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a b s t r a c t

In this paper, Hopf and homoclinic bifurcations that occur in the sliding vector field of switching systems

in R
3 are studied. In particular, a dc–dc boost converter with sliding mode control and washout filter is

analyzed. This device is modeled as a three-dimensional Filippov system, characterized by the existence

of sliding movement and restricted to the switching manifold. The operating point of the converter is a

stable pseudo-equilibrium and it undergoes a subcritical Hopf bifurcation. Such a bifurcation occurs in

the sliding vector field and creates, in this field, an unstable limit cycle. The limit cycle is connected to

the switchingmanifold and disappears when it touches the visible–invisible two-fold point, resulting in a

homoclinic loopwhich itself closes in this two-fold point. The study of these dynamic phenomena that can

be found in different power electronic circuits controlled by sliding mode control strategies are relevant

from the viewpoint of the global stability and robustness of the control design.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Switching power electronic devices are strongly non-linear and

can be modeled as piecewise smooth dynamical systems. It has

been shown that this class of systems can exhibit various types

of complex phenomena, including the classic bifurcations (Hopf,

Saddle–Node, Homoclinic, etc.) and bifurcations induced by dis-

continuity [1].

In case where the dynamical system is discontinuous piece-

wise smooth, orbits can be confined to the switching manifold.

This phenomenon is known as sliding motion and this class of sys-

tems is called as Filippov systems [2]. The occurrence of such a

phenomenon has been reported in various applications involving
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sliding mode control. Here we highlight the applications in power

electronics converters [3–7].

In this paper, we study the Hopf and Homoclinic bifurcations

that appear in the sliding vector field of three-dimensional Fil-

ippov systems. For this study we consider the model of a dc–dc

boost power electronics converter with sliding mode control and

washout filter (SMC-Washout) to reject load changes [5]. These bi-

furcations on the sliding vector field are analogous to the standard

continuous case, and will be called Sliding Hopf and Sliding Homo-

clinic bifurcations. However, sliding homoclinic bifurcations differ

a little from the standard case, since the closing point of the ho-

moclinic loop is not on a saddle equilibrium point, but in a visi-

ble–invisible two-fold singularity that has dynamics saddle in the

sliding region.Moreover, the homoclinic bifurcation exhibitedhere

is of codimension-one and is obtained when a single parameter is

varied.

Dynamical systems that have a two-fold singularity possess a

very rich and complex dynamics. In [8–11] two-fold singularities
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are studied and in [12,13] applications of such theory in electrical

and control systems, respectively, are exhibited.

The Hopf bifurcation is a local bifurcation in which an equilib-

rium point of a smooth dynamical system loses stability when a

pair of complex conjugate eigenvalues crosses the imaginary axis

of the complex plane. In this case, an unstable limit cycle (subcrit-

ical Hopf) or stable (supercritical Hopf) arises from an equilibrium

point.

The Homoclinic bifurcation is a global bifurcation that occurs

when a limit cycle collides with a saddle equilibrium point.

The existence of a homoclinic orbit implies global changes in

system dynamics. On bidimensional systems studied by Andronov

et al. [14], the existence of a homoclinic orbit causes the sudden

appearance of a limit cycle with same stability of the homoclinic

orbit. In the same way, we can say that Homoclinic bifurcation is

the mechanism by which a limit cycle, created for example from

a Hopf bifurcation, is destroyed. More details about the Hopf and

Homoclinic bifurcation in smooth dynamical systems, can be found

in [15–18].

In the literature there are several works on Homoclinic bi-

furcation and Hopf bifurcation analysis in nonsmooth dynamical

systems [19–26], where the bifurcations studied are induced by

the discontinuity. For example, in Kuznetsov et al. [24], are study

‘‘Pseudo-Homoclinic’’ bifurcations where a standard saddle equi-

librium point may have a homoclinic loop containing a sliding seg-

ment. In Dercole et al. [23], a bifurcation of codimension 2 where a

limit cycle that arises from an equilibrium point associated with a

Boundary Equilibrium Bifurcation, is analyzed. On the Sliding Hopf

and Sliding Homoclinic bifurcations we highlight the pioneering

works of Ponce and Pagano [3,4], identifying the occurrence of such

bifurcations in a boost converter model, and recent studies with

application in systems compose by interconnected power convert-

ers in an islanded direct current (DC) microgrid, in the works of

Cristiano et al. [27] and Benadero et al. [28]. In both the analysis is

partial, without delving into these subjects. Here, we will analyze

them in more detail.

The main contribution of this paper is the characterization of

a new mechanism to produce a homoclinic bifurcation, where

the closing point of the homoclinic loop is a two-fold singularity.

In this paper, a rigorous analysis of the Sliding Hopf and Sliding

Homoclinic bifurcations is presented. In order to do that, a case

study in power electronics is considered.

This paper is organized as follows. Previous results on Filippov

theory are discussed in Section 2. The modeling of the boost

converter with SMC, the analysis of the tangential singularities and

the dynamics of the sliding vector field are shown in Section 3. The

occurrence of Sliding Hopf and Sliding Homoclinic bifurcations are

shown in Section 4.

