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Abstract - Application Layer (AL) multicast pro-
tocols emerged, and in large number, as a response
to the slow deployment of IP multicast. How-
ever, the gain of different AL multicast mecha-
nisms, in terms of resources consumption over uni-
cast, is questionable. In this paper, we investigate
the efficiency of AL multicast protocol NICE, in
terms of the number of hops a packet traverses
on its path toward the destinations. We pro-
pose four alternative algorithms for the creation
of NICE overlay and compare their efficiency to
the efficiency of unicast, IP multicast, and another
two previously evaluated AL multicast protocols
(MCAN and Scribe). Further, we investigate the
influence of the underlying topology awareness on
the efficiency. Our analysis has been performed
via simulations, as well as via measurements on
the PlanetLab network. We show that the NICE
structure achieves better results than MCAN and
Scribe.

Keywords– Application Layer multicast, NICE,
overlay networks, Hopcount

I. Introduction

A myriad of multimedia applications that involve mul-
tiple simultaneous users has emerged in the last decade
(e.g. video streaming, distance learning, and many
others). Most of them are considerably bandwidth-
demanding, hence the efficient delivery is indispens-
able. The simplest way to achieve the delivery of group
applications is to use unicast. Unicast represents a
point-to-point communication between a single sender
and a single receiver. When using unicast to realize
group communication, a source of multimedia has to
send a copy of the packet carrying that content as
many times as there are users, wasting the network
resources.
The best efficient way of distributing same multimedia
to multiple users is through network layer (IP) multi-
casting [5]. In IP multicast only one copy of packet is

sent out, up to the point in the network at which the
paths to the destinations split, where it is replicated
and sent out to links leading to those destinations.
Packet replication and routing are handled by network
routers, which need to support multicast routing.
Due to the lack of a widely available IP multicast ser-
vice and the boom of peer-to-peer (P2P) applications,
a possibility of implementing multicast services in the
application layer (AL) has been examined [14] [2] [7]
[9] [4]. In AL multicast, data packets are replicated
at end users. End users self-organize into a logical
overlay network (e.g. CAN [8], Chord [12], Pastry [10]
and Tapestry [13]), and transfer data along the edges
of the overlay network using unicast. The goal of AL
multicast protocols is thus to construct and maintain
an efficient overlay for data transmission.
AL multicast has several attractive features. The ma-
jor advantage of AL multicast is that the network in-
frastructure may remain unchanged, since it uses uni-
cast for data transmission. However, as data is repli-
cated and forwarded by end hosts (users), packets may
traverse the same link several times, resulting in an in-
efficient use of bandwidth. Hence, AL multicast can
only make sense if it outperforms unicast in terms of
resources utilization.

In the last several years, a vast number of AL mul-
ticast protocols have emerged. They all claim to be
more efficient than unicast, but due to their scarce and
limited evaluation drawing strong conclusions is not
justified. This paper examines the efficiency of NICE
[1][2]. NICE (recursive acronym of Nice is the Internet
Cooperative Environment) is a structured P2P mul-
ticast mechanism in which nodes self-organize into a
clustered and layered topology. Due to its hierarchical
structure, NICE is considered one of the most promis-
ing protocols in terms of scalability. However, the clus-
tering and layering mechanism has a direct impact on
the efficiency.



Our analysis represents the extension of our study of
CAN-based multicast and Scribe presented in [6]. The
main purpose of this paper is to evaluate to what
extent do the different schemes for the creation of
overlay structures (i.e. topology-aware or topology-
unaware) impact the efficiency. To investigate the in-
fluence of the creation schemes of the NICE, we com-
pare their performance with other scalable AL multi-
cast algorithms, CAN-based multicast [9] and Pastry-
based Scribe [4]. We further compare these schemes
to unicast and IP multicast. As a performance met-
ric, both the hopcount (the number of hops between
nodes) and the node degree have been evaluated. The
evaluation is carried out both via simulations, and ex-
periments on the PlanetLab 1 .

