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HOPF BIFURCATION AND ORDINARY 

DIFFERENTIAL INEQUALITIES 

JAN EISNER, MILAN KUCERA, Prague 

(Received February 15, 1993) 

0. INTRODUCTION 

Let B\ be a real matrix of the type N x N (TV ̂  3) depending continuously on a 
real parameter A, G: (RN+1 -> UN a continuous mapping satisfying the conditions 

,. |G?(A,C/)| .c , 
(G) hm J——-—- = 0 uniformly on compact A-intervals, 
V ' \u\->o \U\ 

(L) 
for any A > 0, R > 0 there exists C > 0 such that 

|G(A,U i)-G(A,U2) | ^ C | U i - U 2 | for all |A| ^ A, |Ui|,|U2| ^ it. 

Set F(A, U) = B\U + G(A, U). Let K be a closed convex cone in UN with its vertex 
at the origin. We will consider a bifurcation problem for the inequality 

a) ( . ms,<-

\(U(t)-F(\,U(t)), Z-U(t))^0 for all Z € K, a.a. t€[0,T). 

Our aim is to show that if a Hopf bifurcation of periodic solutions to the equation 
(E) U(t) = F(\,U(t)) 

occurs at some Ao and certain additional assumptions are fulfilled then there exists 
a bifurcation point A/ of our inequality at which periodic solutions to (I) bifurcate 
from the branch of trivial solutions. The main results (Theorems 1.1, 1.2) either 
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ensure the existence of such a bifurcation or explain in a certain sense why a bi-
furcation does not occur (see also Remark 1.5). A similar result illustrated by a 
simple example was proved in [6] for a special case when the eigenvectors of B\ are 
independent of A. The basic idea is to join the inequality (I) with the corresponding 
equation (E) by a certain homotopy and to show that the bifurcation point An of 
the equation is transfered to a bifurcation point of the inequality by this homotopy. 
While the joining mentioned was given by a suitable deformation of the cone K in 
[6], in the present paper we will join the inequality with the equation by a system of 
penalty equations (see also Remark 1.2 and Theorem 2.3). Note that this approach 
was used for a particular case of the linearized inequality in (R3 in [3]. It represents 
a certain nontrivial modification of the method for the investigation of bifurcations 
of stationary solutions to inequalities given in [4] (see also [5]). A certain general-
ization of the well-known Rabinowitz global bifurcation theorem [13] (Theorem 3.1) 
forms a basis of the proof of existence of a branch of solutions to penalty equations 
representing the joining mentioned. 

Of course, the corresponding linearized problems 

(LE) U(t) = B\U(t), 

U(t) e K, 
(LI) \ . 

\ (U(t) - B\U(t), Z-U(t)) ^ 0 for all Z G K, a.a. t ^ 0 

play an essential role. (Note that the problem (LI) is strongly nonlinear again.) 

Main results (Theorems 1.1, 1.2) are formulated and explained in Section 1. In 
Section 2, we describe basic properties of the penalty equation necessary for the proof 
of main results contained in Section 3. 

Notice that an elementary approach to the investigation of bifurcations of periodic 
solutions to inequalities (I) in the special case N = 3 was given in [2] and developed 
for the study of stability of bifurcating solutions in [7]. 

1. MAIN RESULTS 

Remark 1.1. By a solution of (I) on [0,T) we mean an absolutely continuous 
function satisfying (I) for a.a. t £ [0,T). It follows from general results [12] that such 
a solution is right differentiable and its right derivative is right continuous at any 
le[o,T). 
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N o t a t i o n 1.1. Let VVi(A),..., JVIv(A) be a basis of C
N
 composed of the ele­

ments of the chains corresponding to the eigenvalues of B\ (i.e. of the corresponding 

eigenvectors if B\ has N eigenvalues for some A, see e.g. [8]). Suppose that 

м 

there is a couple of simple eigenvalues LJi,
2
(A) = a(X) ± i/?(A) 

where a, (3 are continuous real functions, /3(A) ^ j3
0
 > 0 for all A € 

a(A) < 0 for A < A0, a(A0) = 0, a(X) > 0 for A > A0, 

the other eigenvalues of B\ have negative real parts for all A G (R, 

Wj(X) depend continuously on A. 

