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HOPF ALGEBRAS UP TO HOMOTOPY 

DA YlD J. ANICK 

1. BACKGROUND AND SUMMARY 

Ever since functors from the category TOP of topological spaces to various 
algebraic categories were first discovered, topologists have sought functors which 
are complete homotopy invariants. A functor is called a "homotopy invariant" if 
its values on two maps f and g coincide (or are equivalent in some nice enough 
sense) whenever f and g are homotopic. For a "complete homotopy invariant" 
one requires the converse as well. Having a complete homotopy invariant on 
a subcategory ~ of TOP means that one can study all the homotopy-theoretic 
properties of ~ purely by doing algebra. 

The single most exploited complete homotopy invariant has been the Quillen 
model 1 for Q-Iocal simply-connected spaces [13]. This model associates to 
each such space a differential graded Lie algebra over Q. A "differential graded 
Lie algebra" (henceforth "dgL") over Q is a positively graded Q-module, L = EB:-oo Ln with Ln = 0 for n ~ 0 , together with a bilinear bracket [ , ]: Lm ® 
Ln -+ Lm+n and a differential 0: Ln -+ Ln_1 • The bracket must satisfy the Ja-
cobi identities (with signs) for a Lie algebra, and 0 is a derivation whose square 
is zero. There is a reasonable concept of "homotopy" among homomorphisms 
between two dgL's, analogous in many respects to the topological notion of 
homotopy. Using this concept, Quillen showed that rational homotopy types 
of simply-connected spaces biject naturally with homotopy types of dgL's, and 
likewise for maps. This seminal discovery has made possible the immensely 
successful field of rational homotopy theory. 

An older, noncomplete homotopy invariant was discovered by Adams and 
Hilton [2]. For each simply-connected CW complex their construction yields 
an associative differential graded algebra (henceforth "dga"). Compared with 
Quillen's model, the Adams-Hilton model has the advantages of being easier 
to compute in practice, and of providing information over an arbitrary ring 
R (not just Q). Quillen's model enjoys the comparative strengths of being a 
Lie rather than an associative algebra, meaning that it contains less superfluous 
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418 D. J. ANICK 

information, and as we have mentioned, it is rationally a complete homotopy 
invariant. 

Let R denote a sub ring of Q. In [6] and [7], Baues, Halperin, and Lemaire 
established a compatibility between the Adams-Hilton (over R) and the Quillen 
models. For spaces of finite type, the Q-Iocalization of Adams-Hilton coincides 
(up to homotopy) with the universal enveloping algebra (denoted U) of Quillen. 
This is illustrated by the solid arrows in (1). 

(?) __ ~ (Adams-Hilton dga) 
u model over R c Q 

(1) ®Q! ! ®Q 

( Quillen dgL) ---+ (dga mOdel) 
model over Q u over Q 

The dotted arrows in (1) suggest the possibility of a "unified model," rep-
resented by the question mark, enjoying the strong points of both models. It 
is here that this paper comes in. Under certain dimension and connectivity 
conditions, we construct precisely such a unified model. Since we adopt the 
Adams-Hilton model as our starting point, one consequence is a new construc-
tion of the Quillen model. 

Specifically, if for some p R contains n -1 for n < p, and if we restrict 
ourselves for some r ~ 1 to r-connected CW complexes of dimension ~ rp , 
then (1) may be filled in. The simple fact that the Adams-Hilton model for X 
is an enveloping algebra under these hypotheses also leads to a quick proof of 
Wilkerson's conjecture, viz., the vanishing of pth powers in il" (.oX; Zp) . 

The bulk of this paper will be dedicated to the proof of a single purely al-
gebraic theorem, Theorem 4.8. This theorem asserts that certain dga's are au-
tomatically the enveloping algebras of dgL's. We will now describe how these 
results were discovered, hoping thereby to elucidate the key ideas involved as 
well as what we mean by "certain dga's." 

Consider a typical dga, (A, d). Is (A, d) the Adams-Hilton model for any 
space? In general, the answer will be "no." What properties distinguish dga's 
which are Adams-Hilton models from those which are not? 

Here is a dga which is not an Adams-Hilton model: A = R(x ,y} = free 
associative R-algebra on x and y, Ixl = 1, Iyl = 4, d(x) = 0, d(y) = x 3 . 

Suppose (A, d) were the Adams-Hilton model for some X, denoted A(X). 
Consider the diagonal map d: X - X x X , and the induced homomorphism 

(2) A(X) ~ A(X x X) ~ A(X) ® A(X) . 
J 

(We must borrow here the quasi-isomorphism j from the original Adams-
Hilton paper [2, p. 322].) Denote by '" this composite dga homomorphism. 
Then ",(x) = x ® 1 + 1 ® x , so 

d",(y) = ",d(y) = ",(x3) = ",(x)3 = x 3 ® 1 + x 2 ® x + x ® x 2 + 1 ® x 3 . 

But x 3 ® 1 + x 2 ® x + x ® x 2 + 1 ® x 3 is not a boundary in (A, d) ® (A ,d) , so 
",(y) cannot exist! 
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In order for a dga (A, d) to equal A(X) , it must be capable of receiving a 
"coproduct" "': (A, d) --+ (A , d) ® (A , d). Since this coproduct is to come from 
a model for the diagonal map, some of its properties are constrained. As we 
shall see in §8, there must be homotopies between (1 A ® e) '" and 1 A ' between 
( e ® 1 A) '" and 1 A ' between r", and "', and between ('" ® 1) '" and (1 ® "') '" . 
Here e: A --+ R is the augmentation, 1 A: A --+ A is the identity, and r sends 
a ® b to (_1) la llbl b ® a. The idea is to consider only those (A, d) for which 
there exists a '" permitting these four homotopies. 

If we had equalities in place of the four homotopies, '" would make (A, d) 
into a differential graded cocommutative coassociative Hopf algebra. As it 
stands, we call the triple (A, d ,"') a "Hopf algebra up to homotopy" or "Hah." 
Our point of view becomes the following. Keeping the diagonal information 
(2), we view the Adams-Hilton model as converting spaces not into dga's, but 
into Hopf algebras up to homotopy. 

Recall that the universal enveloping algebra of a graded Lie algebra is au-
tomatically a cocommutative coassociative Hopf algebra. For a dgL (L, «5) , 
U(L, «5) is automatically a differential graded Hopf algebra, which is a special 
kind of Hah. A remarkable converse also holds: within certain connectivity and 
dimension constraints, every Hah is isomorphic to U(L, «5) for some (unique) 
(L,«5)! It follows for suitable spaces X that A(X) ~ U(L,«5). We may now 
adopt (L, «5) as our Lie algebra model for X, thus filling in diagram (1). 

Theorem 4.8 is, of course, precisely this "remarkable converse." We are at 
last in a position to state it precisely. Let R contain n -I for n < p. Given a 
Hah (A, d, "'), where A is a tensor algebra generated by the range Ar through 
A rp _ I ' there is a dgL (L,«5) for which U(L,«5) ~ (A,d), and the Hopf al-
gebra coproduct !1L on U(L, «5) is homotopic with ",. The homotopy type 
of (L, «5) is determined by that of (A, d , "'). Furthermore, for any homo-
morphism f: (A, d , "') --+ (A' , d' , ",') satisfying ",' f ~ (f ® f) '" , there is an 
a: (L,«5) --+ (L' ,«5') such that Ua ~ f once we identify (A,d) with U(L,«5) 
and (A', d') with U(L', «5'). Lastly, the homotopy class of a is determined 
by the class of f (cf. [4]). 

Here is the briefest overview of the proof of Theorem 4.8. First, consider 
the "nondifferential" version, essentially due to Milnor and Moore [10], that a 
cocommutative coassociative free Hopf R-algebra generated in the stated range 
is primitively generated (hence an enveloping algebra). We can give a proof of 
this nondifferential version via splittings of a certain exact sequence. Inducting 
on the dimension, if the reduced coproduct of some generator is nonzero, it is 
possible to subtract from it a decomposable element so that the difference, also 
a valid choice for the generator, is primitive. 

The differential version works much the same way. Assuming we have con-
structed a strictly cocommutative coassociative X homotopic to '" in dimen-
sions below n, we utilize the four homotopies together with the splittings to 
adjust X , so it becomes strictly cocommutative and co associative in dimension 
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n as well. This procedure requires a detailed understanding of the homotopy 
theory for the category of dga's, as well as some delicate properties of the split-
tings. 

Finally, let us mention some new open questions which arise from this work. 
Is a free Hah always isomorphic to a differential graded (not necessarily prim-
itively generated) Hopf algebra? Can our model be improved by incorporating 
into it the action of the Steenrod algebra? Which theorems of rational homo-
topy remain valid over subrings of Q or over Zp' subject to dimension and 
connectivity hypotheses? 

2. HOMOTOPY THEORY FOR DIFFERENTIAL GRADED ALGEBRAS 

We collect in this section all the definitions and lemmas we shall use later 
about the category DGA of differential graded algebras. Since none of the 
results are new, their proofs have been omitted or drastically curtailed. Still, 
the material is presented in sequence, so what follows is actually a development 
of the concept of homotopy in DGA, minus the proofs. References include [3, 
7, 11]. 

Definitions. Let R denote a commutative ring with unity. A graded algebra 
over R is a graded R-module A = $:-00 An' An = 0 for n < 0, with 
associative bilinear pairings Am ® An -+ Am+n. It is connected if 1 E Ao ~ R . 
It is r-reduced if it is connected and An = 0 for 0 < n < r. Connected 
algebras have a unique graded algebra homomorphism e: A -+ R called the 
augmentation. A+ = ker(e) is the augmentation ideal. For x E An' X =f: 0, we 
write Ixl = n and call n the dimension of x. 

A differential on a graded algebra A is an R-homomorphism d of degree 
-1 satisfying d 2 = 0 and 

d(xy) = d(x)y + (_1) lx 1x d(y). 

A differential graded algebra (henceforth dga) is a connected graded algebra A 
together with a differential d for which d(A+) ~ A+. Our notation is (A, d) 
or, where no confusion can result, simply A. 

A homomorphism of dga's is both a graded algebra homomorphism and a 
chain map. The category of dga's over R is denoted DGA(R) , or simply 
DGA. Homology, denoted H. ( ) , is a functor from DGA to connected graded 
algebras. A DGA homomorphism inducing an isomorphism on homology is 
called a quasi-isomorphism or quism. 

The category of connected graded algebras has push-outs. The push-out of 
the diagram B L A ~ C is denoted B II A C. Most often, we consider push-
outs over the trivial graded algebra R, for which the notation is simply B II C . 
As an R-module, B II C equals the direct sum of the graded R-modules 
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It has the obvious multiplicative structure. If I and g are DGA homomor-
phisms, then B II A C , endowed with the obvious differential, is the push-out in 
DGA of the diagram (B ,e) I- (A,d) ~ (C, y). 

The tensor productofdga's (A, d) and (B ,e) is (A®B ,<5), where <5(a®b) = 
d(a) ® b + (_1) la1a ® e(b). Their direct product, denoted (A, d) x (B, e) or 
A x B, is given by (A x B)o = R, (A x B)n = An E9 Bn for n > 0, with 
componentwise addition, multiplication, and differentiation. There are obvious 
DGA surjections A II B -+ A ® B -+ A x B ~ A, B . 

Given a free positively graded R-module V, TV denotes the tensor algebra 
on V with grading inherited from V. We identify V with TI V C; TV. 
We call a dga (A, d) Iree if A is isomorphic with some TV. Note that A 
need not be a free object in DGA. Given a graded set S (i.e., S together with 
e: S -+ Z+) the free associative algebra on S is denoted R(S}. Clearly, R(S} 
and T(SpanR(S)) coincide. 

Lemma 2.1. Let I: (A, d) -+ (B, e) be a DGA homomorphism. 
(a) I may be lactored as 

(A ,d) ~ (A,d) II (TV ,<5) L (B ,e), 

where h is a quism and p is surjective. 
(b) I may be lactored as 

(A,d).L (All TW ,<5).i. (B ,e), 

where q is a quism. 

Definition. Let (A, d) be a dga. A dga (A* ,d*) together with homomorphisms 

it * * p (A, d) ~ (A ,d ) -+ (A, d) 
h 

is called a cylinder on (A, d) if 
(i) jIll j2: (A, d) II (A ,d) -+ (A* ,d*) is injective; 

(ii) pjl = pj2 = 1 A; and 
(iii) p is a quism. 

We say that two homomorphisms I, g: (A, d) -+ (B ,e) are homotopic, I ~ g, 
if III g: (A, d) II (A, d) -+ (B, e) extends over some cylinder (A* ,d*). 

