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Abstract

Hand-object pose estimation (HOPE) aims to jointly de-

tect the poses of both a hand and of a held object. In this

paper, we propose a lightweight model called HOPE-Net

which jointly estimates hand and object pose in 2D and 3D

in real-time. Our network uses a cascade of two adaptive

graph convolutional neural networks, one to estimate 2D

coordinates of the hand joints and object corners, followed

by another to convert 2D coordinates to 3D. Our experi-

ments show that through end-to-end training of the full net-

work, we achieve better accuracy for both the 2D and 3D

coordinate estimation problems. The proposed 2D to 3D

graph convolution-based model could be applied to other

3D landmark detection problems, where it is possible to first

predict the 2D keypoints and then transform them to 3D.

1. Introduction

We use our hands as a primary means of sensing and

interacting with the world. Thus to understand human ac-

tivity, computer vision systems need to be able to detect the

pose of the hands and to identify properties of the objects

that are being handled. This human Hand-Object Pose Esti-

mation (HOPE) problem is crucial for a variety of applica-

tions, including augmented and virtual reality, fine-grained

action recognition, robotics, and telepresence.

This is a challenging problem, however. Hands move

quickly as they interact with the world, and handling an ob-

ject, by definition, creates occlusions of the hand and/or ob-

ject from nearly any given point of view. Moreover, hand-

object interaction video is often collected from first-person

(wearable) cameras (e.g., for Augmented Reality applica-

tions), generating a large degree of unpredictable camera

motion.

Of course, one approach is to detect the poses of the

hands and objects separately [27,30]. However, this ignores
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Figure 1. The goal of Hand-Object Pose Estimation (HOPE) is to

jointly estimate the poses of both the hand and a handled object.

Our HOPE-Net model can estimate the 2D and 3D hand and object

poses in real-time, given a single image.

the fact that hand and handled object poses are highly cor-

related: the shape of an object usually constrains the types

of grasps (hand poses) that can be used to handle it. Detect-

ing the pose of the hand can give cues as to the pose and

identity of an object, while the pose of an object can con-

strain the pose of the hand that is holding it. Solving the two

problems jointly can help overcome challenges such as oc-

clusion. Recent work [10,26] proposed deep learning-based

approaches to jointly model the hand and object poses. We

build on this work, showing how to improve performance

by more explicitly modeling the physical and anatomical

constraints on hand-object interaction.

We propose to do this using graph convolutional neural

networks. Given their ability to learn effective represen-

tations of graph-structured data, graph convolutional neural

networks have recently received much attention in computer

vision. Human hand and body pose estimation problems are

particularly amenable to graph-based techniques since they

can naturally model the skeletal and kinematic constraints

between joints and body parts. Graph convolution can be

used to learn these inter-joint relationships.

In this paper, we show that graph convolution can dra-

matically increase the performance of estimating 3D hand-

object pose in real-world hand-object manipulation videos.

We model hand-object interaction by representing the hand

and object as a single graph. We focus on estimating 3D
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hand-object poses from egocentric (first-person) and third-

person monocular color video frames, without requiring any

depth information. Our model first predicts 2D keypoint

locations of hand joints and object boundaries. Then the

model jointly recovers the depth information from the 2D

pose estimates in a hierarchical manner (Figure 1).

This approach of first estimating in 2D and then “con-

verting” to 3D is inspired by the fact that detection-based

models perform better in detecting 2D hand keypoints, but

in 3D, because of the high degree of non-linearity and the

huge output space, regression-based models are more pop-

ular [4]. Our graph convolutional approach allows us to

use a detection-based model to detect the hand keypoints

in 2D (which is easier than predicting 3D coordinates), and

then to accurately convert them to 3D coordinates. We show

that using this graph-based network, we are not limited to

training on only annotated real images, but can instead pre-

train the 2D to 3D network separately with synthetic images

rendered from 3D meshes of hands interacting with objects

(e.g. ObMan dataset [10]). This is very useful for training a

model for hand-object pose estimation as real-world anno-

tated data for these scenarios is scarce and costly to collect.

