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1. Introduction

The theory of species, first developed by André Joyal in 1981 (see [5]), has
provided a pliable language for combinatorial enumeration which has since
been extensively used (see e.g. [2], [6], [7], [8], [9], [10]). The purpose of the
present work is twofold. First, Joyal’s notion of species is extended in such
a way that combinatorial structures are classified according to their func-
torial properties. In particular, the existence of substructures and quotient
structures can be expressed in much the same way that the notion of species
renders the concept of a combinatorial structure generally. We do this by a
slight change in the definition of a species. Instead of taking the category
of finite sets and bijections as our starting point, as Joyal does, we consider
some notable subcategories of the category of finite sets and all relations. Of
particular importance are the categories having partially defined bijections
and partially defined surjections as morphisms. Functors from these two
categories to the category of sets provide the definition of species for which
“restriction” and “quotient” of structures are defined, respectively.

Second, we reexamine the objective of Joyal’s machinery from the point
of view of Hopf algebras. Joyal’s notion of species is, roughly speaking,
a set-theoretic analog of the concept of generating function, and algebraic
properties of generating functions find pleasing – and, we believe, defini-
tive – equivalent renderings in species-theoretic terms. Thus, in theory, one
might altogether dispense with the use of generating functions in enumer-
ation, and deal directly with the objects themselves. Such an approach,
however, puts greater focus than ever on the problem of determining the
“natural” algebraic operations to be used in studying a given family of com-
binatorial structures, operations which should be dictated by the structures
themselves, rather than via numerical devices, such as generating functions.

We appoach this problem from the point of view of the theory of Hopf
algebras. It has long been noticed that various decompositions of combina-
torial objects can be most clearly expressed using the concept of coproduct
in a coalgebra. When a suitable product of objects under consideration is
defined, usually corresponding to disjoint union, the associated coalgebra
inherits a bialgebra, or Hopf algebra, structure. The question thus arises as
to what is the minimum of additional structure that is to be imposed on
a species, in order that a coalgebra and/or Hopf algebra can be naturally
associated.

Remarkably, it turns out that the generalizations we propose in order to
speak the language of “substructure” and “quotient structure” are just such
minimal requirements. The Hopf algebras thus obtained are generalizations
of two classical examples of Hopf algebras, namely, the Hopf algebra of poly-
nomials in one variable, and the Faà di Bruno Hopf algebra (see [4]). We
thereby obtain a large variety of new examples of Hopf algebras. Further-
more, the correspondences established between species, on one hand, and
coalgebras and Hopf algebras, on the other, are functorial.
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The Hopf algebras associated with species may be viewed as sophisticated
counting schemes which supplement, or perhaps even replace, the naive use
of generating functions in enumeration.

2. Relational Categories and Species

A relation f : U → V from a set U to a set V is a subset of the cartesian
product U × V . The domain and the range of f : U → V are the sets
D(f) = {x ∈ U : (x, y) ∈ f, for some y ∈ V } and R(f) = {y ∈ V :
(x, y) ∈ f, for some x ∈ U}, respectively. If f : U → V and g : V → W are
relations, then the composition g ◦ f : U → W is the set {(u,w) : (u, v) ∈
f and (v, w) ∈ g, for some v ∈ V }. The converse of a relation f : U → V is
the relation f−1 : V → U given by f−1 = {(v, u) : (u, v) ∈ f}.

Let Rel denote the category having all finite sets as objects and all re-
lations as morphisms. A relational category is a subcategory of Rel which
contains all bijections in its class of morphisms. Since all relational cate-
gories have the same class of objects, we refer to them just by naming their
morphisms.

The set of all relational categories forms a partially ordered set C, ordered
by inclusion of morphism classes. This partially ordered set is actually a
lattice, for if C1 and C2 are relational categories, then their least upper
bound, or join, C1 ∨ C2 is generated by taking all compositions in Rel of
morphisms from the categories C1 and C2, and the greatest lower bound,
or meet, C1 ∧C2 is obtained by intersecting the classes of morphisms of C1

and C2. The maximal element of C is Rel, and the minimal element is the
category B of bijections.

The following relational categories are of basic importance: I, injections;
Iop, coinjections (converses of injections); S, surjections; and Sop, cosurjec-
tions (converses of surjections). In fact, we have the following result.

Proposition 2.1. The category Rel is equal to the join I∨ Iop ∨S∨Sop in

the lattice C of all relational categories.

Proof. Let f : U → V be any morphism in Rel. Define f1 : U → D(f) to be
the coinjection {(x, x) : x ∈ D(f)}, and let f2 : D(f) → f be the cosurjection
{(x, (x, y)) : (x, y) ∈ f}. Let f3 : f → R(f) be the surjection {((x, y), y) :
(x, y) ∈ f}, and define f4 : R(f) → V to be the injection {(y, y) : y ∈ R(f)};
then the relation f is equal to the composition f4 ◦ f3 ◦ f2 ◦ f1. ✷

The various joins of the categories I, Iop, S, and Sop are fundamental. For
example, the category F of functions is equal to S∨ I, because any function
factors as an injection composed with a surjection. The join S ∨ Iop is the
category Sp of partially defined surjections. A morphism f : U → V in
Sp consists of a pair (W, f̄), where W ⊆ U , and f̄ is a surjection from W
onto V . We also have the categories Fp = I ∨ Iop ∨ S, of partially defined
functions, and Ip = I ∨ Iop, of partially defined injections.
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There are many other relational categories besides B and the joins that
can be formed from the set {I, Iop,S,Sop}. For example, if k is some fixed
positive integer, one has the relational category of all surjections f such
that each block of the kernel of f has kr elements, for some r ≥ 0 which
depends on the choice of f . It should be interesting to classify all relational
categories, and thus attempt to determine the structure of the lattice C.

