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HOPF ALGEBRAS WITH NONSEMISIMPLE ANTIPODE

EARL J. TAFT1 AND ROBERT LEE WILSON2

ABSTRACT.   An example is given to show that the antipode of a fi-

nite dimensional Hopf algebra over a field of prime characteristic  p > 2

need not be semisimple.   (For p = 2  examples were previously known.)

The example is a pointed irreducible Hopf algebra  H  (with antipode  S) of

dimension p     such that S      = I 4 S   .

Radford [4] has recently shown that the antipode  S of a finite dimension-

al Hopf algebra  H over a field K has finite order. Consequently, if  K is of

characteristic zero then the antipode of H is semisimple. On the other hand,

if  K is of characteristic 2 then S is semisimple only if S = /.  (For other-

wise 5 has even order, say  2k,  and so  0 = S2k - I = {Sk - I)2.)  In this note

we show that S may fail to be semisimple for any characteristic  p > 3.  We do

this by constructing a pointed irreducible Hopf algebra of dimension p     over

an arbitrary field of characteristic  p > 3  in which the antipode has order 2p

(and hence is not semisimple).

A related problem is that of finding a bound for the order of S.   In [7] the

authors have shown that if H is pointed, if G{H) has exponent e and if HQ

C H. C • • • C H    = H is the coradical filtration then (S2e - l)m = 0. Thus if
-      1 — —     m «

K has characteristic  p and p"      < m < pn  then S = /.   Thus the order of

5 divides 2epn.  A number of finite dimensional pointed Hopf algebras are

known [2], [3], [6] in which the order of the antipode is  2e.  (In one of these,

due independently to Radford [3] and Sweedler (described in [2]), n = 0 and

hence the upper bound  2epn  is actually attained.) The example given here is

the first of a pointed Hopf algebra in which the order of  S exceeds   2e  (here

e = 1). Whether the order of the antipode can actually equal  2ep" when n > 1

remains an open question.
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270 E. ]. TAFT AND R. L.WILSON

1.  Definition of H.   Let K be a field of characteristic p> 3 and let R

denote the free algebra over   K on three noncommuting variables  X, Y, and Z.

Since   R  is free there is a   unique homomorphism A : R —> R  ® R  such that

A(x)= i ® x + x ® i,   A(y)= i ® y+y ® 1,

A(z) = i®z + z®i + x®y.

It is easily checked that (/ ® A)A and   (A & /)A  agree on the free generators

X, y, and Z  and hence that A  is coassociative. We define an algebra homo-

morphism e : R —» K by e (X) = £ (y) = e (Z) = 0.  It is immediate that (/ ® e)A

= (e ® /)A = /.   Hence   R  is a bialgebra.

Let i  be the ideal in  R  generated by [X,  y] - X, [y, Z] + Z, [X, Z] -

X2/2, X", Yp - Y, and Zp.

We wish to show that 3 is a bi-ideal, i.e., that A(á) CR®3 + á®R

(obviously e(9) = (0)).   It is sufficient to check this on generators for 3.   For

the generators [X,  y] - X, Xp, and   Yp - Y the result follows from the fact

that in a bialgebra over a field of characteristic  p  the primitive elements

form a restricted Lie algebra.  For the remaining generators we compute:

A([y, Z] + Z) = [Ay, AZ] + AZ

= [i®y+y®i,i®z + z®i + x®y]

+i®z+z®i+x®y

= i® [y, z] + [y, z] ®i + [y, x]® y

+i®z+z®i+x®y

= i ® ([y, z] + z) + ([y, z] + z) ® i - ([x, y] - x) ® y;

A([X, Z] - X2/2) = [AX, AZ] - (AX)2/2

= [i®x+x®i,i®z + z®i + x®y]

-(X2/2)®1-X®X-1 ®(X2/2)

= i ® [x, z] + [x, z] ® i + x ® [x, y]

- (X2/2) ® 1 - X ® X - 1 ® (X2/2)

= i ® ([x, z] - (x2/2)) + x ® ([x, y] - x)

+ ([X, Zl-(X2/2)) ® 1;

\{Zp) = (AZ)P =(1®Z+Z®1 + X® Y)p.
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Jacobson [1, formula (63), p. 187] has shown that if a and  b are elements of

an associative algebra over a field of characteristic p then

p-\

(a +b)p = ap + bp +   £   s.
i = \

(*)
where   is. is the coefficient of \l   l  in  a{a.à(r\a + b))p   '.

