. Given the unweighted graph in Figure 3(a). The

vertices are ranked by non-increasing degrees and given ID’s 0 to

7 accordingly, i.e., vertex 0 has the highest rank. Hop-Doubling

Labeling first creates one label entry for each edge: (0 → 1, 1),
(1 → 0, 1), (2 → 0, 1), ... In the first iteration, by Rule 1 or

Lin(0) {(0, 0)}
Lin(1) {(1, 0), (0, 1)}
Lin(2) {(2, 0)}
Lin(3) {(3, 0), (2, 1)}
Lin(4) {(4, 0)}
Lin(5) {(5, 0), (4, 1)}
Lin(6) {(6, 0), (0, 1),

(2, 1)}
Lin(7) {(7, 0), (3, 1),

(2, 2)1}

Lout(0) {(0, 0)}
Lout(1) {(1, 0), (0, 1)}
Lout(2) {(2, 0), (0, 1), (1, 2)1}
Lout(3) {(3, 0), (1, 1), (2, 2)1, (0, 2)1}
Lout(4) {(4, 0), (0, 1), (1, 1), (3, 2)1,

(2, 4)2}
Lout(5) {(5, 0), (3, 1), (1, 2)1, (2, 3)2,

(0, 3)2}
Lout(6) {(6, 0)}
Lout(7) {(7, 0), (2, 1)}

Figure 5: Labeling for graph G in Figure 3. The superscript of

an entry indicates the iteration in which the entry is generated.

4, we generate (2 → 1, 2) from (2 → 3, 1) and (3 → 1, 1).

Similarly, (4 → 3, 2) and (3 → 2, 2) are generated. By Rule 2

or 3, we generate (5 → 1, 2) and (3 → 0, 2), and Rule 5 or 6

generates (2 → 7, 2). In the second iteration, Rule 2 generates

(4 → 2, 4) from (4 → 3, 2) and (3 → 2, 2), Rule 2 also generates

(5 → 2, 3) and (5 → 0, 3). In the third iteration, no new label

entry is generated and the labeling is completed. The resulting

labels are shown in Figure 5.

Algorithm 1: Hop-Doubling Labeling

Input : G = (V, E)
Output : (Lin,Lout)

// Initialization
1 rank the vertices by non-increasing degrees;
2 allLabel = prevLabel = set of labels covering all edges e ∈ E;

// iterative construction
3 while prevLabel 6= ∅ do

4 Update prevLabel, allLabel using the set of label entry
generation rules;

5 build index of (Lin,Lout) from allLabel;

Next, we show that distance querying based on the labels con-

structed by the algorithm is correct. First, we need a lemma.

LEMMA 2. Hop-Doubling labeling achieves the labeling ob-

jectives of [O1] and [O2] given in Section 3.1.

PROOF: Consider a trough shortest path p from v to u. Let the

path be p = (v = w1, w2, ..., wk = u). We show by induction

on the hop length of P . The base case is trivial since we always

include (v, 0) in Lin(v) and Lout(v). Next, assume the statements

in [O1] and [O2] true for all paths of hop length 1 to k−1. Consider

the path p = (v = w1, w2, ..., wk = u). There are two possible

cases. Case A : r(wk) > r(w1); Case B: r(w1) > r(wk). Let

use first consider Case A. Let r(wi) > r(wj) for all j < k and

j 6= i. Since p is a shortest path from v to u, the sub-path p1
= (w1, ..., wi) must be a shortest path from w1 to wi. Similarly,

the sub-path p2 = (wi, ..., wk) is a shortest path from wi to wk.

Clearly, distG(w1, wk) = distG(w1, wi)+distG(wi, wk). Since

r(wi) is the second highest rank in p, both p1 and p2 are trough

shortest paths. There are two subcases:

Case A1 : r(wi) < r(w1) < r(wk). By the induction hypoth-

esis, e1 = (wk, distG(wi, wk)) will be inserted into Lout(wi),
and e2 = (w1, distG(w1, wi)) will be inserted into Lin(wi).
Note that e1 = (wi → wk, distG(wi, wk)) and e2 = (w1 →
wi, distG(w1, wi)). e1 and e2 may be inserted at the same itera-

tion or at different iterations. If e1 is inserted in a later round than

e2, then by Rule 1, e3 = (wk, distG(w1, wi) + distG(wi, wk))
for Lout(w1) will be generated. If e2 is inserted in a later round,

then by Rule 4, e3 will be generated for Lout(w1).

1207



Figure 6: 4 sufficient rules for label entry generation

Case A2 : r(w1) < r(wi) < r(wk). By the induc-

tion hypothesis, e1 = (wk, distG(wi, wk)) will be inserted into

Lout(wi), and e2 = (wi, distG(w1, wi)) will be inserted into

Lout(w1). Note that e1 = (wi → wk, distG(wi, wk)) and

e2 = (w1 → wi, distG(w1, wi)). If e1 is inserted before e2, then

when e2 is newly added, by Rule 3, e3 = (wk, distG(w1, wi) +
distG(wi, wk)) will be added to Lout(w1). If e2 is inserted before

e1, then e3 will be added to Lout(w1) by Rule 2.

Similar arguments hold for Case B with subcase B1, where Rules

1 and 4 apply, and subcase B2, where Rules 5 and 6 apply.

THEOREM 1. The labels constructed by Hop-Doubling Label-

ing return correct answers for point-to-point distance queries.

PROOF: By construction, each label entry (w, d) in

Lin(v)(Lout(v)) covers a path w ❀ v (v ❀ w) in the

graph with length d. Given a distance query from u to v, consider

a shortest path p from u to v. Let w be the vertex with the highest

rank in p. Note that w can be u or v. Then the sub-paths u ❀ w
and w ❀ v of p are trough shortest paths. From Lemma 2 we

have an entry (w, distG(u,w)) in Lout(u) and also an entry

(w, distG(w, v)) in Lin(v). Hence we get the correct distance

value of distG(u, v) = distG(u,w) + distG(w, v) when we look

up the labels for u and v.

3.2 Minimizing the Rules for Labeling
As illustrated by Figure 4, we use 6 rules for generating new

label entries. In this subsection, we show how to minimize the set

of rules to accelerate the generation of new entries. For simplicity,

here we refer to a label (u → v, d) as (u → v).

LEMMA 3. Rules 1,2,4,5 generate the same results as Rules

1,2,3,4,5,6.

PROOF: We first prove by induction that label entries generated

by Rule 3 can be generated by Rule 1 and Rule 2. Assume the

lemma holds for all iterations up to the i-th iteration. At the (i+1)-
th iteration, suppose Rule 3 can generate (u → u3) from (u → v)
and (v → u3) where (u → v) is generated in the i-th iteration and

(v → u3) is in allLabel, then there are two cases of how (u → v)
is generated in the i-th iteration. (See Figure 7.)

