HOPF ALGEBRAS WITH NONSEMISIMPLE ANTIPODE

EARL J. TAFT¹ AND ROBERT LEE WILSON²

ABSTRACT. An example is given to show that the antipode of a finite dimensional Hopf algebra over a field of prime characteristic p > 2need not be semisimple. (For p = 2 examples were previously known.) The example is a pointed irreducible Hopf algebra H (with antipode S) of dimension p^3 such that $S^{2p} = I \neq S^2$.

Radford [4] has recently shown that the antipode S of a finite dimensional Hopf algebra H over a field K has finite order. Consequently, if K is of characteristic zero then the antipode of H is semisimple. On the other hand, if K is of characteristic 2 then S is semisimple only if S = I. (For otherwise S has even order, say 2k, and so $0 = S^{2k} - I = (S^k - I)^2$.) In this note we show that S may fail to be semisimple for any characteristic $p \ge 3$. We do this by constructing a pointed irreducible Hopf algebra of dimension p^3 over an arbitrary field of characteristic $p \ge 3$ in which the antipode has order 2p(and hence is not semisimple).

A related problem is that of finding a bound for the order of S. In [7] the authors have shown that if H is pointed, if G(H) has exponent e and if H_0 $\subseteq H_1 \subseteq \cdots \subseteq H_m = H$ is the coradical filtration then $(S^{2e} - I)^m = 0$. Thus if K has characteristic p and $p^{n-1} < m \le p^n$ then $S^{2ep^n} = I$. Thus the order of S divides $2ep^n$. A number of finite dimensional pointed Hopf algebras are known [2], [3], [6] in which the order of the antipode is 2e. (In one of these, due independently to Radford [3] and Sweedler (described in [2]), n = 0 and hence the upper bound $2ep^n$ is actually attained.) The example given here is the first of a pointed Hopf algebra in which the order of S exceeds 2e (here e = 1). Whether the order of the antipode can actually equal $2ep^n$ when $n \ge 1$ remains an open question.

Copyright © 1975, American Mathematical Society

Presented to the Society, January 17, 1974 under the title Some finite dimensional pointed Hopf algebras with nonsemisimple antipode; received by the editors October 25, 1973.

AMS (MOS) subject classifications (1970). Primary 16A24.

¹This research was partially supported by National Science Foundation grant GP-38518.

²This research was partially supported by National Science Foundation grant GP-33226.

1. Definition of *H*. Let *K* be a field of characteristic $p \ge 3$ and let *R* denote the free algebra over *K* on three noncommuting variables *X*, *Y*, and *Z*. Since *R* is free there is a unique homomorphism $\Delta : R \to R \otimes R$ such that

$$\Delta(X) = 1 \otimes X + X \otimes 1, \quad \Delta(Y) = 1 \otimes Y + Y \otimes 1,$$
$$\Delta(Z) = 1 \otimes Z + Z \otimes 1 + X \otimes Y.$$

It is easily checked that $(I \otimes \Delta)\Delta$ and $(\Delta \otimes I)\Delta$ agree on the free generators X, Y, and Z and hence that Δ is coassociative. We define an algebra homomorphism $\epsilon \colon R \to K$ by $\epsilon(X) = \epsilon(Y) = \epsilon(Z) = 0$. It is immediate that $(I \otimes \epsilon)\Delta = (\epsilon \otimes I)\Delta = I$. Hence R is a bialgebra.

Let § be the ideal in R generated by [X, Y] = X, [Y, Z] + Z, $[X, Z] = X^2/2$, X^p , $Y^p = Y$, and Z^p .

We wish to show that \mathfrak{I} is a bi-ideal, i.e., that $\Delta(\mathfrak{I}) \subseteq R \otimes \mathfrak{I} + \mathfrak{I} \otimes R$ (obviously $\epsilon(\mathfrak{I}) = (0)$). It is sufficient to check this on generators for \mathfrak{I} . For the generators $[X, Y] - X, X^p$, and $Y^p - Y$ the result follows from the fact that in a bialgebra over a field of characteristic p the primitive elements form a restricted Lie algebra. For the remaining generators we compute:

