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Hopf bifurcation analysis of a delayed ecoepidemiological model with nonlinear incidence rate and Holling type II functional
response is investigated. By analyzing the corresponding characteristic equations, the conditions for the stability and existence of
Hopf bifurcation for the system are obtained. In addition, a hybrid control strategy is proposed to postpone the onset of an inherent
bifurcation of the system. By utilizing normal formmethod and center manifold theorem, the explicit formulas that determine the
direction of Hopf bifurcation and the stability of bifurcating period solutions of the controlled system are derived. Finally, some
numerical simulation examples con	rm that the hybrid controller is e
cient in controlling Hopf bifurcation.

1. Introduction

In the natural world, transmissible diseases in ecological
environment cannot be ignored. Since the pioneering study
of Anderson and May [1], great and interesting predator-
prey models with disease were discussed by researchers
recently [2–11]. In [2], Liu and Wang considered a predator-
prey model with disease in the prey; the Bogdanov-Takens
bifurcation and the Hopf bifurcation were analyzed. How-
ever, referring to diseases that are transmissible in di�erent
populations, Guo et al. [12] studied an ecoepidemiological
model with disease spreading within the predator population
as follows:

�̇ (�) = � (�) (� − �11� (�)) − �12� (�) 	 (�)1 + 
� (�) ,
̇	 (�) = �21� (�) 	 (�)1 + 
� (�) − �1	 (�) − �	 (�) � (�) ,
̇� (�) = �	 (�) � (�) − �2� (�) ,

(1)

where �(�), 	(�), and �(�) denote the densities of the prey,
the susceptible predator, and the infected predator population

at time �, respectively. �e parameters �, �11, �12, �21, 
, �1,�2, and � in model (1) are all positive constants in which� is the intrinsic growth rate of prey and �/�11 represents
the carrying capacity of prey; only the susceptible predators
have the ability to capture the prey with capturing rate �12;�21/�12 is the conversion rate of the susceptible predators;
 is the half-capturing saturation constant, �1 is the natural
death rate of the susceptible predator, �2 is the natural and
disease-related mortality rate of the infected predator, and� > 0 is called the disease transmission coe
cient. Guo et al.
discussed the su
cient conditions for the Hopf bifurcation
analysis of model (1).

�e term �	� in model (1) is called the bilinear inci-
dence rate. In the ecoepidemiological model, it is generally
assumed that the average perinfected individual is e�ectively
connected to the other members of the � population at
the same time ( represents the total scale of population),
but the activity ability about them at the same time is
always limited.�erefore, as the scale of population increases
in	nitely, the contact rate does not increase, but it gradually
tends to a saturated state. �is saturation contact rate is also
known as the nonlinear incidence rate. Capasso and Serio
[13] considered the cholera epidemic spread in Bari in 1973.
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�ey introduced a nonlinear incidence rate ��	/(1+��).�is
incidence rate seems more reasonable than the bilinear inci-
dence rate �	�, because the nonlinear incidence rate is faster
than the linear growth. For instance, before the outbreak of
an infectious disease, there would be many contacts with
the infected individuals. It includes the behavioral change
and crowding e�ect of the infective individuals and prevents
the unboundedness of the contact rate by choosing suitable
parameters.

Motivated by the works of Guo et al. [12] andCapasso and
Serio [13] and based on the inuence about the time delay,
in this paper, we consider the following ecoepidemiological
model with nonlinear incidence rate, time delay, and Holling
type II functional response:

�̇ (�) = � (�) (� − �11� (�)) − �12� (�) 	 (�)1 + 
� (�) ,
̇	 (�) = �21� (� − �) 	 (� − �)1 + 
� (� − �) − �1	 (�) − �	 (�) � (�)1 + �� (�) ,
̇� (�) = �	 (�) � (�)1 + �� (�) − �2� (�) ,

(2)

where the parameters �11, �12, �21, �, �1, �2, and � are de	ned
in system (1). In this model, only the susceptible predators
have ability to capture prey with Holling type II functional
response �/(1 + 
�) and � > 0 is the time delay due to the
gestation of the susceptible predator.

�e initial conditions for system (2) take the form of� (0) > 0,	 (0) > 0,� (0) > 0. (3)

According to the fundamental theory of functional dif-
ferential equations [14], system (2) has a unique solution(�(�), 	(�), �(�)) that satis	es the initial conditions (3). It is
easy to show that all solutions of system (2) with initial
conditions (3) are de	ned on [0, +∞) and remain positive for
all � ≥ 0.