In particular, the chains corresponding to kti(A) and (JL2(X) contain only eigenvectors 
TVi(A) and JV2(A), respectively. We can write Wj(X) = Ui(A) + iUi+i(A), VVi+i(A) = 
Uj (A) — iUj+i (A) for j such that Wj (A), IVj+i (A) is a pair of complex adjoint elements 
of some chain, Wj(X) = Uj(X) for j such that Wj(X) is real. Then Ui(A),..., U/v(A) 
is a basis of UN depending continuously on A, see e.g. [8]. 

Nota t ion 1.2. We will write 

(U, V) = £ Uivu |U |2 = (U, U) for U = [Hi,...,HA/], V = [Hi,..., vN], 

LA = Lin{U1(A),U2(A)}, 
5A = Lin{U3(A),...,Uv(A)}, 

Vx = {V e UN ; V = H!Ui(A) + £ ijjU^X), yj G R}, 
j=3 

N 

PLXV = HiUi(A) + y2U2(X) for V = £ yjUj(X) (projection onto LA), 
i = i 

PixV = -2/2^1 (A) +yiU2(A) for V = £ ijjU^X), 

Ur(z)—the ball with the radius r centered at z, 

U\(-,V), U0,A(-,n, UT(-,V), U5tX(-,V), U™(-,V), U0°^(-,V)-the solutions of 
(E), (LE), (PE), (LPE), (I), (LI), respectively, with the initial condition V at t = 0, 

g\(t, V), (px(t,V) - polar coordinates of Fi,AUT(£, V) with the angle (D measured 
from PLXV, i.e. continuous functions defined by <p\(0, V) = 0 and 

PLxU
T

x(t, V) = 6\{t, V) [cos(^(l , V) + w) • Ui(A) + s in(^( l , V) + W ) • U2(A)] 

for t e [0,*0) if IFLAUK^V)! > 0 on [0,l0), where ipv satisfies 

PLXV = OI(0,V) [cos W • Ui(A) + sin ipv • U2(X)}, 

0o,\('iV)i ^ O , A ( " ^ ) » ^ ( - , V ) , ^A(-,V), ^o,A(-,V), <Au(-,V) are defined analogously 
but using U0

r
A(-,V), UA(-,V), Uo,A(-,V), respectively, 

579 



t\(V) = inf{*o; Qr
x(t, V)>Ofoite [0, t0], <pl(to, V) = -2TT} if V $ Sx— the time 

of one circuit of PLXU%(', V) around the origin, 

^ A ^ ) ' t\(V), t0,x(V) are defined analogously (clearly t0yx(V) = -^y ) , 

^ = ^xy (=^o ,A(V ) fo ra l lV^5 A ) , 

n(U)—the outer normal to dK at U if it exists. 

The symbol for the derivative will be understood as the right derivative if the 
classical derivative does not exist (see Remark 1.1). 

We will consider equations with penalty 

(PE) U(t) - F(A, U(t)) + r(3U(t) = 0 

and 

(LPE) U(t) - BxU(t) + T(5U(t) = 0. 

Here A and r are real parameters, ft = I — PK, where PK is the projection on K, 

i.e. PKU for U G UN is the unique point from K satisfying 

\PKU-U\ = m i n l V - í / l . 
' ' V&K 

Remark 1.2. We obtain (E) and (I) from (PE) for r = 0 and r -> -foo, re-
spectively (precisely see Theorem 2.3). Hence, the penalty equation (PE) can be 
understood in a certain sense as a homotopy joining our inequality with the corre-
sponding equation. 