 $\Delta([Y, Z] + Z) = [\Delta Y, \Delta Z] + \Delta Z$

$$= [1 \otimes Y + Y \otimes 1, 1 \otimes Z + Z \otimes 1 + X \otimes Y]$$

+ 1 \overline Z + Z \overline 1 + X \overline Y
= 1 \overline [Y, Z] + [Y, Z] \overline 1 + [Y, X] \overline Y
+ 1 \overline Z + Z \overline 1 + X \overline Y
= 1 \overline ([Y, Z] + Z) + ([Y, Z] + Z) \overline 1 - ([X, Y] - X) \overline Y;
$$\Delta ([X, Z] - X^2/2) = [\Delta X, \Delta Z] - (\Delta X)^2/2 = [1 \otimes X + X \otimes 1, 1 \otimes Z + Z \otimes 1 + X \otimes Y] - (X^2/2) \otimes 1 - X \otimes X - 1 \otimes (X^2/2) = 1 \otimes [X, Z] + [X, Z] \otimes 1 + X \otimes [X, Y] - (X^2/2) \otimes 1 - X \otimes X - 1 \otimes (X^2/2) = 1 \otimes ([X, Z] - (X^2/2)) + X \otimes ([X, Y] - X) + ([X, Z] - (X^2/2)) \otimes 1;$$

 $\Delta(Z^p) = (\Delta Z)^p = (1 \otimes Z + Z \otimes 1 + X \otimes Y)^p.$ License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Jacobson [1, formula (63), p. 187] has shown that if a and b are elements of an associative algebra over a field of characteristic p then

$$(a+b)^{p} = a^{p} + b^{p} + \sum_{i=1}^{p-1} s_{i}$$
(*)

where is_i is the coefficient of λ^{i-1} in $a(ad(\lambda a+b))^{p-1}$.

Hence

$$\Delta(Z^p) = (1 \otimes Z)^p + (Z \otimes 1 + X \otimes Y)^p + \sum_{i=1}^{p-1} s_i$$

where is_i is the coefficient of λ^{i-1} in

 $(1 \otimes Z)(ad(\lambda(1 \otimes Z) + Z \otimes 1 + X \otimes Y))^{p-1}.$

Now

$$[1 \otimes Z, \lambda(1 \otimes Z) + Z \otimes 1 + X \otimes Y] = X \otimes [Z, Y] \equiv X \otimes Z$$

(where all congruences are modulo $\Re \otimes R + R \otimes \Re$). Now since $[X, Z] \equiv X^2/2$ (and [ab, c] = a[b, c] + [a, c]b for any elements a, b, and c in an associative algebra) we have $[X^n, Z] \equiv (n/2)X^{n+1}$. Hence

$$[X^{i} \otimes Z, \lambda(1 \otimes Z) + (Z \otimes 1 + X \otimes Y)] = [X^{i}, Z] \otimes Z + X^{i+1} \otimes [Z, Y]$$
$$= ((i+2)/2)X^{i+1} \otimes Z.$$

Thus by induction we see that

 $(1 \otimes Z)(\mathrm{ad}(\lambda(1 \otimes Z) + Z \otimes 1 + X \otimes Y))^{i} \equiv ((i+1)!/2^{i})X^{i} \otimes Z$ and so

$$(1 \otimes Z)(\operatorname{ad}(\lambda(1 \otimes Z) + Z \otimes 1 + X \otimes Y))^{p-1} \equiv 0.$$

Hence we have

$$\Delta(Z^p) \equiv 1 \otimes Z^p + (Z \otimes 1 + X \otimes Y)^p.$$

Using (*) again we see that

$$(Z \otimes 1 + X \otimes Y)^{p} = (Z \otimes 1)^{p} + (X \otimes Y)^{p} + \sum_{i=1}^{p-1} t_{i}$$

where it_i is the coefficient of λ^{i-1} in

$$(Z \otimes 1)(\operatorname{ad}(\lambda(Z \otimes 1) + X \otimes Y))^{p-1}$$

Now

 $[Z \otimes 1, \lambda(Z \otimes 1) + X \otimes Y] = [Z, X] \otimes Y = -\frac{1}{2}X^2 \otimes Y.$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Furthermore,

$$[X^{i} \otimes Y, \lambda(Z \otimes 1) + X \otimes Y] = \lambda[X^{i}, Z] \otimes Y \equiv (\lambda i/2)X^{i+1} \otimes Y.$$

It follows by induction that $(Z \otimes 1)(\operatorname{ad}(\lambda(Z \otimes 1) + X \otimes Y))^i$ is congruent to a multiple of $X^{i+1} \otimes Z$ and hence that $(Z \otimes 1)(\operatorname{ad}(\lambda(Z \otimes 1) + X \otimes Y))^{p-1} \equiv 0$. Hence $\Delta(Z^p) \equiv 1 \otimes Z^p + Z^p \otimes 1$. This completes the proof that \mathfrak{g} is a bi-ideal.