2. Previous results

2.1. Filippov’s convention

Let A ⊂ R
3 be an open set and

Σ = {(x, y, z) ∈ A | h(x, y, z) = 0},

with h(x, y, z) = z. Clearly the switching manifold Σ is the sepa-

rating boundary of the regions Σ+ = {(x, y, z) ∈ A | z > 0} and
Σ− = {(x, y, z) ∈ A | z < 0}.

We define X
r the space of C r -vector fields on A endowed with

the C r -topology with r = ∞ or r ≥ 1 large enough for our pur-

poses. Call Ω r the space of vector fields f : A → R
3 such that

f(x) =

f+(x), for x ∈ Σ+,

f−(x), for x ∈ Σ−,

where x = (x, y, z) ∈ A, f± = (f ±
1 , f ±

2 , f ±
3 ) ∈ X

r .Wemay consider

Ω r = X
r ×X

r endowedwith the product topology and denote any

element in Ω r by f = (f+, f−), which we will accept to be multi-

valued in points of Σ .

The kind of contact of smooth vector fields f± ∈ X
r with Σ are

provided by the directional Lie derivatives:

Lf±h = ⟨∇h, f±⟩ = f ±
3 ,

where ∇h and ⟨., .⟩ denote the gradient of smooth function h and

the canonical inner product, respectively. The higher order Lie

derivatives are given by Lm
f±h = ⟨∇Lm−1

f± h, f±⟩.
On Σ we distinguish the following regions:

• Crossing regions, defined by Σ c+ = {x ∈ Σ | f +
3 (x) >

0, f −
3 (x) > 0} and Σ c− = {x ∈ Σ | f +

3 (x) < 0, f −
3 (x) < 0};

• Sliding region, defined by Σ s = {x ∈ Σ | f +
3 (x) < 0, f −

3 (x) >
0};

• Escaping region, defined by Σe = {x ∈ Σ | f +
3 (x) >

0, f −
3 (x) < 0}.

When x ∈ Σ s, following the Filippov’s convention (see [2]), the

sliding vector field associated to f ∈ Ω r is the vector fieldf s tangent
to Σ expressed in coordinates as

f s(x) =
1

(f −
3 − f +

3 )(x)




(f +
1 f −

3 − f −
1 f +

3 )(x)

(f +
2 f −

3 − f −
2 f +

3 )(x)

0


 . (1)

Associated to (1) there exists the planar normalized sliding vector
field

f s(x, y) =

(f +

1 f −
3 − f −

1 f +
3 )(x, y)

(f +
2 f −

3 − f −
2 f +

3 )(x, y)


. (2)

Note that, if x ∈ Σ s then f +
3 (x, y) < 0 and f −

3 (x, y) > 0. So,

(f −
3 − f +

3 )(x, y) > 0 and therefore,f s and f s are topologically

equivalent in Σ s, fs has the same orientation asf s and it can be C r -

extended to the closure Σ s of Σ s (see [5]). We can take advantage

of the invariance of Σ under the flow determined by f s and reduce

the dimension of the problem by one, taking z = 0. So, all the

analysis of the sliding dynamics contained in this work is based

on the planar normalized sliding vector field f s(x, y).
The points q ∈ Σ such thatf s(q) = 0 are called pseudo-

equilibria of f, virtual if q ∈ Σ c or real if q ∈ Σ s ∪ Σe. The

points p ∈ Σ such that f +
3 (p) · f −

3 (p) = 0 are called tangential
singularities of f (i.e., the trajectory through p is tangent to Σ).

Furthermore, a point p ∈ Σ is called double tangency point (i.e., the
trajectories of both vector fields f± through p are tangent to Σ) if

f +
3 (p) = f −

3 (p) = 0.

Remark 1. If q = (xq, yq, 0) ∈ Σ s is a pseudo-equilibrium point,

then f s(xq, yq) = 0, i.e., the projection of pseudo-equilibrium on

Σ is an equilibrium point of planar normalized sliding vector field

f s. Furthermore, if (xq, yq) is an equilibrium node, focus or saddle,

then the pseudo-equilibriumq is said to be a pseudo-node, pseudo-

focus or pseudo-saddle, respectively.
If p = (xp, yp, 0) is a double tangency point (i.e., f −

3 (p) =
f +
3 (p) = 0), then

f s(xp, yp) =

f +
1 f −

3 (p) − f −
1 f +

3 (p)

f +
2 f −

3 (p) − f −
2 f +

3 (p)


=


0

0


.

So, the point (xp, yp) is also an equilibrium of the planar sliding

vector field f s. The interesting point here is that the sliding

dynamics is not defined at (xp, yp). However, this point governs the

sliding dynamics around it, acting as a true equilibrium point from

the analysis of f s.
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Fig. 1. On the left it appears a fold–cusp singularity and on the right a two-fold singularity, at the point p.