Remark 1.3. The operators PK, (3 = 1 — PK are lipschitzian and 

(P) (/3U, U) > 0 for all U g K, ftU = 0 if and only if U G K, 

(H) ft(tU) = t/3U for all t > 0, U G UN (i.e. /J is positively homogeneous), 

(M) (ftU - ftV, U -V)>0 for all U, V G UN (i.e. /J is monotone), 

(Pt) ftW = rgrad|/?KV|2 (i.e. ft is potential) 

(see [14]). 
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R e m a r k  1.4.  The  assumption  (/i)  implies  that  L\,  S\  are  invariant  for  the 

equation  (LE)  (for  any  given  A), 

0O,A(<, V)  =  -/3(A)  ^  -f3
0
  for  any  A  G  R,  V  G  R

N
  \  S

A
,  t  >  0, 

*A  =  t
0
,

x
(V)  <  J  for  all  A G R, V  G R

N
  \ S

A
, 

lim  |U
0 Л

(c,V) |  = 0 f o r  any  Л <  Л
0
,V Є 

t—Ц-oo  ' 

Þ-V 

lim |U0,A(£, V)| = oo for any A > A0, V G UN \ S\, 
t—>+oo 

lim |Uo x(t, V)\ = 0 for any A G R, V G SA, 
£-> + oo ' 

^O,A(*> ^0 1S periodic if and only if A = A0, V G .LA-

According to the assumption (G), the behaviour of solutions to (E) is analogous to 
that of solutions to (LE) in a small neighbourhood of the origin. In particular, for 
any A > 0 and tM > 0 there are D0 > 0 and rj > 0 such that 

<P\(t,V) ^ - r , for any |A |^A,VG R N \ 5 A , \V\ ^ Do, te[0,tM]. 

For any V G XA, |V| 7- 0, A G R, the equation vV = U0,A(rA, V) is fulfilled with only 
one v = iv(A), where i/(A) > 1, v(X) = 1 and v(X) < 1 if A > A0, A = A0 and A < A0, 
respectively. This equation can be fulfilled also for some V £ L\ but then always 
v < 1. Notice that V eVxn Lx if and only if V = cUi(A), c G R. 

Further, the trivial solution of (E) is stable or unstable for A < A0 or A > A0, 
respectively If, moreover, a(A0) > 0 then the Hopf bifurcation of periodic solutions 
to (E) occurs at Ao (see e.g. [10]). 

We will suppose that 

J for any V G dK n V\ \ {0}, AG R, there is r > 0 such that 

[ the normal n(U) to dK exists and is continuous on dK C\Ur(V), 

i.e. dK is smooth near V\ with the exception of the vertex of K. We could consider 
this condition with general 

VX = {V G UN;PLxV -c(a(A)U1(A) + b(A)U2(A)),cG R} 

where a(A), b(A) are given continuous functions. For formal simplification, we will 
consider the special V\ introduced in Notation 1.2. 

581 



For the proof of our bifurcation result, the following assumption (1.2) concerning 
the linearized penalty equation (LPE) and the linearized inequality (LI) is essential: 

(1.2) 

if [A, W, T] E R x Vx x [0, +oo], W ^ 0, W = U£x(t, W) 

for some t > 0 

I then |A| < A, W £ S\, t^x(W) < tM, ^\(tT
A(W),W) < 0 

(with some A > 0, r ^ > 0 fixed). The Bifurcation Theorem 1.1 will be a conse-
quence of Theorem 1.2 guaranteeing the existence of a branch of solutions of penalty 
equations satisfying a convenient norm condition. The assumption (1.2) will exclude 
certain unconvenient possibilities of the behaviour of this branch and will ensure that 
this branch must be unbounded in the parameter r. (See also Remark 1.5.) This 
will be essential for obtaining small periodic solutions to (I) by the limiting process 
r —•> oo along this branch. We will study some concrete examples where the con-
dition (1.2) can be verified, in a forthcoming paper. Let us mention here only that 
the assumption PLXK — ^A for all A E IR seems to be necessary (but not sufficient) 
for the validity of (1.2). Note that in the case N = 3, PLxK = L\ is fulfilled if 
U3(A) Eint/v". 