Case 1: (u → v) is generated by (u → w) and (w → v)
where r(u) < r(w) < r(v). Hence in the i-th iteration, we have

(u → w), (w → v) and (v → u3). By Rule 2 we have (w → u3)
before the (i + 1)-th iteration. Hence, by Rule 2 we can generate

(u → u3) from (u → w) and (w → u3).
Case 2 : (u → v) is generated by (u → w) and (w → v). Hence

in the i-th iteration, we have (u → w), (w → v) and (v → u3).
Thus we also have (w → u3) before the (i+1)-th iteration, and by

Rule 1 we can generate (u → u3) from (u → w) and (w → u3).
Thus, (u → u3) can be generated in another way with Rule 1 or

Rule 2 in the same iteration. Similarly, we can prove that Rule 6 is

covered by Rule 4 and Rule 5.

Other than removing Rules 3 and 6, next, we show that Rules 1
and 4 can be further simplified as follows.

u3

v v

wu

u

u3

Case 1

Higher Rank

v

w

u

u3

Case 2 Lower Rank

Figure 7: Eliminating Rule 3

1. ∀(u → v, d) ∈ prevLabel, ∀(u1 → u, d1) ∈ allLabel, where
r(v) > r(u1) > r(u), generate (u1 → v, d1 + d)

4. ∀(u → v, d) ∈ prevLabel, ∀(v → u4, d4) ∈ allLabel, where
r(u) > r(u4) > r(v), generate (u → u4, d4 + d)

Previously, Rule 1 may also generate (u1 → v), now it only

generates (u1 → v). Similar change applies for Rule 4. The 4

simplified rules are illustrated in Figure 6.

LEMMA 4. The simplified Rules 1,2,4,5 generate the same re-

sults as the original Rules 1,2,4,5.

PROOF: Consider Rule 1. Originally, we generate (u1 → v)
from an old label entry (u1 → u) and a label entry (u → v) from

the previous iteration. (1) If r(u1) < r(v), then (u1 → v) is also

generated by the simplified Rule 1. (2) If r(u1) > r(v), then the

label (u → v) must have been generated by either Rule 1 or 2 from

(u → w) and (w → v) for some w. In the previous iteration or

earlier, we have (u1 → u), (u → w), and (w → v), by which we

also generate (u1 → w). Then, the simplified Rule 4 will generate

(u1 → v). The arguments for Rule 4 are similar.

With the above results, the set of rules in Algorithm 1 now con-

sists of the 4 simplified rules. We will show that after every 2 it-

erations, we double the maximum hop length of paths covered by

labeling. Let DH be the maximum number of edges among all the

pairwise shortest paths. We shall refer to DH as the hop diameter

of the graph. DH is the diameter of the graph for an unweighted

graph. We call a path with k hops or edges a k-length path.

THEOREM 2. For all 0 ≤ i ≤ ⌈log(DH)⌉, after the 2i-th iter-

ation, for each positive integer k ≤ 2i, the label entries covering

all k-length trough paths are generated.

PROOF: We say that a path p is processed if the label entry cover-

ing p is generated in the label sets. We prove by induction. The base

case where i = 0 is straightforward. Assume the statement true for

i ≤ j. We want to show that in the (2j + 2)-th iteration, the label

entries for all k-length trough paths are generated where k ≤ 2j+1.

Consider a k-length trough path p =(v1,v2,..., vk+1), k = 2j+1.

Without loss of generality, assume r(v1) < r(vk+1). Let vj be the

midpoint of p, so that p is divided into 2 paths p1 = (v1, ..., vj)
and p2 = (vj , ..., vk+1). Obviously, p2 is a trough path and it has

a hop length of 2j , and by induction, its label entry has been gen-

erated latest in the 2j-th iteration. Let vh be the vertex of highest

rank among v1, ...vj . Then, from p1, we have two trough paths

p11 = (v1, ..., vh) and p12 = (vh, ..., vj). The hop lengths of p1
and p2 are bounded by 2j , and hence both of them are processed

latest in the 2j-th iteration. Hence latest at the (2j + 1)-th iter-

ation, the label entries for the trough path linking p12 and p2, i.e.

(vh, ..., vk+1) will be created. Therefore latest at the (2j+2)-th it-

eration, the path p which concatenates p11,p12 and p2 will be found

and processed. The same argument applies for k ≤ 2j+1

3.3 Reducing Index Size by Label Pruning
While the iterative process generates new label entries for trough

shortest paths of increasing hop lengths, such a shortest path p =

1208



u ❀ v may be hit by a higher degree vertex vh. We can discover

such a case if we find label entries (u → w, d1) and (w → v, d2),
since w is a higher degree vertex. We add a pruning step in order

to remove such generated label entries. This step is applied to all

generated label entries at each iteration after the label generation

step at Line 4 of Algorithm 1.

Label Pruning: A label entry (u → v, d) is pruned if there exist

label entries (u → w, d1) and (w → v, d2) where d1 + d2 ≤ d.

EXAMPLE 2. For our example in Figure 3, in the first iteration,

(2 → 1, 2) is generated from (2 → 3, 1) and (3 → 1, 1). However,

there exist label entries (2 → 0, 1) and (0 → 1, 1) before this

iteration. By the above pruning step, (2 → 1, 2) will be pruned.

We want to show that with the pruning steps, the labeling result is

still correct. A similar pruning step is used in PLL [7], but PLL cre-

ates label entries by decreasing rank order of the pivots, and thus,

the correctness follows from canonical labeling. It is not obvious

in our case since we do not create label entries in rank order. To

show the correctness, we need some definitions. For the labeling

without pruning, let L(k) be the set of labels at the end of iteration

k, and L be the set of labels in the final index. For the labeling with

pruning, let L′(k) be the set of labels at the end of iteration k, and

L′ be the set of labels in the final index.

THEOREM 3 (CORRECTNESS). Distance querying by the in-

dex built by Hop-Doubling labeling with pruning is correct.

PROOF: Given a distance query from s to t in G, consider the

set P of all shortest paths from s to t. Let p ∈ P contain the

highest ranked vertex vm in all paths in P. Note that vm can be

s or t. Then, subpaths (s ❀ vm) and (vm ❀ t) in p are trough

shortest paths. By Lemma 2, e1 = (s → vm, distG(s, vm)) and

e2 = (vm → t, distG(vm, t)) are generated in L. We want to

show that e1 and e2 are also in L′. We prove by contradiction.