2.2. Tangential singularities

In our approach we deal with two important distinguished
tangential singularities: the points where the contact between the
trajectory of f+ or f− withΣ is either quadratic or cubic, which are
called fold and cusp singularities, respectively (see [29]). Observe
that this contact is characterized by Lie’s derivative, defined in the
previous section.

A point p ∈ Σ is a fold point of f+ if Lf+h(p) = 0 and L2
f+h(p) ≠

0. Moreover, p is a cusp point of f+ if Lf+h(p) = L2
f+h(p) =

0, L3
f+h(p) ≠ 0 and {dh(p), d(Lf+h)(p), d(L2

f+h)(p)} is a linearly
independent set. We define the sets of tangential singularities
S+ = {p ∈ Σ | f +

3 (p) = 0} and S− = {p ∈ Σ | f −
3 (p) = 0}.

In R
3, through a generic cusp singularity emanate two branches

of fold singularities, see Fig. 1. In one branch it appears visible fold
singularities and in the other one invisible fold singularities.

When p is a fold, cusp singularity of both smooth vector fields
(i.e., p is a double tangency point) we say that p is a two-fold
singularity, two-cusp singularity, respectively. When p is a fold
singularity for one smooth vector field and a cusp singularity for
the other one, we say that p is a fold–cusp singularity, see Fig. 1.

3. A case study in power electronics: controlling the boost

converter

The behavior of a dc–dc boost converter, considering the ideal
case, can be studied using the circuit topology depicted in Fig. 2.
Themodel of the boost converter controlled by a SMC-Washout, in
the continuous conduction mode, is given by

L
diL

dt
= Vin − u vC (3)

C
dvC

dt
= u iL −

vC

R
(4)

dzF

dt
= ωF (iL − zF ), (5)

where vC ≥ 0 and iL > 0 are the instantaneous capacitor
voltage and the inductor current, respectively. The input voltage is
assigned as Vin, R is the equivalent load resistance, C and L are the
circuit capacitor and inductor, respectively. The inductor current iL
passes through a washout filter and a new variable zF is obtained
by (5), whereas the cut-off frequency of the filter is denoted by ωF

and always less than 1/
√
LC rad/s that is the approximate natural

frequency of the system (see [30]).

The control law is defined as u = 1

2
(1+sign[h]) such that u = 1

implies that the switch S, in Fig. 2, is off and u = 0 corresponds to

the switch S on. The planar switching surface is chosen as

h(iL, vC , zF ) = vC − Vref + K(iL − zF ) = 0,

where K > 0 is the control parameter to be adequately tuned
and Vref > Vin is the reference voltage since the control goal is to
regulate the voltage output v0 = vC of the boost converter, being
v0 > Vin.

Fig. 2. Boost converter with SMC-washout.

Eqs. (3)–(5) can benormalized by applying the following change

of variables: iL = Vin


C
L
x, vC = Viny, zF = iL + vC−Vref −Vinz

K
;

and time t =
√
LCτ . Defining the new parameters: a = 1

R


L
C
,

k = K


C
L
, ω = ωF

√
LC and yr = Vref

Vin
, the dimensionless model is

given by

ẋ = 1 − uy
ẏ = ux − ay
ż = u(x − ky) + (ω − a)y − ωz + k − ωyr ,

(6)

where (x, y, z) ∈ D ⊂ R
3 are the independent variables and the

parameters are ω ∈ (0, 1], yr > 1, k > 0 and a > 0 (the dot
‘‘·’’ indicates d

dτ
). We stress that x > 0 is the normalized inductor

current, y ≥ 0 is the normalized output voltage and z ∈ R depends
on the filtered current.

For the normalized system (6), redefined the planar switching

surface as hn(x, y, z) = h(iL, vC , zF )/Vin = z = 0, the control

rewritten as

u =
1

2
(1 + sign[z]) (7)

and the switching manifold as Σ = {(x, y, z) ∈ R
3 : z =

0}. System (6) with the control law (7) can be represented by a

piecewise smooth dynamical system (ẋ, ẏ, ż) = f(x, y, z) with

f(x) =

f+ = (1 − y, x − ay, f +

3 ) if z > 0

f− = (1, −ay, f −
3 ) if z < 0,

(8)

where x = (x, y, z) and

f +
3 (x, y, z) = x + (ω − a − k)y − ωz + k − ωyr ,

f −
3 (x, y, z) = (ω − a)y − ωz + k − ωyr .

Remark 2. In the sequel we consider 0 < a < 2. This is a
coherent physical hypothesis and it is enough to produce the
desired behavior.
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Fig. 3. Kinds of the double tangency point in the (a, k)-plane, according to Table 1. The quadrants {k > ωyr } ∩ {a < ω} and {k < ωyr } ∩ {a > ω} are not considered in our

study according to Remark 3.

3.1. Tangential singularities

The tangential sets of f+ and f− are given, respectively, by the

straight lines:

S+ = {(x, y, 0) ∈ Σ : x = (a + k − ω)y − k + ωyr} ,

S− =

(x, y, 0) ∈ Σ : y =

k − ωyr

a − ω
, for a ≠ ω


.