In brief, the core contributions of our work are:

• We propose a novel but lightweight deep learning

framework, HOPE-Net, which can predict 2D and 3D

coordinates of hand and hand-manipulated object in

real-time. Our model accurately predicts the hand and

object pose from single RGB images.

• We introduce the Adaptive Graph U-Net, a graph

convolution-based neural network to convert 2D hand

and object poses to 3D with novel graph convolution,

pooling, and unpooling layers. The new formulations

of these layers make it more stable and robust com-

pared to the existing Graph U-Net [5] model.

• Through extensive experiments, we show that our ap-

proach can outperform the state-of-the-art models for

joint hand and object 3D pose estimation tasks while

still running in real-time.

2. Related Work

Our work is related to two main lines of research: joint

hand-object pose prediction models and graph convolu-

tional networks for understanding graph-based data.

Hand-Object Pose Estimation. Due to the strong rela-

tionship between hand pose and the shape of a manipulated

object, several papers have studied joint estimation of both

hand and object pose. Oikonomidis et al. [20] used hand-

object interaction as context to better estimate the 2D hand

pose from multiview images. Choi et al. [3] trained two

networks, one object-centered and one hand-centered, to

capture information from both the object and hand perspec-

tives, and shared information between these two networks

to learn a better representation for predicting 3D hand pose.

Panteleris et al. [21] generated 3D hand pose and 3D mod-

els of unknown objects based on hand-object interactions

and depth information. Oberweger et al. [19] proposed an

iterative approach by using Spatial Transformer Networks

(STNs) to separately focus on the manipulated object and

the hand to predict their corresponding poses. Later they

estimated the hand and object depth images and fused them

using an inverse STN. The synthesized depth images were

used to refine the hand and object pose estimates. Recently,

Hasson et al. [10] showed that by incorporating physical

constraints, two separate networks responsible for learning

object and hand representations can be combined to gen-

erate better 3D hand and object shapes. Tekin et al. [26]

proposed a single 3D YOLO model to jointly predict the

3D hand pose and object pose from a single RGB image.

Graph Convolution Networks. Graph convolution net-

works allow learning high-level representations of the re-

lationships between the nodes of graph-based data. Zhao

et al. [31] proposed a semantic graph convolution network

for capturing both local and global relationships among hu-

man body joints for 2D and 3D human pose estimation.

Cai et al. [1] converted 2D human joints to 3D by encod-

ing domain knowledge of the human body and hand joints

using a graph convolution network which can learn multi-

scale representations. Yan et al. [29] used a graph convolu-

tion network for learning a spatial-temporal representation

of human body joints for skeleton-based action recognition.

Kolotouros et al. [14] showed that graph convolutional net-

works can be used to extract 3D human shape and pose from

a single RGB image, while Ge et al. [7] used them to gener-

ate complete 3D meshes of hands from images. Li et al. [17]

used graph convolutional networks for skeleton-based ac-

tion recognition, while Shi et al. [24,25] similarly used two

stream adaptive graph convolution.

Gao et al. [5] introduced the Graph U-Net structure with

their proposed pooling and unpooling layers. But that pool-

ing method did not work well on graphs with low numbers

of edges, such as skeletons or object meshes. Ranjan et

al. [22] used fixed pooling and Hanocka et al. [9] used edge

pooling to prevent holes in the mesh after pooling. In this

paper, we propose a new Graph U-Net architecture with dif-

ferent graph convolution, pooling, and unpooling. We use

an adaptive adjacency matrix for our graph convolutional

layer and new trainable pooling and unpooling layers.