Theorem 1.1. Let (fi), (G), (L), (1.1) be fulfilled. Suppose that there exist A > 0, 
tM > 0 such that (1.2) holds. Then there exists A/ E [—A, A] at which periodic 

solutions of (I) bifurcate from the branch of trivial solutions. More precisely, for any 

Q E (0, Oo) (with some Oo > 0 small enough) there exist Xe E [—A, A], Ve E V\Q such 

that U^°(-, Ve) is periodic, 0 < \Ve\
2 ^ O and there exists at least one accumulation 

point Xi of Xe for O -» 0+. 

Theorem 1.2. Let (/i), (G), (L), (1.1) be fulfilled. Then there exist O0 > 0, 
To > 0 such that for any Q E (0,O0) there is a closed connected set Ce of triplets 

[A, V, T] E U x V\ x [0, +oo) containing [An, 0, 0] and having the following properties: 

if[X,V,r}eCe, V= ZyjUj(X), Y = {yi,...,yN] then\Y\2 = ^ 
( 1 . 3 ) <( 7 = 1 

and UX(-,V) is periodic provided T > 0, 
(1.4) for any T E [0, T0) there are A, V such that [A, V, T] E Ce. 

Moreover, if (1.2) holds with some A > 0, tM > 0 then (1.4) holds with T0 = -foe 
and \X\ ^ A, t\(V) < tM for all [A, V,T] E Ce, Q E (0, O0). 

P r o o f of Theorems 1.1, 1.2 will be given in Section 3. • 
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Remark 1.5. It follows from Theorem 1.2 that the problem (PE) with r small 
enough has a bifurcation point even if (1.2) is not fulfilled. However, in this case 
it can happen that the branches CQ have no continuation for T ^ To because either 
|A| -> +oo along these branches or the circulation of PLxUx(t, V) around the origin 
in L\ is damped too strongly by the penalty term for T —> T0. See the proof of 
Theorem 1.2 for details. 

Remark 1.6. A solution U(t) of (PE) is simultaneously a solution of (E) on any 

interval (ti,t2) such that U(t) G K for t G (h,t2) (see (P) from Remark 1.3). A 
solution U(t) of (I) is simultaneously a solution of (E) on any interval (t\,t2) such 
that U(t) G intK for t G (ti,t2). 

2 . PROPERTIES OF THE PENALTY EQUATIONS 

In this section, we will collect some basic assertions necessary for the proof of 
main results. Lemma 2.1 and Theorems 2.1, 2.2 follow from the theory of ordinary 

differential equations (see e.g. [8]), Theorem 2.3 can by obtained by the penalty 

method technique (cf. e.g. [9]) and Theorem 2.4 follows by elementary considera-
tions (cf. also [6]). Only the proof of Theorem 2.5 contains new ideas. For the 
completeness, all proofs are given in Appendix. 

We will always suppose automatically that the conditions (G), (L), (fi), (IT) are 
fulfilled. 

Remark 2.1. The solution UT
X(-,V) (for a fixed A G R, r G [0,+oc], V G UN) 

is unique and exists at least on some interval [0,T0),Fo > 0. Further, if T > 0 and 
Ux(-, V) is bounded on any subinterval of [0,T) on which it is defined then it exists 
on [0,T). (For r G [0,+oo) see e.g. [8], for r = +oo see [1].) In particular, UT

X(-,V) 

always exists on [0, +oo) for all A G R, r G [0,+oc], V G UN. For r finite, the 
boundedness on any finite interval follows from estimates analogous to those from 
the proof of Lemma 2.1 in Appendix which becomes simpler in the case G = 0. For 
T = +oo cf. [6], Lemma 2.L 

Lemma 2 .1 . Let A > 0, lM > 0. Then there exist g0 > 0, r > 0, C > 0 such 
that 

UT(-, V) exists on [0, tM + 1), 

(2.1) { \UT
x(t,V)|2 ^ | F | V , \irx(t,V)|2 ^ (C + r) |V| V 

for all V G UN, |V| ^ O0. |A| ^ A, T G [0,+oo), t G [0,*M + 1). 
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Remark 2.2. It follows from (Pt) (Remark 1.3) that if U € Cx([0,t0}), ^(0) 

U(t0) then 

jf °mU)dt = I j T ft\PU\2dt = \(\f3U(t0)\
2 - |/3U(0)|2) = 0. 