The next result summarizes the possibilities of tangential singular-

ities according to the parameters a, yr , k and ω.

A straightforward calculation shows that the point pc =
(xc, yc, 0) with

xc =
ω(yr − 1) + a(1 + (a + k − ω)(k − ωyr))

(a + k − ω)(k − ω) + 1

yc =
(a + k − ω)(k − ωyr) + 1

(a + k − ω)(k − ω) + 1
,

is a cusp singularity, since L2
f+h(pc) = 0 and the third Lie derivative

evaluated at the cusp point is given by L3
f+h(pc) = ω(1 − yr) < 0,

i.e., the trajectory of f+ passing through the cusp point pc departs

from Σ . The point pc separates S+ into two branches of fold

singularities. The branch of visible fold singularities for y < yc and

the branch of invisible fold singularities for y > yc .

Since L2
f−h(p) = a(k − ωyr) for all p ∈ S− we get that all

points in S− are invisible fold singularities if k > ωyr , or visible fold

singularities if k < ωyr .

The double tangency point, pt , is given by S+ ∩ S−, i.e.,

pt =
k(k − yrω)

a − ω
,
k − ωyr

a − ω
, 0


. (9)

The point pt is a two-fold singularity if a ≠ ac(k) or a fold–cusp

singularity if a = ac(k), for all k ≠ ωyr , where

ac(k) =
1

2(k − ωyr)


−1 + ω(k − ωyr)

+

1 + (k − ωyr)(2ω + (4 + (ω − 2k)2)(k − ωyr))


.

(10)

Table 1

Kinds of tangential points according to the parameters (a, k).

Kind of tangency (legend) Region on the plane (a, k)

Two-Fold Visible–Invisible (V–I) ac(k) < a < ω for k < ωyr
Two-Fold Visible–Visible (V–V) a < ac(k) for k < ωyr
Two-Fold Invisible–Invisible (I–I) ω < a < ac(k) for k > ωyr
Two-Fold Invisible–Visible (I–V) a > ac(k) for k > ωyr
Fold Invisible–Cusp (I–C) a = ac(k) for k > ωyr
Fold Visible–Cusp (V–C) a = ac(k) for k < ωyr

Table 1 shows the kinds of double tangency points according to

the parameters (a, k). Following, choosing ω = 1 and yr = 3/2,
we represent Table 1 in the plane of parameters (a, k) shown in

Fig. 3. Taking a point (a, k) in one of the regions V–I, V–V, I–V or I–I,

we obtain a double tangency fold of the type visible–invisible, vis-

ible–visible, invisible–visible or invisible–invisible, respectively.

While, for points (a, k) on the curve a = ac(k) the double tan-

gency is of the kind fold (invisible in part I–C or visible in part V–C)

on one side and cusp on the other. For each one of the kinds cited,

we illustrate (on the side) the geometry involving the ‘‘invisible’’

and ‘‘visible’’ dynamics of the vector fields f+ and f− around the

double tangency point.1

Remark 3. Observe that, for practical reasons, x > 0 and y > 0.

As consequence, in pt , either a > ω and k > ωyr or a < ω and

k < ωyr .

3.2. Dynamics of the sliding vector field

The sliding vector field is calculated from Eq. (1), resulting in

f s(x) =
1

x − ky




x − ay2 + ωy(y − yr − z)

−k(x − ay2) − ωx(y − yr − z)
0


 , (11)

1 In the expressions Visible–Invisible, Visible–Visible, Invisible–Visible, Invisi-

ble–Invisible, Fold Invisible–Cusp and Fold Visible–Cusp, the first description refers

to the vector field f− and the second to the vector field f+ . For example, Visi-

ble–Invisible indicates a two-fold whose quadratic tangency is visible to f− and in-

visible to f+ , or even, Fold Invisible–Cusp, where the double tangency is quadratic

invisible to f− and cubic to f+ .
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whose equilibrium point is

q = (ay2r , yr , 0). (12)

This is the operating point of the boost converter controlled by
the proposed SMC-Washout. The washout filter is responsible for
the elimination of the output voltage dependence in relation to the
changes of the parameter a produced by load changes of R. In this
way, after a perturbation on a, the output voltage maintains the
desired value yr .

Now, we proceed to analyze the parameter conditions to obtain
a pseudo-equilibrium q real and located in the sliding region. In
order to do that, the following conditions

Lf−h(q) = k − ayr > 0,

Lf+h(q) = −(yr − 1)(k − ayr) < 0,

must be verified such that q ∈ Σ s. We remember that the
parameter yr > 1. Therefore, if k−ayr > 0 (respectively, k−ayr <
0) then q ∈ Σ s (respectively, q ∈ Σe) and if k − ayr = 0 then q
coincides with the double tangency point pt given in (9).