Hence

A{zp) = (i ® z)p + (z ® i + x ® y)p + £ s.

where  is. is the coefficient of À        in

(i®z)(ad(Mi®z) + z®i + x®y)^-1.
Now

[l ® z, A(i ® z) + z ® i + x ® y] = x ® [z, y] = x ® z

(where all congruences are modulo 3 ® R + R ® 9).  Now since [X, Z] = X /2

(and [ab, c] = a[6, c] + [a, c\b for any elements  a, b, and  c  in an associative

algebra) we have [X", Z\ = («/2)X"+1. Hence

\xl ® z, A(i ® z) + (z ® i + x ® y)] = \x\ z] ® z + x¿+1 ® [z, y]

a((í + 2)/2)X¿+1 ®Z.

Thus by induction we see that

(1 ® Z)(ad(A(l ®Z)+Z®1 + X® y))¿ = {(i + 1) )/2i)Xi ® Z

and so

(i ® z)(ad(A(i ®z) + z®i + x® y))*'-1 = o.

Hence we have

A{Zp) =1®ZÍ' + (Z®1 + X® Y)p.

Using (*) again we see that

(Z ® 1 + X ® Y)p = (Z ® 1)" + (X ® Y)p + ¿   t.

where  it. is the coefficient of A*       in
X

(Z ® l)(ad(A(Z ® 1) + X ® Y))p"%.

Now

[z ® i, A(z ® l) + x ® y] = [z, x] ® y = -Mx2® y.
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Furthermore,

[xf ® y, A(z ® i) + x ® y] = A[x'', z] ® y = (Az/2)x¿+1 ® y.

It follows by induction that (Z ® l)(ad(A(Z ® 1) + X ® y))1  is congruent to a

multiple of X/+1 ® Z and hence that (Z ® l)(ad(A(Z ® 1) + X ® y))""1 = 0.

Hence A{ZP) = 1 ® Zp + Zp ® 1.  This completes the proof that i  is a bi-

ideal.

Let S be the unique antihomomorphism of R such that

s(x) = -x,     5(y) = -y,     s(z) = xy-z.

We claim that S(i) C 1   It is sufficient to check this on generators. We do this

as follows (where all congruences are modulo 9):

s([x, y] - x) = [5(y), six)] - s(x) = [-Y, -x] + x = -([x, y] - x);

S{[ Y, Z] + Z) = [S(Z), S{Y)] + S(Z) = [XY - Z, -Y] + XY - Z

-[x, y]y-[y, z] + xy-z = -([y, z] + z);

S{[X, Z] - X2/2)  m [S(Z), S(X)] - S(X)2/2 = [XY - Z, -X] - X2/2

= X[X, y] + [Z, X] - X2/2 = -([X, Z] - X2/2);

S(Xp) = (S{X))P =-Xp ;

S(YP - Y) = {S(Y))P - S(Y) = -{Yp - Y);

P-i
S(Zp) = (S(Z))P = (xy - Z)p = {XY)P - Zp + Y,   ui

i = \

where  iu. is the coefficient of A!_1   in {XY)(ad(\XY - Z))p~l   (again by (*)).