Remark 2.3. Let A > 0, tM > 0, let g0 be from Lemma 2.L Then there exist 
Ci ,C 2 > 0 such that 

MU^iOKd, \F(\,uz(t,v)\<c2 

\ for |A| < A, | V | ^ D o , r £ 0 , t G [0,tM]. 

Suppose that a solution U(t) = U[(t, V) is periodic with a period t0 ^tM, |A| ^ A, 
1̂ 1 ^ f?o5 r ^ 0. Multiply (PE) by U and integrate over (0,to)- We obtain by using 
Remark 2.2 that 

(2.3) / ° |U |2 dt= f° (F(A, U),U^dt<^C2 f° |U| dt ^ C2tl f f ° |U |2 dt 

Setting km = max{k G N; kto ^ ^M} and using the periodicity we obtain 

(2.4) / |U(t)|2 dt ^ (km + l) t0C2 ^ 2 t M C 2 for |A| ^ A, \V\ ^ g0, r ^ 0. 
Jo 

Theorem 2.1. Let A > 0, IM > 0, let Q0 be from Lemma 2.1. If \Xn\ ^ A, 
VneUN, \Vn\ ^ Q0, rn G [0,+oo) and [Xn,Vn,rn] -> [A,V,T], T G [0,+oo) then 

(2.5) Ur;;(.,Vn)^UT(.,V) in Cl([0,tM}). 

If, moreover, V = 0, r^r = VVn -> VV then 

(2.6)  ^ u ř ' . ^  -> U
0

r
,A(-,W) in  C

1
 ([0,T])  for  any T  >  0. 

\Vn\ 

Consequence  2.1. Let the assumptions of Theorem  2.1  be fulfilled. If 

g\(t, V)  ^  77 for all t  G [0, T] with some  77  >  0, F  G [0, t
M
] 

then 

(2.7) e £ (-, Vn) -» ^ ( - , V), ^ ; , (-, Vn) -> ^ ( - , V) in Cl({0,T}). 
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IfV = 0, | ^ - -> W and 

£O,A(^ W) > V ^r all t G [0, T] with some n > 0, T > 0 

then 

(2.8) ^ y -* QTo,x{;W),^:(-,Vn) -+ ¥>„>, W) in ^ ( M ) -

Theorem 2.2. Let A > 0, t M > 0, iet D0 be from Lemma 2.1, |An| ^ A, Vn G !RN, 
\Vn\ ^ ft), rn G [0,+oo) and [An,Vn,Tn] -> [A,V,r], r G [0,+oo). Let U£;(-,Vn) be 
periodic solutions of (PE) with periods tn —> 0. Then UJ (•, V) is a stationary solution 

of (PE). Moreover, If V = 0, 4f- = VVn -> IV then UojA(-, W) is a stationary solution 

of (LPE). 

Theorem 2.3. Let A > 0, tM > 0, iet D0 be from Lemma 2.1, |An| ^ A, Vn G (RN, 

|Ki| ^ £o, ^n £ [0,+oo). Let U^;;(-,Vn) be periodic solutions of (PE) with periods 

tn. Let rn -> +oo, An -> A, Vn -> V, tn ^ t M , tn -> t0. Then 

^ ( ' ^ r x ) -> ^ r ( ' ^ ) in ^ ( [ O ^ M ] ) and weaMy in VV^O,^) . 

If to > 0 then U£°(-, V) is a periodic solution of (I) with the period t0. If t0 = 0 then 

U£°(-, V) is a stationary solution of (I). 

If, moreover, V = 0, lVn = T^T -> VV, tn ^ t M then 

^л
т
;;(-Tn) 

IVJ 

IK, | 

-> U^^W) in C([0,t
M
\)  and weakly in W$(0,t

M
), t

n
  -> t

0
 e  [0,t

M
] 

Jf  t
0
  >  0  then U^O, W) is a periodic solution of  (LI)  with  the period to, if to = 0 

then UoA('t W) i
s  a

  stationary  solution  of  (LI). 