3. Methodology

We now present HOPE-Net, which consists of a con-

volutional neural network for encoding the image and pre-

dicting the initial 2D locations of the hand and object key-
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Figure 2. The architecture of HOPE-Net. The model starts with ResNet10 as the image encoder and for predicting the initial 2D coordinates

of the joints and object vertices. The coordinates concatenated with the image features used as the features of the input graph of a 3 layered

graph convolution to use the power of neighbors features to estimate the better 2D pose. Finally the 2D coordinates predicted in the

previous step are passed to our Adaptive Graph U-Net to find the 3D coordinates of the hand and object.

points (hand joints and tight object bounding box corners),

a simple graph convolution to refine the predicted 2D pre-

dictions, and a Graph U-Net architecture to convert 2D key-

points to 3D using a series of graph convolutions, poolings,

and unpoolings. Figure 2 shows an overall schematic of the

HOPE-Net architecture.

3.1. Image Encoder and Graph Convolution

For the image encoder, we use a lightweight residual

neural network [11] (ResNet10) to help reduce overfitting.

The image encoder produces a 2048D feature vector for

each input image. Then initial predictions of the 2D co-

ordinates of the keypoints (hand joints and corners of the

object’s tight bounding box) are produced using a fully-

connected layer. Inspired by the architecture of [15], we

concatenate these features with the initial 2D predictions of

each keypoint, yielding a graph with 2050 features (2048
image features plus initial estimates of x and y) for each

node. A 3-layer adaptive graph convolution network is ap-

plied to this graph to use adjacency information and modify

the 2D coordinates of the keypoints. In the next section,

we explain the adaptive graph convolution in depth. The

concatenation of the image features to the predicted x and

y of each keypoint forces the graph convolution network to

modify the 2D coordinates conditioned on the image fea-

tures as well as the initial prediction of the 2D coordinates.

These final 2D coordinates of the hand and object keypoints

are then passed to our adaptive Graph U-Net, a graph con-

volution network using adaptive convolution, pooling, and

unpooling to convert 2D coordinates to 3D.

3.2. Adaptive Graph U­Net

In this section, we explain our graph-based model which

predicts 3D coordinates of the hand joints and object cor-

ners based on predicted 2D coordinates. In this network, we

simplify the input graph by applying graph pooling in the

encoding part, and in the decoding part, we add those nodes

again with our graph unpooling layers. Also, similar to the

classic U-Net [23], we use skip connections and concate-

nate features from the encoding stage to features of the de-

coding stage in each decoding graph convolution. With this

architecture we are interested in training a network which

simplifies the graph to obtain global features of the hand and

object, but also tries to preserve local features via the skip

connections from the encoder to the decoder layers. Mod-

eling the HOPE problem as a graph helps use neighbors to

predict more accurate coordinates and also to discover the

relationship between hands and objects.

The Graph U-Net concept was previously introduced by

Gao et al. [5], but our network layers, i.e. graph convolu-

tion, pooling, and unpooling, are significantly different. We

found that the sigmoid function in the pooling layer of [5]

(gPool) can cause the gradients to vanish and to not up-

date the picked nodes at all. We thus use a fully-connected

layer to pool the nodes and updated our adjacency matrix

in the graph convolution layers, using the adjacency matrix

as a kernel we apply to our graph. Moreover, Gao et al.’s

gPool [5] removes the vertices and all the edges connected

to them and does not have a procedure to reconnect the re-

maining vertices. This approach may not be problematic for

dense graphs (e.g. Citeseer [13]) in which removing a node

and its edges will not change the connectivity of the graph.

But in graphs with sparse adjacency matrices, such as when

the graph is a mesh or a hand or body skeleton, removing

one node and its edges may cut the graph into several iso-

lated subgraphs and destroy the connectivity, which is the

most important feature of a graph convolutional neural net-

work. Using an adaptive graph convolution neural network,
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Figure 3. A schematic of our Adaptive Graph U-Net architecture, which is used to estimate 3D coordinates from 2D coordinates. In each of

the pooling layers, we roughly cut the number of nodes in half, while in each unpooling layer, we double the number of nodes in the graph.

The red arrows in the image are the skip layer features which are passed to the decoder to be concatenated with the unpooled features.

we avoid this problem as the network finds the connectivity

of the nodes after each pooling layer.