Definition 2.2. A species is a functor from some relational category to the

category F of functions.

Usually it is important to specify on which category a species is defined.
Thus a species having a relational category C as its domain is called a
C-species.

The above is a refinement of the definition of species given in [5], as
a functor from the category of bijections to itself. Such species can be
identified with B-species in the obvious manner.

Suppose C is a relational category and F is a C-species. An F -structure

on a set V is an ordered pair (G,V ), where G ∈ F (V ). In general, we
assume the underlying set V is understood and refer to the elements of
F (V ) themselves as F -structures on V . If G ∈ F (V ), H ∈ F (U), and
H = F [ϕ](G) for some bijection ϕ : V → U , then G and H are said to be
isomorphic, denoted by G ≃ H. Isomorphism is an equivalence relation on
the class of all F -structures. The equivalence class containing an F -structure
G, denoted by [G], is called the isomorphism class or the type of G.

Two F -structures G and H are weakly isomorphic, denoted G ∼ H, if
there is a relation α : V → U in C with converse α−1 also in C, such
that F [α](G) = H and F [α−1](H) = G. Weak isomorphism is also an
equivalence relation on F -structures. The weak isomorphism class of an
F -structure G will be denoted by 〈G〉. For any species F , the collections

F̃ of all isomorphism classes and F̂ of all weak isomorphism classes of F -
structures form countably infinite or, in some cases, finite sets.

For any relational category C, the category of C-species is the category
having all C-species as objects and natural transformations as morphisms.
Thus a morphism α : F → E between C-species F and E consists of maps
αV : F (V ) → E(V ) for all finite sets V , such that whenever g : V → U is a
relation in C, the diagram

(2.1)
F (V )

αV−→ E(V )
F [g] ↓ ↓ E[g]

F (U)
αU−→ E(U)

commutes. If αV is a bijection for all V , then α : F → E is an isomorphism

of species. We usually write F = E, if F and E are isomorphic species.

3. Species With Restrictions

3.1. Definition and Examples. Let Iop be the category of coinjections.
A species with restrictions, or R-species, for short, is an Iop-species F which
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satisfies |F (∅)| = 1. Let V be a finite set, U a non-empty subset of V , and
let ρV,U : V → U be the converse of the inclusion map from U into V . The
relation ρV,U is a coinjection, called the coinclusion from V to U . Suppose
F is an R-species and G ∈ F (V ) is an F -structure on V. The F -structure
F [ρV,U ](G) on U is called the restriction of G to U , and denoted by G|U .
If U is the empty-set, then G|U is equal to the one-element set F (∅). If
W is a subset of U , then the functoriality of F together with the fact that
ρV,W = ρU,W ◦ ρV,U implies that

(3.1) (G|U)|W = G|W.

Example 3.1 (R-Species).
1) The uniform species U is defined by U(V ) = {V } for all sets V . Since
there is only one U -structure on any set, restrictions can be defined in only
one way, thus U is an R-species.
2) A graph is simple if it has no loops or multiple edges. Thus, a simple
graph can be defined as a pair (V,E), where V is a finite set and E is a set
of pairs of elements of V . Let Gs(V ) be the set of all simple graphs with
vertex-set V . If H ∈ Gs(V ) and U ⊆ V , let H|U be the induced subgraph

of H, with vertex-set U and edge-set consisting of all edges of H which are
contained in U . Thus Gs is an R-species.
3) Let M(V ) denote the set of all matroids having point set V . M is an
R-species in two different ways: Given N ∈ M(V ) and U ⊆ V , one can
define N |U as either the matroid restriction or contraction of M to U .
4) Let L(V ) be the set of all linear orderings of the set V . Given a linear
order on V , any subset of V naturally inherits a linear ordering. Thus L is
an R-species.
5) Let C(V ) denote the set of all cyclic orderings of the set V . Any cyclic
ordering of V naturally induces cyclic orderings on all subsets of V . Thus
C is an R-species.
6) Let S(V ) be the set of all simplicial complexes on the set V . If G ∈ S(V )
and U ⊆ V , then G|U is the simplicial complex {W ∩U : W ∈ G} = {W ∈
G : W ⊆ U}.
7) Let G be any family of graphs which is closed under the formation of
vertex-induced subgraphs, and let FG(V ) be the set of all graphs with vertex-
set V which are isomorphic to some element of G. Then FG is an R-species.
Some examples are: forests; planar graphs; complete graphs; all k-colorable
graphs, for some fixed k; all graphs having some fixed excluded set of minors;
and all vertex-induced subgraphs of some fixed graph H.
8) Let Fr(V ) be the set of all forests G having vertex-set V , such that each
tree in G has a distinguished “root” vertex. If G is a forest on V and U ⊆ V
then the induced subgraph G|U is clearly a forest. For each tree T in G|U ,
let T ′ be the tree in G having T as a subtree. Define the root of T to be the
(unique) vertex of T which is closest (in T ′) to the root of T ′. Hence Fr is
an R-species.