Theorem 2.4. Let A> 0,t
M
 > 0, let Q

0
 be from Lemma  2.1,  |A

n
|  <,  A, V

n
 € VA„ , 

\Vn\ <. go, Tn 6 [O.+oo), [An,Vn,rn] -+ [X,V,r], r € [0,+oo]. JfV £ 5A> t\(V) < tM, 

>pT
x(tl(V),V) < 0 then tT

xl(Vn) -+ tA(V). 

If V = 0, W„ = i ^ j -> W £ 5A , * 5 A ( W ) < oo, ^SA(«SA(Ht),Ht) < 0 then 
*I:.(^)^t0^(VV). 

Theorem 2.5. Let A > 0, tM > 0, |A„| <. A, Vn € VA„, 0 < tn <, tM, An -> A, 
Vn->0,^^W$S\,Tn^ +oo, UT

x'l(tn, Vn) = V„, V?«A(0, W) < 0. Then 

l imsup^ ' ; (0 , V„) < 0. 
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3. P R O O F OF MAIN RESULTS 

R e m a r k 3.1. For a brief explanation of main ideas of the proof, let us suppose 

first that Uj = Uj(\) are independent of A. Hence, also V = V\, S = S\ are 

independent of A. Our aim is to define a mapping R: D —>V,DcUxVxU such 

that its fixed points (in V for given A, r) are initial conditions of periodic solutions 

of (PE). We would like to obtain the branches C
6
 in Theorem 1.2 as branches of 

nontrivial solutions of the equation V = R(\, V,T) supplemented by a suitable norm 

condition. For the proof of existence of such a global branch on the basis of the 

degree theory, we need R to be continuous on a domain of definition D which is 

open, contains [An, 0,0] and is maximal in a certain sense. We intend to define R 

as a Poincare map on a part of V \ S on which this is possible and prolong it 

continuously onto S. Unfortunately, this can be done directly only if N = 3, G = 0, 
3 

U3 G intK, K C {V = J2 VjUj, H3 > 0}. In this special case we can set 

D = {[\,V,T] eUxV XU; 

either V G S or V $ S, t
r

x
(V) < +00, y

T
\(t

T

x
(V),V) < 0}, 

R(\,V,T) = Ul(t\(V),V) for [A,V,T] G D, V $ S, 

iw)^
for[x

^
r]eD

'
Ves

' =  щf
2

* 

(See also Remark 3.2.) Notice that for the proof of continuity of R at given Ai, 

Vi, Ti with Vi £ S it is necessary to know that tx(V) continuously depends on 

all parameters at Ai, Vi, Ti, and this is ensured only if cpT
x (tT

x
l (Vi),Vi) < 0. See 

Theorem 2.4. 

In the general case the following complications arise. 
1. If G 7-= 0 then the existence of solutions is ensured on a given time interval 

and for A from a given compact only for sufficiently small initial conditions (see 
Lemma 2.1). Therefore we will consider fixed tjw > 0, A > 0 and study solutions 
with initial conditions V G Uei)(0) (with the corresponding D0 small enough) and 
satisfying tT

x(V) <tM, |A| < A. 

2. The second complication is that even if the Poincare map is already defined 
on some Ur(V) D V \ S, V G 5 , then it need not have a continuous prolongation 
to Ur(V) n V n 8 . (The only exception is the case N = 3, see Remark 3.2.) This 
will be solved by an artificial definition of R in a "sector S£ around 5" introduced 
in Notation 3.2. The fixed points of R = Re on S£ will have nothing common with 
periodic solutions of (PE) but it will be shown that the branch CQ will not touch S£ 

(with the exception of [An, 0,0]) in the situation of our interest. 
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3. Another difficulty arises in the moment when Uj(X), i.e. also V\, depend on 
A. We need to work with a mapping R on a domain of definition in a fixed space. 