To the best of our knowledge, the only study of the
NICE protocols to this end has been provided by Ba-
narjee et al. [1][2]. However, our study differs in sev-
eral aspects: First, we present four alternative meth-
ods for NICE overlay construction, in which hopcount
and node degree are optimized respectively. Further,
we perform our simulations on a large number of dif-
ferent underlying topologies (up to 105). Finally, we
evaluate our observations via experiments on the Plan-
etLab network, which, to the best of our knowledge,
has not previously been done for the NICE protocol.

One of the major criticisms of AL multicast is that the
end users do not possess the IP topology information
available to routers, causing even more inefficiencies
than unicast. In this paper, two extreme situations
have been considered. In the topology-unaware over-
lay network, the nodes are organized and connected in
a random fashion, without taking the underlying IP-
layer topology into account. In the other extreme, we
assume that the underlying substrate is fully known
and this information is optimally exploited for the
overlay creation.

The paper is organized as follows: Section II provides a
brief description of the NICE protocol and the four al-
ternatives for overlay construction we propose. Section
III describes the simulation design, and presents the
simulation results. It also provides the performance
comparison of NICE, MCAN and Scribe. In Section
IV the results of the measurements on PlanetLab are
presented, and the performance of NICE, MCAN and
Scribe are compared. We conclude in Section V.

II. The Original NICE Protocol and the Variants

This section describes the original NICE protocol to-
gether with the variants that we propose.

1 http://www.planet-lab.org/
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Fig. 1. Hierarchical arrangement of multicast users in
NICE (for a multicast group size m = 12 and a cluster
size k = 4)
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Fig. 2. (a) The data transmission tree corresponding to
the NICE overlay given in Figure 1, (b) an exampe of
a real-world situation

A. NICE Overlay

As shown in Figure 1, the NICE overlay is created
by assigning members to different layers. Layers are
numbered sequentially, where the lowest layer of the
hierarchy is layer zero (denoted by L0). All users are
part of the lowest layer, L0. Users in each layer are
partitioned into a set of clusters, with the size of each
cluster between k and 3k − 1 (where k is a constant).
Further, each cluster has a cluster leader. Each clus-
ter leader of all the clusters in layer Li represents the
cluster in the upper layer Li+1, which is also organized
in clusters. An example is shown in Figure 1, where
the number of multicast users (multicast group size)
is m = 12 and the cluster size is k = 4. The layer L0
clusters are [A,B,C,D], [E,F,G,H] and [J,K,L,M ].
C, F andM are the leaders of their respective clusters
in the layer L0, and they form a cluster in the layer
L1. The leader of the cluster in L1 is F . Thus, F be-
longs to layer L2 as well. Once the overlay is created,
the data in NICE is disseminated along the tree, im-
plicitly embedded in this layered structure. The root
of the tree is the user in the highest layer. The users
in the other layers become the children of their cluster
leaders. Figure 2 depicts the data transmission tree.

B. Four Variants of NICE

An end user that wants to join NICE contacts the root
to obtain the identity of several users that constitute



the highest layer in the hierarchy. The joining user
sends probe packets to each of them and selects the
“closest” one (in terms of a certain metric). From the
selected user the newcomer obtains the list of members
of the respective cluster in the first next lower layer.
This process continues until the new user finds an ap-
propriate cluster in the lowest layer L0. It is important
to note that, as clusters and layers can be created using
different clustering algorithms (based on different met-
rics), their efficiency can differ significantly. Therefore,
we investigate three different topology aware clustering
algorithms, denoted as HNICE, DNICE and DHNICE,
that we briefly describe in the sequel. In addition, we
also evaluate RNICE, a topology unaware algorithm
for the overlay construction.

B.1 RNICE Algorithm

In this algorithm, NICE users have no knowledge of
the underlying topology and are organized in a random
fashion. The clusters and layers are created in such a
way to comply to the cluster size boundary k.

B.2 HNICE Algorithm

In the HNICE algorithm, the proximity metric used in
creating the clusters is the hopcount between the nodes
in underlying network. The node with a minimal hop-
count toward the source node and all the other m− 1
multicast receivers is chosen to be a root (the member
of the highest cluster). Other nodes are grouped into
clusters from the upper to lower layers in such a way
that each cluster leader has the lowest hopcount to all
the other cluster members.

B.3 DNICE Algorithm

In this algorithm, the metric used for creating the
clusters is the node degree of nodes in the underly-
ing topology. All the nodes are grouped in clusters
according to their degrees in a descending order from
the upper to the lower layer.