Let S be the unique antihomomorphism of R such that

$$S(X) = -X$$
, $S(Y) = -Y$, $S(Z) = XY - Z$.

We claim that $S(\mathfrak{Y}) \subseteq \mathfrak{I}$. It is sufficient to check this on generators. We do this as follows (where all congruences are modulo \mathfrak{Y}):

$$S([X, Y] - X) = [S(Y), S(X)] - S(X) = [-Y, -X] + X = -([X, Y] - X);$$

$$S([Y, Z] + Z) = [S(Z), S(Y)] + S(Z) = [XY - Z, -Y] + XY - Z$$

$$= -[X, Y]Y - [Y, Z] + XY - Z = -([Y, Z] + Z);$$

$$S([X, Z] - X^{2}/2) = [S(Z), S(X)] - S(X)^{2}/2 = [XY - Z, -X] - X^{2}/2$$

$$= X[X, Y] + [Z, X] - X^{2}/2 = -([X, Z] - X^{2}/2);$$

$$S(X^{p}) = (S(X))^{p} = -X^{p};$$

$$S(Y^{p} - Y) = (S(Y))^{p} - S(Y) = -(Y^{p} - Y);$$

$$S(Z^{p}) = (S(Z))^{p} = (XY - Z)^{p} = (XY)^{p} - Z^{p} + \sum_{i=1}^{p-1} u_{i}$$

where iu_i is the coefficient of λ^{i-1} in $(XY)(ad(\lambda XY - Z))^{p-1}$ (again by (*)). Now as $[X, Y] \equiv X$ it is immediate that $(XY)^p \equiv 0$. Also $Z^p \equiv 0$. Now $[X, XY] = X[X, Y] \equiv X^2$ and so $[X^i, XY] \equiv iX^{i+1}$. Also $[X^i, Z] \equiv (i/2)X^{i+1}$. Thus $[X^i, \lambda XY - Z] \equiv i(\lambda - \frac{1}{2})X^{i+1}$. Furthermore,

$$[(XY/2) - Z, \lambda XY - \vec{Z}] = (\lambda - \frac{1}{2})[XY, Z] = (\lambda - \frac{1}{2})([X, Z]Y + X[Y, Z])$$
$$= (\lambda - \frac{1}{2})X((XY/2) - Z).$$

Thus

$$[X^{i}((XY/2) - Z), \lambda XY - Z] = [X^{i}, \lambda XY - Z]((XY/2) - Z) + X^{i}[(XY/2) - Z, \lambda XY - Z]$$
$$= (i + 1)(\lambda - \frac{1}{2})X^{i+1}((XY/2) - Z).$$

Lice New copy in certicity share any apply & reals the liter, see [15, 24, 14, 25] - Z) it follows by induc-

tion that

$$(XY)(ad(\lambda XY - Z))^{i} \equiv -i!(\lambda - \frac{1}{2})^{i-1}X^{i}((XY/2) - Z)$$

and so

$$(XY)(\operatorname{ad}(\lambda XY - Z))^{p-1} \equiv -(p-1)!(\lambda - \frac{1}{2})^{p-2}X^{p-1}((XY/2) - Z)$$
$$\equiv -(\lambda - \frac{1}{2})^{p-2}X^{p-1}Z.$$

But then

$$\sum_{i=1}^{p-1} u_i \equiv \left(-\int_0^1 (\lambda - \frac{1}{2})^{p-2} d\lambda \right) X^{p-1} Z = 0.$$

Hence $S(Z^p) \equiv 0$, as required.

Now let H = R/9 and let x = X + 9, y = Y + 9, and z = Z + 9. As 9 is a bi-ideal, H is a bialgebra. We denote the coalgebra structure maps in H by Δ and ϵ . Also, since $S(9) \subseteq 9$, S induces an antihomomorphism of H, which we again denote by S. Then S(x) = -x, S(y) = -y, and S(z) = xy - z. We claim that H is a Hopf algebra with antipode S. To verify this we must check that $m(S \otimes I)\Delta = m(I \otimes S)\Delta = \mu\epsilon$ (where m and μ are the algebra structure maps for H). Now it is sufficient to check this on generators for H. For x and y this is immediate, and for z we have

$$m(S \otimes I)\Delta(z) = m(I \otimes S)\Delta(z) = S(z) + z - xy = 0 = \mu\epsilon(z),$$

as required.

2. A basis for *H*. It is clear that *H* is spanned by $\{x^i y^j z^k | 0 \le i, j, k \le p-1\}$. We will now show that this is a basis for *H*.