By Lemma 2.1 (b) applied to the collapse map A II A -+ A , every dga has a 
cylinder. 

h f . 
Lemma 2.2. (a) II A -+ B ~ C ~ Dare DGA homomorphisms and I ~ g. 

g 

then ilh ~ igh . 
(b) ~ is an equivalence relation. 

Remark. Only transitivity presents any challenge. It follows from the observa-
tion that the push-out over A of two cylinders on A is another cylinder. 
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When A is free, we can give an alternate criterion for two homomorphisms 
with source A to be homotopic. 

Definition. Let f, g: (A, d) -+ (B , e). A degree r R-homomorphism F: A -+ 

B is an (f, g)-derivation if it satisfies 

(3) F(xy) = F(x)g(y) + (-I) r1x1 f(x)F(y). 

A derivation homotopy from f to g is an (f, g)-derivation of degree + 1 
further satisfying 

(4) eF+Fd=f-g· 
Lemma 2.3. Let f, g: TV -+ B be algebra homomorphisms and let F: V -+ B 
be R-linear of degree r. Then F extends uniquely to an (f, g)-derivation 
F: TV -+ B. If in addition f and g are DGA homomorphisms and Flv 
satisfies (4), then F satisfies (4). 
Remark. The proof of Lemma 2.3 does not require that d2 = 0 or e2 = 0 . 

In [7], Baues and Lemaire construct a canonical cylinder on a free dga (A, d) . 
We denote this the Baues-Lemaire cylinder by I(A, d) or (lA, D) , and we recall 
briefly its construction. If A = TV , then I A = T( V ffi V' ffi s V) as an algebra, 
where V' ~ V and (sV)n ~ (V)n_I' To define D, first put f,/: TV -+ 

IA by f(x) = x and I(x) = x'. Using Lemma 2.3, let S be the unique 
(f, I)-derivation having S(x) = sx for x E V. Setting D(x) = fd(x) and 
D(x')=ld(x) and D(sx)=x-x'-Sd(x),extend D (uniquely)toa (1,1)-
derivation of degree -Ion I A. Then S d + DS is an (f, I)-derivation. Hence 
by Lemma 2.3, 

(5) Sd+DS=f-/ 

because this holds on V, even though we do not know yet that D2 = O. Using 
(5), now check that D2 is a (1, I)-derivation of degree -2, vanishing on each 
generator of lA, so D2 = O. We have constructed the dga (I A, D) . 

Lemma 2.4. The homomorphisms jl (x) = x, j2(X) = x' , and p(x) = p(x') = 
x, p(sx) = 0, for x E V, make (IA ,D) into a cylinder on (A, d). 
Proof. To see that p is a quism, define a U1P, I)-derivation J on (IA,D) 
by J(x) = 0, J(x') = sx, J(sx) = 0, and observe that J is a derivation 
homotopy. 

Proposition 2.S. Let f,g: (A,d) -+ (B ,d) with A free. The following are 
equivalent: 

(i) f c:::. g; 
(ii) fll g: (A, d) II (A, d) -+ (B, e) extends over I(A, d); 

(iii) there is a derivation homotopy from f to g. 

This characterization of DGA homotopy, as the existence of a derivation 
homotopy, is a powerful one, and we shall rely upon it constantly. Using it, two 
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important corollaries arise at once from an alternate way of viewing the Baues-
Lemaire cylinder. We have described I(TV,d) as generated by {x ,x' ,sx}, 
where x runs through an R-basis for V, but an equally valid generating set is 
{x ,sx ,Dsx}. This is summarized by the following lemma. 

Lemma 2.6. (a) I(TV, d) = (TV, d) 11 (T(sV tB DsV) ,D). Likewise, 

I(T(V tB W), d) = (T(V tB W), d) 11 (T(sV tB DsV), D) 11 (T(sW tB DsW) , D). 

(b) Given any f: (TV, d) --+ (B, e) and any R-linear G: V --+ B of degree 
+1, there is a unique h: I(TV ,d) --+ (B ,e) satisfying hjl = f and h(sx) = 
G(x) for x E v. 

A split inclusion i: (A, d) --+ (B , e) is a DGA homomorphism which has a 
retraction as algebras. When A and B are free, this means that A = TV, 
B = T( V tB W), and e extends d. A split inclusion of free algebras is a 
cofibration in the following sense. 

Proposition 2.7 (Homotopy extension property). Let i: (TV,d) --+ 

(T(V tB W) ,d') be a split inclusion of free dga's. Let f: (T(V tB W) ,d') --+ 

(B,e), and let F: lTV --+ B be a homotopy between fl TV and some other 
homomorphism g. Then there is an extension F of F to a homotopy between 
f and an extension g of g . 

Proof. UsingLemma2.6(a), retract IT(VtBW) onto T(VtBW)I1TvITV and 
compose with f 11 F . 

In DGA, surjections are fibrations relative to free objects, in the following 
sense. 

Proposition 2.8 (Homotopy lifting property). Let p: (C, y) --+ (B ,e) be surjec-
tive. Let f: (A, d) --+ (C ,y) with A = TV, and let F: I A --+ B be a homotopy 
between p f and some other homomorphism g. Then there exists a homotopy 
F between f and a homomorphism g such that pF = F and pg::: g. 

Proof. Let F: I A --+ B be the homotopy. Choose any R-linear lifting G of 
Flsv and apply Lemma 2.6(b). 

Definition. In any category with a concept of homotopy satisfying Lemma 2.2, 
we call a morphism f: A --+ B a homotopy equivalence if there exists g: B --+ A 
for which g f ::: 1 A and f g ::: 1 B. The morphism g is called a homotopy 
inverse for f. Two objects have the same homotopy type if there is a homotopy 
equivalence between them. 

In DGA we have a particularly elegant characterization of homotopy equiv-
alences between free objects: they are precisely the quasi-isomorphisms. While 
it is trivial that a homotopy equivalence is a quism, the converse depends upon 
the following. 
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Proposition 2.9 (Lifting lemma). Let p: (C,)I) --+ (B, e) be a quasi-isomor-
phism. Let i: (TV, d) --+ (T(V EB W), d) be a split inclusion offree dga's. Let 
f: (T(V EB W), d) --+ (B ,e) and put r = fl rv . 

(a) Suppose p is surjective. Given any lifting f: (TV ,d) --+ (C,)I) of r, 
i.e., p f = r, we may extend f to a lifting j of f. 

(b) Suppose p is surjective. Let j, g be two liJtings of f, and let f, g' 
be their restrictions to TV. Any homotopy pi: lTV --+ C between f 
and g' having ppl(SV) = 0 may be extended to a homotopy 
P:IT(VEBW)--+C between j and g having pP(sVEBsW) =0. 

(c) Let f be any lifting of r. There is an extension j of f such :hat 
pj~f. 

(d) If p j ~ p g, then j ~ g . 

Proof. For (a), note that ker(p) is an acyclic ideal, and induct on the dimension; 
part (b) is a special case. For (c), tum p into a surjection pi via Lemma 2.1(a) 
and note that the left inverse for the quism h of that lemma is a homotopy 
inverse. Now utilize the homotopy lifting property for p'. Part (d) specializes 
(c). 

Lemma 2.10. Let (A, d) befree. A quism p: (C,)I) --+ (B ,e) induces a bijection 
on sets of homotopy classes, 

p#: [A;C] ~ [A;B]. 

Proposition 2.11. Let (A, d) and (B, e) befree. A homomorphism f: (A, d) --+ 

(B , e) is a homotopy equivalence if and only if it is a quasi-isomorphism. 
Proof. By Lemma 2.10, there exists g: B --+ A such that f g ~ 1 B. Again by 
Lemma 2.10, there exists r: A --+ B such that g r ~ 1 A. Then f ~ f g r ~ r, so gf~ l A • 

3. DIFFERENTIAL GRADED LIE ALGEBRAS 

We assemble here the facts we shall need involving differential graded Lie 
algebras. These facts fall into three subsections. First, we briefly review ho-
motopy theory for the category DGL(R), again omitting most proofs. We pay 
particular attention to the additional hypotheses needed when R ~ Q. Second, 
we examine a limited situation where the concept of derivation homotopy can 
be invoked for Lie algebras. We digress to cover a fairly specialized applica-
tion. Third, we consider in detail a certain exact sequence of Der(L)-modules. 
This sequence and its splittings will provide the key ingredients for the proof 
of Theorem 4.8. 

References for the homotopy theory include [7, 13, 15]. 

Definitions. Let R denote a commutative ring with unity. A graded Lie algebra 
over R is a graded R-module L = EB:-oo Ln ' together with a bilinear pairing 
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[ , ]: Lm ® Ln --+ Lm+n satisfying the Jacobi identities: 

(6a) 

(6b) 

[y,x] = _(_I)lx IlY1 [x ,y]; 

[x, [y, z]] = [[x ,y]z] + (_I)lx11yl [y, [x, z]]. 

425 

If Ln = 0 for n < t, we call L t-reduced; "I-reduced" is also called connected. 
An R-linear F: L --+ L of degree r is called a derivation if 

(7) F([x ,y]) = [F(x) ,y] + (_I)r1xl[x, F(y)]. 

The derivations of L themselves form a graded Lie algebra denoted Der(L). 
A differential graded Lie algebra (henceforth dgL) over R is a connected Lie 

algebra L together with a derivation 6 of degree -1 whose square is zero. 
Our notation is (L, 6) or simply L. The category of dgL's over R is denoted 
DGL(R) or simply DGL. 

In our work with dgL's the universal enveloping algebra functor U from 
DGL(R) to DGA(R) plays a central role. Push-outs exist in DGL, and they 
commute with U. A dgL (L, 6) is/ree if L is free on some set S as a graded 
Lie algebra. A free dgL need not be a free object in DGL, but (L, 6) is free if 
and only if U(L, 6) is free. If L is free on the graded set S (resp. on the R-
free module V), we write L = LR(S) (resp. L =.2'V). Thus ULT(S) = R(S) 
and U.2'V = TV. 

A DGL homomorphism /: (L, 6) --+ (M ,e) is called a quasi-isomorphism, 
or quism, if and only if U / is a quism in DGA. When R ;2 Q, this is equivalent 
to the criterion that / induce an isomorphism on (Lie algebra) homology. 
When R ~ Q, however, the two concepts generally differ. For instance, let 
L = LR(x ,y) with Ixl = 1, Iyl = 2, and 6(y) = x, 6(x) = O. By [8], if 
p-' ¢. R for some prime p, then Zp ~ H2p _ 2(L ,6). Thus the homomorphism 
/: 0 --+ (L, 6) does not induce an isomorphism on homology, yet it is a quism 
because U(O) = Rand U(LR(X ,y) ,6) are both acyclic. 

Let us imitate for DGL as much as we can of the outline provided in §2 
for DGA. Lemmas 2.1 and 2.2 and the definition of cylinder may be copied 
essentially verbatim. However, there is no analog for derivation homotopy. 
The canonical cylinder, due to Tanre [15], is obtained through an entirely new 
method. 

The Tanre cylinder, defined for free dgL's in DGL(Q), is constructed as fol-
lows. Given (.2'V,6) , put 1(.2' V ,6) = (I.2'V,D) , where I.2'V = 
.2'(V EB sV EB DsV) and DI..2"v = 6. The obvious inclusion quism i,: .2'V --+ 

I.2'V is one "end" of the cylinder, and p: I.2'V --+.2'V is given on generators 
by p(x) = x, p(sx) = 0, p(Dsx) = O. 

The tricky part is to define the other "end" of the cylinder, the inclusion i2 . 
Given a pointwise nilpotent derivation () of degree zero on a graded Lie algebra 
L, observe that 

(8) 
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defines a Lie algebra automorphism on L. Define a derivation S of degree + 1 
on I':?V by defining it on generators as S(x) = sx, S(sx) = 0, S(Dsx) = o. 
Then a = [D ,S] = DS + SD is a derivation on I.:£'V of degree zero. Put 

(9) . a. 
h =e J1 • 

One sees easily that jl IIj2: (.:£'V ,t5)II (.:£'V ,t5) -+ (l.:£'V ,D) injects and that 
I':?V ::::::.:?V II':?V II .:£'(sV) as Lie algebras. 

This definition can break down in DGL(R) (R -;. Q) if the denominators 
required by (8) are unavailable in R. Indeed, let p(R) denote the least positive 
integer (if none exists put p(R) = 00 ) which is not a unit in R. (9) requires 
that a be nilpotent of order at most p(R) on V. We can guarantee this only 
by placing constraints on the range of dimensions in which .:£' V is generated. 