B.4 DHNICE Algorithm

The DHNICE algorithm is a combination of HNICE
and DNICE algorithm. The root in the highest layer
(Lmax) has the highest node degree of all, while the
other nodes are grouped in clusters according to their
hopcount toward their cluster leader in a descending
order.

III. Evaluation via Simulations

A. Simulation Setup

In our simulations, we confine ourselves to random
graphs of class Gp(N) with N nodes, and indepen-
dently chosen links with probability p and link weights
equal to 1. We first generate a topology consist-
ing of N > 100 nodes, where each node represents

a router in the underlying network. For each graph of
N nodes, we define the number of multicast users m
in the network, such that a ratio ρ = m

N lies in the set
ρ = {0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9}. For
each (N , m) pair, 105 different topologies have been
generated. One of the m randomly chosen nodes is
designated as a source node.
In each underlying topology, six different multicast
schemes have been implemented: unicast, IP multi-
cast, RNICE, HNICE, DNICE, and DHNICE. In [6],
an analysis has been performed on MCAN and Scribe.
We use the data and results obtained in [6] for compar-
ing the performance among NICE, MCAN and Scribe.
With MCAN we refer to the CAN-based Multicast-
ing. The Content Addressable Network (CAN) [8] is a
virtual multi-dimensional Cartesian coordinate space
on a multi-torus. A simplest way to achieve multi-
casting in CAN is to perform flooding over the CAN
space, but it is inefficient. Two modifications of the
original flooding algorithm have been proposed, one
by the Ratnasamy et al. in [9] and another by Janic
et al. in [6], and are referred to in the this paper
as MCAN1 and MCAN2, respectively. Scribe [4] is
a tree-based AL multicast mechanism built on top of
Pastry [10]. In [6], in addition to the evaluation of
topology aware and unaware MCAN1 and MCAN2,
Scribe1, the Scribe algorithm without topology aware-
ness and Scribe2, in which the topology awareness has
fully been integrated, have been evaluated. The evalu-
ation analysis has been performed under identical con-
ditions as the analysis presented in this paper.
For each of the above listed mechanisms and each un-
derlying topology, the number of hops in the data
transmission path is computed and stored in a his-
togram. From each histogram, the probability den-
sity function (pdf) of the hopcount (HN) was de-
duced, together with the mean E[HN ] and the vari-
ance var[HN ]. In unicast, the total hopcount is com-
puted as the sum of the hopcounts on each path seg-
ment along shortest paths from a source to each of
the m destinations individually. For the IP multicast,
the messages are disseminated along the shortest path
tree 2 , since the most of the current IP multicast rout-
ing protocols forward packets based on the (reverse)
shortest path. For the NICE, MCAN, and Scribe over-
lay algorithms, the total hopcount is the sum of the
underlying hopcounts along the overlay data transmis-
sion path using unicast.
In order to facilitate the understanding of the simula-
tion scenario, in Table I we summarize the parameters
used in the simulations.

In order to compare the performance of different NICE
schemes, we introduce a relative different hopcount

2 A shortest path tree is the union of the shortest paths between
the source and all m destinations.



scheme m/ ρ Cluster size k
1 5/0.025 4,8
2 10/0.05 4,8,16
3 20/0.1 4,8,16,32
4 40/0.2 4,8,16,32,64
5 50/0.25 4,8,16,32,64
6 60/0.3 4,8,16,32,64
7 70/0.35 4,8,16,32,64
8 80/0.4 4,8,16,32,64,128
9 100/0.5 4,8,16,32,64,128
10 120/0.6 4,8,16,32,64,128
11 140/0.7 4,8,16,32,64,128
12 180/0.9 4,8,16,32,64,128

TABLE I
The simulated schemes 1-12. The number of nodes

N=200

(RDH), and define it as:

RDH =
E[HN−Uni]−E[HN−xNICE ]

E[HN−Uni]

where E[HN−Uni] is the average value of hopcount
when using unicast, E[HN−xNICE ] is the average
value of hopcount of different NICE schemes, where
xNice stands for different NICE overlay creation al-
gorithms (i.e. RNICE, HNICE, DNICE, DHNICE).
RDH quantifies the hopcount difference between uni-
cast and other NICE overlay algorithms.