In recent years, bifurcation control has been extensively
concerned by researchers from various disciplines. �e aim
of bifurcation control is to design a controller to modify the
bifurcation properties of a given nonlinear system, thereby
achieving some desirable dynamical behaviors. From the
control theory point of view, many e�ective control methods
have been proposed, such as the state feedback control
[15, 16] and hybrid control strategy [17–24]. Especially, the
hybrid control has also been widely used recently. Cheng and
Cao [20] considered Hopf bifurcation control for a complex
network model with time delays, and they presented a hybrid
control strategy to control the model. Kiani et al. [21] used
the hybrid control method for a three-pole active magnetic
bearing (AMB), and the method showed that the power
usage decreased in the hybrid control method comparing
to a simple linear control. Peng et al. [24] studied the Hopf
bifurcation control for a Lotka-Volterra predator-prey model
with two delays by using a hybrid control strategy.

From the viewpoint of an ecological model, the corre-
sponding complex bifurcation behavior means that the sys-
tem changes from a stable state to an unstable one. It even
causes the system to explode, which may be harmful to the
ecological balance. Based on this point, a hybrid control
strategy by combining the state feedback control and pertur-
bation parameter is used in order to postpone the onset of
an inherent bifurcation and enlarge the stable range in model
(2).

�e rest of this paper is organized as follows. In Section 2,
the local stability of the positive equilibrium and the existence
of Hopf bifurcation for system (2) are discussed. In Section 3,
we propose a hybrid control strategy in which the state feed-
back and parameter perturbation are combined into system
(2) and it is used to control theHopf bifurcation.�e formulas
for determining the direction of Hopf bifurcation and the
stability of bifurcating period solutions of the controlled
system are derived. In Section 4, some numerical simulation
examples are carried out to illustrate the validity of the main
results. A brief conclusion is given in the last section to
conclude this work.

2. A Delayed Ecoepidemiological
Model without Control

It is easy to see that system (2) has a unique positive
equilibrium �∗(�∗, 	∗, �∗), where�∗

= − (�21�� − ��1�
 − �
� + �11�1� + �11�) + √Δ 12 (−�11�21� + �11�1
� + �11
�) ,
	∗ = −�2 (1 + 
�∗)�∗ (�21� − �1
� − 
�) − �1� − �,
�∗ = �	∗ − �2�2� ,

(4)

with Δ 1 = (�21�� − ��1
� − �
� + �11�� + �11�)2− 4 (−�11�21� + �11�1
� + �11
�)⋅ (�12�2 − �� − ��1�) (5)

if the following condition holds:� (1) : �11�1
� + �11
� > �11�21�,�12�2 < �� + ��1�. (6)

In this part, we shall study the local stability of linearized
system at the positive equilibrium and the existence of Hopf
bifurcations for system (2).

Consider the linearized system of system (2) at the
positive equilibrium �∗(�∗, 	∗, �∗),�̇ (�) = �̃11� (�) + �̃12	 (�) ,̇	 (�) = �̃22	 (�) + �̃23� (�) + �̃21� (� − �) + �̃22	 (� − �) ,̇� (�) = �̃32	 (�) + �̃33� (�) , (7)
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where

�̃11 = � − 2�11�∗ − �12	∗(1 + 
�∗)2 ,
�̃12 = −�12�∗1 + 
�∗ ,
�̃22 = −�1 − ��∗1 + ��∗ ,
�̃23 = − �	∗(1 + ��∗)2 ,
�̃32 = ��∗1 + ��∗ ,
�̃33 = �	∗(1 + ��∗)2 − �2,
�̃21 = �21	∗(1 + 
�∗)2 ,
�̃22 = �21�∗1 + 
�∗ .

(8)

�e characteristic equation of the linearized system (7) is

�3 + �2�2 + �1� + �0 + (�2�2 + �1� + �0) �−�� = 0, (9)

where

�0 = �̃11�̃23�̃32 − �̃11�̃22�̃33,�1 = �̃11�̃22 + �̃22�̃33 + �̃11�̃33 − �̃23�̃32,�2 = − (�̃11 + �̃22 + �̃33) ,�0 = �̃12�̃33�̃21 − �̃11�̃33�̃22,�1 = �̃11�̃22 + �̃33�̃22 − �̃12�̃21,�2 = −�̃22.
(10)

For � = 0, (9) reduces to
�3 + (�2 + �2) �2 + (�1 + �1) � + (�0 + �0) = 0. (11)

It is not di
cult to verify that �0 + �0 > 0, �2 + �2 > 0.
According to the Routh-Hurwitz criteria, the necessary and

su
cient condition for all roots of (11) to have a negative real
part is given in the following form:� (2) : (�2 + �2) (�1 + �1) − (�0 + �0) > 0. (12)

Namely, the equilibrium �∗(�∗, 	∗, �∗) is locally asymptoti-
cally stable when the condition �(2) is satis	ed.