Suppose e1 6∈ L′, then it has been pruned at some iteration k, so

that e1 ∈ L(k) − L′(k). By the pruning mechanism, at itera-

tion k, there exist label entries (s → w, d1) and (w → vm, d2)
from previous iterations, and d1 + d2 = distG(s, vm). There-

fore there exists a path (s, ..., w, ..., vm, ..., t) with a length of

d1 + d2 + distG(vm, t) = distG(s, vm) + distG(vm, t), and it

is a shortest path from s to t. However, r(w) > r(vm). This con-

tradicts our assumption that vm is the highest ranked vertex in all

shortest paths from s to t. The argument for the case where e2 6∈
L′ is similar. Hence, we conclude that e1 and e2 exist in L′ and the

answer to the query is correct.

COROLLARY 1. Latest at iteration k = 2⌈logDH⌉, for any

shortest path u ❀ v, there exist the label entries (u → vm, d1)
and (vm → v, d2) in L′(k) such that d1 + d2 = distG(u, v).

The corollary follows from the above proof and Theorem 2, con-

sidering that vm is the highest ranked vertex among all shortest

paths u ❀ v. Now, we are ready to bound the number of iterations

of our algorithm.

THEOREM 4. The number of iterations of Hop-Doubling with

pruning is upper bounded by 2⌈logDH⌉.

PROOF: Consider iteration k = 2⌈logDH⌉ + 1, if a label cov-

ering a path p, (u → v, d), is generated by one of the 4 rules, then

there exists a trough path u ❀ v, and therefore a shortest path

from u to v. From Corollary 1, there exist in L′(k − 1) the label

entries e1 = (u → vm, d1) and e2 = (vm → v, d2) such that

Algorithm 2: Candidate Generation (Rules 1 and 2)

Input : prev, old (label entries)
Output : candidate label entries

// prev (u → v) are sorted by u in file
// old (u1 → u) are sorted by u in file
// old (u2 → u) are sorted by u2 in file

1 allocate buffer BL to load next batch of prev (u → v), (u → v′), ...
and old (u1 → u), (u′

1
→ u), ... , in BL;

2 allocate buffer BR to load old (u2 → u), (u2 → u′)... , and

candidates (u2 → u′′), (u2 → u′′′)..., in BR;

3 foreach block BL do
4 sort the (u1 → u) entries in BL by u1;
5 foreach block BR do

// Generation by Rule 1
6 foreach old (u2 = u1 → u) in BL do

7 foreach prev (u → v) in BL do

8 generate candidate
(u2 → v) = (u2 = u1 → u → v);

// Generation by Rule 2
9 foreach (u2 → u) in BR do

10 foreach prev (u → v) in BL do
11 generate candidate (u2 → v) = (u2 → u → v);

d1 + d2 = distG(u, v), and these entries will not be pruned in

L′(k). If vm = v, then (u → v, d1) ∈ L′(k − 1), and (u → v, d)
will not be generated as a new label. Similarly, if vm = u. If

vm 6= v and vm 6= u, the label (u → v, d) will be pruned by

e1 and e2, and will not survive as a new label. We conclude that

no new label will be generated after 2⌈logDH⌉ iterations and the

process stops.

As we shall see in our empirical studies, the above bound is very

helpful for some datasets which deviate from the small diameter

property of scale-free graphs.

4. I/O EFFICIENT ALGORITHMS
In this section, we describe the implementation of Hop-Doubling

with pruning and analyze the time complexity and I/O complexity.

There are two steps in each iteration: (1) label generation, which we

call candidate generation here, and (2) label pruning. For the anal-

ysis of I/O complexity, we adopt the following conventions from

[6]. Let scan(N) = Θ(N/B), where N is the amount of data

being read or written from or to disk, M is the main memory size,

and B is the disk block size (1 << B ≤ M/2).

4.1 Candidate Generation
We assume that main memory may not be able to hold the la-

bel index or even the input graph. Hence we devise an I/O effi-

cient mechanism that resembles a nested loop join for candidate

generation. In the following, for clarity, we refer to a label entry

(u → v, d) as (u → v). In each iteration, we have three types

of label entries: prev entries are generated in the previous iteration

and survived pruning, candidates are generated in the current it-

eration, and old entries are all label entries that survived pruning

before the current iteration. Hence, the set of old entries includes

the prev entries.

The pseudo code for candidate generation by Rules 1 and 2 is

shown in Algorithm 2. We load prev label entries (u → v) and

old label entries (u1 → u) into memory in the outer loop, which

are sorted by u in the corresponding files. We make sure that for

each u where there is a prev out-label entry (u → v), we load the

1209



u related label entries into memory, i.e. (u → v), (u → v′), etc.,

and (u1 → u), (u′
1 → u), etc. Next, we sort all the loaded entries

(u1 → u) by u1. Note that the prev entries (u → v) are still

sorted by the u values. In the inner loop, for each u2 where there is

an old entry (u2 → u), we load all the old entries starting from u2

into memory, i.e. (u2 → u), (u2 → u′), etc. Candidates are also

loaded in the inner loop block. After loading the 3 kinds of entries,

we generate label entries started from u2 by Rule 1 and Rule 2. For

generation by Rule 1, we find old in-label entries (u1 → u) loaded

in the outer loop block with u2 = u1 by a linear scan of the entries

(u1 → ...). For each u, we use a binary search to locate prev out-

label entries (u → v), and then enumerate them by a linear scan to

generate (u2 → v) from (u2 = u1 → u) and (u → v). We avoid

duplicates of (u2 → v) by a binary search among label entries of

(u2 → ...). For generation by Rule 2, based on u2, we find prev
out-label entries u → v to generate (u2 → v) from (u2 → u) and

(u → v). Similarly, we generate candidates from Rules 4 and 5.

Next we analyze the CPU time complexity for candidate gen-

eration. We consider only Rule 1 since the other rules take sim-

ilar time. From Theorem 4, there are O(logDH) iterations. In

each iteration, for each outer loop block, we scan the old la-

bel entries and any candidate label entries generated in this it-

eration so far. Let |old|, |prev|, and |cand| stand for the to-

tal sizes of old, prev, and candidate label entries, respectively.

There are O((|old|)/M) outer loop blocks. The total CPU time is

given by O(logDH(|old|)/M ×|V ||label|× (logM + |label|)×
log |label|), where |label| bounds the label size of a vertex. The

term |V | comes from each u2 considered in the inner loop block.

For each such u2, we scan Lin(u2) in the outer block, thus in-

troducing the factor of |label|. For each scanned entry, the binary

search and the linear scan introduce a factor of (logM + |label|).
Finally, O(log |label|) time is spent for each candidate to avoid

duplicates.

For the I/O complexity, we scan old and prev label entries once

in the outer loop, and for each outer loop block, we scan the old
and candidate label entries once. The total I/O cost is thus given by

O(logDH⌈|old|/M⌉ × scan(|old|+ |cand|)).