Now as [X, y] = X it is immediate that (XY)P = 0. Also Zp = 0.  Now [X, Xy]

= X[X, y] = X2  and so [X¿, Xy] = iXi+1. Also [X!', Z] = (i/2)Xi+1.  Thus

[X¿, AXy-Zl= ¿(A   - l^)Xf+1.   Furthermore,

[(xy/2) - z, Ax y - z] = (A _ 1A)[xy, z] = (A - M)([x, z]y + x[y, z])

= (A-M)x((xy/2)-z).

Thus

[x!'((xy/2) - z), Axy- z] = [x\ Axy - z]((xy/2) - Z)+ x''[(xy/2) -z, Axy- z]

^(z+iXA-M)x¿+1((xy/2)-z).

Now since [Xy, AXy - Z] = -[Xy, Z] = -X((Xy/2) - Z)  it follows by indue-License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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tion that

and so

But then

(xy)(ad(Axy - z)Y = - ¿!(A - Itf^xHUXYffl - z)

(xy)(ad(Axy- Z))p~l =-{p- i)K\-1A)p-2xp-1((XY/2) - z)

Z ui^(-jo1{k-y7)p-2d\\xp-1: 0.

Hence S(ZP) = 0, as required.

Now let H = R/9 and let x = X + i, y = Y + i, and z = Z + i. As i is a

bi-ideal, H is a bialgebra. We denote the coalgebra structure maps in H by

A and e. Also, since S(9) C s, S induces an antihomomorphism of H, which

we again denote by S. Then S(x) = -x, S(y) - —y, and S(z) = xy - z. We claim

that H is a Hopf algebra with antipode 5. To verify this we must check that

m{S ® /)A = m{l ® 5)A = tit (where m and ¡i are the algebra structure maps

for H). Now it is sufficient to check this on generators for H. For x and y

this is immediate, and for z we have

m(S ® /)AU) = m(l ® S)A(z) = S(z) + z - xy = 0 = Kc (z),

as required.

2. A basis for H.  It is clear that H is spanned by \x'yJzk\ 0< i,j,k<p- lj.

We will now show that this is a basis for f7.

Consider the following p by p matrices over  K (where  E.. denotes the

usual matrix unit):

Ai=Ep-i,P'       **<•*<•>- 1.       ß= ¿(¿+D^.
2=1

and

p-1

C=E (0+l)/2)£¿i/+r
¿ = i

It is easily checked that [A ., A.] = 0 for 1 < z', /' < p - 1, [A ., B] = ¿A. for

1 < i < p - 1, [A., C] = (z'/2)A.+1  for 1 < z < p - 2, [Ap_y C] = 0, [ß, C] = -C,

A? = 0 for 1 < z < p - 1,  Bp = B,  and  Cp = 0.  Thus  [A .| 1 < z < p - 1 ! u

ÍBi U ÍC| forms a basis for a restricted Lie algebra. Denote this algebra by
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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ÍB and its restricted enveloping algebra by ll.

Let 5 denote the linear span of the set \A. - A1 \2 < i < p - l\ of ele-

ments of ll.   It is easily seen that [$, S] C ¡JU.   (The only nontrivial verifica-

tions are

[A. - A\, C] = (z'/2)(A.+1 - A\^A2)

= (¿/2)((AZ+1 - A\+1) - (A2 -A\)A\-1)    for 2 < i < p - 1-1

and

[Vi - ^i"1' cl =-^a\~1a2 = v^A2 - ^iK-2-)

Since S generates 'll  this shows that l^'U = 5 U-   Let <2 = K/C^U).  Let Aj +

511 = a, B + 5II = b, and C + 3"U = c.  Clearly ifl'Vc*! 0 < t, ft k < p -' I] spans