For � ̸= 0, substituting � =  ! (! > 0) into (9) and
separating real and imaginary parts, we obtain

−!3 + �1! = (−�2!2 + �0) sin!� − �1! cos!�,
−�2!2 + �0 = (�2!2 − �0) cos!� − �1! sin!�. (13)

Squaring and adding the two equations of (13), it follows that

−!3 + �1! = (−�2!2 + �0) sin!� − �1! cos!�,
−�2!2 + �0 = (�2!2 − �0) cos!� − �1! sin!�, (14)

where �20 = �20 − �20, �21 = �21 − �21 − 2�0�2 + 2�0�2, and�22 = �22 − 2�1 − �22.
Let " = !2. Equation (14) can be written as"3 + �22"2 + �21" + �20 = 0. (15)

Denote ℎ1 (") = "3 + �22"2 + �21" + �20. (16)

Since ℎ1(0) = �20, lim�→+∞ℎ1(") = +∞, and from (16), we
have ℎ�1 (") = 3"2 + 2�22" + �21. (17)

A�er discussion about the roots of (17) that are similar to
those in [25], we have the following lemma.

Lemma 1. For the polynomial equation (15), we have the fol-
lowing results.

(1) If (H21) �20 ≥ 0 and Δ = �222 − 3�21 ≤ 0 holds, then (15)
has no positive root.

(2) If (H22) �20 ≥ 0, Δ = �222 − 3�21 > 0, "∗ = (−�21 +√Δ)/3 > 0, ℎ1("∗) ≤ 0, or (H23) �20 < 0 holds, then (15) has
positive roots.

Suppose that (15) has positive roots. Without loss of
generality, we assume that it has three positive roots, denoted
by "1, "2, and "3. �en (14) has three positive roots !	 =√&, & = 1, 2, 3.�e corresponding critical value of time delay�(
)	 is

�(
)	 = 1!	 arccos{(−�1 + �2�2) !4	 + (�1�1 − �2�0 − �0�2) !2	 + �0�0− [�22!4	 + (�21 − 2�0�2) !2	 + �20] } + 267!	 , (18)

where 7 = 0, 1, 2 . . . .
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�us ±!	 is a pair of purely imaginary roots of (9) with� = �(
)	 , and let �0 = min	∈{1,2,3}{�(0)	 }, !0 = !	0 .
According to theHopf Bifurcation�eorem [26], we need

to verify the transversality condition. Di�erentiating the two
sides of (9) with respect to �, we obtain

(9�9� )−1 = − 3�2 + 2�2� + �1� (�3 + �2�2 + �1� + �0)+ 2�2� + �1� (�2�2 + �1� + �0) − �� , (19)

�en

sign{9 (Re �)9� }
�=�0

= sign{Re(9�9� )−1}
�=�0

= sign{ 3!40 + 2 (�22 − 2�1) !20 + (�21 − 2�0�2)!60 + (−2�1 + �22) !40 + (�21 − 2�0�2) !20 + �20
− 2�22!20 + �21 − 2�0�2�22!40 + (�21 − 2�0�2) !20 + �20} .

(20)

We derive from (13) that

!60 + (−2�1 + �22) !40 + (�21 − 2�0�2 + 2�0�2)+ �20 = �22!40 + (�21 − 2�0�2) !20 + �20. (21)

�en, it follows that

{9 (Re �)9� }
�=�0

= sign{3!40 + 2 (�22 − 2�1 − �22) !20 + (�21 − 2�0�2 − �21 + 2�0�2)�22!40 + (�21 − 2�0�2) !20 + �20 }
= sign{ ℎ�1 ("0)�22!40 + (�21 − 2�0�2) !20 + �20} . (22)

�erefore, {9(Re �)/9�}�=�0 ̸= 0 if the following condition
holds:

� (24) : ℎ�1 (!20) ̸= 0. (23)

According to the analysis above, we have the following results.