4.2 Label Pruning
In each iteration, after the label candidate generation, we ap-

ply the pruning step as discussed in Section 3.3. For IO efficient

computation, we adopt a nested loop join strategy. We prune an

out-label entry (u → v) of u by (u → w) and (w → v) where

r(w) > r(v) > r(u). A similar method is adopted for in-label

entry (u → v) where r(u) > r(v).
We allocate half of the memory for the outer loop and another

half for the inner loop. In the outer loop, we load old label entries

(u → w), (u → w′), ..., and candidates (u → v), (u → v′), ...,
both of which are sorted by u, into memory. In the inner loop, we

scan all the old in-label entries (w → v), (w′ → v), ..., which

are sorted by v. We scan each (u → v) in the outer loop block.

For each (u → v), we find v related entries (w → v) in the inner

loop block by a binary search. Then, we linearly scan the u related

entries (u → w) in the outer loop block together with the v related

(w → v) for possible pruning of (u → v). After all (u → v)
entries are checked, we load another batch of (w → v) in the inner

loop to check the unpruned (u → v) until all (w → v) have been

loaded into memory once for pruning all the possible (u → v) in

memory from the outer loop. We continue this process for all the

remaining batches of label entries in the outer loop until the end.

We analyze the CPU complexity for the pruning step. For each

candidate or old entry of (u → v), we perform a binary search

and a scanning of the labels for u and for v, hence the time re-

quired is O(logDH(|cand| + |old|)(logM + |label|)). For I/O

complexity, in each iteration, all the old label entries are loaded

into memory for O(⌈(|cand| + |old|)/M⌉) times, by nested loop.

With O(logDH) iterations, it requires O(logDH(⌈(|cand| +
|old|)/M⌉ × scan(|old|) + scan(|cand|+ |old|))) I/Os.

5. ENHANCEMENT BY HOP­STEPPING
For Hop-Doubling labeling, the I/O complexity is given by

O(logDH⌈(|old| + |cand|)/M⌉ × (|old| + |cand|)/B). Let

us consider |cand|. The candidates are generated from the la-

bels created in the previous round of execution. From Equation

(2), the expansion factor is R = log |V |. In each iteration, from

Theorem 4, the path hop length can expand by at most DH/2,

where DH is the hop diameter of the graph. Hence, |cand| =

O(|prev|(log |V |)DH/2). The factor of (log |V |)DH/2 can greatly

affect the I/O cost. It is caused by the hop doubling property, where

in each iteration we may cover paths with hop lengths up to double

that in the previous round. To deal with this issue, we consider an

alternative strategy whereby we increase the number of hops by one

in each iteration. We show that after each iteration, the label size

is bounded by O(h|V |). Since R = log |V |, the value of |cand|
in the complexity analysis becomes O(h|V | log |V |). We call this

method Hop-Stepping.

5.1 Hop Length i+ 1 from i and 1
Hop-Stepping retains all the steps of the Hop-Doubling labeling

method. However, the 4 rules as illustrated in Figure 6 for gener-

ating labels are refined as follows: at iteration i + 1, hop length

of the path covered by u → v is i; while we have unit hop length

for the paths covered by the following labels: u1 → u in Rule

1; u2 → u in Rule 2; u → u4 in Rule 4; and u → u5 in Rule

5. Only edges in E have unit hop lengths. E.g., Rule 1 becomes

∀(u → v, i) ∈ prevLabel, ∀(u1 → u, 1) ∈ allLabel, where

(u1, u) ∈ E and r(v) > r(u1) > r(u), generate (u1 → v, i+ 1).

EXAMPLE 3. For the graph G in Figure 3, in the second itera-

tion of Hop Stepping, (4 → 2, 4) will not be generated, since the

hop lengths of both (4 → 3, 2) and (3 → 2, 2) are 2. (4 → 2, 4)
is generated in the next iteration from (4 → 5, 1) and (5 → 2, 3).

Let us consider the correctness and other properties of Hop-

Stepping. First, we show that it generates label entries for paths

of unit increasing hop-lengths in subsequent iterations. In the fol-

lowing, we refer to a path with i hops as an i-length path.

LEMMA 5. For 1 ≤ i ≤ DH , at the i-th iteration, the label

entries covering all i-length trough shortest paths are generated.

PROOF: We prove by induction. The base case where i = 1 is

straightforward. Assume the statement true for 1 ≤ i ≤ j. Con-

sider a (j + 1)-length trough shortest path p = (v1,v2, ..., vj+2).
Suppose r(v1) < r(vj+2). p is made up of two sub-paths p1 =
(v1, v2) and p2 = (v2, ..., vj+2). Obviously p2 is a trough shortest

path and it has a hop length of j, by induction, the label entry cov-

ering p2 has been generated at the j-th iteration. p1 = (v1, v2) is

also a trough shortest path with a hop length of 1, so the covering

entry has also been generated. By the Hop-Stepping algorithm, p
will be generated at the (j+1)-th iteration by either Rule 1 or Rule

2. Similar arguments hold for r(v1) > r(vj+2) by using Rule 4

and Rule 5.

Next, we add the pruning steps to each iteration. We show that

the resulting labeling is correct for distance querying.

1210



THEOREM 5 (CORRECTNESS). Distance querying by the in-

dex built by Hop-Stepping labeling with pruning is correct.

The proof is similar to that for Hop-Doubling. From Lemma 5,

we also have the following bound on the number of iterations.

THEOREM 6. The number of iterations of Hop-Stepping label-

ing with pruning is upper bounded by DH .

5.2 A Bound on the Label Size
In this section we derive a bound on the label size. First we

show that after d0 iterations, only label entries involving vertices in

H (see Assumption 1) will be added to the labels of each vertex.

LEMMA 6. Let l(p) = (u → v, d) be a label entry which

covers trough shortest path p, where the hop length of p is k and

k ≥ d0. Then, l(p) is pruned at iteration k unless u ∈ H or v ∈ H.

PROOF: From Lemma 5, l(p) is generated at iteration k. Since

p has a hop length of k ≥ d0, by Assumption 1, p is hit by some

vertex in H. Consider the set P of all shortest paths from u to v
with k hops, let w be a vertex in H with the highest rank in P. Let

h1 be the hop length of the shortest path from u to w and h2 be that

from w to v. So, h1 + h2 = k. Hence, h1 ≤ k and h2 ≤ k. Let us

define label sets L(i) and L′(i) as in Section 3.3. From Lemma 5,

e1 = (u → w, distG(u,w)) and e2 = (w → v, distG(w, v)) are

generated at or before iteration k. We prove by contradiction that e1
and e2 are in L′(k). Suppose e1 6∈ L′(k), then since it is in L(k),
it has been pruned. By the pruning condition, there exists a higher

rank vertex x, with r(x) > r(w), such that p2 = (u, ..., x, ..., w)
has a length of distG(u,w). Thus, x is a higher ranked vertex

that is on a shortest path from u to v, compared to u and w, a

contradiction to the fact that w has the highest such rank. Similarly,

we prove that e2 is in the label of v in L′(k). Thus, l(p) is pruned

at iteration k, except when w = u or w = v.