Viewing I':?V as (.:£'V) II .:?(sV E9 DsV) , put a "new grading" on it by 
letting .:£' V keep its usual grading but assigning s V and Ds V to lie in new 
grade zero. Let F j be spanned by all terms of new grade j or less. We have 
DF j ~ F j • If .:?V is r-reduced, then SF j ~ F j - r . Thus aP(R) F j ~ F- 1 = 0 
as long as j < rp(R) . 

Definition. A free dgL or dga over R is r-mild if it is generated as a Lie or 
associative algebra by the range of dimensions r through rp(R) - 1 , inclusive. 
Denote by DGLr(R) (resp. DGAr(R)) the full subcategory of DGL(R) (resp. 
DGA(R)) consisting of all r-mild objects. 

The above remarks show 

Lemma 3.1. The Tanre cylinder construction yields a valid cylinder on any r-mild 
dgL. 

Analogous to Proposition 2.5 is 

Lemma 3.2. Let f, g: (L, t5) -+ (M, e) be two homomorphisms in DGLr(R). 
Then f:::: g if and only if f II g factors (in DGL) through the inclusion j 1 II j2 
of L into its Tanre cylinder. 

Although we shall not need this, Lemma 2.6 through Proposition 2.11 now 
have perfect analogs in DGLr(R). In particular, since DGLr(R) contains only 
free dgL's, the homotopy equivalences are precisely the quasi-isomorphisms. 

Lemma 3.1 also implies that the Lemaire-Aubry theorem is valid in DGLr(R). 

Proposition 3.3 (Lemaire-Aubry theorem). Let f, g: (L, t5) -+ (M, e) be homo-
morphisms in DGLr(R). Then f:::: g if and only if U f :::: U g in DGA(R). 
Proof. See [4]. 

As mentioned, the concept of derivation homotopy breaks down in DGL. We 
would like to be able to replace the mUltiplications in (3) by Lie brackets, but 
an F satisfying the resulting expression cannot be well defined. We can salvage 
it only at the dimension where the two homomorphisms f and g first differ. 
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The next lemma is a variation on an idea used by Lemaire and Aubry (in [4], 
see Lemma 3.2 and the proof of Theorem 4.1). 

Notation. For a graded R-module M, Mg denotes EB~=o M j • For instance, 
2'(V<k) is the Lie subalgebra of 2'V generated in dimensions k and smaller. 
Simiiirly, for M<k. 
Lemma 3.4. Let V be an R-free positively graded R-module, and assume V = 
V<n. Let f, g: U(2'V, J) - (B ,e) be two DGA homomorphisms which coin-
cide on 2'(V<n). Then a degree +1 R-linear 

F: (2'V)~n - B 
extends to a derivation homotopy from f to g if and only if 

(lOa) F([x ,y]) = [F(x) , f(y)] + (_1) lx l [f(x) , F(y)] 
for x ,y E 2'(V<n), Ixl + Iyl ~ n; and 

(lOb) eF + FJ = f - g on V. 
In particular, f ~ g if and only if there exists such an F. 
Proof. Let F be the unique (f, g)-derivation extending F I v. Then F satisfies 
(lOa), so F satisfies (lOa) if and only if F coincides with F on (2'( V<n) )<n . 
Consequently, if F satisfies (lOa) and (lOb), then F satisfies (lOb) on V.-By 
Lemma 2.3, F is a derivation homotopy from f to g extending F. The 
converse is straightforward. 

We will be interested in applying Lemma 3.4 in a setting where the target dga 
is a tensor product. 
Notation. The subalgebra of the dga (A, d) (resp. the dgL (L, J)) generated 
by A~n (resp. L~n) is denoted (A(n) , d) (resp. (L(n) , J)) . 

Lemma 3.5. Let (2'V, J) be afree dgL, V = V<n' and let (B, e) be any dga. 
Let f,g: U(2'V,J) - (B,e)®(B,e) be two honlOtopicDGA homomorphisms 
which coincide on 2'(V<n). Suppose that f(2'(V<n)) ~ B ® 1 + 1 ® B and that 
f(x) - g(x) E B+ ® B+ for x belonging to ~. Then there exists an F as 
in Lemma 3.4 satisfying (lOa) and (lOb) such that im(F) ~ B+ ® B+. A 
similar result holds if (B , e) ® (B , e), B + ® B + ' and B ® 1 + 1 ® B are replaced 
respectively by (B,e)®3, B!3,and B®l®l+l®B®l+l®l®B. 
Proof. Let q: B - B be the R-linear homomorphism given by q( 1) = 0 and 
q(b) = b for b E B+. Let G: (2'V)<n - B ® B be the restriction of a 
derivation homotopy as in Lemma 3.4,lmd put F = (q ® q)G: (2'V)<n -
B+ ® B+. Since q is a chain map, -

(lla) e'F+FJ=(q®q)(f-g)=f-g on V, 
where e' is the differential on (B,e)®(B,e). For any a,bEB and wEB®B 
we have 

(q®q)([w,a® 1 + 1 ®b]) = [(q®q)(w),a® 1 + 1 ®b]. 
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Since f(x) and fey) have the form a ® 1 + 1 ® b for x ,y E .2'(V<n) ' we 
obtain from (lOa) (for G) 

F([x ,y]) = (q ® q)G([x ,y]) 

= (q ® q)([G(x) , fey)] + (_1) lxl[f(x) , G(y)]) 

(lIb) = [F(x) ,fey)] + (-l)lx l[f(x) ,F(y)] 

when x ,y E .2'(V<n) ' Ixl + Iyl :::; n. Thus F has the desired properties. 

For the remainder of this section, we explore the properties of ULand tensor 
powers of U L as Der(L)-modules. Now L denotes any connected graded Lie 
algebra which is free as an R-module, and A = U L. Write p for p(R) , so 
k- I E R for 1 :::; k < p. We begin with a discussion about Der(L)-modules. 

A Der(L)-module is assumed to have a graded R-module structure compat-
ible with the graded Der(L)-action. Given two Der(L)-modules M and N, 
their tensor product M ® N becomes a Der(L)-module by setting 

c5(a ® b) = c5(a) ® b + (_1)IJ 11a l a ® c5(b) 

for c5 E Der(L). If f: M - M' and g: N - N' are homomorphisms of 
Der(L)-modules, then so is f ® g: M ® N - M' ® N'. The switching ho-
momorphism 'r: M ® N - N ® M given by rea ® b) = (_1)lallblb ® a is 
another Der( L )-homomorphism. Trivially L, hence L ®n and hence T L , are 
Der( L )-modules. 

Using these facts, we deduce quickly that the multiplicative homomorphism 
tJ.TL : TL - TL® TL, defined by tJ.TL(x) = x® 1 + 1 ®x for x E L, is 
a homomorphism of Der(L)-modules. Viewing A = U L as a quotient of 
T L, we see that it inherits both a Der( L )-action and a multiplicative Der( L)-
homomorphism 

tJ. = tJ.L : A - A ® A . 

This tJ. is of course the standard coproduct on U L for which each x E L is 
primitive. We mention once and for all that tJ. makes U L into a cocommuta-
tive coassociative Hopf algebra [10]. The reduced coproduct X: A+ - A+ ®A+, 
given by X(x) = tJ.(x) - 1 ® x - x ® 1, is also a Der(L)-homomorphism. 

The Poincare-Birkhoff-Witt theorem tells us that U L is a filtered Der(L)-
module, the kth filtration quotient being isomorphic to the k-fold symmetric 
product of L with itself [13]. We shall see shortly that for k < p these quotients 
are Der( L )-summands of U L . 
Notation. Let Sk denote the symmetric group on k letters. Let U E Sk and let 
~ = (XI' ... ,xk) be a list of homogeneous elements in L. Define the graded 
sign [u: ~] of u relative to ~ to be the sign (i.e., + 1 or -1 ) that u has when 
viewed as permuting k blocks of sizes Ix II, ... , IXk I. Put 

1 
C(~) = C(x l , ••• ,xk) = k! L [u: ~](XU(I)···· .xu(k)) ' 

UESk 
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which defines an element of U L whenever k < p = p(R). Put A~] = Land 
for 2:5 k < p, 

[k] { } A+ = SpanR C(x!' ... ,xk)lxi E L ~ UL. 

For 1 :5 k < p, we know that A~] is a Der(L)-submodule of A. Further-
more, these submodules account for all of A+ in dimensions below rp. Define 
two more families of Der(L)-modules by 

k-I 
(A®2)[k] = in Ali] ® A[k-i] C A®2 

+ w+ + -+' 
i=1 

k-2 k-i-I 
(A®3)[k] = in in Ali] ® AU] ® A[k-i- j ] C (A®3) 

+ WW + + + - +. 
i=1 j=1 

Direct computation reveals the following. 

Lemma 3.6. X(A~]) = 0 and X(A~]) ~ (A!2)[k] for k < p. Specifically, 

(12) - ~/II I II 
AC(:!:) = L.,£:!: ;:!: ]C(:!:) ® C(:!: ). 

In (12) the sum runs over all 2k - 2 partitions of (1,2, ... , k) into an 
ordered pair of nonempty sublists. The corresponding sublists of :!: are denoted 

I II • III h :!: and :!: . The notatIOn L!.;:!: ] represents [(J::!:1, were (J rearranges 
(1 ,2, ... ,k) so as to obtain the first sublist followed immediately by the second 
sublist. 

We present next a kind of inverse for X. 
Definition. For 1 :5 k < p , let J.l: (A!2)[k] -+ A~] be given by 

{ 
J.l(XI ® C(X2' ... ,xk)) = kC(xp •.. ,xk); 

J.l = 0 on ~~-I A[i] ® A[k-i] 
W/=2 + + . 

Direct computation verifies 

Lemma 3.7. (a) J.l is a Der( L )-homomorphism. 

(b) J.lX = 1 on ~:~ A~]. In particular, X is one-to-one on these A~]. 
- - n"\P-I [k] 

(c) AJ.lA = ~ on '\I7k=1 A+ . 

There are two more specific Der(L)-homomorphisms that we shall need. 

Definition. Put E = (A!2) EB (A!3) and let 4J = (4J 1 , 4J2): A!2 -+ E, where 
4J1 = 1 - rand 4J2 = X ® 1 - 1 ® X. For k < p , let E[k] = (A!2)[k] EB (A!3)[k] 

and note that 4J: (A!2)lk] -+ Elk]. Define A: Elk] -+ (A!2)lk] as follows: 

{ 
A(a ® b) = -(k)r(a ® b) on A~] ® A~-i]; 

A(a ® b ® c) = itL(1 + r)(J.l(a ® b) ® c) on A~] ® A~] ® A~-i-j]. 
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Lemma 3.8. (a) ¢ and A are Der(L)-homomorphisms. 
(b) ¢IS = o. 
(c) On (A~2)[kl, k < p, 1S.u + A¢ = 1. 
(d) ¢A.¢ = ¢. 
(e) For 2 ~ k < p, the following sequence is exact: 

( 13) 
Proof. For (a), ¢ and A are built out of other known Der(L)-homomorphisms. 
(b) expresses precisely the cocommutativity and coassociativity of the coproduct 
~: A -+ A®A. (c) is a direct calculation involving Lemma 3.7(b) and (12), and 
(d) follows from (b) and (c). For (e), Lemma 3.7(b) showed exactness at A~l; 
by (c), if ¢(x) = 0, then x E im(lS) . 

Taking the direct sum over k of the sequences (13) yields at once 

Lemma 3.9. Let L be r-reduced and free as an R-module. The sequence of 
Der(L )-homomorphisms 

(14) 

is exact in dimensions below rp. 

We can extend our results by one additional dimension. 

Lemma 3.10. Extend .u over the module (A~2\p by defining it to be zero on 
ffif:/ (A~l ® A~-i\p. Then .u is a Der(L )-homomorphism on (A~\:;rp in the 
sense that, whenever 6 E Der(L) and x E A~2 with Ixl ~ rp and 161 + Ixl ~ rp, 
then .u6(x) = 6.u(x). Likewise, A may be extended to a Der(L)-homomorphism 

( ®2 ®3) on A+ EB A+ 5,rp' 
Proof. Straightforward. 