�eorem 2. For system (2),
(1) If (H21) holds, then the positive equilibrium �∗(�∗,	∗, �∗) is asymptotically stable for all � ≥ 0.
(2) If (H22) or (H23) and (H24) hold, then the positive

equilibrium �∗(�∗, 	∗, �∗) is asymptotically stable for all � ∈[0, �0) and unstable for � > �0. Furthermore, system (2)
undergoes a Hopf bifurcation at the positive equilibrium�∗(�∗, 	∗, �∗) when � = �0.
3. A Delayed Ecoepidemiological Model with

Hybrid Control

In this part, a hybrid control strategy is proposed, in which
the state feedback and parameter perturbation are combined
in an e�ort to postpone the occurrence of Hopf bifurcation in
system (2). Here, a controlled model as follows is considered:

�̇ (�)
= D [� (�) (� − �11� (�)) − �12� (�) 	 (�)1 + 
� (�) ] + G� (�) ,

̇	 (�)
= D [�21� (� − �) 	 (� − �)1 + 
� (� − �) − �1	 (�) − �	 (�) � (�)1 + �� (�) ]

+ G	 (�) ,
̇� (�) = D [�	 (�) � (�)1 + �� (�) − �2� (�)] ,

(24)

where D > 0 and G ∈ H are control parameters. �e
parameters �11, �12, �21, 
, �, �1, �2, �, and � are de	ned in
system (2), G�(�) and G	(�) a�ect the densities of prey and
susceptible predator at time �, respectively, and G > 0 denotes
increase in the quantity, while G < 0 otherwise.

Similar to the discussion in Section 2, model (24) has a
unique positive equilibrium �∘(�∘, 	∘, �∘), where

�∘ = −I2 + √Δ 22I1 ,
	∘
= −D�2 (1 + 
�∘)�∘ (�D�21 − �D�1
 − D�
 + �G
) − �D�1 − D� + �G ,

�∘ = �	∘ − �2�2� ,
(25)

with I1 = −�11D (�D�21 − �D�1
 − D�
 + �G
) ,I2 = �D2��21 − �D2��1
 − D2��
 + DG��
+ �D2�1�11 + D2�11� − �DG�11 + �DG�21− �DG�1
 − DG�
 + �G2
,
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Δ 2 = I22 − 4I1 (−�D2��1 + �DG� − D2�� − �DG�1− DG� + �G2 + D2�12�2) ,
(26)

if the following condition holds:

(�3) : −�11D (�D�21 − �D�1
 − D�
 + �G
) > 0,(−�D2��1 + �DG� − D2�� − �DG�1 − DG� + �G2 + D2�12�2) < 0. (27)

Let�(�) = �(�)−�∘, 	(�) = 	(�)−	∘, and �(�) = �(�)−�∘ and still
denote �(�), 	(�), �(�), respectively. Using Taylor expansion to
expand system (24) at the positive equilibrium �∘(�∘, 	∘, �∘),
we have

�̇ (�) = ��11� (�) + ��12	 (�) + J�1 ,̇	 (�) = ��22	 (�) + ��23� (�) + ��21� (� − �) + ��22	 (� − �)+ J�2 ,̇� (�) = ��32	 (�) + ��33� (�) + J�3 ,
(28)

where

��11 = D� − 2D�11�∘ − �12D	∘(1 + 
�∘)2 + G,
��12 = −�12D�∘1 + 
�∘ ,
��22 = −D�1 − D��∘1 + ��∘ + G,
��23 = −D�	∘(1 + ��∘) ,
��32 = D��∘1 + ��∘ ,
��33 = D�	∘(1 + ��∘)2 − �2D,
��21 = D�21	∘(1 + 
�∘)∘ ,
��22 = D�21�∘1 + 
�∘ ,J�1 = ��13�2 + ��14�	 + ��15�2	 + ��16�3,J�2 = ��24�2 (� − �) + ��25� (� − �) 	 (� − �)+ ��26�2 (� − �) 	 (� − �) + ��27�3 (� − �)+ ��28	� + ��29�2 + ��30�2	 + ��31�3,J�3 = ��34	� + ��35�2 + ��36�2	 + ��37�3,

(29)

with ��13 = −�11D + D�12
	∘(1 + 
�∘)3 ,��14 = − D�12(1 + 
�∘)2 ,��15 = D�12
(1 + 
�∘)3 ,
��16 = − D�12
2	∘(1 + 
�∘)4 ,
��24 = −D�21
	∘(1 + 
�∘)3 ,��25 = D�21(1 + 
�∘)2 ,��26 = − D�21
(1 + 
�∘)3 ,
��27 = D�21
2	∘(1 + 
�∘)4 ,
��28 = −D�(1 + ��∘)2 ,
��29 = D��	∘(1 + ��∘)3 ,
��30 = D��(1 + ��∘)3 ,
��31 = − D�2�	∘(1 + ��∘)4 ,
��34 = D�(1 + ��∘)2 ,
��35 = −D��	∘(1 + ��∘)3 ,
��36 = −D��(1 + ��∘)3 ,
��37 = D�2�	∘(1 + ��∘)4 .