Assumption 2 in Section 2.2 states that paths of distance below

d0 are hit by a small set of at most h vertices in the close neighbor-

hood if H is excluded. Thus, we derive the following.

LEMMA 7. For each label for each vertex v in the label index

L, the number of entries (u, d) where u 6∈ H is bounded by h.

PROOF: We need only consider v 6∈ H since otherwise (u, d)
cannot be in its labels. Lout(v) initially contains the entries involv-

ing out-neighbors of v, then expanding to the close neighborhood

with increasing hop lengths. If no high degree vertex is expanded,

this neighborhood is kept small. Consider a vertex w ∈ H in the

neighborhood at k hops from v. Thus, r(w) > r(v). Let the path p
from v to w via the k hops be a shortest path of distance d1. Con-

sider an out-neighbor u of w, where r(u) < r(w), and u is k + 1
hops from v. Let the path from v to u via p and w be a shortest path

of distance d1 + d2. The candidate entry (u, d) will be generated

from p and (w, u) with d = d1 + d2 at the (k + 1)-th iteration.

From Lemma 5, the entries (v → w, d1) and (w → u, d2) have

been generated in previous iterations since their corresponding hop

lengths are less than k + 1. Candidate (u, d) will be pruned by

(v → w, d1) and (w → u, d2) since d1 + d2 = d, and will not be

added to Lout(v). Similar arguments hold for Lin(v). The lemma

then follows from Assumption 2 and Lemma 6.

THEOREM 7. Given an unweighted scale-free graph G, the la-

bel size of any vertex at any iteration of Hop-Stepping with Pruning

is O(h).

Theorem 7 follows from Lemmas 6 and 7, and Assumptions 1 to

3. Note that this is an optimal label size if the value of h is a tight

bound on the hitting set size. It is easy to show that Hop-Doubling

generates all the label entries that are generated in Hop-Stepping,

and by exhaustive pruning, the label size is the same as that of Hop-

Stepping and is bounded by O(h).

5.3 Complexity Analysis
The detailed algorithm for Hop-Stepping with Pruning is similar

to that for Hop-Doubling, except that we only consider the old la-

bel entries with only one hop. Thus, the analysis is similar to that

described in Section 4, except that we have DH iterations. From

Theorem 7, |old| = |prev| = O(h|V |). Since |cand| = |prev|×R,

where R = log |V |, |cand| = O(h|V | log |V |). Therefore, label

generation requires O(DH⌈h|V |/M⌉×h log h|V |×(logM+h))
CPU time and O(DH⌈h|V |/M⌉×scan(h|V | log |V |) I/Os. Also,

in total label pruning takes O(DHh|V | log |V |)(logM + h) CPU

time and O(DH × ⌈h|V | log |V |/M⌉ × scan(h|V |)) I/Os.

THEOREM 8. With the assumptions of small DH and h,

the total CPU time for Hop-Stepping with pruning is given

by O(|V |logM(|V |/M + log|V |)), and the I/O complexity is

O(|V |log|V |/M × |V |/B).

5.4 Hop­Stepping and Hop­Doubling
It is possible to combine the strengths of Hop-Doubling with that

of Hop-Stepping. Hop-Stepping can trim the fast growth of the

lengths of paths covered by label entries at the earlier iterations,

when the hop lengths are small. For graphs where the hop diameter

is not very small, a small fraction of the shortest paths will have

long hop lengths. In such a case, to avoid the larger number of

iterations, we can continue the growth by Hop-Doubling.

LEMMA 8. If we begin the label construction with Hop-

Stepping and switch to Hop-Doubling after a number of iterations,

with the pruning step applied to all iterations, distance querying

based on the resulting labeling is correct.

6. UNDIRECTED, WEIGHTED, AND GEN­

ERAL GRAPHS
Our algorithms can be easily extended to handle undirected

graphs. Instead of having two labels Lin(v) and Lout(v) for each

vertex v, we need only one label L(v). To cover an undirected path

of length d between u an v, where r(u) < r(v), we use the la-

bel entry (v, d) in L(u). It is simpler than the directed case, since

Rule 1(2) will be identical to Rule 4(5), when the directions of

paths are removed. Hence we only need Rules 1 and 2. For in-

stance, Rule 1 says that: from (u1 → u, d1) and (u → v, d),
where r(v) > r(u1) > r(u), generate (u1 → v, d1 + d). For

undirected graphs, this rule becomes: from (u1, d1) ∈ L(u) and

(v, d) ∈ L(u), where r(v) > r(u1), generate (v, d1+d) in L(u1).
Rules 2 is similarly converted. For distance querying, the labels

L(s) and L(t) are looked up for a given query of dist(s, t).
While our discussions so far have focused on unweighted graphs,

all our mechanisms also apply to weighted directed/undirected

graphs with positive edge weights. Though our complexity anal-

ysis is based on unweighted scale-free graphs, our experiments on

real weighted graphs show highly promising results.

For graphs that are not scale-free, the ranking by degree may not

be effective. For example, road networks do not have high degree

vertices. However, our algorithms are still relevant for the gen-

eral graphs since they work with any total ranking of vertices. As

discussed in Section 2, higher ranked vertices should hit a large

1211



G = (V,E) |V | |E|
Max |G| Index size (MB) Indexing time (sec) Memory query time (µs) Disk query time (ms)

deg (G) (MB) IS-Label PLL HopDb IS-Label PLL HopDb BIDIJ IS-Label PLL HopDb IS-Label HopDb