Consider the following p by p matrices over K (where E_{ij} denotes the usual matrix unit):

$$A_i = E_{p-i,p}, \quad 1 \le i \le p-1, \quad B = \sum_{i=1}^p (i+1)E_{ii},$$

and

$$C = \sum_{i=1}^{p-1} \left((i+1)/2 \right) E_{i,i+1}.$$

It is easily checked that $[A_i, A_j] = 0$ for $1 \le i, j \le p - 1$, $[A_i, B] = iA_i$ for $1 \le i \le p - 1$, $[A_i, C] = (i/2)A_{i+1}$ for $1 \le i \le p - 2$, $[A_{p-1}, C] = 0$, [B, C] = -C, $A_i^p = 0$ for $1 \le i \le p - 1$, $B^p = B$, and $C^p = 0$. Thus $\{A_i \mid 1 \le i \le p - 1\} \cup \{B\} \cup \{C\}$ forms a basis for a restricted Lie algebra. Denote this algebra by comparison for the statement of the state

B and its restricted enveloping algebra by U.

Let \mathfrak{G} denote the linear span of the set $\{A_i - A_1^i | 2 \le i \le p - 1\}$ of elements of \mathfrak{U} . It is easily seen that $[\mathfrak{G}, \mathfrak{B}] \subseteq \mathfrak{GU}$. (The only nontrivial verifications are

$$[A_i - A_1^i, C] = (i/2)(A_{i+1} - A_1^{i-1}A_2)$$

= (i/2)((A_{i+1} - A_1^{i+1}) - (A_2 - A_1^2)A_1^{i-1}) for $2 \le i$

and

$$[A_{p-1} - A_1^{p-1}, C] = \frac{1}{2}A_1^{p-2}A_2 = \frac{1}{2}(A_2 - A_1^2)A_1^{p-2}.$$

Since \mathcal{B} generates \mathcal{U} this shows that $\mathcal{U}\mathcal{J}\mathcal{U} = \mathcal{J}\mathcal{U}$. Let $\mathcal{C} = \mathcal{U}/(\mathcal{J}\mathcal{U})$. Let $A_1 + \mathcal{J}\mathcal{U} = a$, $B + \mathcal{J}\mathcal{U} = b$, and $C + \mathcal{J}\mathcal{U} = c$. Clearly $\{a^i b^j c^k \mid 0 \le i, j, k \le p - 1\}$ spans \mathcal{C} . We wish to show that this set is linearly independent. To this end assume

$$\sum_{i,j,k} \alpha_{ijk} a^i b^j c^k = 0$$

where $a_{iik} \in K$. Then

$$\sum_{i,j,k} \alpha_{ijk} A_1^i B^j C^k \in \mathfrak{fl}.$$

Since

$$\{A_1^{i_1} \cdots A_{p-1}^{i_{p-1}} B^j C^k \mid 0 \le i_1, \cdots, i_{p-1}, j, k \le p-1\}$$

is a basis for U it follows that for each j and k, $\sum_i a_{ijk} A_1^i \in \mathcal{J}$ where \mathcal{O} is the linear span of

$$\{A_1^{i_1} \cdots A_{p-1}^{i_{p-1}} | 0 \le i_1, \cdots, i_{p-1} \le p-1\}.$$

Define a homomorphism $\phi: \mathfrak{O} \to \mathfrak{O}$ by

$$\phi(A_1^{i_1} \cdots A_{p-1}^{i_{p-1}}) = A_1^{i_1 + 2i_2 + \cdots + (p-1)i_{p-1}}$$

Note that \mathcal{G} and hence \mathcal{G} are contained in ker ϕ . On the other hand $\phi(\Sigma_i \alpha_{ijk} A_1^i) = \Sigma_i \alpha_{ijk} A_1^i$. Thus $\Sigma_i \alpha_{ijk} A_1^i \in \mathcal{G}$ implies $\Sigma_i \alpha_{ijk} A_1^i = 0$ so $\alpha_{ijk} = 0$ for all *i*, *j*, and *k*, as required. Thus \mathcal{C} is of dimension p^3 .

Now define a homomorphism $\psi: R \to \widehat{\mathbb{C}}$ by $\psi(X) = a, \psi(Y) = b$, and $\psi(Z) = c$. Then ker $\psi \supseteq \oint$ so ψ induces a homomorphism of H onto $\widehat{\mathbb{C}}$. Hence dim $H \ge p^3$. Since we already have that $\{x^i y^j z^k | 0 \le i, j, k \le p-1\}$ spans H this shows that $\{x^i y^j z^k | 0 \le i, j, k \le p-1\}$ is a basis for H.