(30)
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�en we obtain the linearized system of system (24) as
follows:

�̇ (�) = ��11� (�) + ��12	 (�) ,̇	 (�) = ��22	 (�) + ��23� (�) + ��21� (� − �) + ��22	 (� − �) ,̇� (�) = ��32	 (�) + ��33� (�) . (31)

�erefore, the corresponding characteristic equation of sys-
tem (31) is given by

�3 + ��2�2 + ��1� + ��0 + (��2�2 + ��1� + ��0) �−���= 0, (32)

where ��0 = ��11��23��32 − ��11��22��33,��1 = ��11��22 + ��22��33 + ��11��33 − ��23��32,��2 = − (��11 + ��22 + ��33) ,��0 = ��12��33��21 − ��11��33��22,��1 = ��11��22 + ��33��22 − ��12��21,��2 = −��22.
(33)

Obviously, the characteristic equation of system (24) is
similar to (9).�erefore, the analysismethod is very similar to
Section 2; wewill omit the local stability andHopf bifurcation
analysis of system (24). We obtain the corresponding critical

value of time delay (��	)(
) as
(��	)(
) = 1!�	 arccos{{{

(−��1 + ��2��2) (!�	)4 + (��1��1 − ��2��0 − ��0��2) (!�	)2 + ��0��0− [(��2)2 (!�	)4 + ((��1)2 − 2��0��2) (!�	)2 + (��0)2] }}} + 267!�	 , (34)

where & = 1, 2, 3; 7 = 0, 1, 2, . . . , !�	 is a positive root of(!�)6 + �32 (!�)4 + �31 (!�)2 + �30 = 0, (35)

with �30 = (��0)2 − (��0)2 ,�31 = (��1)2 − (��1)2 − 2��0��2 + 2��0��2,�32 = (��2)2 − 2��1 − (��2)2 .
(36)

�us ±!�	 is a pair of purely imaginary roots of (32) with �� =(��	)(
), and let ��0 = min	∈{1,2,3}{(��	)(0)}, !�0 = !�	0 .
In the following, we will investigate the direction of Hopf

bifurcation and the stability of bifurcating periodic solutions
of the controlled system (24) at ��0. �e theoretical approach
we will apply is based on the normal form theory and center
manifold theorem [26].

Let � = ��0 + T, T ∈ H, � = U�, �(U�) = �̂(U), 	(U�) = 	̂(U),
and �(U�) = �̂(U). �en T = 0 is the Hopf bifurcation value

of the controlled system (24). Denote � = �̂, 	 = 	̂, � = �̂,
and � = U, then system (24) can be written as a functional

di�erential equation (FDE) in I = I([−1, 0], H3):W� (�) = X� (W�) + Y (T, W�) , (37)

where W(�) = (�(�), 	(�), �(�))� ∈ I, W�(Z) = W(� + Z) = (�(� +Z), 	(� + Z), �(� + Z))� ∈ I, and X� : I → H3, Y : H × I → H3
are given by X�^ = (��0 + T) [��^ (0) + ��^ (−1)] ,

Y (T, ^) = (��0 + T) (Y1, Y2, Y3)� , (38)

where^ (Z) = (^1 (Z) , ^2 (Z) , ^3 (Z))� ∈ I,
�� = (��11 ��12 00 ��22 ��230 ��32 ��33) ,
�� = ( 0 0 0��21 ��22 00 0 0) ,
Y1 = ��13^21 (0) + ��14^1 (0) ^2 (0) + ��15^21 (0) ^2 (0)+ ��16^31 (0) ,Y2 = ��24^21 (−1) + ��25^1 (−1) ^2 (−1)+ ��26^21 (−1) ^2 (−1) + ��27^31 (−1)+ ��28^2 (0) ^3 (0) + ��29^23 (0)+ ��30^2 (0) ^23 (0) + ��31^33 (0) ,Y3 = ��34^2 (0) ^3 (0) + ��35^23 (0) + ��36^2 (0) ^23 (0)+ ��37^33 (0) .