Cf. We wish to show that this set is linearly independent.  To this end assume

Ea     aJ-V ck = 0
ijk

i,i ,k

where  a...  e K.  Then

Y\   a..LA\BjCk efll.
I,/,*

Since

IÀ*1 • • • A*"* B'Ck\ 0 < ¿"j, • • • , zp_j, /', k < p - 11

is a basis for  ll  it follows that for each / and k, S.a.., A*   e $0 where  Ö is

the linear span of

ÍA1I---A/_-1|0<z1,..-,zí)_1<p-U

Define a homomorphism <f> : Ö —» Ö by

Note that 3   and hence §U are contained in ker (ß.   On the other hand

d>(2,. a... A1,) = S. a... A*. Thus £. a... A*  e íío implies £ . a... A' = 0 so
"      î      zj«    1 1     ijk    1 z      ijk    I      u r i     irk    1

a... = 0 for all i, ;', and  k,  as required.  Thus U is of dimension ¿>  .

Now define a homomorphism if/ : R —> U by t/>(X) = a, i¡/(Y) = b, and

i/r(Z) = c.  Then ker i/r D 9  so i/r  induces a homomorphism of  H onto U. Hence

dim H > pi. Since we already have that \xly'zk\ 0 < i, j, k < p - 11 spans  H

this shows that {xly'z*| 0 < i, j, k < p - l\ is a basis for  W.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HOPF ALGEBRAS WITH NONSEMISIMPLE ANTIPODE 275

3. Properties of  H.  We will now show that  H is pointed and irreducible

and that the antipode of  H has order 2p.

Lemma 1.   // C  is a coalgebra and W  is a simple subcoalgebra, then

/\nW is an irreducible subcoalgebra of C.

Proof.   That  A"W is a subcoalgebra follows from Proposition 9.0.0(i) of

[5].  We prove irreducibility by induction on n. Since   A  W = W  is simple the

result holds for  n = 1.  Assume the result for  n— 1.  Let   y be a simple sub-

coalgebra of  /\nW.  Then

(o)4 Aye (y ® y) nie ® A"-1w + w ®c)

c(y ® y) n(c ® A"~lw + An-1w ®c).

It then follows that   y n A"-1IV 4 (0)  and so, since   y  is simple,   y C

A"~ W.  Then by the induction assumption  Y - W.

Lemma 2.   // M  is a bialgebra and W  is a subbialgebra then

(Amw)(A"w)ç Am+"~1w

for all m and n>\.

Proof.  Since multiplication is a coalgebra map this follows from Lemmas

9.1.3 and 9.2.1 of [5].

Corollary.   H  is a pointed irreducible Hopf algebra.

Proof.  Take  W = K.  Then W is a subbialgebra and a simple coalgebra.

Now x and y e A2W and z € A W.  Then since \x, y, z\ generates  H,  Lem-

ma 2 shows that H = A"W for some  n.   Hence by Lemma 1   H  is irreducible

(and is pointed since  W is pointed). We have already shown that H  is a Hopf

algebra with antipode S  (although we could have avoided doing this, since by

Theorem 9-2.2 of [5] every irreducible bialgebra is a Hopf algebra).

It remains only to determine the order of S.   Now

5  (z) = S(y)S(x) - S(z) = yx - xy + z = [y, x] + z = z — x.

Then S   (z) = z — ix for all  i.   Hence S has order 2p.

We summarize our results in the following

Proposition.   H  is a pointed irreducible Hopf algebra of dimension p  .

The antipode of H has order 2p.

A. A property of H .   Let / be the ideal of H generated by x and z.

Then / is a nilpotent ideal in H.  (For when a monomial is straightened itsLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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total degree in x and z is preserved.) The   quotient   H/J   has   basis

\yJ + ]\ 0 < j < p - I \ and is hence isomorphic to   K[t]/(tp - t),   i.e., it is iso-

morphic to a direct product of p copies of  K.   It follows that  / = Rad H,  that

H    is pointed, and that G(H ) has order p. Thus order of 5   = order of S =

2p = 2(exponent of GÍH )).

Whether or not there exists a finite dimensional pointed Hopf algebra  H

with  H   pointed, order S > 2(exponent of  G(H)), and order S > 2(exponent of

G(H )) remains an open question.
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