Example 3.2 (Morphisms of R-Species).
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1) For any R-species F with F (V ) 6= ∅, for all V , there is a natural trans-
formation µ, from F to the uniform species U , where µV is the unique map
from F (V ) to the one-element set U(V ), for each set V .
2) Given any linear order on the set V one can construct a cyclic order on
V by letting the minimal element of V be the immediate successor of the
maximal element of V . This defines a morphism of R-species L→ C.
3) A morphism χ : Gs → S from the R-species of graphs to the R-species of
simplicial complexes is given by letting χV (G) be the collection of indepen-
dent subsets of the vertex set V of the graph G.
4) Let Mr and Mc be the R-species of matroids with restriction to subsets
given by matroid restriction and contraction respectively. For any set V ,
define dV : Mr(V ) → Mc(V ) by dV (N) = N∗, the dual matroid of N . The
maps dV define a isomorphism of R-species d : Mr →Mc.

3.2. Cocommutative Coalgebras of R-Species. From now on, K will
be some fixed commutative ring with identity. Given an R-Species F , let BF

be the free K-module having the set F̃ of isomorphism types of F -structures
as a basis. Define linear maps ∆ : BF → BF ⊗ BF and ǫ : BF → K by

(3.2) ∆[G] =
∑

U⊆V

[G|U ] ⊗ [G|V − U ],

and

ǫ[G] =

{

1 if V = ∅
0 otherwise,

for any F -structure G on a set V .

Proposition 3.1. For any R-species F , the K-module BF is a cocommuta-

tive K-coalgebra, with comultiplication ∆ and counit ǫ defined as above.

Proof. First we need to show that ∆ is well-defined by 3.2. In order to do
this, suppose that [G] = [H] for some G ∈ F (V ) and H ∈ F (W ). Then
there is a bijection ϕ : V →W such that F [ϕ](G) = H. Using the bijection
ϕ, we can write ∆[H] as

∆[H] =
∑

U⊆V

[H|ϕ(U)] ⊗ [H|ϕ(V − U)].

It follows from the functoriality of F that G|U ≃ H|ϕ(U) for any subset
U of V ; thus, comparing the above expression for ∆[H] with equation 3.2,
we see that ∆[G] = ∆[H], and so ∆ is well-defined. If ∆ is applied either
to all of the terms on the left, or all of the terms on the right side of the
tensor product in equation 3.2, then in either case we obtain (again, using
the functoriality of F ) the sum

∑

U1,U2,U3

[G|U1] ⊗ [G|U2] ⊗ [G|U3],

taken over all all ordered triples U1, U2, U3 of pairwise disjoint subsets of V
whose union is equal to V . Thus ∆ is coassociative. It is easy to see that ǫ
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is well-defined and has the counitary property
∑

U⊆V

ǫ[G|U ] · [G|V − U ] =
∑

U⊆V

[G|U ] · ǫ[G|V − U ] = [G].

Thus BF is a coalgebra. The cocommutativity of BF is obvious. ✷

Suppose F and E are R-species and α : F → E is a natural transforma-
tion. Then there is a linear map α̃ : BF → BE defined by

α̃[G] = [αV (G)],

for any F -structure G on a set V .

Proposition 3.2. If α : F → E is a morphism of R-species, then the

corresponding map α̃ : BF → BE is a coalgebra map.

Proof. Let G be an F structure on a set V . Then

∆ ◦ α̃[G] =
∑

U⊆V

[αV (G)|U ] ⊗ [αV (G)|V − U ].

Since α is a natural transformation, this can be written as
∑

U⊆V

[αU (G|U)] ⊗ [αV −U (G|V − U)],

which is equal to (α̃⊗ α̃)◦∆[G]. Also, α̃ preserves the counit ǫ, because ǫ[G]
depends only on the size of V , Therefore α̃ is a coalgebra map. ✷

We thus have the following theorem.

Theorem 3.3. The correspondence F 7→ BF is a functor from the category

of R-species and natural transformations to the category of cocommutative

coalgebras and coalgebra maps.

3.3. Cocommutative Hopf Algebras of Exponential R-Species. Sup-
pose F is a species. An assembly of F -structures is a finite set of F -structures
whose underlying sets are nonempty and mutually disjoint. If F satisfies
F (∅) = ∅, then the exponential of F is the B-species E = expF whose
structures are assemblies of F -structures. Thus an E-structure G on a set
V has the form G = {GB : B ∈ πG}, where πG is a partition of V and
GB ∈ F (B), for each block B ∈ πG. The structures GB are the compo-

nents, and the partition πG is the underlying partition, of the E-structure
G. The unique E-structure on the empty-set is the empty assembly ∅. The
sum G+H of two assemblies of F -structures G and H is the disjoint union
of G and H. Any assembly G = {GB : B ∈ πG} can thus be written as

G =
∑

B∈πG

{GB}.

If F is any species then the species of non-empty F -structures is the B-
species F0 defined by

F0(V ) =

{

F (V ) if V 6= ∅
∅ if V = ∅.
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If F happens to be an R-species, then the exponential E = expF0 becomes
an R-species as follows: if G = {GB : B ∈ πG} is an E-structure on V and
U ⊆ V , the restriction of G to U is defined by

(3.3) G|U = {GB|B ∩ U : B ∈ πG andB ∩ U 6= ∅}.

In other words, the restriction G|U of G is obtained by taking the assembly
of restrictions of the individual components of G.

Any R-species E which coincides with an exponential expF on the sub-
category B is called an exponential R-species, and in this case we write
E = expF .