Below we explain the three components of our network,

graph convolution, pooling, and unpooling layers, in detail.

The architecture of our adaptive Graph U-Net is shown in

Figure 3.

3.2.1 Graph Convolution

The core part of a graph convolutional network is the im-

plementation of the graph convolution operation. We imple-

mented our convolution based on the Renormalization Trick

mentioned in [13]: the output features of a graph convolu-

tion layer for an input graph with N nodes, k input features,

and ℓ output features for each node is computed as,

Y = σ(ÃXW ), (1)

where σ is the activation function, W ∈ R
k×ℓ is the train-

able weights matrix, X ∈ R
N×k is the matrix of input fea-

tures, and Ã ∈ R
N×N is the row-normalized adjacency ma-

trix of the graph,

Ã = D̂−
1

2 ÂD̂−
1

2 , (2)

where Â = A+I and D̂ is the diagonal node degree matrix.

Ã simply defines the extent to which each node uses other

nodes’ features. So ÃX is the new feature matrix in which

each node’s features are the averaged features of the node

itself and its adjacent nodes. Therefore, to effectively for-

mulate the HOPE problem in this framework, an effective

adjacency matrix is needed.

Initially, we tried using the adjacency matrix defined by

the kinematic structure of the hand skeleton and the object

bounding box for the first layer of the network. But we

found it was better to allow the network to learn the best

adjacency matrix. Note that this is no longer strictly an ad-

jacency matrix in the strict sense, but more like an “affinity”

matrix where nodes can be connected by weighted edges to

many other nodes in the graph. An adaptive graph convo-

lution operation updates the adjacency matrix (A), as well

as the weights matrix (W ) during the backpropagation step.

This approach allows us to model subtle relationships be-

tween joints which are not connected in the hand skeleton

model (e.g. strong relationships between finger tips despite

not being physically connected).

We use ReLU as the activation function for the graph

convolution layers. Also we found that the network

trains faster and generalizes better if we do not use either

Batch [12] or Group Normalization [28].

3.2.2 Graph Pooling

As mentioned earlier, we did not find gPool [5] helpful in

our problem: the sigmoid function’s weaknesses are well-

known [16, 18] and the use of sigmoid in the pooling step

created very small gradients during backpropagation. This

caused the network not to update the randomly-initialized

selected pooled nodes throughout the entire training phase,

and lost the advantage of the trainable pooling layer.

To solve this problem, we use a fully-connected layer

and apply it on the transpose of the feature matrix. This

fully-connected works as a kernel along each of the fea-

tures and outputs the desired number of nodes. Compared

to gPool, we found this module updated very well during

training. Also due to using an adaptive graph convolution,

this pooling does not fragment the graph into pieces.

3.2.3 Graph Unpooling

The unpooling layer used in our Graph U-Net is also differ-

ent from Gao et al.’s gUnpool [5]. That approach adds the

pooled nodes to the graph with empty features and uses the

subsequent graph convolution to fill those features. Instead,
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we use a transpose convolution approach in our unpooling

layer. Similar to our pooling layer, we use a fully-connected

layer and applied it on the transpose matrix of the features to

obtain the desired number of output nodes, and then trans-

pose the matrix again.

3.3. Loss Function and Training the Model

Our loss function for training the model has three parts.

We first calculate the loss for the initial 2D coordinates pre-

dicted by ResNet (Linit2D). We then add this loss to that

calculated from the predicted 2D and 3D coordinates (L2D

and L3D),

L = αLinit2D + βL2D + L3D, (3)

where we set α and β to 0.1 to bring the 2D error (in pixels)

and 3D error (in millimeters) into a similar range. For each

of the loss functions, we used Mean Squared Error.

4. Results

We now describe our experiments and report results for

hand-object pose estimation.

