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Abstract: Using Routh-Hurwitz criterion and Hopf bifurcation theorem, stability of the equilibrium points and Hopf bi-

furcation of coupled van der Pol and Duffing oscillators are investigated. The parametric curve corresponding to Hopf bi-

furcation and the existence region for the limit cycle in the parameter space are derived. The method of multiple time 

scales is used to deduce the analytical approximation of the limit cycle, and the accuracy of the analytical approximation 

is verified by direct numerical integration. 

INTRODUCTION 

 Duffing oscillator and van der Pol oscillator are two clas-

sical nonlinear oscillators. Their dynamics are very rich in 

terms of stability, bifurcation and chaos. Since the last dec-

ade, much attention has been paid to the study of coupled 

oscillators, such as two coupled Duffing oscillators [1, 2] 

and two coupled van der Pol oscillators [3-5]. The reason for 

this study is twofold. On the one hand, various physical, 

electromechanical and biological systems can be described 

as a collection of coupled oscillators [6]. On the other hand, 

dynamical systems consisting of a collection of coupled os-

cillators are higher-dimensional and their dynamics is more 

complex and hence need further investigation. But, as 

pointed out by Chedjou et al. [7], less effort had been done 

in a system consisting of a self-excited oscillator and 

Duffing oscillator. 

 In this paper, a dynamical system consisting of coupled 

van der Pol and Duffing oscillators is discussed as follows 
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where the prime denotes the derivative with respective to 

time and 
i
,μ

i
(i = 1, 2), c,d and f are the parameters. Equa-

tions (1)-(2) can be used to model a self-sustained electro-

mechanical transducer consisting of an electrical part and a 

mechanical part coupled through Laplace force and Lenz 

electromotive voltage, which was proposed by Chedjou et al. 

[7]. In the absence of the coupling, i.e., f = d = 0 , equations 

(1) and (2) reduce to the classical van der Pol oscillator and 

the damped Duffing oscillator without excitation respec-

tively. Chedjou et al. [7] analyzed stability of the equilibri-

ums of this equations using Routh-Hurwitz criterion and 

investigated the oscillatory state using the averaging method.  
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Shilnikov chaos of equations (1)-(2) was also studied by 

applying Shilnikov theorem. However, Hopf bifurcation and 

the parametric curve in the parametric space corresponding 

to Hopf bifurcation were not discussed in [7]. 

 Our attention is addressed to Hopf bifurcation analysis of 

equations (1)-(2) and the existence and approximation of the 

limit cycle. The paper is arranged as follows. In section 2, 

stability of the equilibriums of equations (1)-(2) is analyzed. 

In section 3, Hopf bifurcation of equations (1)-(2) is ana-

lyzed and the parametric curve for Hopf bifurcation and the 

existence region for the limit cycle in the parameter space 

are obtained. In section 4, the method of multiple scales is 

used to deduce the analytical approximation for the limit 

cycle. The accuracy of the analytical approximation is com-

pared with the results of direct numerical integration. The 

final section is devoted to some conclusions. 

STABILITY OF EQUILIBRIUM POINTS 

 Equations (1)-(2) can be rewritten in the form 
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 From equations (3), it is easy to verify that 

1. For c 0 , (x
10
, x

20
, y
10
, y

20
) = (0, 0, 0, 0)  is the only 

equilibrium point of equations (1)-(2), 

2. For c < 0 , besides (0, 0, 0, 0) ,  

      (x10 , x20 , y10 , y20 ) = (0, 0,±
2

c
, 0)  are also the equi- 

   librium points of equations (1)-(2). 
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 Linearizing equations (3) around a considered equilib-

rium point (x
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, x
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, y
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, y
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)  results in the following Jocabian 

matrix 
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 The eigenvalues of M  are the roots of the following 

characteristic polynomial 
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 According to Routh-Hurwitz criterion, M  is a Hurwitz 

matrix and the considered equilibrium point 

(x
10
, x

20
, y
10
, y

20
)  is stable if the following inequalities hold, 
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HOPF BIRURCATION ANALYSIS 

 In what follows, the parameter c 0 is pre-assumed, 

consequently, equation (1)-(2) process only an equilibrium 

point (0, 0, 0, 0) . For the equilibrium point (0, 0, 0, 0) , equa-

tions (6) reduce to 
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 Thus, according to Routh-Hurwitz criterion, the equilib-

rium point (0, 0, 0, 0)  is stable if 

μ
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1
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12
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= such 

that the coupled oscillators (1)-(2) are in resonant state. 

Thus, for the equilibrium point (0, 0, 0, 0) , equation (5) turns 

out to be 
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 The characteristic roots of equation (9) is given by 
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 From equation (10a) we can find that 

1) if a = 0 , i.e. 
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 Equation (10) turns out to be 
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 Equation (9) process two complex roots and two real 

roots with negative real parts. 