Example 3.3 (Exponential R-Species).
1) The species of partitions Π is equal to the expU0, where U is the uniform
species. Since U is an R-species, it follows that Π is also an R-species.
2) The species of permutations Σ is equal to expC0, where C is the species of
cyclic orders. Since C is an R-species, it follows that Σ is also an R-species.
3) The species Gs of simple graphs is equal to expGc, where Gc denotes
the species of non-empty connected simple graphs. We have already seen
that Gs is an R-species. The situation here is different from the previous
examples, for even if |Gc(∅)| were equal to one, Gc would not be an R-species.

Suppose E = expF is an exponential R-species. E is coherent if, for any
E-structure G = {GB : B ∈ πG} on a set V , the following condition holds:

(3.4) G|U =
∑

B∈πG
B∩U 6=∅

{GB}|B ∩ U,

for all subsets U of V . In particular, if F is an R-species, then E = expF0

is a coherent R-species whenever restriction of E-structures is defined by
equation 3.3. The species of simple graphs Gs is an example of a coherent
exponential R-species which is not of this form.

If E = expF is an exponential species, then the set of types Ẽ is a
commutative monoid, with product given by

(3.5) [G][H] = [G+H],

for assemblies G and H. The identity element of Ẽ is [∅], the type of the
empty assembly.

If E = expF is an R-species, then the coalgebra BE is also an algebra;
that is, the monoid algebra of Ẽ. The mapping [G] → [{G}], for all F -
structures G, defines an algebra isomorphism from the polynomial algebra
K[F̃ ], having types of F -structures as indeterminants, onto BE .

Proposition 3.4. Suppose E = expF is a coherent, exponential R-species.

Then BE ≃ K[F̃ ] is a commutative, cocommutative K-Hopf algebra, with
8



antipode S : BE → BE given by

(3.6) S[G] =

|V |
∑

k=0

∑

∅=U0⊆···⊆Uk=V

Ui 6=Ui+1

(−1)k[G|U1−U0][G|U2−U1] · · · [G|Uk−Uk−1],

for any E-structure G on a set V .

Proof. First, we must show that BE is a bialgebra, i.e. that ∆ : BE →
BE ⊗BE and ǫ : BE → K are algebra maps. If G1 ∈ E(V1) and G2 ∈ E(V2)
and V1 and V2 are disjoint, then

∆([G1][G2]) =
∑

U⊆V1∪V2

[G1 +G2|U ] ⊗ [G1 +G2|(V1 ∪ V2) − U ],

which is equal to
∑

U1⊆V1

∑

U2⊆V2

[G1 +G2|U1 ∪ U2] ⊗ [G1 +G2|(V1 ∪ V2) − (U1 ∪ U2)].

Using the coherence of E, equation 3.4, and the definition of product, equa-
tion 3.5, this can be written as

∑

U1⊆V1

∑

U2⊆V2

[G1|U1][G2|U2] ⊗ [G1|V1 − U1][G2|V2 − U2],

which is equal to ∆[G1]∆[G2]. Hence ∆ is multiplicative. It is trivial to
check that ǫ also is multiplicative.

To see that BE is a Hopf algebra, we must show that the map S defined
by equation 3.6 satisfies the following identity, and is thus an antipode.
(3.7)
∑

U⊆V

S[G|U ] · [G|V − U ] =
∑

U⊆V

[G|U ] · S[G|V − U ] =

{

[∅] if [G] = [∅],
0 otherwise,

for any G ∈ E(V ). Equation 3.7 is obvious for [G] = [∅]. If G is not empty,
the first sum in equation 3.7 can be written as S[G] plus the sum

(3.8)
∑

U⊂V

S[G|U ] · [G|V − U ],

taken over all subsets U of V with U 6= V . Using equation 3.6 for S, the
sum 3.8 can be written as

∑

U⊂V

|U |
∑

k=0

∑

∅=U0⊆···⊆Uk=U

Ui 6=Ui+1

(−1)k[G|U1 − U0] · · · [G|Uk − Uk−1][G|V − U ],

which equals −S[G], according to formula 3.6. Thus the first sum in equa-
tion 3.7 vanishes. The second sum in equation 3.7 vanishes, similarly. ✷
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Note that formula 3.6 for the antipode S of BE can be written more
compactly as

S[G] =
∑

π∈Π(V )

(−1)|π||π|!
∏

B∈π

[G|B],

where |π| denotes the number of blocks of a partition π ∈ Π(V ).
If F and E are exponential species, a natural transformation α : F → E

is additive if αU∪V (G + H) = αU (G) + αV (H), whenever G and H are
assemblies of F -structures on disjoint sets U and V respectively. If α :
F → E is additive, where F = expF1, then it is uniquely defined by its
restriction α1 : F1 → E. A morphism of exponential species is an additive
natural transformation.

If α : F → E is a morphism of coherent exponential R-species then the
coalgebra map α̃ : BF → BE is in fact a Hopf algebra map. Thus we have
the following theorem.

Theorem 3.5. The correspondence F 7→ BF is a functor from the category

of coherent exponential R-species to the category of commutative, cocommu-

tative Hopf algebras.

Example 3.4 (The Binomial Hopf Algebra). The uniform species U (which
is a coherent R-species) is equal to expX, where X is the singleton species,
given by X(V ) = {V } if |V | = 1, and X(V ) = ∅, otherwise. Letting x be the
unique type of X-structure, we see that BU is isomorphic to the binomial
Hopf algebra K[x], where ∆x = 1 ⊗ x+ x⊗ 1, (see [4], [12] ).