undirected unweighted

Delicious 5.3M 602M 4M 9446 — — 12748 — — 31999 — — — — — 30.1

BTC 168M 361M 106K 7550 — — 13971 — — 11401 — — — — — 28.4

FlickrLink 1.7M 31M 27K 452 — — 4068 — — 4284 25513 — — — — 22.7

Skitter 1.7M 22M 36K 344 — — 3732 — — 4888 5011 — — 3.06 — 24.6

CatDog 624K 16M 81K 231 — 836 656 — 145 1152 24127 — 0.98 0.78 — 16.3

Cat 150K 5M 81K 67 171 141 61 628 7 102 1880 2.3 0.31 0.22 15.7 7.3

Flickr 106K 2M 5K 30 — 226 238 — 42 269 1497 — 2.06 2.06 — 12.6

Enron 37K 368K 1K 5 138 33 10 37 0.5 3 108 4.8 0.14 0.08 6.9 0.6

directed unweighted

wikiEng 17M 240M 2M 4447 — — 31904 — — 99686 — — — — — 38.9

wikiFr 5.1M 113M 1M 1964 — — 8661 — — 18532 5317 — — — — 31.2

wikiItaly 2.9M 105M 825K 1755 — — 9707 — — 32397 4384 — — — — 28.2

Baidu 2.1M 18M 98K 271 — — 5184 — — 6737 1842 — — — — 29.4

gplus 102K 14M 21K 182 — — 337 — — 623 717 — — 2.41 — 11.6

wikiTalk 2.4M 5M 100K 74 — — 1464 — — 377 201 — — 0.33 — 20.4

slashdot 77K 517K 2K 7 1035 — 65 439 — 19 49 7.2 — 0.49 18.4 5.7

epinions 76K 509K 3K 6 1126 — 68 517 — 20 76 9.2 — 0.61 19.1 4.5

EuAll 265K 420K 2K 6 343 — 65 31 — 9 23 8.3 — 0.19 11.7 6.3

synthetic

syn1 10M 700M 3M 8998 — — 9030 — — 49612 — — — — — 40.1

syn2 20M 600M 4M 8118 — — 20272 — — 56460 — — — — — 37.9

syn3 15M 450M 3M 5990 — — 13552 — — 31920 — — — — — 38.2

syn4 10M 200M 2M 2633 — — 6825 — — 7804 — — — — — 35.5

syn5 1M 5M 95K 61 7987 876 161 878 14 43 3685 40.4 0.26 0.14 24.4 15.4

syn6 100K 1M 18K 10 262 88 14 25 1.4 3 305 3.9 0.18 0.08 11.2 1.2

undirected weighted

amaRating 3.3M 11M 12K 197 — — 15934 — — 22609 61450 — — — — 27.7

epinRating 876K 27M 162K 376 — — 1846 — — 2994 12550 — — 6.11 — 22.1

movRating 9746 2M 3K 24 120 — 23 452 — 50 369 18.672 — 7.80 4.8 0.8

bookRating 264K 867K 9K 13 4533 — 223 2444 — 99 112 — — 2.28 25.4 14.8

Table 6: Performance comparision of BIDIJ, IS-Label, PLL and HopDb on complete 2-hop indexing for different graphs G.

number of shortest paths. The direct approach to determine such

a vertex ranking requires the computation of the shortest paths for

all pairs of vertices, which may not be practical for large graphs.

Hence, some heuristical method to approximate this ranking may

be helpful. With such a ranking, our algorithms can be applied, and

all analyses hold except for those in Sections 5.2 and 5.3, where

assumptions based on scale-free graphs are adopted.

7. EXPERIMENTAL RESULTS
We implemented our algorithms in C++, and tested the perfor-

mance of our algorithms using a Linux machine with an Intel 3.3

GHz CPU, 4GB RAM and 7200 RPM SATA hard disk. We com-

pared with three state-of-the-art algorithms, IS-Label [18], PLL [7],

and HCL [20], with coding provided by their authors. We con-

ducted experiments on various real-world networks. We used a

32-bit integer for each vertex in the vertex set and an 8-bit inte-

ger for the distance value in the graph. The information about the

datasets is listed in Table 6. Most of the datasets are obtained from

the Stanford Network Analysis Project and KONECT [1]. We se-

lected graphs with power-law degree distributions. We shall label

our algorithm as HopDb. By default, we adopt the hybrid approach

where we apply Hob-Stepping with pruning in the first 10 iterations

and switch to Hob-Doubling with Pruning from the 11-th iteration

until the last iteration.

The networks tested in our experiment are as follows. Delicious

is the user-tag network on delicious.com. BTC is the semantic

graph from Billion Triple Challenge 2009. FlickrLink is the link

network on flickr.com. Skitter is an Internet topology graph. Cat-

Dog and Cat are social networks. Flickr is the image sharing net-

work on flickr.com. Enron is an email communication network.

WikiEng/WikiFr/WikiItaly is the wikilinks from Wikipedia. Baidu

is the internal links network on baidu.com. Gplus and slashdot

are social networks. wikiTalk records the discussions of wikipedia

users. Epinions is a who-trust-who network. EuAll is a Euro-

pean email network. AmaRating and EpinRating are customer-

product rating networks. MovRating and BookRating are networks

of movie rating and book rating, respectively. For directed graphs,

we rank vertices by non-increasing product of in-degree and out-

degree due to its better performance. We have also considered

synthetic scale-free networks generated based on the GLP (Gen-

eralized Linear Preference) model [11]. The GLP model is based

on the BA model [8] but allows more flexibility. The required pa-

rameters m and m0 are set to 1.13 and 10, respectively, as in [11],

which gives a power law exponent of 2.155. Unweighted undi-

rected graphs of varying vertex set sizes and densities are gener-

ated, syn1 to syn6 are six such datasets.

Performance Comparison: We compared our algorithm with the

only external algorithm IS-Label [18] which is capable of building

full indices. We also compared our algorithm with the two best

existing main memory based indexing methods, namely PLL [7]

and HCL [20]. We examined the index size, indexing time, disk

based querying time and memory based querying time (with in-

dex in memory). We measured the performance of IS-Label when

building the complete index. We also compared with baseline bi-

Dijkstra search for in memory querying.

The PLL coding provided by the authors of [7] only handles

undirected unweighted graphs and it incorporated a bit-parallel

mechanism for efficient querying, which is applicable to any 2-

hop index on undirected unweighted graphs. Hence, we have also

added an enhanced bit-parallel component in HopDb for handling

the graphs that can be handled by PLL. The idea of bit-parallel is

to select a small set of vertices as roots, e.g. 50 by default in PLL’s

code, and to merge the label entry of the form (v, d) with (r, d′),
where v is a neighbour of a root vertex r in the given graph. More

details can be found in [7]. We also added a bit-wise method to

look up common roots in two labels for efficient query processing.

1212



 60

 70

 80

 90

 100

 110

 120

 0  0.2  0.4  0.6  0.8  1

la
b

e
l 
c
o

v
e

ra
g

e
(%

)

top vertices(%)

BTC
Skitter

 60

 70

 80

 90

 100

 110

 120

 0  0.2  0.4  0.6  0.8  1

la
b

e
l 
c
o

v
e

ra
g

e
(%

)

top vertices(%)

wikiEng
wikiTalk

EuAll

 60

 70

 80

 90

 100

 110

 120

 0  0.2  0.4  0.6  0.8  1

la
b

e
l 
c
o

v
e

ra
g

e
(%

)

top vertices(%)

syn1
syn2
syn5

Figure 8: Label coverage by top ranked vertices

 0

 2

 4

 6

 8

 10

 0  10  20  30  40  50  60  70
 0

 50

 100

 150

 200

 250

G
ra

p
h

 S
iz

e
(G

B
)