In the sliding mode control it is necessary that the pseudo-

equilibrium (i.e., the operating point) remains in the sliding region

Σ s. So, the control parameter k must fulfill:

k > ayr . (13)

Moreover, the pseudo-equilibrium must be stable and whenever
possible, without to exhibit an unstable limit cycle around it in
order to enlarge the stability region.

In order to analyze the stability of the pseudo-equilibrium q, we

use the sliding vector field f s calculated from (2), given by

f s(x, y) =


−x + ay2 − ωy(y − yr)

k(x − ay2) + ωx(y − yr)


. (14)

The projection of the pseudo-equilibrium q in the switching
manifold Σ is the point qs = (ay2r , yr). This point is an equilibrium
of f s and its stability can be extended to the pseudo-equilibrium q
since it satisfies the condition (13).

The Jacobian matrix of the normalized sliding vector field (14)

evaluated at the point qs is given by

J(qs) =


−1 (2a − ω)yr
k ayr(ωyr − 2k)


.

The determinant and trace of J(qs), are given by

Det[J(qs)] = ωyr(k − ayr),

Tr[J(qs)] = −1 + ayr(ωyr − 2k).

Imposing the condition (13) on the parameter k, then Det[J(qs)] >
0. Therefore, the pseudo-equilibrium q, when in Σ s, can be a

pseudo-node or pseudo-focus, stable or unstable. In this case it will

be stable if and only if, Tr[J(qs)] < 0, i.e., k must be chosen such

that it fulfills, in addition of (13), inequality

k >
aωy2r − 1

2ayr
. (15)

Remark 4. If k < ayr the pseudo-equilibrium q is on the escaping
region Σe and it is a pseudo-saddle, because Det[Je(qs)] =
Det[J(qs)] < 0, where Je is the Jacobian matrix of the normalized
sliding vector field defined on Σe as fe(x, y) = −f s(x, y).

More precisely, in order to distinguish if q is a pseudo-focus or
a pseudo-node we have to analyze the sign of the discriminant ∆

of the characteristic polynomial of J(qs). Explicitly,

∆ = Tr[J(qs)]2 − 4Det[J(qs)]
= 4a2y2r k

2 − 4yr(ω + a(aωy2r − 1))k + (1 + aωy2r )
2.

Table 2

Kinds of dynamics of the sliding vector field at pseudo-equilibrium point q,

according to parameters (a, k).

Kind of dynamics Conditions under the parameters

(a, k)

Pseudo-saddle k < ayr

Stable pseudo-node k > ayr and a ≥ ω
2
, or

k > k+ and a < ω
2
, or

ayr < k < k− and

a+ < a < ω
2

∪ 0 < a < a−

Unstable pseudo-node ayr < k < k− and a− < a < a+

Stable pseudo-focus k− < k < k+ and

a+ < a < ω
2

∪ 0 < a < a− , or

kH < k < k+ and a− < a < a+

Unstable pseudo-focus k− < k < kH and a− < a < a+

This expression is a polynomial of degree two in the variable k. The
solutions of ∆ = 0 are given by:

k± = kH +
ω ±


ω(1 + 2a2y2r )(ω − 2a)

2a2yr
, (16)

where

kH =
aωy2r − 1

2ayr
. (17)

Note that k > kH satisfies the stability condition (15) and k = kH
implies Tr[J(qs)] = 0. Furthermore, the roots k± of polynomial
∆ = 0 exist only for a ≤ ω

2
, otherwise we will have ∆ > 0 for

all k.
In Table 2, we summarize these results on the dynamics of

the sliding vector field at the pseudo-equilibrium point q. These

stability conditions were obtained considering that yr ≥ 2
√
2

ω
,

otherwise q is always stable for all k > ayr . This condition on

the parameter yr assures us the existence of a Bogdanov–Takens
bifurcation (BT) at points (a−, yra−) and (a+, yra+) of the (a, k)-
plane (see Fig. 8), such that

a± =
1

4yr


ωyr ±


ω2y2r − 8


. (18)

The Hopf and Homoclinic bifurcations corresponding to the
sliding vector field of the boost converter system with SMC-
Washout are studied in the next section.

4. A sliding Hopf bifurcation followed by a homoclinic loop at

the two-fold singularity

In this section we analyze two bifurcations that occur in the
sliding vector field (11). First a Sliding Hopf bifurcation takes place
giving rise to a unstable limit cycle C . Second, C persists when the
parameter k varies (from k = 1.375 to k = 1.573, for the case
ω = 1, yr = 4, a = 0.2, see simulations in Figs. 4–5 and the
bifurcation diagrams in Fig. 6), and then it collides with the two-
fold point, which behaves like a saddle. This collision produces a
homoclinic loop destroying the limit cycle.

4.1. Sliding Hopf bifurcation

In previous section, we proved that q is an unstable focus when
k− < k < kH and a stable one when kH < k < k+, since
a− < a < a+. Then we can state the following result:

Proposition 1. If k = kH and a ∈ (a−, a+), where a± are given
in (18) and kH is given in (17), then a subcritical Hopf bifurcation
occurs at q = (ay2r , yr , 0) in the sliding vector field (11).
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(a) Projection on Σ . (b) Three-dimensional basin of attraction of the pseudo-equilibrium point

displayed in red color.