Example 3.5 (Partitions). The species of partitions Π = expU0 is a coher-
ent R-species. Let xn be the type of the unique U -structure on a set with
n ≥ 1 elements, and let x0 = 1 be the type of the empty partition. The Hopf
algebra BΠ is isomorphic to the polynomial algebra K[x1, x2, . . .], where

∆xn =
∑

k≥0

(

n
k

)

xk ⊗ xn−k,

for all n ≥ 0.

If E = expF is a coherent R-species, with F (V ) 6= ∅, for all non-empty
sets V , then the unique morphism F → U defines a morphism of exponential
species E → Π. Therefore we have a (surjective) Hopf algebra map BE →
BΠ, for all coherent exponential R-species E.

3.4. Connected Structures and Lattices of Contractions. Suppose
E = expF is a coherent R-species. An E-structure G is connected if it is
an assembly consisting of exactly one F -structure. In particular, the empty
E-structure is not connected, and any E-structure on a one element set is
connected.

The following proposition justifies the use of the term “connected” in this
general context by showing that, when two such structures intersect non-
trivially, then their union is connected. This is a basic property of connected
objects in any category.
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Proposition 3.6. Let G ∈ E(V ), where E = expF is a coherent R-species.

If G|U1 and G|U2 are connected, for U1, U2 ⊆ V , and U1 ∩ U2 6= ∅, then

G|U1 ∪ U2 is connected.

Proof. Let πG|U1∪U2
be the underlying partition of the assembly G|U1 ∪U2.

By the functoriality of E, G|Ui = (G|U1 ∪ U2)|Ui for i = 1, 2, and by
hypothesis, the underlying partition πG|Ui

of G|Ui is equal to {Ui}, for i =
1, 2. By equation 3.4, there must exist blocks Bi ∈ πG|U1∪U2

such that
Ui ⊆ Bi, i = 1, 2. But then the Bi must have non-empty intersection, since
U1 ∩ U2 6= ∅. This implies that B1 = B2 = U1 ∪ U2. Thus G|U1 ∪ U2 is
connected. ✷

If E = expF is a coherent R-species and G is an E-structure on a set V ,
a partition π ∈ Π(V ) is called a contraction of G if G|B is connected for
all B ∈ π. The set of all contractions of G, denoted by Πc(G), is partially
ordered by refinement.

Proposition 3.7. Let E = expF be a coherent R-species and G be an E-

structure on a set V . The set Πc(G) of contractions of G is a sup-sublattice

of the partition lattice Π(V ).

Proof. If σ, π ∈ Πc(G) then the join σ ∨ π is equal to the join of σ and π in
Π(V ) because, whenever a block B of σ and a block C of π have non-empty
intersection, G restricted to the union B ∪C is connected by proposition 5.

Let τ be the meet of σ and π in Π(V ). Then in Πc(G), σ ∧ π =
⋃

B∈τ

πG|B,

where πG|B is the underlying partition of the assembly G|B, for each block
B of τ . ✷

Πc(G) is thus called the lattice of contractions of G. In the case that E
is the species Gs of simple graphs, Πc(G) is the usual lattice of contractions
of the graph G.

4. Hereditary Species

4.1. Definition and Examples. A hereditary species (or H-species, for
short) is an Sp-species, where Sp is the category of partially defined sur-
jections. Suppose F is an H-species, and G is an F -structure on a set
V . If π ∈ Π(V ) is a partition of V , and ρV,π : V → π is the canon-
ical surjection, the quotient G/π is the F -structure on the set π defined
by G/π = F [ρV,π](G). The restriction G|π is defined to be the assembly
{G|B : B ∈ π}. Now suppose that π is a subpartition of V , that is, π is
a partition of some nonempty subset U of V . Let ρV,U : V → U be the
coinclusion and let ρU,π : U → π be the canonical surjection. The natural
morphism from V to π is the partial surjection ρV,π = ρU,π ◦ ρV,U . The
subquotient G/π is the F -structure on π defined by G/π = F [ρV,π](G).

If f : V → U is a partial surjection, then the kernel of f , is the subparti-
tion of V κf = {f−1(x) : x ∈ U}. So f can be expressed as the composition
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g ◦ ρV,κf
, where g : κf → U is the natural bijection. Therefore, in order to

show that a species F is hereditary, it suffices to describe how subquotients
of F -structures are constructed and to verify functoriality.

Example 4.1 (H-Species).
1) The uniform species U is an H-species.
2) The species L of linear orders is an H-species. Suppose G is a linear
ordering of a set V , and π is a subpartition of V . The subquotient G/π is
obtained by ordering the blocks of π according to the order of their maxi-
mal elements. Of course, this works if we use minimal instead of maximal
elements.
3) The species Gs of simple graphs is an H-species. Let G be a simple graph
with vertex-set V , and suppose π is a subpartition of V . The subquotient
G/π is defined as the graph with vertex-set π, having an edge between blocks
B1 and B2 if and only if there is some edge of G which has one endpoint in
B1 and the other endpoint in B2.
4) The species R of relations is an H-species. Suppose G ∈ R(V ) is a relation
on V . If h : V → U is a partial surjection, define R[h](G) : U → U to be
the relation h ◦ G ◦ h−1. If g : U → W is another partial surjection then
R[g ◦h](G) = (g ◦h)◦G◦ (g ◦h)−1 = g ◦ (h◦G◦h−1)◦g−1, which is equal to
R[g] ◦ R[h](G). Thus R is functorial. Note that we don’t use here the fact
that the relations f and g are partial surjections. Hence, we have actually
shown that the species of relations is a Rel-species, and thus is a C-species
for any relational category C.