4.1. Datasets

To evaluate the generality of our hand-object pose es-

timation method, we used two datasets with very differ-

ent contexts: First-Person Hand Action Dataset [6], which

has videos captured from egocentric (wearable) cameras,

and HO-3D [8], which was captured from third-person

views. We also used a third dataset of synthetic images,

ObMan [10], for pre-training.

First-Person Hand Action Dataset [6] contains first-

person videos of hand actions performed on a variety of ob-

jects. The objects are milk, juice bottle, liquid soap, and

salt, and actions include open, close, pour, and put. Three-

dimensional meshes for the objects are provided. Although

this is a large dataset, a relatively small subset of frames

(21, 501) include 6D object pose annotations, with 11, 019
for training and 10, 482 for evaluation. The annotation pro-

vided for each frame is a 6D vector giving 3D translation

and rotation for each of the objects. To fit this annotation to

our graph model, for each object in each frame, we trans-

late and rotate the 3D object mesh to the pose given by the

annotation, and then compute a tight oriented bounding box

(simply PCA on vertex coordinates). We use the eight 3D

coordinates of the object box corners as nodes in our graph.

The HO-3D Dataset [8] also contains hands and han-

dled objects but is quite different because it is captured

from a third-person point-of-view. Hands and objects in

these videos are smaller because they are further from the

camera, and their position is less constrained than in first-

person videos (where people tend to center their field of

view around attended objects). HO-3D contains 77, 558

0 500 1000 1500 2000 2500 3000
Pixels

2000

1000

0

-1000

-2000

-3000

-4000

-5000

Pi
xe

ls

Figure 4. Scatter plot of keypoint coordinates in the First Person

Hand Action dataset. The red dashed rectangle denotes the image

frame. Since many points are outside the image boundary, the

detection-based models did not work well on this dataset.

frames annotated with hands and objects, and was collected

with 10 subjects and 10 objects. 66, 034 frames are des-

ignated as the training set and 11, 524 are for evaluation.

Hands in the evaluation set of HO-3D are just annotated

with the wrist coordinates and the full hand is not annotated.

ObMan [10] is a large dataset of synthetically-generated

images of hand-object interactions. Images in this dataset

were produced by rendering meshes of hands with selected

objects from ShapeNet [2], using an optimization on the

grasp of the objects. ObMan contains 141, 550 training,

6, 463 validation, and 6, 285 evaluation frames. Despite

the large-scale of the annotated data, we found that models

trained with these synthetic images do not generalize well

to real images. Nevertheless, we found it helpful to pre-

train our model on the large-scale data of ObMan, and then

fine-tune using real images.

All of these datasets use 21 joints model for hands which

contains one joints for the wrist and 4 joints for each of the

fingers.

4.2. Implementation Details

Because of the nature of first-person video, hands often

leave the field of view, and thus roughly half of the frames

in the First-Person Hand Action dataset have at least one

keypoint outside of the frame (Figure 4). Because of this,

we found that detection-based models are not very helpful

in this dataset. Thus we use a regression-based model to

find the initial 2D coordinates. To avoid overfitting, we use

a lightweight ResNet which gave better generalization. This

lightweight model is also fast, allowing us to run our model

in near real-time. For both datasets, we use the official train-

ing and evaluation splits, and pretrain on ObMan [10].

Since HOPE-Net has different numbers of parameters

and complexity, we train the image encoder and graph parts

separately. The 2D to 3D converter network can be trained

separately because it is not dependent to the annotated im-
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Figure 5. The percentage of correct 2D object pose of our model on

the First-Person Hand Action dataset compared to [26] and [27].

The graph convolutional layers helped the model to predict more

accurate coordinates.

age. In addition to the samples in the FPHA dataset, we aug-

ment the 2D points with Gaussian noise (µ = 0, σ = 10) to

help improve robustness to errors.

For both FPHA and HO-3D datasets we train the ResNet

model with an initial learning rate of 0.001 and multiply it

by 0.9 every 100 steps. We train ResNet for 5000 epochs

and the graph convolutional network for 10, 000 epochs,

starting from a learning rate of 0.001 and multiplying by

0.1 every 4000 steps. Finally we train the model end-to-

end for another 5000 epochs. All the images are resized to

224×224 pixels and passed to the ResNet. All learning and

inference was implemented in PyTorch.