3) if a < 0 , i.e. 

fd < μ
2
μ
1
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 Equation (9) process two complex roots with positive 

real parts. 

 According to Hopf bifurcation theorem [8], under the 

parametric condition (12), Hopf bifurcation of equations (1)-

(2) occurs. Hence, equation (12) represents the parametric 

curve corresponding to Hopf bifurcation and inequality (13) 

determines the existence region of limit cycle in the paramet-

ric space. 

 Fix the parameters of equations (1)-(2) as follows: 

μ
1
= 0.33,d = 0.66, f = 0.33, c = 0.01,

1
=

2
= 1.0.  Accor-

ding to the discussions above, it can be concluded that for 

the control parameter μ
2
(0.33, 0.66),  the equilibrium 

point (0, 0, 0, 0)  is stable and μ
2c
= 0.66  is the critical pa-

rameter value corresponding to Hopf bifurcation. Direct nu-

merical simulations shown in Figs. (1,2) verify these conclu-

sions. 

THE APPROXIMATION OF THE LIMIT CYCLE 

 Next, we seek analytical approximation of the limit cycle 

nearing the equilibrium point by using the method of multi-

ple scales. Supposing that the damp and the nonlinearity in 

the van der Pol oscillator and Duffing oscillator and the cou-

pling between them are relatively small, equations (1)-(2) 

can be rescaled in the following form 
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where  formally stands for a dimensionless small parameter 

but it will be set to unit in the final analysis. 

Fig. (1). Simulations of the orbit of equations (1)-(2) starting from 

an arbitrary initial condition when μ
2
= 0.5.  

 We begin by introducing the time scales 
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 Next, assume that the analytical formulation for the limit 

cycle is 
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 Substituting equations (20)-(21) into equations (15)-(16) 

and balancing coefficient of the same power of  yields the 

ordered perturbation equations: 
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Fig. (2). Phase portraits of the limit cycle of equations (1)-(2) on 

the x x  and y y  planes when μ
2
= 0.7 . 
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 The solutions of equations (22)-(23) can be given by 
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which in fact means that 1=k  in equation (17). Substituting 

equations (26) into the right-hand side of equations (24)-(25) 
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 Equations (30) can be transformed into 
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 Equations (31) are identical with that of Chedjou et al. 

[6] derived by the averaging method. 

 Due to the fact that limit cycles are the steady-state solu-

tions of dynamical systems, the amplitude and frequency of 

the fundamental solution (26) of equations (1)-(2) can be 

solved from the following nonlinear algebraic equations by 

setting the right-hand side of equations (31) to zero. 
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 It can be deduced from equations (32) that 
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 Hence, A  and B  can be solved from equations (33). Till 

now, the first-order approximation for the limit cycle of 

equations (1)- (2) is given by 
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where the constants A  and B  are determined by equations 

(33). 

 If the parameters μ
1
= 0.33,d = 0.66, f = 0.33, c = 0.01,  

and 
 1

=
2
= 1.0  are fixed and μ

2
= 0.7  is chosen, it can 

be deduced from equations (33) that A = 0.478152  and 

B = 0.450826 . Fig. (3) shows the phase portraits of the limit 

cycle of equations (1)-(2) on the x x  and y y  planes, 

from which we know that the analytical and numerical inte-

grated results fit very well. 

 With the control parameter μ
2

 increasing from the Hopf 

bifurcation point μ
2c
= 0.66 , for example, when it reaches 

μ
2
= 2.0 , the phase portraits of the analytical and numerical 

integrated results are illustrated in Fig. (4). We find that on 

the x x  plane, the analytical result agrees well with that of 

numerical integration. However, on the y y  plane, the 

amplitude derived from numerical integration is larger than 

that of analytically approximate method. The reason for this 

phenomenon is clear if we note that the parameter 
2

μ  is the 

damped parameter of equation (2). 

 

 

Fig. (3). Phase portraits of the limit cycle on the x x  and y y  

planes when μ
2
= 0.7 , dot line for numerically integrated result 

and solid line for analytical result. 
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CONCLUSIONS 

 Stability of the equilibrium point of coupled van der Pol 

and Duffing oscillators is investigated by using the Routh-

Hurwitz criterion. Utilizing Hopf bifurcation theorem, exis-

tence of limit cycle is proved. The critical parametric curve 

corresponding to Hopf bifurcation and the existence region 

for the limit cycle in the parameter space are also obtained. 
The method of multiple scales is applied to deduce the ana-

lytical approximation of the limit cycle. If the control pa-

rameter is closed to the Hopf bifurcation point, the analytical 

and numerical integrated results are well agreed. However, 

as the control parameter increases gradually and deviates 

from the Hopf bifurcation point, the analytical approxima-

tions do not match well with numerical integrated results. 

 

 

Fig. (4). Phase portraits of the limit cycle on the xx  and yy  

planes when 0.2
2
=μ , dot line for numerically integrated result 

and solid line for analytical result. 
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