4.2. Bialgebras of H-species. If τ and σ are partitions of a set V and
τ ≤ σ (i.e. each block of σ is a union of blocks of τ), then σ/τ denotes the
partition of the set τ induced by σ.

Suppose F is an H-species, and G =
∑

B∈πG

{GB} is an assembly of F -

structures on a set V . For σ ≤ πG in Π(V ) and each block B of πG, let
σ|B ∈ Π(B) denote the restriction of σ to B. The restriction of the G to σ

is the assembly of F -structures on V given by G|σ =
∑

B∈πG

GB|(σ|B), which

has σ as underlying partition. The quotient of G by σ is the assembly on

the set σ given by G/σ =
∑

B∈πG

{GB/(σ|B)}. The underlying partition of

G/σ is πG/σ.

Proposition 4.1. Suppose F is an H-species and G is an assembly of F -

structures on a set V . If τ ≤ σ are partitions of V , then the following

identities hold:

[(G|σ)|τ ] = [G|τ ],

[(G/τ)|(σ/τ)] = [(G|σ)/τ ],

[(G/τ)/(σ/τ)] = [G/σ].

12



Proof. It clearly suffices to consider the case that G is an assembly consisting
of one element H ∈ F (V ). Suppose C ∈ τ and B ∈ σ satisfy C ⊆ B. We
have from equation 3.1 that (H|B)|C = H|C. It follows that (G|σ)|τ and
G|τ are identical. So, in particular, they are isomorphic.

If B ∈ σ, then the restriction τ |B is an element of the induced par-
tition σ/τ . Let ρV,B : V → B and ρτ,τ |B : τ → τ |B be the coinclu-
sions and let ρV,τ : V → τ and ρB,τ |B : B → τ |B be the canonical
surjections. Then ρB,τ |B ◦ ρV,B = ρτ,τ |B ◦ ρV,τ and hence (H/τ)|(τ |B) =
F [ρτ,τ |B] ◦ F [ρV,τ ](H) = F [ρB,τ |B] ◦ F [ρV,B](H) = (H|B)/(τ |B), by functo-
riality. Therefore (G/τ)|(σ/τ) and (G|σ)/τ are identical, and thus isomor-
phic.

Let ρV,σ : V → σ and ρτ,σ/τ : τ → σ/τ be the canonical surjections, and
let g : σ → σ/τ be the natural bijection. By definition, H/σ = F [ρV,σ](H)
and (H/τ)/(σ/τ) = F [ρτ,σ/τ ]◦F [ρV,τ ](H). Therefore (H/τ)/(σ/τ) = F [g](H/σ),
since g ◦ ρV,σ = ρτ,σ/τ ◦ ρV,τ . Hence the third identity follows. ✷

For any H-species F , define HF to be the free module over K with basis
consisting of all isomorphism classes of (expF0)-structures. The natural
product of types of assemblies, equation 3.5, gives HF an algebra structure,
and the correspondence [G] ↔ [{G}] defines an isomorphism between the

polynomial algebra K[F̃ ] and HF .
Define linear maps ∆H : HF → HF ⊗HF and ǫ : HF → K by

(4.1) ∆H[G] =
∑

σ∈Π(V )

σ≤πG

[G|σ] ⊗ [G/σ],

and

ǫ[G] =

{

1 if πG consists of singletons or is empty
0 otherwise,

for any (expF0)-structure G on a set V .

Proposition 4.2. For any H-species F , HF is a commutative K-bialgebra

with coproduct ∆H and counit ǫ defined as above.

Proof. The proof that ∆H is well-defined by equation 4.1 is similar to the
proof that ∆ is well-defined in proposition 2, and is thus omitted. For
coassociativity, suppose G is an assembly of F -structures on a set V . Then

(4.2) (∆H ⊗ I) ◦ ∆H[G] =
∑

τ,σ∈Π(V )
τ≤σ≤πG

[(G|σ)|τ ] ⊗ [(G|σ)/τ ] ⊗ [G/σ].
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While

(I ⊗ ∆H) ◦ ∆H[G] =
∑

τ∈Π(V )
τ≤πG

∑

γ∈Π(τ)
γ≤πG/τ

[G|τ ] ⊗ [(G/τ)|γ] ⊗ [(G/τ)/γ]

=
∑

τ,σ∈Π(V )
τ≤σ≤πG

[G|τ ] ⊗ [(G/τ)|(σ/τ)] ⊗ [(G/τ)/(σ/τ)],

which is equal to the right-hand side of equation 4.2, by proposition 4.1.
Thus ∆H is coassociative.

To see that ∆H is an algebra map, suppose G1 and G2 are assemblies of
F -structures on sets V1 and V2, respectively. Then ∆H([G1][G2]) is given by

∆H[G1 +G2] =
∑

σ≤πG1
∪πG2

[(G1 +G2)|σ] ⊗ [(G1 +G2)/σ]

=
∑

σ1≤πG1

∑

σ2≤πG2

[G1|σ1][G2|σ2] ⊗ [G1/σ1][G2/σ2]

= ∆H[G1]∆H[G2].

Hence ∆H is an algebra map. It is easy to see that ǫ is also an algebra map.
Thus HF is a bialgebra. ✷

If α : F → E is a morphism of H-species, then there is a corresponding
algebra map α̃ : HF → HE defined by α̃[{G}] = [{αV (G)}], whenever G is
an F -structure on a non-empty set V .