A
v
g

 |
la

b
e

l|
 P

e
r 

V
e

rt
e

x

|E|/|V|

Graph Size
Avg |label|

 0

 2

 4

 6

 8

 10

 0  5  10  15  20  25  30
 0

 50

 100

 150

 200

 250
G

ra
p

h
 S

iz
e

(G
B

)

A
v
g

 |
la

b
e

l|
 P

e
r 

V
e

rt
e

x

|V| (Million)

Graph Size
Avg |label|

(a) (b)

Figure 9: Results for synthetic scale-free data. (a) |V | = 10M
(b) |E|/|V | = 20

From the results as shown in Table 6, HopDb outperformed the

other methods in nearly all aspects. HCL could not finish all the

datasets after running for 24 hours, except for Enron, for which

all the costs are 3 orders of magnitude higher than HopDb, so the

results are not included in Table 6. PLL has a smaller indexing

time since it is a main memory based algorithm, while HopDB is

a disk based algorithm. However, PLL could not handle most of

the datasets because of the large main memory requirement for the

index construction. IS-Label could not finish the medium or large

sized datasets after running for 24 hours. With the dataset Flickr,

the intermediate graph Gi has grown to become bigger than the

original graph in the second iteration, and continued to grow.This

is because the pruning strategy of IS-Label is much less effective

compared with our pruning method.

For the smaller datasets, PLL, IS-Label and HopDb built the

complete 2-hop index successfully, but the index sizes of our al-

gorithm are significantly smaller than those of IS-Label and always

smaller than PLL, and hence the querying efficiency of HopDb is

also substantially better than IS-Label and better than PLL.

We have also conducted experiments on weighted graphs. While

we assume small hitting sets for unweighted graphs only, the results

on weighted real graphs also indicate small hitting sets for weighted

graphs. This is a promising evidence that the assumptions may also

hold for many weighted scale-free graphs.

Results on Small Hitting Set: We verify the concept of small hit-

ting set in the real life datasets by showing small average number

of label entries (|label|) per vertex and high coverage of label en-

tries by top vertices in Table 7. A label entry (v, d) is said to be

covered by v. From our discussion in Section 5.2, the size of the

final label set can be bounded by O(h|V |) with a small h, which is

consistent with the small average |label| values listed in the table,

and is the guarantee for the high efficiency of our query processing.

Moreover, from the label coverage by top vertices, we know that an

extremely small amount of top vertices, given by the percentages

in the last three columns of Table 7, can cover most label entries,

like 70%, 80%, and 90% listed in the table. The top 1% of vertices

often cover close to 100% of the label entries, as shown in Figure

8. These top vertices formed the set H for the small hitting sets.

Graph
number of Avg |label| top vertices coverage

Iterations per vertex 70% 80% 90%

BTC 14 12 0.01% 0.01% 0.02%

Skitter 13 456 0.13% 0.21% 0.43%

CatDog 9 275 0.83% 1.55% 3.25%

Cat 6 104 0.78% 1.33% 2.79%

Flickr 7 515 7.62% 13.80% 16.72%

Enron 7 321 0.60% 1.02% 2.29%

wikiEng 15 192 0.03% 0.05% 0.13%

wikiItaly 15 343 1.69% 2.34% 3.73%

gplus 8 342 2.87% 4.37% 7.56%

wikiTalk 7 60 0.02% 0.04% 0.07%

slashdot 9 84 0.73% 1.12% 1.89%

epinions 9 91 0.89% 1.31% 2.10%

EuAll 7 22 0.04% 0.06% 0.09%

Table 7: Results supporting the assumptions of small hub di-

mension h and small hitting sets (|label| = number of label en-

tries)

Graph
Indexing time (sec) number of iterations

Double Step Hybrid Double Step Hybrid

BTC — 21081 11401 — 38 14

Skitter — 6400 4888 — 21 13

wikiItaly — 47558 32397 — 59 15

gplus 4205 642 642 5 8 8

wikiTalk 2221 378 378 5 7 7

slashdot 145 19 19 5 9 9

epinions 157 20 20 5 9 9

Table 8: Comparing Hop-Doubling, Hop-Stepping, and Hybrid

Results on Synthetic Scale-free Data: We have generated scale-

free networks with different densities in GLP to show the scalabil-

ity of HopDb. In our first experiment, the number of vertices of the

graphs is fixed to 10 million, and the densities |E|/|V | are varied

from 2 to 70. The number of iterations varies from 7 to 5, which

confirms our assumption of a small diameter for scale-free graph.

The graph sizes and the average number of label entries in a vertex

are reported in Figure 9. As the graph size increases linearly, the

average label size remains very small and approaches a flat value

below 200. The results strongly support our assumptions of small

hitting sets and small hub dimension for scale-free graphs.

Similarly, we tested the scalability of HopDb in scale-free net-

works with growing number of vertices by the GLP model. We set

the density |E|/|V | to 20, and varied the number of vertices from

2 millions to 30 millions. The greatest average label size is around

200, which is very small compared to |V |. This indicates that our

assumption of small hub dimension holds for all graph sizes.

Effects of Hop-Stepping and Pruning: To show the effectiveness

of the hop-stepping and pruning strategies, we compared the ef-

ficiency of adopting different strategies in Table 8 and Figure 10.

We considered the three alternatives: only hop-doubling, only hop-

stepping, and our default hybrid approach. The hybrid approach

achieved the best performance as listed in the column hybrid. Only

adopting doubling strategy may lead to too many candidates in the

beginning, so it took a long time to finish the large datasets. In

the first 10 iterations, hybrid utilized the hop-stepping strategy to

limit the growth of candidates and label size. From the 11-th iter-

ation, the hybrid approach switched to hop-doubling to accelerate

the process of candidate growing and limit the number of iterations.

In datasets with large diameters, the hybrid approach could limit the

number of iterations and finish the whole process earlier.

We analyze the running process of a large dataset, wiki-Eng, to

show the power of the pruning strategy and hop-stepping in Figure

10. We introduce two numbers, i.e. growing factor and pruning

factor, to show the effectiveness. For each iteration, the growing

1213



 0
 10
 20
 30
 40
 50

 0  3  6  9  12  15
 0

 30

 60

 90

 120

G
ro

w
in

g
 F

a
c
to

r

P
ru

n
in

g
 F

a
c
to

r(
%

)

iteration

Growing Factor
Pruning Factor

 0

 40

 80

 120

 160

 200

 0  3  6  9  12  15
 0

 10

 20

 30

 40

S
iz

e
 R

a
ti
o

(%
)

T
im

e
 R

a
ti
o

(%
)

iteration

|candidates|/|final index|
|old label|/|final index|

|prev label|/|final index|
iteration time/total time

Figure 10: Growth and pruning results for wiki-English

factor is the ratio of (number of candidates generated in this iter-

ation) to (number of label entries generated in the previous itera-

tion). The pruning factor is the percentage of pruned label entries

in one iteration, i.e. it is the ratio of (number of pruned candi-

date) to (total number of candidates). The pruning strategy was

powerful throughout the whole process. In the first 10 iterations

when adopting hop-stepping, the growing factor was successfully

limited at about 3 to 4, this is in line with the small expansion fac-

tor described in Section 2.2. After switching to hop-doubling, the

growing factor increased to around 25. Thus, hop-doubling accel-

erated the label generation and led to earlier termination. In this

phase, the effectiveness of the pruning strategy is also shown by

the pruning factor, with up to about 90% of the candidates pruned.