(39)

Hence, by the Riesz representation theorem, there exists
a 3 × 3 matrix function a(Z, T) of bounded variation for Z ∈[−1, 0], such that

X�^ = ∫0
−1

9a (Z, T) ^ (Z) , for ^ ∈ I. (40)
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In fact, we can choosea (Z, T) = (��0 + T) ��c (Z) − (��0 + T) ��c (Z + 1) , (41)

where c(Z) is the Dirac function.
For ^ ∈ I([−1, 0], H3), de	ne

� (T) ^ = {{{{{{{
9^ (Z)9Z , −1 ≤ Z < 0,
∫0
−1

9a (Z, T) ^ (Z) , Z = 0,
H� (^) = {{{

0, −1 ≤ Z < 0,Y (T, ^) , Z = 0.
(42)

�en (37) can be transformed into the following operator
equation: W�� = � (T) W� + H (T) W�. (43)

�e adjoint operator �∗ of �(0) is de	ned by

�∗e (U) = {{{{{{{
−9e (U)9U , U ∈ (0, 1] ,
∫0
−1

9a� (�, 0) e (−�) , U = 0. (44)

For ^ ∈ I([−1, 0], H3) and e ∈ I([−1, 0], (H3)∗), de	ne the
bilinear form:⟨e (U) , ^ (U)⟩ = e (0) ^ (0)

− ∫0
−1

∫�
�=0

e (h − Z) 9a (Z) ^ (h) 9h, (45)

where a(Z) = a(Z, 0), � = �(0) and �∗ are adjoint operators.
Referring to the previous discussion, we know that± !�0��0

are the eigenvalues of �(0); thus they are also the eigenvalues
of�∗. Suppose that G(Z) = (1, G1, G2)����0��0� is the eigenvector
of�(0) corresponding to  !�0��0 and G∗(U) = i(1, G∗1 , G∗2 )���0��0�
is the eigenvector of �∗ corresponding to − !�0��0. By direct
computation, we obtain

G1 =  !�0 − ��11��12 ,
G2 = ��32 ( !�0 − ��11)��12 ( !�0 − ��33) ,
G∗1 = − !� − ��11��21���0��0 ,
G∗2 = ��23 ( !�0 + ��11)��21���0��0 ( !�0 + ��33) ,

(46)

⟨G∗(U), G(Z)⟩ = 1, and ⟨G∗(U), G(Z)⟩ = 0, where
i = 11 + G1G∗1 + G2G∗2 + �−��0��0��0G∗1 (��21 + ��22G1) . (47)

Next, we can obtain the coe
cients used in determining
the direction of Hopf bifurcation and the stability of the
bifurcation periodic solutions by the algorithms given in [26].

l20 = 2i��0 [��13 + ��14G1 + G∗1 (��24�−2��0��0
+ ��25G1�−2��0��0 + ��28G1G2 + ��29G22) + G∗2 (��34G1G2
+ ��35G22)] ,

l11 = i��0 [2��13 + ��14 (G1 + G1) + G∗1 (2��24 + ��25 (G1+ G1) + ��28 (G1G2 + G1G2) + 2��29G2G2)+ G∗2 (��34 (G1G2 + G1G2) + 2��35G2G2)] ,
l02 = 2i��0 [��13 + ��14G1 + G∗1 (��24�2��0��0

+ ��25G1�2��0��0 + ��28G1G2 + ��29G22) + G∗2 (��34G1G2
+ ��35G22)] ,

l21 = 2i��0 [��13 (2r(1)11 (0) + r(1)20 (0))
+ ��14 (r(2)11 (0) + 12r(2)20 (0) + 12G1r(1)20 (0)
+ G1r(1)11 (0)) + ��15 (2G1 + G1) + 3��16
+ G∗1 (��24 (2r(1)11 (−1) �−��0��0 + r(1)20 (−1) �−��0��0)
+ ��25 (r(2)11 (−1) �−��0��0 + 12r(2)20 (−1) ���0��0
+ 12r(1)20 (−1) G1���0��0 + r(1)11 (−1) G1�−��0��0)
+ ��26 (2G1�−��0��0 + G1�−��0��0) + 3��27�−��0��0
+ ��28 (G1r(3)11 (0) + 12G1r(3)20 (0) + 12G2r(2)20 (0)
+ G2r(2)11 (0)) + ��29 (2G2r(3)11 (0) + G2r(3)20 (0))
+ ��30 (2G1G2G2 + G1G22) + 3��31G22G2)
+ G∗2 (��34 (G1r(3)11 (0) + 12G1r(3)20 (0)
+ 12G2r(2)20 (0) + G2r(2)11 (0)) + ��35 (2G2r(3)11 (0)
+ G2r(3)20 (0)) + ��36 (2G1G2G2 + G1G22)
+ 2��37G22G2)] .