A.1 Effect of the Topology Unawareness

Figure 3 displays the pdf of hopcount using
topology unaware algorithm RNICE for differ-
ent number of multicast destinations m (m =
10, 20, 40, 60, 80, 100, 140, 180) where the cluster size
k = 4. The RDH of the RNICE algorithm is between
-3.03% and 1.68%. When the same experiment was
conducted with unicast, we found that the hopcount
in these two schemes had similar values.
Figure 4 shows the average hopcountE[HN ] of unicast,
NICE, MCAN1, MCAN2, and Scribe1 in a topology
unaware overlay, as a function of the number of mul-
ticast receivers m. We observe that MCAN1 has the
worst performance of the four overlay algorithms, even
worse than unicast. The hopcount in other three al-
gorithms, RNICE (cluster size k = 8), MCAN2 and
Scribe1, is comparable to that of unicast.

A.2 Effect of the Topology Awareness

In Figure 5 the average hopcount E[HN ] as a function
of the number of multicast receivers m (when k = 8)
has been given. This figure indicates that among the
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NICE algorithms, HNICE achieves the best perfor-
mance, DHNICE is slightly behind, whereas DNICE
performs worse than DHNICE, but better than uni-
cast. These results suggest that topology-aware NICE
is most efficient when hopcount is used as proximity
metric.
Figure 6 demonstrates the performance comparison
of unicast, IP multicast, HNICE, DHNICE, DNICE,
RNICE, MCAN1, MCAN2, and Scribe2 in a topol-
ogy aware overlay, with cluster size k = 8. We ob-
serve that performance levels can be roughly grouped
into two areas: area A consists of MCAN1, unicast,
RNICE, DNICE and MCAN2, while area B con-
sists of DHNICE, HNICE, Scribe2 and IP multicast.
These results show that IP multicast performs best,
as expected, while Scribe2, HNICE and DHNICE
produce similar hopcount. Scribe2 performs better
than the other AL multicast schemes, and only a lit-
tle worse than IP Multicast. MCAN2 and DNICE
demonstrate poor performance, but better than uni-
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Fig. 6. Performance comparison of unicast, IP multi-
cast, HNICE, DHNICE, DNICE, RNICE, MCAN1,
MCAN2, and Scribe2 in the topology aware overlay.
NICE cluster size k=8.

cast. MCAN2 achieves a slightly lower hopcount than
DNICE. MCAN1 again performs worst, even worse
than unicast.

IV. Evaluation via Measurements on PlanetLab

In addition to simulations, we evaluated the perfor-
mance of AL multicast protocols under realistic con-
ditions, by performing experiments on PlanetLab. Our
experiments have been executed on November 10th
2004. At that moment, there were 445 PlanetLab
nodes running on locations in USA, Asia and Europe.
We selected one node per PlanetLab site, resulting in
totally 79 nodes. Each of these nodes represents a mul-
ticast group member or source. Among the 79 nodes,
traceroutes [11] were collected, and the hopcount be-
tween each pair of nodes has been recorded. Based on
this traceroutes collection, the underlying router-level
topology has been created. This topology consisted of
4204 nodes and 7041 links. No alias resolution tech-