The runtime of these iterations is short since very few candidates

are generated. Figure 10 also shows that the size of the candidate

set did not exceed 1.5 times the size of the final index size. Hence,

the growth in candidates was well under control.

8. CONCLUSION
We introduce a new disk-based indexing algorithm for distance

querying on a large scale-free graph. With scalable indexing com-

plexities, our method performs well on different types of scale-free

networks and can handle graphs many times larger than existing

methods. The consistently small label sizes resulting from our label

indexing with all our tested graphs strongly support our assumption

of small hub dimension. The experimental result also verifies the

scalability of our algorithm and the small label sizes give rise to

highly efficient query evaluation both in-memory and on-disk.

ACKNOWLEDGEMENTS: We thank the authors of [7] for

the PLL coding, and the authors of [20] for the HCL coding. We

are grateful for the data collections from SNAP and KONECT. We

thank James Cheng for suggestions on the presentation and review

responses to another conference. This work was supported by the

Hong Kong RGC GRF grant 412313 and grant FSGRF12EG50.

9. REFERENCES
[1] http://konect.uni-koblenz.de/networks.

[2] I. Abraham, D. Delling, A. Fiat, A. V. Goldberg, and R. F. F.
Werneck. Vc-dimension and shortest path algorithms. In ICALP (1),
pages 690–699, 2011.

[3] I. Abraham, D. Delling, A. V. Goldberg, and R. F. F. Werneck. A
hub-based labeling algorithm for shortest paths in road networks. In
SEA, 2011.

[4] I. Abraham, D. Delling, A. V. Goldberg, and R. F. F. Werneck.
Hierarchical hub labelings for shortest paths. In ESA, 2012.

[5] I. Abraham, A. Fiat, A. V. Goldberg, and R. F. F. Werneck. Highway
dimension, shortest paths, and provably efficient algorithms. In
SODA, pages 782–793, 2010.

[6] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting
and related problems. Commun. ACM, 31(9):1116–1127, 1988.

[7] T. Akiba, Y. Iwata, and Y. Yoshida. Fast exact shortest-path distance
queries on large networks by pruned landmark labeling. In SIGMOD,
2013.

[8] A. L. Barabasi and R. Albert. Emergence of scaling in random
networks. Science, (286):509–512, 1999.

[9] R. Bauer, D. Delling, P. Sanders, D. Schieferdecker, D. Schultes, and
D. Wagner. Combining hierarchical and goal-directed speed-up
techniques for dijkstra’s algorithm. ACM Journal of Experimental
Algorithmics, 15, 2010.

[10] B. Bollobas and O. Riordan. The diameter of a scale-free random
graph. Combinatorica, 24(1):5–34, 2004.

[11] T. Bu and D. Towsley. On distinguishing between internet power law
topology generators. In INFOCOM, 2002.

[12] L. Chang, J. Yu, L. Qin, H. Cheng, and M. Qiao. The exact distance
to destination in undirected world. The VLDB Journal, 2012.

[13] W. Chen, C. Sommer, S. Teng, and Y. Wang. A compact routing
scheme and approximate distance oracle for power-law graphs. ACM

Transactions on Algorithms, 9(1):4:1–4:26, 2012.

[14] J. Cheng and J. X. Yu. On-line exact shortest distance query
processing. In EDBT, pages 481–492, 2009.

[15] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reachability and
distance queries via 2-hop labels. SIAM Journal of Computing,
32(5):1338–1355, 2003.

[16] E. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1:269 – 271, 1959.

[17] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law
relationships of the internet topology. In SIGCOMM, 1999.

[18] A. Fu, H. Wu, J. Cheng, and R. Wong. Is-label: an independent-set
based labeling scheme for point-to-point distance querying. In
PVLDB, volume 6, April 2013.

[19] R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction
hierarchies: Faster and simpler hierarchical routing in road networks.
In WEA, pages 319–333, 2008.

[20] R. Jin, N. Ruan, Y. Xiang, and V. E. Lee. A highway-centric labeling
approach for answering distance queries on large sparse graphs. In
SIGMOD Conference, pages 445–456, 2012.

[21] M. Kargar and A. An. Keyword search in graphs: Finding r-cliques.
In VLDB, 2011.

[22] J. Kunegis and J. Preusse. Fairness on the web: Alternatives to the
power law. In WebSci, 2012.

[23] M. Lee, J. Lee, J. Park, R. Choi, and C. Chung. Qube: a quick
algorithm for updating betweenness centrality. In WWW, 2012.

[24] K. Mehlhorn and U. Meyer. External-memory breadth-first search
with sublinear i/o. In ESA, 2002.

[25] M. Newman, S.H.Strogatz, and D. Watts. Random graphs with
arbitrary degree distributions and their applications. Physical Review,
64(026118):1–17, 2001.

[26] V. Pareto. Manuale di economia politica con una introduzione alla
scienza sociale (manual of political economy). Milano : Societa

Editrice Libraria, 1919.

[27] H. Samet, J. Sankaranarayanan, and H. Alborzi. Scalable network
distance browsing in spatial databases. In SIGMOD, 2008.

[28] P. Sanders and D. Schultes. Highway hierarchies hasten exact
shortest path queries. In ESA, pages 568–579, 2005.

[29] J. Sankaranarayanan, H. Samet, and H. Alborzi. Path oracles for
spatial networks. PVLDB, 2(1):1210–1221, 2009.

[30] R. Schenkel, A. Theobald, and G. Weikum. Hopi: An efficient
connection index for complex xml document collections. In EDBT,
pages 237–255, 2004.

[31] Y. Tao, C. Sheng, and J. Pei. On k-skip shortest paths. In SIGMOD,
pages 43–54, 2011.

[32] X. Wang and G. Chen. Complex networks: Small-world, scale-free
and beyond. IEEE Circuits and Systems Magazine, (First
Quarter):6–20, 2003.

[33] F. Wei. Tedi: efficient shortest path query answering on graphs. In
SIGMOD Conference, pages 99–110, 2010.

[34] Y. Xiao, W. Wu, J. Pei, W. Wang, and Z. He. Efficiently indexing
shortest paths by exploiting symmetry in graphs. In EDBT, 2009.

1214