(48)
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Figure 1: Behavior and phase portrait of the uncontrolled system (2) with � = 0.1 < �0. �e positive equilibrium �∗ is asymptotically stable.

However,

r20 (Z) =  l20!�0��0 G (0) ���0��0� +  l023!�0��0 G (0) �−��10��0�
+ �1�2��10��10�,

r11 (Z) = −  l11!�0��0 G (0) ���0�0� +  l11!�10��10 G (0) �−��0��0�
+ �2,

(49)

where �1 = (�(1)1 , �(2)1 , �(3)1 )� ∈ H3 and �2 = (�(1)2 , �(2)2 ,�(3)2 )� ∈ H3 are also constant vectors and they can be
determined, respectively, by

(2 !�0 − ��11 −��12 0−��21�−��0��0 2 !�10 − ��22 − ��22�−��0��0 −��230 −��32 2 !�10 − ��33) �1

= 2 ( �1�2�3 ) ,
(−��11 −��12 0−��21 −��22 − ��22 −��230 −��32 −��33) �2 = (w1w2w3) ,

(50)

with

�1 = ��13 + ��14G1,�2 = ��24�−2��0��0 + ��25G1�−2��0��0 + ��28G1G2 + ��29G22,�3 = ��34G1G2 + ��35G22,w1 = 2��13 + ��14 (G1 + G1) ,w2 = 2��24 + ��25 (G1 + G1) + ��28 (G1G2 + G1G2)



Mathematical Problems in Engineering 9

0 500 1000
0

0.5

1

1.5

2

time t

I(
t)

0

1

2

3

0

1

2

3

x(t)S(t)

0

1

2

3
x

(t
)

500 10000

time t

0

1

2

3

S
(t

)

500 10000

time t

0

0.5

1

I(
t)

Figure 2: Behavior and phase portrait of the uncontrolled system (2) with � = 0.3 > �0. Hopf bifurcation occurs from the positive equilibrium�∗.
+ 2��29G2G2,w3 = ��34 (G1G2 + G1G2) + 2��35G2G2.

(51)

�erefore, we can determine l21 and derive the expressions

y1 (0) =  2!�0��0 (l20l11 − 2 ||||l11||||2 − ||||l02||||23 ) + l212 ,
T2 = − Re {y1 (0)}

Re {�� (��0)} ,
�2 = 2Re (y1 (0)) ,
�2 = − Im {y1 (0)} + T2Im {�� (�0)}!�0��0 ,

(52)

which describe the properties of bifurcation period solutions
at � = ��0 on the center manifold. From the discussion above,
we have the following result.

�eorem 3. For system (24), the direction of Hopf bifurcation
is determined by the sign of T2: if T2 > 0 (T2 < 0), then
the Hopf bifurcation is supercritical (subcritical). �e stability
of the bifurcating periodic solutions is determined by the sign
of �2: if �2 < 0 (�2 > 0), the bifurcating periodic solutions
are stable (unstable). �e period of the bifurcating periodic
solutions is determined by the sign of�2: if�2 > 0 (�2 < 0), the
bifurcating periodic solutions increase (decrease).

4. Numerical Examples

In this section, we present some numerical examples by using
Matlab to verify the analytical predictions obtained in the
previous sections.�e hybrid control strategy to gain control
of the Hopf bifurcation in model (2) is applied.

Let �11 = 0.125, �12 = 1.8, �21 = 1.35, � = 0.55, �1 = 0.18,�2 = 0.25, 
 = 0.01, � = 0.0005, and � = 0.96. �en, we have
the following particular example of system (2):

�̇ (�) = � (�) (0.55 − 0.125� (�)) − 1.8� (�) 	 (�)1 + 0.01� (�) ,
̇	 (�) = 1.35� (� − �) 	 (� − �)1 + 0.01� (� − �) − 0.18	 (�)
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Figure 3: Behavior and phase portrait of the controlled system (24) with �� = 0.3 < ��0. �e positive equilibrium �∘ is asymptotically stable.