Proposition 4.3. If α : F → E is a morphism of H-species, then the

corresponding map α̃ : HF → HE is a bialgebra map.

Proof. By definition, α̃ is an algebra map. Let G be an F -structure on a
non-empty set V . Then

∆H ◦ α̃[{G}] =
∑

σ∈Π(V )

(

∏

B∈σ

[{αV (G)|B}]

)

⊗ [{αV (G)/σ}].

Since α is a natural transformation, this can be written as

∑

σ∈Π(V )

(

∏

B∈σ

[{αB(G|B)}]

)

⊗ [{ασ(G/σ)}]

which is equal to (α̃ ⊗ α̃) ◦ ∆H[{G}]. Also, it is clear that ǫ ◦ α̃ = ǫ, hence
α̃ is a bialgebra map. ✷

Thus we have the following theorem.

Theorem 4.4. The correspondence F 7→ HF is a functor from the category

of H-species and natural transformations to the category of commutative

bialgebras and bialgebra maps.
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4.3. Hopf Algebras of Simple H-Species. A species F is simple, if
|F (V )| = 1 whenever |V | = 1. If F is any simple species, then the ex-
ponential E = expF0 is an I-species. For if α : U → V is an injection and
G is an assembly of F -structures on U , then the assembly E[α](G) on V ,
called the extension of G to V , can be defined by

E[α](G) = E[ᾱ](G) +
∑

x∈V −R(α)

{F ({x})},

where ᾱ is the bijection defined by α from U onto the range R(α) of α, and
{F ({x})} is the assembly consisting of the unique F -structure on the set
{x}.

Let F be a simple H-species. Then expF is an Ip-species, where assemblies
of F -structures restrict as usual by equation 3.3 and extensions are given as
above. It follows that two assembies of F-structures are weakly isomorphic
if and only if they are they are isomorphic after deleting all of their singleton
components.

Let ĤF be the free K-module having the set of all weak isomorphism
classes of non-empty (expF0)-structures as a basis. Defining products of
weak isomorphism classes by

〈G〉〈H〉 = 〈G+H〉,

makes ĤF an algebra, isomorphic to the polynomial algebra over K having
types of F -structures on sets of two or more elements as indeterminates. If
|V | = 1 and G is the assembly consisting of the unique F -structure on V ,

then 〈G〉 is the multiplicative identity of ĤF .

Define linear maps ∆H : ĤF → ĤF ⊗ ĤF and ǫ : ĤF → K by

(4.3) ∆H〈G〉 =
∑

σ∈Π(V )

σ≤πG

〈G|σ〉 ⊗ 〈G/σ〉,

and

ǫ〈G〉 =

{

1 if πG consists of singletons
0 otherwise,

for any non-empty (expF0)-structure G on a set V .

Proposition 4.5. For any simple H-species F , ĤF is a commutative Hopf

algebra over K with ∆H and ǫ defined as above. The antipode S : ĤF → ĤF

is given by

(4.4) S〈G〉 =

|V |
∑

k=0

∑

(−1)k〈(G|σ1)/σ0〉〈(G|σ2)/σ1〉 · · · 〈(G|σk)/σk−1〉,

where the inner sum is over all chains σ0 < σ1 · · · < σk in Π(V )having

σk = πG and σ0 the partition of V into singletons.
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The proof that S is an antipode is essentially the same as that given in
proposition 3.4. Both antipode formulas are special cases of the general
formula for antipodes of incidence Hopf algebras given in [12].

The following theorem is now apparent.

Theorem 4.6. The correspondence F 7→ ĤF is a functor from the category

of simple H-species to the category of commutative Hopf algebras.

Example 4.2 (The Faà di Bruno Hopf Algebra). The uniform species U

is a simple H-species. The corresponding Hopf algebra ĤU is isomorphic
to the Faà di Bruno Hopf algebra, investigated in [4], [12] and [3]. In this
case, the antipode formula 4.4 has been shown (in [3]) to be equivalent to the
Lagrange formula for the inverse of a formal power series under composition.

4.4. Comodule Coalgebras of H-Species. Suppose BF and ĤF are, re-
spectively, the cocommutative and non-cocommutative Hopf Algebras cor-
responding to a simple H-species F . Define a linear map ψ : BF → ĤF ⊗BF

by ψ(1) = 1 ⊗ 1 and

ψ[G] =
∑

σ∈Π(V )

〈G|σ〉 ⊗ [G/σ],

whenever G is an F -structure on a set V , where |V | ≥ 1.

Proposition 4.7. The pair (BF , ψ) is a left ĤF -comodule coalgebra.

Proof. To see that BF is a left ĤF -comodule, one must show that (ǫ⊗I)◦ψ =
I and (∆H⊗I)◦ψ = (I⊗ψ)◦ψ, where I denotes either the identity map on

BF or that on ĤF , depending on where it appears in an expression. The first
of these equations is trivial. The proof of the second is essentially identical
to the verification that ∆H is coassociative.