Proposition 3.11. Let B be a Hopf algebra whose coproduct 'II is cocommu-
tative and coassociative in dimensions ~ m, where m ~ rp - 1. Suppose B 
is r-reduced and free as an R-algebra. Write B = R(S). Then the natural 
Hopf algebra homomorphism f: U(ker 'II) -+ B restricts to an isomorphism 
/: U«ker 'II)(m)) -+ B(m)' Moreover, (ker 'II)(m) ~ LR(S n B5,m) , so .u is de-
fined on (B~2)m+l' and / extends to an epimorphism (not as Hopf algebras) 
I': U«im(1 - .u'll))(m+l)) -+ B(m+l)' 
Proof. For all but the last assertion, it may be assumed that B = B(m) , and 
that 'II is cocommutative and coassociative. Let L = ker 'II. We will choose, 
for each XES, a 'II-primitive x' E B such that x - x' E (B+)2. Then 
S' = {x' Ix E S} is isomorphic as a graded set with S, and the inclusion of 
S' into ker 'II induces the Lie algebra homomorphism g: LR(S') -+ L. Since 
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each x' differs from x by a decomposable, S' generates B freely. Thus the 
composite 

R(S/) = ULR(S/) ~ U(L) L B 

is an isomorphism of Hopf algebras, where f is the standard Hopf algebra 
homomorphism from the enveloping algebra of the primitives. Since L1LR (S'} = 

'II, Lemma 3.9 says that L = ker 'II = ker~LR(S'} = LR(S/) below dimension 
m + 1 . This does it. 

Suppose inductively, for some n :5 m, that we have constructed x' for each 
XES of dimension smaller than n. By the argument of the preceding para-
graph we may identify B(n_l) with U(L(n_I») as Hopf algebras. In particular, 
the ~ for L(n_l) and 'II coincide in dimensions less than n. Let XES, 
Ixl = n, and put y = 'II(x). The cocommutativity and coassociativity of 'II 
tell us that 

(1- T)(Y) = 0 and (~® 1 - 1 ®~)(y) = ('II ® 1 - 1 ® 'II)(Y) = 0, 
- 2 i.e., ¢>(y) = O. By Lemma 3.9, y = L1(z) for some z E (B(n_l)n = (B+)n' 

Since ~ and 'II agree on B(n_I) ' 'II(x - z) = y - ~(z) = 0, i.e., x' = x - z 
is 'II-primitive. This completes the inductive step, and the proof of all but the 
last assertion. 

For the assertion regarding I', we may assume that B = B(m+l) and that 
'II first fails to be cocommutative or coassociative in dimension m + 1. Thus 
B(m) = U((ker 'II)(m») ' ~nd J1. is defined on (B~\:;m+1 (using Lemma 3.10 if 
m = rp-I ). Replace each (m+ I)-dimensional generator XES by x-J1.'II(x). 
Since im(J1.) ~ (B+)2, we obtain a new generating set for B. Recalling that 
(ker'll)~m = (im(I- J1.'II))~m' we see that I' surjects. 

Remark. In exchange for certain limitations on R, we can replace the hypoth-
esis of B being free with B being free as an R-module, without altering the 
conclusion that B ~ U(ker 'II) below dimension m + 1. When R is a field, 
this conclusion is implicit in [10, Proposition 4.17] for char(R) = 0, in [10, 
Proposition 4.21] for char(R) =j:. O. 

Finally, suppose a Hopf algebra A with coproduct 'II can be given a differ-
ential d such that'll: (A, d) - (A, d) ® (A, d) is a DGA homomorphism. If 
a set of generators for A belongs to L = ker('II), then their boundaries (i.e., 
d-images) also lie in L. If 'II first fails to be cocommutative or coassociative 
in dimension m + 1 , and if some (m + 1) -dimensional generators for A lie in 
im(I - J1.'II)m+I' then their boundaries lie in (im(I - J1.'II))m = (ker'll)m = Lm' 
This gives us at once 

Corollary 3.12. Let (A, d) be a free r-reduced dga, A = TV. Let 'II be a co-
product on A which is also a DGA homomorphism. Suppose that 'II is cocommu-
tative and coassociative in dimensions :5 m, where m :5 rp - 1. Then there is a 
free graded R-module W ~ A such that W ~ V as R-modules, W~m ~ ker('II), 
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(A(m) ,d) = U(2(W~m),d), W>m+' = V>m+,' and d(W~m+') ~2(W~m). In 
particular, if (A, d) is r-mild and '" is both cocommutative and coassociative, 
then (A, d) has the form U(2W, d) and", = llyW' where (2W, d) is an 
r-mild dgL. 

4. HOPF ALGEBRAS UP TO HOMOTOPY 

We define the category HAH of homotopy algebras up to homotopy. We 
observe that the properties of DGA described in §2 by and large have analogs 
in HAH. We discuss homotopy categories briefly and state the paper's main 
algebraic theorem, Theorem 4.8. 

As above, R denotes a commutative ring with unity, n-' E R for n < 
p = p(R) , and -r(a ® b) = (_1)lallblb ® a. Recall that e: A - R denotes 
the augmentation for a graded algebra, and put 1C, = (1 ® e): A ~ A - A, 
1C2=(e®I):A®A-A. 

Definition 4.1. Let (A, d) E DGA(R) , and let ",(A, d) - (A, d) ® (A, d) be 
a DGA homomorphism. The triple (A, d ,"') is called a Hopf algebra up to 
homotopy (henceforth Hah) over R if there exist four homotopies in DGA: 

(i) between 1C, '" and 1, 
(ii) between 1C2 '" and 1, 

(iii) between -r", and "', 
(iv) between ('" ® 1)", and (1 ® "') '" . 

A homomorphism of Hah's is a DGA homomorphism f: (A, d) - (A' ,d') such 
that (f ® f) '" ~ ",' f. The category of Hah's over R and their homomorphisms 
is denoted HAH(R) , or simply HAH. 

A Hah (A, d, "') is called free, r-reduced, r-mild, etc. if (A, d) is so in 
DGA. A homomorphism in HAH is called a surjection, quism, or split inclusion 
if it is one in DGA. 

Lemma 4.2. The identity 1: (A, d , "') - (A, d ,X) is a HAH homomorphism if 
and only if '" ~ X. In this case, it is an isomorphism. 
Proof. Clear. 

We define cylinder and homotopy in HAH by essentially copying the defi-
nitions for these concepts in DGA. Let (A, d ,"') E HAH. Given any DGA 
cylinder (A* ,d*) on the underlying dga (A, d), put ",* = U, ® j2)"'P. Then 
j, ,j2' and p are automatically HAH homomorphisms. We deduce at once the 
following two lemmas. 

Lemma 4.3. Let f: (A, d , "') - (B ,e, X) be an HAH homomorphism and let 
g: (A, d) - (B, e) be a DGA homomorphism. The following are equivalent: 

(i) f ~ g in DGA; 
(ii) g is an HAH homomorphism and f ~ g in HAH. 
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Lemma 4.4. Let f: (A, d , If!) --+ (B , e , X) be an HAH homomorphism and sup-
pose g: (B ,e) --+ (A, d) is a homotopy inverse in DGA. Then g E H AH, and 
f and g are homotopy inverses in HAH. 

Can we prove analogs for HAH of the facts in §2 about DGA? Perhaps surpris-
ingly, we encounter a snag right away! Lemma 2.1(a) is trivial, but for Lemma 
2.1(b) we obtain only the following two special cases, which fortunately suffice 
for subsequent applications. 

Lemma 4.5. Let (B,e,X) E HAH and let f: (TV,d) --+ (B,e) be a quism 
in DGA. Then there exists w making f: (TV, d, w) --+ (B, e, X) into an 
HAH quism. In particular, for any (B, e , X), there exists a surjective quism 
f: (TV ,d ,w) --+ (B ,e,X) in HAH. 
Proof. Use the lifting lemma to lift xf: TV --+ B®B through f®f, obtaining 
w: TV --+ TV ® TV such that (f ® f)w :::::: xf. It remains only to check the 
four axioms for (TV, d, w) to be a Hah. This comes down to four applications 
of Proposition 2.9(d). 

Lemma 4.6. Any HAH homomorphism f(TV, d, If!) --+ (B, e, X) may be fac-
tored as (TV, d, If!) -L (T(V EB W), 0, w) !!... ,B, e, X), where q is a quism and 
j is a split inclusion. 
Proof. Let A = TV. Let q and j be given by Lemma 2.1(b). Choose w 
according to the previous lemma. Then (T (V EB W) , 0 , w) E HAH and q is an 
HAH homomorphism. Since wj and U®j)1f! are both liftings (through q®q) 
up to homotopy of xf, they are homotopic, i.e., j is an HAH homomorphism. 

The reader may now check that the remaining facts listed in §2 remain valid 
in HAH. 

Let (L, 0) E DGL(R). Then (U L, 0 ,~) is a Hah. Indeed, we have equality, 
not just homotopy, for the four axioms. Likewise, U f is an HAH homomor-
phism when f E DGL. Let HAH,(R) denote the full subcategory of HAH(R) 
consisting of r-mild objects (i.e., free, r-reduced, and generated in degrees be-
low rp(R)). 

Observation 4.7. We may view U as a functor from DGL(R) to HAH(R) or, 
for any r ~ 1 , as a functor from DGL,(R) to HAH,(R). 

Let us briefly discuss homotopy categories and closed model categories. For 
any category ~ having a notion of homotopy between morphisms satisfying 
Lemma 2.2, we may construct the "classical" homotopy category ~~ . Objects 
in ~~ are objects of C, but morphisms in Jf'tf6? are homotopy classes of 
morphisms in ~. Two objects of the same homotopy type in ~ become 
isomorphic in ~~. A functor !7: ~ --+ ~ such that !7 f :::::: !7 g whenever 
f:::::: g induces a functor ~(F): Jf'tf6? --+ Jf'D. In particular, the functor U 
of Observation 4.7 induces Jf'&. In this paper we do not actually utilize any 
deeper concept of homotopy category than this classical one. 

Quillen [12] gave a list of axioms for a closed model category, which DGA(R) 
and DGL(Q) satisfy. The axioms refer to three special classes of morphisms, 
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called fibrations, cofibrations, and weak equivalences. On any closed model 
category Quillen constructed a homotopy category by formally inverting the 
weak equivalences. 

Is HAH(R) a closed model category? The author does not know. One 
of Quillen's axioms requires that any morphism factor as in Lemma 2.1(b). 
This axiom might not hold for all morphisms. One can also wonder whether 
HAH(R) satisfies the weaker set of axioms discovered by Baues for a cofibra-
tion category [5]. Again this hinges on the factorization axiom, but the answer 
is "yes" if we restrict to the full subcategory HAH. (R) consisting of free Hah's. 
The homotopy category for HAH. (R) in Baues' sense coincides with the clas-
sical ~ HAH. (R). When p(R) < 00 , the categories DGL,(R) and HAH,(R) 
are not closed model nor cofibration categories. 

A functor !T: ~ --+ g is an equivalence of categories if it induces a bijec-
tion on isomorphism classes of objects, as well as bijections Mor~(A, B) --+ 

Mor 9J (!T A ,!T B) for each pair of objects in ~. We are at last prepared to 
state our principal result. 

Theorem 4.8. ~(U): ~DGL,(R) --+ ~HAH,(R) is an equivalence. Further-
more, the functor U itself induces a bijection on isomorphism classes of objects. 

The proof that U induces a surjection will occupy all of §5, while §6 will 
explore naturality and uniqueness. 

5. THE SURJECTIVITY OF U 

We prove here what is the heart of Theorem 4.8, namely, the surjectivity of 
U on isomorphism classes. Our method of proof is an induction on dimension. 
Given a Hah (A, d , VI) , we construct a sequence of diagonals VI::= VII ::= Vl 2 ::= 
. .. which converge to something strictly cocommutative and coassociative. 

Our first two lemmas are adaptations to DGA(R) of results proved by 
Lemaire and Aubry for DGL(Q). The proofs are essentially identical to those 
of [4] and we omit them. 

Lemma 5.1. Let f, g , h: (TV, d) --+ (B, e) be DGA homomorphisms which 
coincide on V<n' Suppose F and G are derivation homotopies from f to g 
and from h to g , respectively. Then there is a derivation homotopy H from f 
to h such that H = F - G on T(V~n)' 

Lemma 5.2. Let (A, d) and (B, e) be two dga's, A = TV, and let {r: (A, d) 
--+ (B ,e)}n>o be a sequence of DGA homomorphisms. Suppose there exist 
derivation homotopies F n from fn to r+ 1 • Suppose further that for some 
monotonically increasing integer sequence N(n) such that N(n) --+ 00 as n --+ 

00, we have Fn(V~N(n)) = O. Define f: (A,d) --+ (B ,e) by letting f(x) = 

/,(x) where N(k) ~ Ixl. Then f is a well-defined DGA homomorphism, and 
f ::= ~. Also, if each r is an isomorphism, then f is an isomorphism. 
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Consider an r-mild Hah (A, d, "'), A = TV. Let k :::; rp - 1, where 
p = p(R). Suppose that 1T. 1'" = 1 A = 1T.2 "" and also that the restrictions 
to T(V<k) of '" and of ."" and of ('" ® 1)", and of (1 ® "')'" , coincide. 
Corollary 3.12 tells us that (T(V<k),d,,,,) = (UL,d,a) for some dgL (L,d), 
where L ~ 2"(V<k). We may, therefore, build the Der(L)-homomorphisms f/J 

d l f - fi 1812 1812 1813 an It. 0 §3. They are de ned on (A+ )<k and on E<k = (A+ )<k E9 (A+ )<k' 
respectively. Of course, Lemma 3.8 is true for this range of dimensions. -

Let q = (1 - e): A -+ A+ be as in the proof of Lemma 3.5. We also allow q 
to denote any of the homomorphisms q®2: A®2 -+ A~2, q®3: A®3 -+ A~3 , or 
(q®2 E9 q®3): (A®2 E9 A®3) -+ (A~2 E9 A~3) = E. 