− 0.96	 (�) � (�)1 + 0.0005� (�) ,
̇� (�) = 0.96	 (�) � (�)1 + 0.0005� (�) − 0.25� (�) .

(53)

It is easy to show that if (�1) holds, system (53) has
a unique coexistence equilibrium �∗(0.6723, 0.2605, 0.7519).
For � = 0, (�2) is satis	ed and then the equilibrium is locally
asymptotically stable. For � ̸= 0, we obtain !0 = 0.7176, �0 =0.1718, and ℎ�1 = 0.3476 ̸= 0; that is, the transversal condition
is satis	ed. From �eorem 2, the coexistence equilibrium�∗(0.6723, 0.2605, 0.7519) is asymptotically stable for � ∈(0, �0]. For � = 0.1 < �0, which can be shown in Figure 1, the
positive equilibrium �∗(0.6723, 0.2605, 0.7519) is unstable
for � > �0. For � = 0.3 > �0, this property can be illustrated
in Figure 2.

Next, we choose appropriate values of D, G to control
system (2). Let us consider the following system with hybrid
control strategy:�̇ (�) = 0.3 [� (�) (0.55 − 0.125� (�)) − 1.8� (�) 	 (�)1 + 0.01� (�)]+ 0.05� (�) ,

̇	 (�) = 0.3 [1.35� (� − �) 	 (� − �)1 + 0.01� (� − �) − 0.18	 (�)
− 0.96	 (�) � (�)1 + 0.0005� (�)] + 0.05	 (�) ,

̇� (�) = 0.3 [ 0.96	 (�) � (�)1 + 0.0005� (�) − 0.25� (�)] .
(54)

It is not di
cult to verify that if (�3) holds, we obtain
the positive equilibrium �∘(2.0434, 0.2606, 1.4080). From the
analysis in Section 3, we obtain !�0 = 0.3192 and ��0 = 0.9075.
By choosing �� = 0.3 and �� = 1.3, the dynamical behavior
of this controlled model (54) is illustrated in Figures 3 and
4. �at is, for �� = 0.3 < ��0, the positive equilibrium �∘ is
asymptotically stable. However, when the time delay �� passes
through the critical value ��0, the positive equilibrium �∘ will
lose its stability, a Hopf bifurcation occurs, and a family of
periodic solutions bifurcate from the positive equilibrium �∘.

Comparing Figures 3 and 4 with Figures 1 and 2, we can
easily make the Hopf bifurcation of the uncontrolled system
(2) disappear. It is shown that the onset of Hopf bifurcation
is delayed when the hybrid controller has been incorporated
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Figure 4: Behavior and phase portrait of the controlled system (24) with �� = 1.3 > ��0. Hopf bifurcation occurs from the positive equilibrium�∘.
into the model and the critical value of delay increases from�0 = 0.1718 to ��0 = 0.9075. A�er computation of (52),
we obtain y1(0) = −8.5035 + 6.0113 , �2 = 68.0768, T2 =368.1169, and �2 = −17.0070. From �eorem 3, the Hopf
bifurcation is supercritical, the bifurcation period solutions
are stable, and the bifurcating periodic solutions increase.

�ese numerical simulation results illustrate excellent
validations of the new theoretical analysis presented in this
paper. Because the bifurcation periodic solutions are stable,
the species in model (24) imply coexistence in an oscillatory
mode from the viewpoint of biology.

5. Conclusions

In this paper, we have incorporated nonlinear incidence
rate and time delay into an ecoepidemiological model. By
analyzing the associated characteristic equation, its local
stability and the existence of Hopf bifurcation with respect
to time delay are established. To postpone the onset of the
Hopf bifurcation, we use a hybrid controller in system (2). It
has been shown that the critical value of the delay increases
from �0 = 0.1718 to ��0 = 0.9075. By the normal form

theory and the center manifold theorem, we analyze the
stability and direction of the bifurcating periodic solutions.
�e hybrid control strategy is closely related to the contin-
uous survival of the population. �e unstable equilibrium
point of a uncontrolled system becomes an asymptotically
stable equilibrium point in the controlled system a�er using
hybrid control by combining the state feedback control and
perturbation parameter. �at is, the number of predators
and preys eventually implies stability and coexistence. �e
numerical results are in accord with theoretical analysis. It
has certain ecological signi	cance and provides a theoret-
ical basis for the continuous survival of the population in
nature.

In addition, the model with the disease spreading in
predator population is investigated in this paper. If diseasees
spreading in prey and predator population coexist together,
the inuence will be analyzed in a future work.
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