The statement that BF is a left ĤF -comodule coalgebra (see [1], p. 137),

means that the structure maps ∆ and ǫ of BF are ĤF -colinear. In other
words,

(4.5) (I ⊗ ∆) ◦ ψ = (µ⊗ I ⊗ I) ◦ (I ⊗ T ⊗ I) ◦ (ψ ⊗ ψ) ◦ ∆

and

(4.6) (I ⊗ ǫ) ◦ ψ = (η ⊗ I) ◦ ǫ,

where µ : ĤF ⊗ ĤF → ĤF and η : K → ĤF are the multiplication and
unit of ĤF , and T : BF ⊗ ĤF → ĤF ⊗ BF is the twist map, determined by
T ([G] ⊗ 〈H〉) = 〈H〉 ⊗ [G], for all [G] ⊗ 〈H〉 ∈ BF ⊗ ĤF .

Equation 4.6 is trivial. In order to verify equation 4.5, suppose G ∈ F (V ),
where |V | ≥ 1. Then (I ⊗ ∆) ◦ ψ[G] is given by

(4.7)
∑

σ∈Π(V )

∑

γ⊆σ

〈G|σ〉 ⊗ [(G/σ)|γ] ⊗ [(G/σ)|(σ − γ)].
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On the other hand, (ψ ⊗ ψ) ◦ ∆[G] is given by
∑

U⊆V

∑

σ1∈Π(U)

∑

σ2∈Π(V −U)

〈(G|U)|σ1〉⊗[(G|U)/σ1]⊗〈(G|(V−U))|σ2〉⊗[(G|(V−U))/σ2].

Hence, (µ⊗ I ⊗ I) ◦ (I ⊗ T ⊗ I) ◦ (ψ ⊗ ψ) ◦ ∆[G] equals
∑

U⊆V

∑

σ1∈Π(U)

∑

σ2∈Π(V −U)

〈G|(σ1∪σ2)〉 ⊗ [(G|U)/σ1] ⊗ [(G|(V − U))/σ2],

which is equal to (4.7), by functoriality. Thus equation 4.5 follows. ✷

Suppose HF is the bialgebra of the H-species F and ψ̂ : BF → HF ⊗ BF

is defined by ψ̂(1) = 1 ⊗ 1 and

ψ̂[G] =
∑

σ∈Π(V )

[G|σ] ⊗ [G/σ],

whenever G is an F -structure on a set V , where |V | ≥ 1. A proof identical
to that of proposition 4.7, with square brackets replacing all angle brackets,
shows that the pair (BF , ψ̂) is a left HF -comodule coalgebra.

5. Invariants of structures

If H is any Hopf algebra over K then the subset Alg(H,K) of the dual
algebra H∗, consisting of all algebra maps from H to the ring K, forms a
group under product in H∗, with the counit ǫ as an identity. The inverse of
a map f ∈ Alg(H,K) is given by f−1 = f ◦S, where S is the antipode of H
(see [13] for details).

Let F be a simple H-species, and let ĤF be the corresponding Hopf alge-
bra. The product of elements f and g in Ĥ∗

F is given by

f · g〈G〉 =
∑

σ∈Π(V )

σ≤πG

f〈G|σ〉g〈G/σ〉,

for any assembly of F -structures G on a set V having underlying partition
πG.

The dual Ĥ∗
F is called the algebra of invariants of F -structures. The group

of algebra maps Alg(ĤF ,K) is denoted by MF and called the group of mul-

tiplicative invariants of F -structures. Any f ∈ MF is uniquely determined
by the values it takes on weak-isomorphism classes of F -structures.

Since BF is a left ĤF -comodule, it follows that BF is a left Ĥ∗
F -module,

where the action of f ∈ Ĥ∗
F on [G] ∈ BF is given by

f [G] =
∑

π∈Π(V )

f−1〈G|π〉[G/π],

for G ∈ F (V ) and V 6= ∅. If V = ∅, then [G] = 1, and f · 1 = f(1) · 1.
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For any f ∈ MF , let f̄ : BF → BF be the left multiplication map [G] →
f [G]. It is a formal consequence of proposition 4.7 that f̄ is a coalgebra
automorphism of BF . Thus we have the following proposition.

Proposition 5.1. For any simple H-species F , the correspondence f →
f̄ defines an action of the group of multiplicative invariants MF on the

coalgebra BF .

Example 5.1 (Simple Graphs). Let Gs be the simple H-species of simple
graphs, and let K be the ring of integers. Define multiplicative invariants
ν, η, ζ ∈ MGs by

ν〈G〉 =

{

1 if G is connected
0 otherwise,

η〈G〉 =

{

1 if G has no edges
0 otherwise,

and

ζ〈G〉 = 1,

for all graphs G. The inverse µ of ζ in MGs is given by µ〈G〉 = (−1)n−1(n−
1)!, whenever G has n vertices. The invariant µ is the Möbius function of
the lattice of partitions (see [11]).

The product ν · η is given by

ν · η〈G〉 =
∑

σ∈Π(V )

ν〈G|σ〉η〈G/σ〉,

for any graphG with vertex-set V . The single non-vanishing term of this sum
occurs when σ is equal to πG, the partition of G into connected components.
Therefore, we have the identity ν ·η = ζ, or equivalently, η−1 = µ ·ν in MGs .

The automorphism of BGs corresponding to η−1 is thus given by

µ̄ ◦ ν̄[G] =
∑

[G/σ],

where the sum is over all color partitions σ (i.e. partitions of the vertex set
into independent sets) of G. The automorphism µ̄◦ ν̄ of BGs thus generalizes
the chromatic polynomial of a graph.

References

[1] E. Abe, Hopf Algebras (Cambridge University Press, Cambridge, 1980).
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tures, Ann. Sci. Math. Québec 7 (1983), 58-94.
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