Fig. 4. Unstable limit cycle in the nonsmooth vector field (8) and the corresponding basin of attraction for ω = 1, yr = 4, a = 0.2 and k = 1.5. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)

(a) Projection on Σ . (b) Three-dimensional basin of attraction of the pseudo-equilibrium point

displayed in purple color.

Fig. 5. Homoclinic loop at the two-fold point and the corresponding basin of attraction for ω = 1, yr = 4, a = 0.2 and k = 1.573. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)

(a) (x, k)-plane. (b) (y, k)-plane.

Fig. 6. Bifurcation diagrams showing the Hopf and Homoclinic sliding bifurcations in (x, k)-plane and (y, k)-plane, considering k as the bifurcation parameter, for ω = 1,

yr = 4, a = 0.2. The dashed and solid lines represent unstable and stable equilibria, respectively. While the dotted line represents the unstable limit cycle.
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Proof. For this proof, we consider the planar sliding vector field

(14) that is topologically equivalent to (11) inΣ s and the projection

of pseudo-equilibrium q in Σ given by qs = (ay2r , yr).
The following necessary conditions to get a Hopf bifurcation are

satisfied for k = kH :

Det[J(qs)]

k=kH

=
ω(−1 + ωy2r a − 2y2r a

2)

2a
> 0

Tr[J(qs)]

k=kH

= 0

dTr[J(qs)]
dk


k=kH

= −2ayr ≠ 0,

since a− < a < a+. Then let us consider the system

u̇ = u + v(ω(v + yr) − a(v + 2yr))

v̇ = −vω(u + ay2r ) + k(−u + av(v + 2yr)),
(19)

obtained from a translation of (14) in such a way that qs is

translated to the origin.

According to [14] (see page 253), if the number

σ = −
1

yr(2a − ω)


ω3(ay2r (ω−2a)−1)3

a3

(3
√
2πω(−2a2k2yr

+ a(2k3 + k2ωyr + k − 2ωyr) + ω(k + ωyr)))

is not null, then a Hopf bifurcation occurs at the origin in the

planar analytic system (19). In fact, the number σ , also known as

Lyapunov coefficient, is the first non null coefficient of the Taylor’s

polynomial expansion of the displacement map d(x) = ϕ(x) − x,
where ϕ(x) is the first return map associated to (19) (see [18]

for details). Moreover, we have σ > 0 for all a ∈ (a−, a+)
and, thus, a subcritical Hopf bifurcation occurs when k = kH .
Therefore, a unique unstable limit cycle bifurcates from the point

q in the sliding vector field (11) (see Fig. 4(a)–(b)). So Proposition 1

is proved. �

Fig. 4(a) and (b) show the phase portrait of (14) and a simulation

of the behavior of the boost converterwith the SMC-Washout given

by (8), respectively. On both we note the existence of an unstable

limit cycle C ⊂ Σ s around the stable focus q ∈ Σ s. The red

closed curve, the blue point and the green point represent the

limit cycle C , the pseudo-equilibrium point q and the two-fold

point pt , respectively. While the red solid denoted by Γ indicates

the basin of attraction of the pseudo-equilibrium q (more details

in Section 4.3). The parameter values used in the simulation are:

ω = 1, yr = 4, a = 0.2 and k = 1.5.

4.2. Sliding homoclinic bifurcation

The unique limit cycle C , that emerged from the Sliding Hopf

Bifurcation of Section 4.1, persists until the homoclinic loop occurs

at the two-fold point. This is the subject of the next proposition.

Proposition 2. The limit cycle C emerges from the Sliding Hopf
Bifurcation in Proposition 1, when the parameter k assumes the
critical value k = kH . It persists when the parameter k varies from
k = kH to k = kHC , where kHC stands for the critical value of
parameter k needed to connect the limit cycle with the two-fold point,
until to touch the homoclinic loop at the two-fold point and then
disappears.

Proof. According to Table 1, the double tangency point pt is a

visible–invisible two-fold singularity whenever ac(k) < a < ω
and k < ωyr . Note that the sliding Homoclinic bifurcation curve

in plane −(a, k) is contained in the quadrant a− < a < a+ and

yra− < k < yra+ (see Fig. 8). As a+ < ω
2
and a− > ac , then

the double tangency point is classified as visible–invisible two-fold

when the sliding Homoclinic bifurcation occurs.

Moreover, the projection of the point pt on the switching

manifold Σ is the point ps
t = (kyt , yt), where yt > 0 is the

coordinate y of the double tangency point pt given in (9). The

point ps
t is an equilibrium of the planar normalized sliding vector

field fs, whose dynamics in its neighborhood on Σ s is saddle type

whenever the q ∈ Σ s, because

Det[J(ps
t)] = −ω(k − ayr)yt < 0

for k > ayr . Thus it is natural that the homoclinic loop passes

through this point.