Definition 5.3. Let (A, d, "') be an r-mild Hah, A = TV. Call (A, d, "') 
n-perfect if 

(i) 1T. 1'" = 1 A = 1T.2 '" ; 

(ii) '" =.", and ('" ® 1)", = (1 ® "')'" on V<n; and 
(iii) there exist derivation homotopies G1 from '" to .", and G2 from 

("'® 1) '" to (1 ® "') '" such that q( G1 ' G2)«ker "')<n) ~ im( 1 E-f/JA.) ~ E 
(cf. the paragraph after Lemma 5.2). 

The initial step of our induction is provided by 

Lemma 5.4. Let (A, d, "') be an r-mild Hah. Then there exists X ~ '" such 
that (A, d ,X) is I-perfect. 

Proof. Let 1T. be the surjection 1T. = (1T. 1 ,1T.2): A®A -+ A xA. Because (A, d, "') 
is a Hah, there is a homotopy 1T. '" ~ (1 , 1): A -+ A x A. Apply Proposition 
2.8 to obtain a lifting X of (1,1) homotopic to ",. Now (i) is satisfied. For 
n = 1 , (ii) follows immediately and (iii) is vacuous. 

Proposition 5.5. Let (A, d ,"') be r-mild and n-perfect, n < rp - 1, A = TV. 
Then there exists X ~ '" such that X coincides with '" on T(V<n) and (A,d,X) 
is (n + 1 )-perfect. Furthermore, the derivation homotopy F from '" to X may 
be chosen so that F(~) = 0 for i < n and for i> n + 1. 

Proof. Without loss of generality we may replace V by the R-module W of 
Corollary 3.12. Then V<n ~ ker(",) and d(V<n+l) ~ 2"V<n. Also, since 
dE Der(L) , it acts on the- Der(L)-modules (T(V: n))®2 and (1·(V<n))®3. For-
tunately, the action of d in this sense coincides with the differentIals on these 
objects viewed as dga's. The notation "d" is thus unambiguous. 

Let G1 , G2 be as in Definition 5.3(iii). By Definition 5.3(i) and (ii), the 
homomorphisms '" and .", fulfill the hypotheses of Lemma 3.5. We deduce 
that qG1 satisfies 
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(qG ,)[X ,y] = [(qG, )(X) , IJI(Y)] + (-1 )Ixl [1JI(x) , (qG, )(y)] 

(ISb) = BO(X ,y) ad(y)(qG, (x)) + (_1) lxl ad(x)(qG, (y)) 
for x ,y E L, Ixl + Iyl :::;; n + 1. 

Here BO(X ,y) = _(_1)(lxl+')lyl, and we view ad(z) for z E L as an element 
of Der(L). . 

Likewise, writing 1J13 for (IJI ® 1)1JI, qG2 satisfies 
(16a) d(qG2) + (qG2)d = (IJI ® 1)1JI- (1 ® IJI)IJI = tP21J1 on V::;n+'; 

(qG2)[x ,Y] = [(qG2)(x) , 1J13 (y)] + (_1) lx l [1JI3 (x) ,(qG2)(y)] 

(16b) = BO(X ,y)ad(y)(qG2(x)) + (_I)lxl ad(x)(qG2(y)) 
for x ,y E L, Ixl + Iyl :::;; n + 1. 

Since tP and A are Der(L)-homomorphisms, they commute with d and 
with any ad(z). Apply AtPA to the previous four equations and write F for 
AtPAq(GI' G2): (2'V)::;n+' --+ A ® A. We obtain 
(17a) dF + Fd = (AtPA)(tP, , tP2)1JI = AtPAtPlJI = AtPlJI on V::;n+' ; 

F[x ,y] = BO(X ,y) ad(y)F(x) + (_I)lxl ad(x)F(y) 

(17b) = [F(x) , IJI(Y)] + (-1 )Ixl [1JI(x) ,F(y)] 
for x ,y E L, Ixl + Iyl :::;; n + 1. 

Define X" = IJI-AtPlJI: V<n+' --+A®A,andextend X" uniquely to an algebra 
homomorphism x': T(V<n~') --+ A ® A. By Definition S.3(ii), tPlJI vanishes 
on V<n' hence on T( V<:). Thus X' coincides with IJI and with IJI - AtPlJI on 
T(V::;:). For x E v,,+, ,-d(x) E T(V::;n) ' so 

X'd(X) = (IJI- AtPlJI)d(x) = d(lJI- AtPlJI){X) = dX' (x). 
Hence x' is a DGA homomorphism. The right-hand side of (17a) is precisely 
IJI - x', so Lemma 3.4 applies to F. Using Lemma 3.4, F extends to a 
derivation homotopy, also denoted F, from IJI to x' on T(V<n+'). 

Now apply the homotopy extension property (we may take - F(~) = 0 for 
i > n + 1 ) to obtain a further extension of F which is a derivation homotopy 
from IJI to some DGA homomorphism X that extends x'. Because F (V) ~ 
A~2, we have 1C(IJI-X) = 1C(dF+Fd) ~ 1C(A~2) = 0, i.e., 1C,X = 1C,1JI = lA and 
1C2X = 1C21J1 = l A • We have F(V>n+') = 0 by definition, whereas for x E V<n 
Definition S.3(iii) yields 

F(x) E im(AtPA(1 - tPA)) = im(AtPA. - A(tPAtP)A) = O. 
To verify Definition S.3(ii) for x, let tPx be the" tP" for the coproduct x, 

i.e., tPx = (1 - r ,X ® 1 - 1 ® X)· Note that tPx and tP (= tP",) coincide in 
dimensions:::;; n + 1 . Hence on V::;n+" 

tPxX = tPx(lJI- AtPlJI) = tP(1JI - AtPlJI) = (tP - tPAtP)1JI = O. 
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Finally, let us construct the derivation homotopies J, and J2 required by 
Definition 5.3(iii) for (A, d ,X). We have derivation homotopies F from '" 
to X, G, from '" to r"" and rF from r", to rx, while all four DGA 
homomorphisms coincide on V<n. By Lemma 5.1, there is a J, from X to 
r X such that -

J, = -F + G, + rF = G, - ¢J,J..¢JJ..qG on VSn , 

where G = (G, ,G2): TV -+ (A®2) $ (A®3). The diagram of derivation homo-
topies 

(X ® l)X (x~)F (X ® 1)", (F~)\fI ('" ® 1)", ~ (1 ® "')'" 

('~)\fI (1 ® X)'" (1~)F (1 ® X)X 

likewise yields a J2 from (X ® l)X to (1 ® X)X such that 

J2 = -(X ® 1 - 1 ® X)F - (F ® 1 - 1 ® F)", + G2 

= G2 - ¢J2J..¢JJ..qG - (something in ker(q)) on V~n. 

Thus 

q(J, ,J2) = q(G - ¢JJ..¢JJ..qG) 
= (1 - ¢JJ..)qG ~ im(lE - ¢JJ..) on V~n. 

It remains only to pass from knowing this relation on V<n to knowing it 
on all of (ker(X))<n' as needed ~or Definition 5.3(iii). Observe that if bi E 
ker(x) and q(J" J2)bi = (1 E - ¢JJ..)(Xi) for i = 1,2, with Ib,1 + Ib21 ~ n, then 
q(J, ,J2)([b, ,b2]) = (1 E - 4>J..)(y) , where 

y = (-1 )Ibd ad(b,)(x2) + Bo(b, ,b2) ad(b2)(x,) . 

This completes the proof. 

Theorem 5.6. The functor v: DGL,(R) -+ HAH,(R) surjects on isomorphism 
classes. I.e., for any (A, d ,"') E HAH,(R), there exists X == '" such that 
(A ,d ,X) = (V L,d ,,1.) for some (L,d) E DGL,(R). 

Proof. Applying Proposition 5.5 inductively, we obtain a sequence '" == ",' == 
",2 == ... for which (A, d ,,,,n) is n-perfect. If p = p(R) < 00, the sequence 
terminates at ",'P-' but ",'P-' is strictly cocommutative and coassociative. By 
Corollary 3.12, (A, d , ",'P-') = (V L, d ,,1.). If instead p(R) = 00 , Lemma 5.2 
shows that '" is homotopic to some "limit coproduct" X which is cocommu-
tative and coassociative. Again apply Corollary 3.12. 

6. NATURALITY AND UNIQUENESS 

We complete the proof of Theorem 4.8. We demonstrate that any homomor-
phism f between enveloping algebras in HAH,(R) is homotopic to Va for 
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some homomorphism Q in DGL,(R). By the Lemaire-Aubry theorem (Propo-
sition 3.3), the homotopy class of Q is unique. If f is an isomorphism, Q may 
be taken to be an isomorphism. Thus U induces an injection on isomorphism 
classes. Combining these facts with Theorem 5.6, we easily obtain the desired 
equivalence of homotopy categories. 

We begin with a definition, an inductive step, and a theorem, which are 
analogs of Definition 5.3, Proposition 5.5, and Theorem 5.6. We retain the 
notation q for the retraction q: B ® B --+ B + ® B + . 

Definition 6.1. Let (£'V,d) bean r-milddgLandlet (M,e) bean r-reduced 
R-free dgL. An HAH homomorphism f: U(£'V,d) --+ U(M ,e) is n-perfect 
if 

(i) f(V<n) ~ M; and 
(ii) there is a derivation homotopy G from dMf to (f ® f)dL such that 

qG(V<n) ~ im(I - "l..MJ.l) ~ ((UM)J8)2, where J.l is the Der(M)-
homomorphism of §3. 

Remark. Any such f is automatically I-perfect. 

Proposition 6.2. Let (£'V, d) E DGL,(R), let (M, e) be an r-reduced R-free 
dgL, and let f: U(£'V ,d) --+ U(M ,e) be n-perfect, where n < rp - I, p = 
p(R). There is an (n + I)-perfect g such that g ~ f. If f is an isomorphism, 
so is g. There is a derivation homotopy F from f to g having F(V;) = 0 for 
i < n and for i > n + I . 
Proof. Write L = £'V, B = U M, and let d L , d M denote the respective co-
products on U L, B. Let J.l: (B!\~:,p --+ (B+)"5"p be the Der(M)-homomor-
phism defined in §3. It satisfies "l..MJ.l"l..M ="l..M and J.l"l..MJ.l = J.l below dimen-
sion rp. Since e E Der(M) , it acts on B ® B , and this action coincides with 
the differential on B ® B as a dga. Provided we stay at or below dimension 
rp, J.l commutes with e and with any ad(z) for z EM. 

Note that dMf and (f®f)dL are two DGA homomorphisms from (U L, d) 
to (B ® B, e) which coincide on V<n' The restriction of (f ® f)dL to £'V 
lies in B ® 1 + I ® B , and the difference 

dMf - (f ® f)dL = "l..Mf 
automatically takes its image in B+ ® B+. Apply Lemma 3.5 to the G given 
by Definition 6.1 (ii). We see that qG satisfies 

(18a) e(qG) + (qG)d = "l..Mf on V"5,n+1 ; 

(qG)[x ,y] = [(qG)(x) ,dMf(y)] + (-I)!x![dMf(x) , (qG)(y)] 

(18b) = Go(x ,y) ad(f(y))(qG(x)) + (_1)!x! ad(f(x))(qG(y)) 
for x ,y E £'(V"5,n)' Ixl + Iyl ~ n + 1. 

Here Go(x, y) = -( -1 )(!X!+ll!Y! as in §5. 
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Apply I.l to both of these equations and write F = I.lqG. We obtain 

(19a) eF + Fd = I.l~Mf on V$;n+1 ; 

F[x ,y] = eo(x ,y) ad(f(y))(F(x)) + (-1 )Ixl ad(f(x))(F(y)) 

(19b) = [F(x) ,dMf(y)] + (_l)lxl[dMf(x) ,F(y)] 
for x ,y E 2'(V$;n)' Ixl + Iyl ~ n + 1. 