nique has been implemented. We refer to this Planet-
Lab underlying router-level topology as TPL.
With the knowledge of this topology, NICE, MCAN
and Scribe overlays have been created and imple-
mented, and subsequently, their hopcount has been
computed. The hopcounts of unicast and IP multi-
cast have been computed as well. In our NICE al-
gorithm measurement, 103 different overlays are cre-
ated for each m (number of multicast destinations),
the source node is also chosen randomly, and they all
belong to the 79 measurement end-hosts of PlanetLab.
The results of our PlanetLab experiments are given in
Figure 7 and Figure 8. Figure 7 shows the trend of
E[HN ] as the m increases when cluster size k = 8.
This figure corresponds to Figure 5 obtained from the
simulations. We observe that the results of measure-
ments match the simulation results remarkably well.
Again, our results reveal that IP multicast achieves the
lowest hopcount. IP multicast is followed by HNICE.
DHNICE is slightly poorer than HNICE. Topology un-
aware algorithm RNICE has the similar performance
of unicast. The RDH of the HNICE algorithm is
between 14.23% and 36.83%, DHNICE is between
10.38% and 35.40%, DNICE is between 3.77% and
34.3%, RNICE is between -2.78% to 2.59%.
Figure 8 presents the effect of the cluster size k on the
average hopcount E[HN ] for m = 60. As k increases,
the performance of DNICE, HNICE and DHNICE im-
proves. A possible explanation is that TPL topology
has a low link density, hence, the hopcount between
2 nodes may be large (in our experiment, the average
hopcount between a source and a random multicast
destination is about 15 hops). If the size of the cluster
is too small, when the cluster i is full, any new coming
user, even if the best candidate for joining is the leader
of the cluster i, has to join another cluster j (j 6= i)
in the same layer. This can result in a higher total
hopcount. We illustrate this in an example. Figure 9
shows a sparse network topology with 12 routers. To
each of them an end user is attached. We create one
HNICE overlay for k=6 and k=12 respectively. The
total hopcount in HNICE built overlay with k = 6
is 27, larger than that the hopcount of 24 for k=12.
When k is small, if node C and node E join after the
cluster of cluster leader F is full, they will be desig-
nated to another cluster leader, e.g. D.
In the extreme situation, when k is larger than m (in
Figure 10, k=64), there is only one cluster. DHNICE
and DNICE have the same root node and same over-
lay, so they have the same performance. However,
even though there is only one cluster, there are sev-
eral nodes that might have the same, highest, node
degree. Hence, HNICE can choose a node with better
performance as its overlay tree root, and consequently,
achieve a better performance than DHNICE.
Figure 10 exhibits the average values of hopcount for
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each of the schemes. This figure corresponds to Figure
6 obtained from simulations. The performance lev-
els of these mechanisms can roughly be classified into
three groups: group A consists of MCAN1, MCAN2,
Scribe1, Scribe2 and RNICE; group B consists of
topology-aware MCAN2 and DNICE; while group C
consists of DHNICE and HNICE. Among these three
groups, group C performs the best, followed by the
group B. The results show that the topology aware al-
gorithms HNICE, DHNICE and DNICE achieve bet-
ter performance than MCAN and Scribe. The val-
ues of hopcount of RNICE, MCAN, Scribe1 (topology
unaware), and Scribe 2 (topology aware) demonstrate
similar performance as unicast. DNICE performs sim-
ilarly to topology-aware MCAN2. The results further
confirm that there is a significant influence of topology
awareness on the hopcount of NICE: topology-unaware
algorithms for the creation of NICE overlay structure
cause poorest performance of NICE. Clustering algo-
rithm based on hopcount makes NICE perform best;
while algorithm based on degree makes NICE performs
slightly worse.
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V. Conclusion

We evaluated four different clustering algorithms in
NICE, and compared their efficiency to the efficiency
of MCAN and Scribe, and IP multicast and unicast,
in terms of the resources consumption. Here, we sum-
marize our observations:
• The data transmission efficiency of NICE is between
that of unicast and IP multicast. In the topology un-
aware situation, NICE has the similar performance
as unicast. Among the topology aware NICE over-
lays, HNICE, with hopcount as optimization metric,
achieves the minimum hopcount, followed by DHNICE
and DNICE.
• There is a significant influence of topology aware-
ness on the hopcount of NICE. All topology-unaware
schemes perform similarly as unicast, where MCAN1
is even poorer. In the topology-aware situation, the
NICE algorithms perform always better than unicast
and MCAN, and better than Scribe in the PlanetLab
experiments.
• For the creation of NICE overlay structure, us-
ing hopcount as a metric can achieve a better per-
formance than using node degree. Our hopcount-
based algorithm HNICE demonstrates better perfor-



mance than the node degree-based algorithm DNICE.
The degree and the hopcount combination algorithm
DHNICE performs better than DNICE, however worse
than HNICE.
• The effect of the cluster size (k) on the efficiency in
NICE has been investigated. The simulation results
in PlanetLab suggest that all topology aware NICE
schemes obtain lower total hopcount with the increase
of k.
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