3. Properties of H. We will now show that H is pointed and irreducible and that the antipode of H has order 2p.

Lemma 1. If C is a coalgebra and W is a simple subcoalgebra, then $\bigwedge^{n} W$ is an irreducible subcoalgebra of C.

Proof. That $\bigwedge^n W$ is a subcoalgebra follows from Proposition 9.0.0(i) of [5]. We prove irreducibility by induction on n. Since $\bigwedge^1 W = W$ is simple the result holds for n = 1. Assume the result for n - 1. Let Y be a simple subcoalgebra of $\bigwedge^n W$. Then

$$(0) \neq \Lambda Y \subseteq (Y \otimes Y) \cap (C \otimes \bigwedge^{n-1} W + W \otimes C)$$
$$\subset (Y \otimes Y) \cap (C \otimes \bigwedge^{n-1} W + \bigwedge^{n-1} W \otimes C).$$

It then follows that $Y \cap \bigwedge^{n-1} W \neq (0)$ and so, since Y is simple, $Y \subseteq \bigwedge^{n-1} W$. Then by the induction assumption Y = W.

Lemma 2. If M is a bialgebra and W is a subbialgebra then

 $(\bigwedge^m W)(\bigwedge^n W) \subset \bigwedge^{m+n-1} W$

for all m and $n \ge 1$.

Proof. Since multiplication is a coalgebra map this follows from Lemmas 9.1.3 and 9.2.1 of [5].

Corollary. H is a pointed irreducible Hopf algebra.

Proof. Take W = K. Then W is a subbialgebra and a simple coalgebra. Now x and $y \in \bigwedge^2 W$ and $z \in \bigwedge^3 W$. Then since $\{x, y, z\}$ generates H, Lemma 2 shows that $H = \bigwedge^n W$ for some n. Hence by Lemma 1 H is irreducible (and is pointed since W is pointed). We have already shown that H is a Hopf algebra with antipode S (although we could have avoided doing this, since by Theorem 9.2.2 of [5] every irreducible bialgebra is a Hopf algebra).

It remains only to determine the order of S. Now

$$S^{2}(z) = S(y)S(x) - S(z) = yx - xy + z = [y, x] + z = z - x.$$

Then $S^{2i}(z) = z - ix$ for all *i*. Hence S has order 2*p*.

We summarize our results in the following

Proposition. H is a pointed irreducible Hopf algebra of dimension p^3 . The antipode of H has order 2p.

4. A property of H^{*}. Let J be the ideal of H generated by x and z.

total degree in x and z is preserved.) The quotient H/J has basis $\{y^j + J \mid 0 \le j \le p-1\}$ and is hence isomorphic to $K[t]/(t^p - t)$, i.e., it is isomorphic to a direct product of p copies of K. It follows that J = Rad H, that H^* is pointed, and that $G(H^*)$ has order p. Thus order of $S^* = \text{ order of } S = 2p = 2(\text{exponent of } G(H^*))$.

Whether or not there exists a finite dimensional pointed Hopf algebra H with H^* pointed, order S > 2(exponent of G(H)), and order S > 2(exponent of $G(H^*)$) remains an open question.

REFERENCES

1. N. Jacobson, *Lie algebras*, Interscience Tracts in Pure and Appl. Math., no. 10, Interscience, New York, 1962. MR 26 #1345.

R. G. Larson, Orders in Hopf algebras, J. Algebra 22 (1972), 201-210. MR 45 #8706.
 D. E. Radford, A free rank 4 Hopf algebra with antipode of order 4, Proc.

Amer. Math. Soc. 30 (1971), 55-58. MR 43 #4887.

4. — , The order of the antipode of a finite dimensional Hopf algebra is finite, Amer. J. Math. (to appear).

5. M. E. Sweedler, *Hopf algebras*, Math. Lecture Notes Series, Benjamin, New York, 1969. MR 40 #5705.

6. E. J. Taft, The order of the antipode of finite-dimensional Hopf algebra, Proc. Nat. Acad. Sci. U.S.A. 68 (1971), 2631-2633. MR 44 #4075.

7. E. J. Taft and R. L. Wilson, On antipodes in pointed Hopf algebras, J. Algebra 29 (1974), 27-32.

SCHOOL OF MATHEMATICS, INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY 08540

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NEW JERSEY 08903 (Current address of both authors)