Put gil = f -1.l~Mf: V<n+1 -+ B and extend to an algebra homomorphism 
g': T(V$;n+l) -+ B. Then -g' coincides on T(V$;n) with f, and ~Mf(dx) E 

~M(M) = 0 for x E V$;n+1 . Thus 

g'd(x) = (f -1.l~Mf)d(x) = e(f -1.l~Mf)(x) = eg' (x) 

for x E V<n+I' so g' is a DGA homomorphism. Applying Lemma 3.4 to f 
and g', d~duce from (19a, b) that F extends to a derivation homotopy, also 
denoted F, from f to g' on T(V<n+I). 

Using the homotopy extension property, extend F to a derivation homotopy 
from f to some DGA homomorphism g that extends g' . Recall that im(l.l) s;;: 
(B+)2. Consequently, choosing F(V>n+l) = 0, we have im(F) s;;: (B+)2. It 
follows that f(x) - g(x) is decomposable for each x E V. Thus f is an 
isomorphism if and only if g is an isomorphism. 

Notice that ~Mg(X) = (~M-~MI.l~M)f(x) = 0 for x E V<n+I' i.e., g(V<n+l) 
s;;: M. Use Definition 6.1 (ii) to see that - -

F(V<n) = I.lqG(V<n) s;;: im(l.l(l - ~MI.l)) = o. 
Finally, by Lemma 5.1, we may add the derivation homotopies indicated by the 
diagram 

dMg ll.t!.! dMf !!. (f ® f)dL (F~ll.L (g ® f)dL (g®~)ll.L (g ® g)dL . 

We obtain a derivation homotopy J from dMg to (g ® g)dL satisfying 

J = -dMF + G + (F ® f + g ® F)dL 

= G - dMl.lqG + (something in ker(q)) on V$;n. 

Hence qJ = qG - ~Ml.lqG = (1 - ~MI.l)qG on V$;n. 

Theorem 6.3. Let f: V(L,d) -+ V(M,e) be a homomorphism in HAH(R) , 
where L is r-mild and M is r-reduced and R-free. There exists a homomor-
phism 0: in DGL(R) such that f ~ Vo:. If f is an isomorphism then 0: is an 
isomorphism. 
Proof. Observe that g = Vo: for some 0: if and only if g(L) s;;: M, and that 
V 0: is an isomorphism if and only if 0: is an isomorphism. By Proposition 6.2 
we have a sequence f = l ~ l ~ ... , where fn is n-perfect. When f is 
an isomorphism, so is each fn. If p(R) = p < 00, then !'P-I(L) s;;: M, and 
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we are done. If p(R) = 00 , Lemma 5.2 shows that f is homotopic to some g 
having g(L) ~ M, with g being an isomorphism if f is. 

Theorem 6.4. Let f: (A, d , "') - (B , e , X) be any homomorphism in HAH, (R) . 
There exists a homomorphism a: (L,d) - (M,e) in DGL,(R) such that 
U(L,d) may be identified with (A ,d); U(M ,e) may be identified with (B ,e); 
and there exist DGA homotopies f ~ Ua, '" ~!1L' X ~!1M' Furthermore, a 
is an isomorphism if and only if f is an isomorphism. 
Proof. Use Theorem 5.6 to choose (L, d) and (M, e). Then use Theorem 6.3 
to choose a. 

Corollary 6.5 (cf. 4.8). Thefunctor U: DGL,(R) - HAH,(R) induces a bijec-
tion on isomorphism classes. 

Theorem 6.6. Let (L, d) and (M, e) be r-mild dgL's. Suppose there is an 
HAH homotopy equivalence f: (U L , d ,!1 L) - (U M , e , !1 M)' Then (L, d) and 
(M ,e) have the same DGL homotopy type. 
Proof. Let g be a homotopy inverse in HAH,(R) for f (cf. Lemma 4.4). 
By Theorem 6.3 choose a: L - M and p: M - L such that Ua ~ f and 
U p ~ g. Then U (P a) ~ U (1 L)' so the Lemaire-Aubry theorem says that 
pa ~ 1 L in DGL,(R). Likewise, ap ~ 1M in DGL,(R). 

Corollary 6.7. The functor U: DGL,(R) - HAH,(R) induces a bijection on 
homotopy types. 

This corollary, together with Theorem 6.3 and the Lemaire-Aubry theorem, 
yield at once 

Theorem 6.8 (cf. 4.8). The functor U induces an equivalence 

~(U): ~ DGL,(R) - ~ HAH,(R) . 

7. THE SINGULAR CHAINS ON A TOPOLOGICAL MONOID 

We apply Theorem 4.8 to the cubical singular chain complex of a topological 
monoid. Over a ring containing the rationals, we find a strictly cocommutative 
coassociative diagonal approximation. Using it, we construct a functor E from 
topological monoids to DGL whose composite with the enveloping algebra func-
tor equals the Eilenberg subcomplex of the (cubical) singular chain complex. We 
use E to construct rational "commutative cochains." 

We begin by introducing some formalism which will facilitate our study of 
the cubical singular chains on a topological monoid. Let R be an arbitrary 
commutative ring with unity. Let eu. (X) denote the cubical singular chain 
complex on an arbitrary topological space X with coefficients in R. To con-
struct eu. (X) , take the R-module generated freely by all the singular n-cubes 
(i.e., continuous a: In _ X, where In is the unit cube), and divide out by 
the R-submodule generated by degenerate cubes (a is degenerate if it factors 
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through any of the n standard projections onto I n- 1 ). As is well known CU. ( ) 
is naturally chain equivalent with the functor C. () of simplicial singular chains. 

Define a nonconnected graded algebra S by S = R(a, b, x}, where lal = 
Ibl = 0 and Ixl = I. Impose a second grading on S by word length, /(a) = 
/(b) = /(x) = 1. We interpret x, a, b as symbolizing the interval I = [0,1] 
and its endpoints 0 and 1, respectively. Words of length n in S correspond 
bijectively to faces of the n-cube In according to the following scheme. A word 
u on {a, b ,x} corresponds to a face of dimension lui (= the number of x's). 
The ith coordinate ofthe face inclusion map, 1 :::; i:::; n, is constant at 0 (resp. 
1) if the ith letter of u is" a" (resp ... b "). In this way, we view the words u 
in S of length n as elements of CU.(In). 

Let D: S - S be the (1, 1 )-derivation on S of degree -1 satisfying D( a) = 
D(b) = 0 and D(x) = b - a. Given a word u E S of length n and a singular 
n-cube a: In _ X , let a 0 u denote the restriction of a to the face u. Then 
the boundary of a is given by the formula 

(20) 8(a) = a 0 D(xn ). 

Using this formalism we may also give explicit Eilenberg-Zilber homomor-
phisms 

CU.(X x Y) - CU. (X) ® CU.(Y) - CU*(X x Y) 
~ K 

such that 11K is the identity and K11 is naturally chain homotopic to the identity. 
When a: i-x and p: Ii - Y, we define K(a ® P) to be the singular cube 
a x p: i+i = i x Ii ~ X x Y. 

To give the formula for 11 we introduce '1': S - S ® S , which is the unique 
algebra homomorphism satisfying 

'I'(a)=a®a, 'I'(b)=b®b, 'I'(x) = a ® x + x ® b. 

Notice that D'I' = 'I'D, where D denotes either the differential we defined 
above or the differential it induces on S ® S. For (a, a'): In - X x Y, put 

11(a, a') = (a ® a') 0 'I'(xn). 

We leave it to the reader to verify that 11K = 1 and K11 ~ 1. Putting 'II = 
11 0 CU * (~) , where ~: X - X x X is the diagonal map, we obtain the formula 

(21) 'II(a) = (a ® a) 0 'I'(xn) , a: In - X, 

for the diagonal approximation (in the Alexander-Whitney sense) 'II. 
Let MaN, denote the category of (r - I)-connected topological monoids, 

r ~ 0 (MONo contains all topological monoids). For X E MaN" we use K 

to give CU*(X) the obvious associative multiplication and unit. Clearly, 8 is 
a derivation. For X, Y E MONo' it is easily checked that 

(22) 11((a1 ,a;). (a2 , a~)) = 11(a1 ,a;), 11(a2 , a~). 

Hence, 'II is also multiplication-preserving. 
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Because 'I' is strictly coassociative, so is ",. We can define an explicit deriva-
tion homotopy E' from 'I' to r'l' by setting 

E'(a) =0, E'(b) = 0, E'(x) = -x ®x. 

When X E MONo' the formula 

(23) 

gives an explicit natural derivation homotopy between '" and r",. 
When X is an (r - I)-connected pointed space, r ~ 1, let CU:(X) denote 

its (r - l)st Eilenberg subcomplex, i.e:, the subcomplex of CU.(X) generated 
by all singular cubes which send the (r - I)-skeleton of In to the base point. 
When X E MON, , r ~ 1, then CU:(X) is an r-reduced dga which is quasi-
isomorphic to CU. (X) . We have actually proved 

Proposition 7.1. Let r ~ 1. Then CU: ( ), together with the coproduct '" of 
(21), is a functor from MON, to HAH(R). The coproduct satisfies strict coas-
sociativity and naturality, and 1C I'" = 1C2'" = 1. The homotopy E from '" to 
r", is given by (23). 

We want to apply Theorem 4.8 to (CU:(X) , "'), but we cannot do so directly 
because CU:(X) might not be a tensor algebra. We proceed instead to define 
a formal object which acts as a universal example for a singular cube on a 
topological monoid. This formal object contains all faces of a and all products 
of faces of a. It is a Hah, and we apply Theorem 4.8 to it. In our discussion 
we incorporate the connectivity parameter r. Over Q it suffices to put r = 1. 

Fix r ~ 1. Let S' = S>, = Span{ words u E S = R(a, b ,x} which utilize 
r or more x's}. Define a graded R-module homomorphism 1': S -+ TS' by 
letting Yisr be the inclusion of S' = TiS' into TS' and putting y(u) = 0 if 
1 :5 lui < rand y(u) = 1 if u is a word of dimension zero. Thus ker(y) is 
spanned by all words u having 0 < lui < r together with all differences u - v, 
where u and v are words of dimension zero. Note that 

(24) D(ker(y)) ~ ker(y), 'I'(ker(y)) ~ ker(y ® 1'), E' (ker(y)) ~ ker(y ® 1'). 

Also, im(y) generates TS' as an algebra. 
Because of (24), we may define a (1, I)-derivation D': TS' -+ TS' of de-

gree -1, an algebra homomorphism'll': TS' -+ TS' ® TS' , and a ('1", r'l")-
derivation of degree + I by the formulas 

(25) D'y = I'D, '1" I' = (I' ® 1')'1', E'y = (I' ® y)E' . 

Note that (D? = 0 and (by Lemma 2.3) that E' is a derivation homotopy 
from'll' to r'l". Also, 1C1'I" = 1C2 '1" = 1 ,and'll' is coassociative because'll 
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is. We have proved 

Lemma 7.2. (TSr , Dr ,,¥r) is an r-reduced Bah. 

We want to apply Theorem 5.6 to the Hah (TSr ,Dr, ,¥r). However, we will 
not simply plug this Hah into the theorem, because we carethat certain compati-
bilities should hold for the resulting coproduct. Observe first that (TSr , Dr , ,¥r) 
actually decomposes as 

TSr = Iloo TSr,n 
n=r ' 

where Sr,n = {u E S>rl/(u) = n}. The formulas for Dr and ,¥r are compatible 
with this decomposItion. If u is any word on {a, b ,x} of length nand 
dimension m, write u = Yoxy1x··· xYm, where each Yj is a word on the set 
{a, b}. Then u determines an HAH homomorphism hu: (TSr,m ,Dr, ,¥r) --+ 

(TSr,n ,Dr, 'fir) by the formula 

hu(y(zl···zm)) = Y(YOzIYlz2···zmYm), 
Zj E {a,b,x}. In particular, hu(y(xm)) = y(u). 

Now we carefully construct the derivation homotopy F r from ,¥r to the 
new coproduct <l>r, so that F r and <l>r commute with every hu (this means: 
F r hu = (hu ® hu)Fr, <l>r hu = (hu ® hu)<l>r). Suppose for some n that <l>r and 
F r have been defined on TSr ,k for k ~ n and that they commute with hu 
whenever /(u) < n. Suppose further that (TSr,k ,Dr ,<l>r) is k-perfect in such 
a way that the G1 and G2 of Definition 5.3(iii) may be chosen so as to be 
compatible with all such hu 'so When u is a word of length n and dimension 
m < n, put 

r h h r m F y(u) = ( u ® u)F y(x ). 