4.3. Metrics

Similar to [26], we evaluated our model using percent-

age of correct pose (PCP) for both 2D and 3D coordinates.

In this metric, a pose is considered correct if the average

distance to the ground truth pose is less than a threshold.

4.4. Hand­Object Pose Estimation Results

We now report the performance of our model in hand

and object pose estimation on our two datasets. Figure 5

presents the percentage of correct object pose for each pixel

threshold on the First-Person Hand Action dataset. As we

can see in this graph, the 2D object pose estimates pro-

duced by the HOPE-Net model outperform the state-of-the-

art model of Tekin et al. [26] for 2D object pose estimation,

even though we do not use an object locator and we operate

on single frames without using temporal constraints. More-

over, our architecture is lightweight and faster to run.

Figure 6 presents the percentage of correct 3D poses for

various thresholds (measured in millimeters) on the First-

Person Hand Action dataset. The results show that the

HOPE-Net model outperforms Tekin et al.’s RGB-based
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Figure 6. The percentage of correct 3D hand pose of our model on

the First-Person Hand Action dataset compared to the RGB-based

technique of [26] and the depth-based technique of [6]. Our model

works well on roughly accurate 2D estimates.

model [26] and Herando et al.’s [6] depth-based model in

3D pose estimation, even without using an object localizer

or temporal information.

We also tested our graph model with various other in-

puts, including ground truth 2D coordinates, as well as

ground truth 2D coordinates with Gaussian noise added

(with zero mean and σ = 20 and σ = 50). Figure 6 presents

the results. We note that the graph model is able to effec-

tively remove the Gaussian noise from the keypoint coordi-

nates.

Figure 7 shows selected qualitative results of our model

on the First-Person Hand Action dataset. Figure 8 breaks

out the error of the 2D to 3D converter for each finger and

also for each kind of joint of the hand.

We also tested on the third-person videos of the very re-

cent HO-3D dataset. Although the locations of hands and

objects in the images vary more in HO-3D, we found that

HOPE-Net performs better, perhaps because of the size of

the dataset. The Area Under the Curve (AUC) score of

HOPE-Net is 0.712 for 2D pose and 0.967 for 3D pose es-

timation. Note that hands in the evaluation set of HO-3D

are just annotated with the wrist (without the full hand an-

notation). Therefore the mentioned results are just for wrist

keypoint.

4.5. Adaptive Graph U­Net Ablation Study

We also conducted an ablation study of our Adaptive

Graph U-Net to identify which components were important

for achieving our results. We first compare our model to

other models, and then we evaluate the influence of the ad-

jacency matrix initialization on the adaptive Graph U-Net

performance.

To show the effectiveness of our U-Net structure, we

compared it to two different models, one with three Fully
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Figure 7. Qualitative 2D and 3D results of HOPE-Net on the First-Person Hand Action dataset. The estimated poses are shown in color,

and the ground truth is shown in black. The last row includes three failure cases.
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Figure 8. Average 3D pose estimation errors broken out across (a)

each joint of the hand and (b) each finger. Note that MCP, PIP, and

DIP denote the 3 joints located between the wrist and fingertip

(TIP), in that order.

Connected Layers and one with three Graph Convolutional

Layers without pooling and unpooling. We were interested

in the importance of each of our graph convolutional mod-

els in the 3D output. Each of these models is trained to

convert 2D coordinates of the hand and object keypoints to

3D. Table 1 shows the results. The adaptive Graph U-Net

performs better than the other methods by a large margin.

This large margin seems to come from the U-Net structure

and the pooling and unpooling layers.