Since the two coordinates of system (14) have no roots in

common and the cycle emerged from Proposition 1 is unique, we

are able to use the Perko’s Planar Termination Principle (see [31,32]).
More precisely, the parameter k represents the Hopf bifurcation

parameter and this principle guarantees that this family of periodic

orbits is unbounded or terminates at a critical point as shown in

Fig. 5(a). So, we conclude that the family of periodic orbits persists

until reach a saddle point defined by the separatrices of ps
t , which is

a visible–invisible two-fold point, giving rise to a homoclinic loop.

See Fig. 5(a)–(b). �

The previous proposition states the existence of homoclinic

bifurcation for the normalized sliding vector fields f s. Note that this

vector field is smooth and therefore the homoclinic orbit possesses

the two-fold point ps
t as α- and ω-limits, which is reached when

t → −∞ and t → +∞, respectively. However, the trajectories of

the vector fields f + and f − reach the two-fold point in a finite time.

This is an important issue and a difference between the smooth and

piecewise smooth world.

Fig. 5(a) and (b) illustrate the phase portrait of (14) and the

simulations of the boost converter with SMC-Washout given by

(8), respectively. In Fig. 5(a) we observe the homoclinic loop

(purple curve) passing through ps
t (projection of pt in Σ) that is

a saddle equilibrium point of fs and is the closing point of the

homoclinic orbit. In Fig. 5(b), the purple solid represents the basin

of attraction Γ of the pseudo-equilibrium q; and pt (green dot) is a

visible–invisible two-fold singularity of the model. The parameter

values used in the simulation are: ω = 1, yr = 4, a = 0.2 and

k = 1.573.

Remark 5. The homoclinic loop L0 is simple since

σ0 = ∇ · f s = Tr[J(ps
t)] =

k(2a − ω)(ωyr − k)

a − ω
− 1 ≠ 0.

We say that a separatrix cycle is called stable or unstable if the

displacement map d(s) satisfies d(s) < 0 or d(s) > 0, respectively,

for all s in some neighborhood of s = 0 where d(s) is defined.
As shown in [14] (see page 304), if L0 is simple (σ0 ≠ 0), the

homoclinic loop L0 is stable (unstable) if and only ifσ0 < 0 (σ0 > 0)

and besides that there exists some neighborhoods Vε of L0 and V

of f s (in a C1-norm) such that for all vector field g ∈ V has at most

one limit cycle in Vε with the same stability of L0. Moreover, as

expected, from this homoclinic loop can arise from a homoclinic

bifurcation only one limit cycle, as proved in [14] (see page 309).

4.3. A brief comment about the basin of attraction

An important part of the local stability analysis is the

determination of the basin of attraction (see [33]), because it reveals

the region in the state space where for any initial condition the

system (8) reaches its equilibrium point. The basin of attraction,

here, is defined as the subset of R
3 formed by all the initial states

x0 = x(τ0), τ0 ≥ 0, that reach the switching boundary Σ on the

sliding regionΣ s (in finite time τ = τ1 ≥ τ0), and remain confined
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Fig. 7. Bifurcation diagram in (x, y, k)-space considering k as the bifurcation parameter. The ‘‘uLC’’ stands for unstable limit cycle.

to Σ (for all positive time τ > τ1) sliding under the dynamics of fs,

tending asymptotically to the pseudo-equilibrium q = x(∞).

The knowledge of the basin of attraction for different values

of the control parameter k is of great importance for the control

design, because it allows us to find a value for k in which the basin

of attraction of the pseudo-equilibrium ismaximum. However, the

complete analysis of the attraction basin is a difficult task and in

general is not analytically solvable. This is a very comprehensive

topic and we leave the complete analysis out of this work. What

we will do next in this subsection is a previous analysis on the

subject from the results obtained with the analysis of the sliding

Hopf and sliding Homoclinic bifurcations present in the previous

subsections.

We present the case shown in Fig. 4(b), where the presence

of a limit cycle C ∈ Σ s creates a solid Γ with cylindrical shape

representing the basin of attraction. In this case, the boundary of

the basin of attraction is formed by all initial states that reach

Σ s exactly on the unstable limit cycle C . Note that our set of

initial states for the boost converter to reach the operating point

is reduced to the interior of the solid Γ .

The area in Σ s delimited by the unstable limit cycle around the

stable pseudo-focus, represents the basin of attraction confined

to Σ s. We have seen in the previous subsections that this area

persists with the increase in the value of parameter k (for a fixed

value of a). The basin of attraction in Σ s becomes larger when

we increase the value of k. This increase can be observed by

comparing Figs. 4(a) and 5(a), and also, numerically verified from

the bifurcation diagrams in Fig. 6, which indicate an amplitude of

limit cycle C , in both state variables, increasing as a function of

k. These arguments lead us to a basin of attraction in R
3 which

increases alongwith k, as seen of Figs. 4(b) to 5(b), where the solids

denoted by Γ represent the basin of attraction in each case.