This suffices to define <l>r and F r on the sub-dga (TSr,n)(n_I). 
Thus F r is a derivation homotopy from the (TSr,n)(n_l) restriction of ,¥r 

to <l>r. It remains only to extend <l>r and F r over the single n-dimensional 
generator y(xn) of TSr,n. Proposition 5.5 will do this provided that n < 
rp(R) and provided that «TSr,n)(n_l) ,Dr ,<l>r) is (n - I)-perfect. The latter 
requirement is met via our inductive hypothesis that G1 and G2 commute with 
each hu. We have outlined a proof for 

Lemma 7.3. If Q ~ R, there is a derivation homotopy F r from 'fir to a co-
commutative coassociative coproduct <l>r on (TSr ,Dr) such that Fr and <l>r 
commute with any hu. If p = p(R) < 00, then F r and <l>r exist commuting 
with hu 's on TSr,n for n < rp. 

Now let X E MONr and let W E TSr,n , where n < rp. Let 0': In --+ X 
send the (r - I)-skeleton of In to the base point. If W = y(U I)y(U2)··· y(um) , 
uj E S, /(u) = n, then O'@]W denotes the product 

O'@)w = (0' 0 ul )· (0' 0 u2)··· (0' 0 um) 
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in the dga CU:(X). Notice that a@Jy(u) = 0'0 U for u E S, so 

(a ® a)@J'¥'y(xn) = (a ® a)(y ® y)'¥(xn) 

= (a ® a) 0 '¥(xn) = lfI(a). 

Similarly, 8(a@Jw) = a@J(D'w). 
Given X, Y E MON" define F', r,': CU:(X x Y) ---> CU:(X) ® CU:(Y) by 

(26a) 

(26b) 

r/(a,a') = (a®a')@J<I>'y(xn), 
'(' " n F 0',0') = (a®a )@JF y(x ), 

where 10'1 = 10"1 = n < rp. Then 1'/' is a chain map because (the sum ranges 
over the set of faces u of an n-cube): 

, ',"",' , 1'/8(0', a) = ~ ±1'/ (a 0 u, a 0 u) 

= L ±((a 0 u) ® (a' 0 u))@JcI>'y(xn- l ) 

= L±(a®a')@J(hu®hJ<I>'y(xn-l) 

'""' "h n-I =~±(a®a)@J<I> uy(x ) 

= L ±(a ® a')@J<I>'y(u) 

= (a ® a')@J<I>'D'y(xn) 

= (a ® a')@JD'<I>'y(xn) 

= 8((0' ® a')@J<I>'y(xn)) = 81'/' (a, a'). 

Similarly one verifies that F' is a derivation homotopy from 1'/ to 1'/'. 
Put F ,if>: CU:(X) ---> CU:(X) ® CU:(X) by F = F' 0 CU:(~), if> = 1'/' 0 

CU:(~). Thus, 

(27) if>(a) = (a®a)@J<I>'y(x n ). 

Notice that 
(28) 

p x and Py denoting the projections of X x Y onto its factors, so that 7r I if> = 
7r2if> = 1. It is now straightforward to verify 
Proposition 7.4. Suppose R :2 Q, r ~ 1. Then if> is a functorial cocommuta-
tive coassociative dga homomorphism, and F is a functorial derivation homo-
topy from IfI to if>. In particular, if> is a cocommutative coassociative diagonal 
approximation on CU: ( ) for topological monoids. Furthermore, the functo-
rial chain equivalence 1'/' is cocommutative and coassociative in the following 
sense. If t: X x Y ---> Y x X switches coordinates, then 1'/' 0 CU: (t) = 'f1'/' , and 
(1'/;xxy) ® 1)1'/;xxY)xz = (1 ® 1'/;YXZ))1'/~X(yXZ): CU:(X x Y x Z) ---> CU:(X) ® 
CU:(Y) ® CU:(Z). 
Theorem 7.5. Suppose R :2 Q, r ~ 1. There is a functor 

W: MON, ---> DGL,(R) 
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such that UW = CU:( ). Furthermore, the coproduct dW(X) on UW(X), with 
respect to which each WE W(X) is primitive, is a diagonal approximation. 
Proof. It suffices to check this when R = Q, since we may then tensor over 
Q with R. Put W(X) = ker(4)). Then W is a functor, .and by [10] we have 
UW = CU:( ) and ¢J = dW(X). 

Theorem 7.6. Suppose p = p(R) < 00. Then Proposition 7.4 and Theorem 
7.5 hold, up to dimension rp - 1. For X, Y E MONr , there is a functorial 
cocommutative coassociative 

",': CU:rp(X x Y) -+ (CU:(X) ® CU:(Y))<rp 

and a functorial cocommutative coassociative "diagonal" 

¢J: CU:rp(X) -+ (CU:(X) ® CU:(X))<rp· 

There are natural chain homotopies between ", and ",', and between '" and ¢J, 
so ¢J serves as a diagonal approximation below dimension rp. There is a functor 
W: MONr -+ DGL(R) such that (UW)<rp( ) = CU:rp ( ), for which dW(X) = ¢J. 

We discuss next the relationship between the functor W of Theorem 7.5 and 
various functors that occur in rational homotopy theory. Two functors from a 
category ;r to a category consisting of chain complexes are quasi-isomorphic 
if there is a natural transformation between them (going either way) which is 
a quasi-isomorphism for each object of ;r. Two such functors gr and gr' 
are weakly equivalent, denoted gr ~ gr' , if there is a sequence gr = ~, 
9'; , ... ,g;., = gr' of functors with !T; quasi-isomorphic to !T;-l . 

Recall the bar and cobar functors 

(29) 
B 

DGA~DGcoA, 
B 

where DGcoA, or DGcoA(R) , denotes the category of differential graded coas-
sociative I-connected coalgebras over R. In [13] Quillen discussed the functor 

C: DGL -+ CDGcoA, 

where CDGcoA is the full subcategory of DGcoA consisting of cocommutative 
coalgebras. We have the relationships 

(30) BB ~ id, BB ~ id, B U ~ C, BC ~ U. 

Let TOP r denote the category of r-connected topological spaces. The Moore 
loop space functor, denoted a ~ carries TOPr to MONr • Adams [1] showed 
that BC; ~ cu!a as functors from TOP I to DGA, where C; denotes the 
I-connected Eilenberg subcomplex of C*. Implicit in his paper is the slight 
generalization that 

(31) 

for any r ~ 1. 
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Proposition 7.7. For r ~ 1, R 2 Q, let ~ be as in Proposition 7.4. There is a 
weak equivalence of functors 

2 C. ::: C~.o: TOP, ---> DGcoA(R) , 
and C~Q(X) lies in CDGcoA(R). 
Proof. By (30) and (31) and Theorem 7.5, we have 

C2 ::: BBC2 ::: B(CU').o = B U ~Q ::: C ~Q . • • • 
As we suggested in the introduction, the functor ~.o coincides up to homo-

topy with the rational homotopy theory functor 

Q: TOP! ---> DGL(Q) 
introduced by Quillen [12]. This is proved in the forthcoming paper [6], where a 
short list of axioms is given which provides a necessary and sufficient condition 
for any such functor to be weakly equivalent to Quillen's Q. In particular, 
since Q is a complete rational homotopy invariant, so is ~Q. 

8. THE ADAMS-HILTON MODEL AS A HAH 

We review the properties of the Adams-Hilton model A(X) for a simply-
connected CW complex X. We show that A(X) is an r-mild Hah when X is 
r-connected and dim(X) ~ rp(R). Applying Theorem 4.8, we obtain an r-mild 
dgL L(X) associated to X. We then explore the properties of L as a model. 

As always, p = p(R) for some commutative ring with unity R. Let CW, 
(resp. CW;) be the full subcategory of TOP, consisting of CW complexes 
with trivial r-skeleton (resp. and of dimension ~ k). Adams and Hilton [2] 
constructed, for each X E CW1 , a dga over R A(X) = (A(X) ,dx )' The dga 
A(X) comes with a quism () x: A(X) ---> CU! (.oX). Since arbitrary choices are 
made in the construction of d x and () x ' and A(X) depends upon our choice 
of CW decomposition for X, we do not think of A(X) as being unique. 

Likewise, for any (not necessarily cellular) map f: X ---> Y in CW1 and 
for any choice of models (A(X) , ()x) and (A(Y) , ()y), Adams and Hilton con-
structed a DGA homomorphism A(f): A( X) ---> A( Y). The homomorphism 
A(f) comes with a derivation homotopy "'f from (CU!Qf)o()x to ()yoA(f). 
Again, both A(f) and '" f require us to make some arbitrary choices, so we do 
not view them as unique. We call (A(f) , "'f) a model for f· 

We list now fourteen major properties of the model A. Theorem 8.1 is nearly 
a complete summary of results for the Adams-Hilton paper [2]. 

Theorem 8.1 (Adams-Hilton). The model A: CW1 ---> DGA(R) has the follow-
ing properties. 

(a) If X = (pt) u (UoES eo) is a cell decomposition for X, leal ~ 2, then the 
underlying algebra A(X) is isomorphic to R(bola E S), where Ibol = lenl- 1. 
Moreover, the linearized chain complex A(X)+/(A(X)+)2 may be identified with 
the desuspension of the reduced cellular chain complex for X. 
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(b) In particular, if X E CW" then A(X) is r-reduced; if X E CW;P, then 
A(X) E DGA,(R) . 

(c) If f ~ g, then A(f) ~ A(g) in DGA. In particular, two models for the 
same map must be homotopic in DGA. Conversely, if , ~ A(f) in DGA, then 
there exists a derivation homotopy v/ such that (', ",') is also a model for f. 

(d) One model for the identity map 1 x is (1 A(X) ,0) . 

(e) If X 1. Y .£ Z, then (A(gf) , "'gf) may be taken to be (A(g) 0 A(f), 
CU!(Og) 0 "'f + "'g 0 A(f))· 

(f) If f: X - Y is a homotopy equivalence, so is A(f). 
(g) Let Xo be a subcomplex of X, say X = (pt) U (UaES ea ), Xo = (pt) u 

(UaESo ea ), So ~ S. Given any model (A(Xo),dxo ' °Xo) , there is a model 
(A(X) ,dx ' Ox) for which dx and Ox are extensions over A(X) of dxo and ° Xo . 

(h) Under the hypotheses of (g), let f: X - Y be a map and put 10 = fl xo . 
Given any models (A(Y) , By) and (A(fo) , "'fo)' there is a model (A(f) , "'f) for 
which A(f) and "'f are extensions over A(X) of A(fo) and "'fo· 

(i) Let {Xp} ~ CW1 be a family of subcomplexes of a CW complex X, 
and suppose X = Up Xp. Suppose we have models (A(Xp) ' 0Xp) satisfying the 
coherency conditions 

d xp IA(xpnxy) = d Xy IA(xpnxy) , 
0XpIA(XpnXy) = OXyIA(XpnXy) 

for each pair of indices (P, y). Then colim{A(Xp) ' 0Xp} is an Adams-Hilton 
modelfor X. 

U) Under the hypotheses of (i), let f: X - Y be a map and put fp = fl xp · 
Fixing a model (A( Y) , ° y ) , suppose we have models (A(fp) , '" fp) satisfying the 
coherency conditions 

A(fp)IA(xpnxy) = A(.t;,)IA(XpnXy) ' 

'" fp IA(xpnxy) = '" h IA(xpnxy)" 
Then colim{A(fp) ' "'fp} is an Adams-Hilton model for f· 

(k) Let 10: S" - XO' n ~ 2, and extend 10 to f: D"+l - X = XOUfo e"+l . 
Choosing the standard two-cell decomposition of D"+l we have A(D"+I) = 
R(z, zo) with IZol = n - 1, Izl = n, d(z) = -zo· Let (A(Xo), 0Xo) and 
(A(fo) , "'fo) be models for Xo and 10· Then one for X is given 
by A(X) = A (Xo)II R(bf ), Ibfl = n; dx(x) = dxo(x) for x E A(Xo), dx(bf ) 
= -A(fo)(zo); 0x(x) = Ox/x) for x E A(Xo) , 0x(bf ) = CU!(Of)(OD.+1 (z)) + 
"'fo(zo) . 

(1) Under the hypotheses of (k), let go: Xo - Yo have model (A(go) ' "'go) . 
Extend go to g: X - Y = Yo U gofo en+ 1 in the obvious way, and choose models 
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for X and for Y as in (k). Then an extension (A(g) , IfIg) of (A(go)' IfIgo) may 
be chosen for which A(g)(bf ) = (bgf), IfIg(bf ) = O. 