To understand the effect of our graph pooling layer, we

compared it with Gao et al.’s [5] gPool, and also with fixed

Table 1. Average error on 3D hand and object pose estimation

given 2D pose. The first row is a multi-layer perceptron and the

second row is a 3-layered graph convolution without pooling and

unpooling. The Adaptive Graph U-Net structure has the best per-

formance.

Architecture Average Error (mm)

Fully Connected 185.18

Adaptive Graph Convolution 68.93

Adaptive Graph U-Net 6.81

Table 2. Average error on 2D to 3D hand and object pose esti-

mation using different pooling methods. Our trainable pooling

method produces the best results.

Pooling method Average Error (mm)

gPool [5] 153.28

Fixed Pooling Layers 7.41

Trainable Pooling 6.81

pooled nodes which do not break the graph into pieces. Ta-

ble 2 compares the performance of different graph pooling

methods. We see that by using a more efficient training al-

gorithm and also by not breaking apart the graph after pool-

ing, our pooling layer performs better than gPool.

Since we are using an adaptive graph convolution, the

network learns the adjacency matrix as well. We tested
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Figure 9. Visualization of the learned adjacency matrices of the adaptive graph convolution layers. For instance, we see in the A0 matrix

that the corners of the object bounding box (row and column indices 21 through 29) are highly dependent on one another, and also there is

a relatively strong connection between fingertips.

Table 3. Average error in 3D pose estimation in the adaptive graph

convolution layer. The model has the best performance when it

is initialized with the identity matrix. “Skeleton” in the fourth

row refers to an adjacency matrix that simply encodes the actual

kinematic structure of the human hand.

Initial Adjacency Matrix Average Error (mm)

Zeros (0n×n) 92805.02

Random Initialization 94.42

Ones (1n×n) 63.25

Skeleton 12.91

Identity (In×n) 6.81

the effect of different adjacency matrix initializations on

the final performance, including: hand skeleton and object

bounding box, empty graph with and without self-loops,

complete graph, and a random connection of vertices. Ta-

ble 3 presents the results of the model initialized with each

of these matrices, showing that the identity matrix is the

best initialization. In other words, the model seems to learn

best when it finds the relationship between the nodes start-

ing with an unbiased (uninformative) initialization.

The final trained adjacency matrices for the graph con-

volution layers (starting from In×n) are visualized in Fig-

ure 9. We see that the model has found relationships be-

tween nodes which are not connected in the hand skeleton

model. For example, it found a relationship between node

6 (index finger’s PIP) and node 4 (thumb’s TIP), which are

not connected in the hand skeleton model.

4.6. Runtime

As mentioned earlier, HOPE-Net consists of a

lightweight feature extractor (ResNet10) and two graph

convolutional neural networks which are more than ten

times faster than the shallowest image convolutional neural

network. The core inference of the model can be run in

real-time on an Nvidia Titan Xp. On such a GPU, the entire

2D and 3D inference of a single frame requires just 0.005

seconds.

5. Conclusion and Future Work

In this paper, we introduced a model for hand-object 2D

and 3D pose estimation from a single image using an image

encoder followed by a cascade of two graph convolutional

neural networks. Our approach beats the state-of-the-art,

while also running in real-time.

Nevertheless, there are limitations of our approach.

When trained on the FPHA and HO-3D datasets, our model

is well-suited for objects that are of similar size or shape

to those seen in the dataset during training, but might not

generalize well to all categories of object shapes. For exam-

ple, objects with a non-convex geometry lacking a tight 3D

bounding box would be a challenge for our technique. For

real-world applications, a larger dataset including a greater

variety of shapes and environments would help to improve

the estimation accuracies.

Future work could include incorporating temporal in-

formation into our graph-based model, both to improve

pose estimation results and as step towards action detection.

Graph classification methods can be integrated into the pro-

posed framework to infer categorical semantic information

for applications such as detecting sign language or gesture

understanding. Also, in addition to hand pose estimation,

the Adaptive Graph U-Net introduced in this work can be

applied to a variety of other problems such as graph com-

pletion, protein classification, mesh classification, and body

pose estimation.
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