From this previous analysis, it is clear that the basin of attraction

containing the largest possible part of R
3 will be obtained for

some value of k after the sliding Homoclinic bifurcation and the

disappearance of the unstable limit cycle C . However, further

studies are needed to find the optimal value of k that maximizes

the attraction domain, so we leave this task for a future work.

4.4. Final remarks

The bifurcation diagrams of Fig. 6 show the displacement in

the x and y coordinates of the points of pseudo-equilibrium and

double tangency and the variation of amplitude of the limit cycle

C as a function of the parameter k. These numerical results are

expected according to the analysis of bifurcations discussed in the

previous subsections, wherewe prove that, by varying parameter k

in an increasing way, the system (8) undergoes a subcritical sliding

Hopf bifurcation followed by a sliding Homoclinic bifurcation.

Moreover, we verified through the analysis of the bifurcation

diagrams that the amplitude of C is an increasing function of k,
starting (with zero amplitude) in the Hopf and disappearing (with

maximum amplitude) in the Homoclinic.

In Fig. 6 is shown: the dotted curve representing the amplitude

of the unstable limit cycle C; the straight line representing the

coordinates x and y of q, which is an unstable focus in the dashed

part and a stable one at the solid part; the dashed curve represents

the coordinates x and y of the two-fold singularity pt , which has

characteristics of a saddle (unstable) equilibrium in the vector

field sliding; the black points indicate the subcritical sliding Hopf

bifurcation (Hsub), where the unstable limit cycle born; and the

sliding Homoclinic bifurcation (HC), where the unstable limit cycle

collides with the two-fold singularity pt and disappears.

Fig. 7 illustrates the displacement of the pseudo-focus q, of

the two-fold singularity pt and of the unstable limit cycle, in

relation to the parameter k. The pseudo-focus q is unstable before

the subcritical sliding Hopf bifurcation (Hsub) and stable after it.

The unstable limit cycle surrounds q and there exists for k ∈
(1.375, 1.573). It disappears, for k = 1.573, colliding to pt in a

homoclinic loop (HC).

We summarize the dynamics on the diagram of Fig. 8, where

it can be observed that: the two points denoted as BT, given by

(a−, yra−) and (a+, yra+) with a± given in (18), represent two

Bogdanov–Takens bifurcations of q; the blue curve, given by k =
kH(a)with kH defined in (17), stands for the subcritical slidingHopf

bifurcation (Hsub) of q; the red curve, of equation k = ayr , indicates
the transcritical bifurcation (T) involving the two-fold singularity

pt and the pseudo-equilibrium q; the purple curve, numerically

obtained, represents the sliding Homoclinic bifurcation (HC) of

C; and the green curve point out the transition of the pseudo-

equilibrium q from node to focus.

A given value of the parameter pair (a, k) on region 1means that

q is a pseudo-saddle, on region 2 stands for an unstable pseudo-

node, on region 3 means that it is an unstable pseudo-focus, on

region4 implies that it is a stable pseudo-node andon regions 5 and

6 denotes that it is a stable pseudo-focus (on region 5 there exists

an unstable limit cycle). Moreover, on region 1 we get q ∈ Σe and

on regions 2, 3, 4, 5 and 6 we get q ∈ Σ s.

The results obtained in this work on Sliding Hopf and Sliding

Homoclinic bifurcations can be used in the control design of a boost

converter. More specifically, our analysis can be used to find the

values (a, k) that make the operating point locally stable, and from

this, to choose the ‘‘better’’ value of k from a prior knowledge of the

variation range of the load parameter a. Following our analysis, the
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Fig. 8. Bifurcation set in (a, k)-plane.

value searched for k must be in region 6 of Fig. 8, namely the safe
operating region of the system (8).

5. Conclusion

In this paper, by means of a case study in power electronics

(boost converter controlled by a sliding mode control), we proved

the existence of two different sliding bifurcations: (i) Sliding Hopf

and (ii) Sliding Homoclinic. The Sliding Hopf bifurcation occurs

in the sliding vector field and is analogous to the standard case.

The limit cycle that arises from the Sliding Hopf bifurcation is

unstable and it is confined to the switching manifold. The Sliding

Homoclinic bifurcation occurs when the limit cycle disappears by

touching visible–invisible two-fold point, whose dynamics in the

sliding region is of the saddle type. The homoclinic loop has a

sliding segment which itself closes at the two-fold singularity.

The result of the bifurcation analysis was summarized in the

(a, k)-plane bifurcation set shown in Fig. 8. This methodology is

useful to choose an appropriate value for the control parameter

k in order to ensure the system stability at the desired operating

point and prevent the birth of a limit cycle around it, even after a

change in the load parameter a.
Themechanism described in the case studied in this work, from

which a sliding limit cycle collapses when it touches a two-fold

point is a dynamic phenomenon that is specific to nonsmooth

dynamical systems. Further studies will be conducted in order

to prove and to characterize this collapse mechanism for general

nonsmooth dynamical systems in R
3.
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