Two further properties concern the model for a product space X x Y. If 
X = (pt) U (Uo:ES eo:) and Y = (pt) u (Uo:ESI eo:), then A(X x Y) is freely 
generated as an R-algebra by {bo:lo E S"}, where 

S" = SUS' u (S X S') . 

(Adams and Hilton point out that X x Y need not be a CW complex for their 
construction to exist.) We define 

v = VXy: A(X x Y) --+ A(X) ® A(Y) 

by v(b,) = bo: ® 1 for 0 E S, v(bo:) = 1 ® bo: for 0 E s', v(bo.) = 0 for 
o E (8 X S'). 

(m) Given (A(X),Ox) and (A(Y),Oy), it is possible to choose dXXY and 
0XXY for A(X x Y) such that vXy is a DGA homomorphism and thefoJ/owing 
diagram commutes up to homotopy: 

A(X x Y) _____ v...:;.x.:...y ____ -+-) A(X) ® A(Y) 
OXXy! ! Ox®f}y 

--+ (CU! nX) ® (CU! ny) . 
" 

(32) 
CU! n(X x Y) --+ cu!(nX x ny) 

Furthermore, letting X ~ X x Y 4 Y denote the projections, we may take 
A(Px) = n1vXY and A(Py) = n2vXY · 

(n) Given maps f: Xo --+ X and g: Yo --+ Y and models for f and g, any 
model (A(f x g), IfIfxg) for f x g makes the following diagram commute up 
to homotopy: 

(33) A(fxg) ! ! A(f)®A(g) 
A(X x Y) -- A(X) ® A(Y) . 

VXy 

Remark. If we restrict ourselves to spaces and maps in CW r' then we may 
presume that Ox: A(X) --+ cu:(nX) , and likewise for IfIr • 

Notation. Let A: X --+ X x X be the diagonal map, and let A. x be the composite. 

A.x = vxx 0 A(A): A(X) --+ A(X) ® A(X). 

Lemma 8.2. With IfI as in (21), the following diagram commutes up to homo-
topy: 

A(X) Ax -- A(X) ®A(X) 
(34) Ox ! ! Ox®Ox 

CU! nx -- (CU! nX) ® (CU! nX) . 
VI 

Proof· Choose dxxx and 0xxx according to Theorem 8.1(m). 
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Proposition 8.3. The model A( ), together with A( )' takes CW I (resp. CW~P) 

to HAH(R) (resp. HAH,(R)). 
Proof. The four homotopies for AX follow from Proposition 7.1, Lemma 8.2, 
and the lifting lemma. When f: X - Y, the diagram 

A(X) A~) A(X x X) ~ 
A(f) ! ! A(fxf) 

A(Y) - A(Y x Y) -
A(~) Vyy 

A(X) ®A(X) 
! A(f)®A(f) 

A(Y) ®A(Y) 

commutes up to homotopy by Theorem 8. 1 (c,n). 
Construction 8.4. For X E CW;P, (A(X) , Ax) is an r-mild Hah. Applying 
Theorem 5.6 yields an r-mild dgL L(X) = (L(X) ,ox) for which UL(X) ~ 
A(X) and dL(X) ~ Ax. For any map f: X - Y in CW~P ,we have by Theorem 
6.4 a DGL homomorphism L(I): L(X) - L(Y) such that UL(I) ~ A(f). We 
view L as a model from CW~P to DGL,(R). We view L(X) as coming with 
a quism Ox: UL(X) - cu:(nX), and L(f) as coming with a derivation 
homotopy IfIf from cu: nf 0 Ox to Oy 0 UL(I). 

For completeness we list the properties of L, since they are likely to be useful 
in applications. 

Theorem 8.5. The model L: CW;P - DGL,(R) has the following properties. 
(a) If X = (pt) u (UaES ea) is a cell decomposition for X, rp ~ leal> r, 

then the underlying Lie algebra L(X) is isomorphic to LR{balo: E S}, where 
Ibal = leal- 1. The linearization L(X)j[L(X) , L(X)] may be identified with the 
desuspension of the reduced cellular chain complex for X. 

(b) (UL(X) ,Ox) (resp. (UL(I),lfIf)) isanAdams-Hiltonmodelfor X (resp. 
I). In particular, Ox induces an isomorphism of R-algebras 

(35) (Ox).: H.(UL(X)) ~ H.(nX ;R). 

If R is afield, (35) is an isomorphism of Hopf algebras. 
(c) If f ~ g , then L(I) ~ L(g). In particular, two models for the same map 

must be homotopic. Conversely, if , ~ L(f) in DGL,(R) , then there exists a 
derivation homotopy 1fI' such that (', 1fI') is also a model for f. 

(d) One model for the identity map 1 x is (1 L(X) ,0) . 

(e) If X .4 Y .!. Z, then (L(gf) , IfIgf) may be taken to be (L(g) 0 L(f), 
cu:(ng) 0 IfIf + IfIg 0 UL(I)). 

(t) If f: X - Y is a homotopy equivalence, so is L(I). 
(g)-(l) Analogs of Theorem 8.1 (g)-(1) are true, with CW;P, L, L, Ox every-

where replacing CW I ,A, A, d X. For (k) and (1), require that rp > n > r. 
Proof. (a)-(t) are straightforward, as are (g)-(1) once we make a certain obser-
vation. The observation is that the constructions in Theorems 5.6 and 6.3 are 
natural with respect to certain sub-Hah's. Suppose in Theorem 5.6 that the Hah 
(A, d, 1fI) satisfies A = T(V EEl W) and d(V) ~ TV and IfI(V) ~ TV ® TV , so 
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(TV, dl Tv ' ",lTv) is also a Hah. Applying the construction of Theorem 5.6 di-
rectly to this sub-Hah yields a sequence {Vi(n)} of homotopic coproducts whose 
limit or (rp - 1 )st term Vi is cocommutative and coassociative on TV. Some 
arbitrary choices may be involved where the homotopy extension property is 
used. Fixing any such set of choices, it is possible to perform the construction 
of Theorem 5.6 on the whole (A, d ,"') in such a way that each term of the 
resulting sequence {",(n)} satisfies ",(n) lTv = Vi(n) • Thus the limit or (rp - 1 )st 
term of {",(n)} restricts to Vi. Because of this, L easily inherits the various 
coherency properties from those of A. 

Corresponding to Theorem 8.1(m) and (n), we have 

Theorem 8.6. Let X, Y E CW~p. Suppose dim(X) + dim(Y) ~ rp. There is a 
quism 

C;XY: L(X x Y) -+ L(X) EB L(Y) 

such that the diagram 

UL(X x Y) ____ U_~_Xy ___ ___+_) UL(X) ® UL(Y) 
(36) ()XXy 1 1 ()x®()y 

CU: n(x x Y) -+ cu:(nx x QY) -+ (CU. nx) ® (CU. QY) 
'1 

commutes up to homotopy. The first and second components of C;XY are ho-
motopic to L(px) and L(Py), respectively. Furthermore, C; is natural in the 
following sense. Given any maps f: Xo -+ X and g: Yo -+ Y in CW~P where 
dim(Xo) + dim(Yo) ~ rp, the following diagram commutes up to homotopy: 

(37) 

L(Xo x Yo) -+ L(Xo) EB L(Yo) 
~Xoyo 

L(fxg) 1 
L(X x Y) -+ 

~Xy 

1 L(f)(j)L(g) 

L(X) EB L(Y) 

In particular, when 2· dim(X) ~ rp, the diagonal map ~: X -+ X x X has a 
model L(~) such that C;xx 0 L(~) = ~: L(X) -+ L(X) EB L(X), where ~(x) = 
(x ,x). 

Proof. By Theorem 8.1(m) we have the quism 

VXy: UL(X x Y) -=. UL(X) ® UL(Y) = U(L(X) EB L(Y)). 

By Theorem 6.3, we know that vXy ~ UC;XY for some quism C;Xy: L(X x Y) -+ 

L(X) EB L(Y). The Lemaire-Aubry theorem yields c;xy ~ (L(px) ' L(py)). 
By Theorem 8.1(m), the commutativity up to homotopy of (36) is immediate. 
Theorem 8.1 (n) together with the Lemaire-Aubry theorem shows that (37) com-
mutes up to homotopy. As to C;xx 0 L(~), note that U(C;xx 0 L(~)) = vxx 0 

UL(~) = A.x ~ ~L(X) = U(~), so Lemaire-Aubry shows that ~ ~ C;xx 0 L(~). 

Now use the lifting lemma (C;xx is a surjective quism) to replace L(~) by a 
homotopic homomorphism' for which C;xx 0' = ~. 
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Proposition S.7. (a) There is a weak equivalence 
2 'P C. ~ CL: CW, - DGcoA(R) , 

and CL(X) lies in CDGcoA(R). 
(b) On TOP, we may construct "commutative cochains" over R up to dimen-

sion rp. 
Proof. (a) Imitate the proof of Proposition 7.7, with L replacing g'Q. 

(b) Given any space X E TOP" choose an r-connected CW approximation 
and take its rp-skeleton, i.e., f: Y - X with Y E CW;. Then C;(X) .e-

f. 
C; (Y) ~ CL( Y) in dimensions ~ rp . 

Theorem S.S. Suppose R ;2 Q, and let ¢ be as in Proposition 7.4. It is possible 
to choose ()x such that ()x(L(X)) ~ ker(¢»). The restriction of ()x to L(X) 
determines a DGL quism 

OJx : L(X) - g'Q(X) , 

which is natural in the sense that there is a DGL homotopy OJ y 0 L(f) ~ g'Q(f) 0 

OJx : L(X) - g'Q(Y) for any map f: X - Y. 
Proof. Applying Theorem 6.3 to the HAH homomorphism () x: UL(X) -
(CU: QX , ¢), we obtain a HAH homomorphism ()~ homotopic to () x for 
which ()~(L(X)) ~ ker(¢»). Since any DGA homomorphism homotopic to ()x 
could also serve as a valid choice for () x ' we may replace () x by ()~. We have 
proved the first claim and the existence of OJ x. The naturality follows easily 
from the Lemaire-Aubry theorem. 
Remark. If we weaken the concept of weak equivalence of functors to allow 
for models as well as functors and to allow for quisms which are natural trans-
formations only up to homotopy, Theorem 8.8 tells us when R ;2 Q that L ~ 
g'Q ~ Q. Also, the" L " constructed for the ring R = Z[1 / (p - 1)!] , call it L R , 

and the" L " constructed for Q, call it L Q , are related via L Q ( ) = L R ( ) ® Q . 
Thus L R( ) ® Q ~ Q, as needed in diagram (1). 

9. THE MOD P COHOMOLOGY OF LOOP SPACES 

In this final section we will prove Wilkerson's conjecture [9]. According to 
this conjecture, if X is a finite simply-connected CW complex, then for p » 0 
pth powers vanish in il* (QX; Zp) . 

Theorem 9.1. Let p be a prime and let X be an r-connected CW complex of 
dimension n, where rp ~ n. Then (a) pth powers vanish in il*(QX ;Zp), and 
(b) H. (QX ; Zp) is primitively generated as a Zp -algebra. 
Proof. The equivalence of Theorem 9.1 (a) and (b) is given in [10, Proposition 
4.20]. The theorem follows at once from Theorem 8.5(b) and the following 
lemma. 
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Lemma 9.2. Let (L,a) be a dgL over Zp. Then the Hopf algebra H*U(L,a) 
is primitively generated as a Zp -algebra. 

Proof. Because U L is primitively generated, pth powers vanish in the dual 
Hopf algebra (UL)*. Deduce that pth powers vanish in the cohomology al-
gebra H*((UL)* ,a*), which is the Hopf algebra dual of H*U(L,a). Thus 
H* U(L, a) is primitively generated. 
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ABSTRACT. Let (A, d) denote a free r-reduced differential graded R-algebra, 
where R is a commutative ring containing n- I for 1 :5 n < p. Suppose 
a "diagonal" "': A -+ A ® A exists which satisfies the Hopf algebra axioms, 
including cocommutativity and coassociativity, up to homotopy. We show that 
(A, d) must equal U(L,t5) for some free differential graded Lie algebra (L,t5) 
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if A is generated as an R-algebra in dimensions below rp. As a consequence, 
the rational singular chain complex on a topological monoid is seen to be the 
enveloping algebra of a Lie algebra. We also deduce, for an r-connected CW 
complex X of dimension ~ rp , that the Adams-Hilton model over R is an 
enveloping algebra and that pth powers vanish in jj*(OX;Zp). 
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