N 

Therefore for any A, we will associate points V = J2 VjUjW- € V\ with the vectors 
i=i 

of coordinates Y = [Hi,...,yn] G V, V = {X = [xi,...,xN] e UN ; x2 = 0}. This 
is the reason for Notation 3.1 which enables us to study our problem in this new 
setting. 

All these considerations together lead to a formally complicated definition of D£ 

and R€ (Definition 3.1 below). 

3 

Remark 3.2. Consider the case N = 3, U3 G intK , K C {V = £ yjU5, y3 > 
3 = 1 

0}, Uj(X) = Uj independent of A again. Denote by Ivx = {Z e RN ; (Z, V) ^ 0 
for all V e K} the dual cone to K (see e.g. [14]). Then intK1- ^ 0 and S \ {0} C 
int KU'mt K±. If V e int K is sufficiently close to S then U0,\(t, V) e K for t e [0, t\]. 

Hence, the condition (P) in Remark 1.3 implies that UQ x(t, V) = Uo,\(t, V) on [0, t\], 

tT
 X(V) = t\ for all T ^ 0. It follows that the mapping R defined in Remark 3.1 for 

the case 1V = 3, G = 0, Us e int K is continuous on SnK. Further, we have FWU = 0 
for all U e K1- and it follows that the penalty term T(5UQ x(t,V) in (PE) influences 
neither the tendency of the solution to leave K1- nor its circulation around the axis 
S if UT(t,V) e KL. If V e int AT-1 is sufficiently close to S then U^\(t,V) e KL 

for t e [0,t\] and therefore also U0
r
)A(*,V) G KL for t G [0,t\], tT

x(V) = tx for all 
T ^ 0. It follows that the mapping R mentioned in Remark 3.1 is continuous on 
S n KL. Of course, the continuity of R in V \ S follows from Theorems 2.1, 2.4. 
However, in the case IV > 3 we have (S \ {0}) Pi dK ^ 0 in general and the situation 
is essentially more complicated. 

Notation 3 .1 . 

yY(X) (j = 1,...,N)—the coordinates of V G UN with respect to {U^ A)}, i.e. V = 

EyJ(X)Uj(X), 
j=l 

V\ = T,yjUj(X)ioxY = [yl,...,yN], 
j=i 

L = {X e UN ; Xj = 0, j = 3 , . . . , TV}, 

S = {X e UN;x1 =x2=0}, 

V = {Xe RN ;x2 = 0}, 

PLX = [xi, x2,0,..., 0] (projection onto L), 

PlX = [-x2,xx,0,...,0], 
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Ux(;Y), U0,A(-,Y), UT
X(-,Y), UT

A(;Y), U?(;Y), U§°x(;Y)-the vectors of co-
ordinates Of UX(;VY), U0,x(;VY),UT(;VY), Ulx(;V

Y), U?(;VY), U£X(;VY), 

respectively, 
gT

x(t,Y), (pT
x(t,Y) - polar coordinates of PLUT(t,Y) with the angle (p measured 

from PLY, i.e. continuous functions defined by (pT
x(0,Y) = 0 and 

PLUT
x(t,Y) = 

• fx(t, Y) {cm((pl (t,Y) + yY)-[l,0,...,0) + sin(v\(t, Y) + <pY) • [0,1,0,..., 0]} 

for t 6 [0,t0) if \PLUl(t,Y)\ > 0 on [0,t0), where <pY satisfies 

PLxY = gT
x(0,Y) {cos<py[l ,0 , . . . ,0] + sin£y • [0,1,0, . . . ,0]}, 

$>,*(•>y)' Vo,A(',y), Qx(;Y), <px(;Y), g0,x(;Y), <p0,x(;Y) are defined analo-
gously but by using U0

r
A(-,Y), UA(-,Y), U0,A(-,Y), respectively, 

ix(y) = tT
x(V

Y), 
;\\I ) , tQ^xyi ) ciic u c i m c u cuicuuguudij' ^ c i c a n j iQ^xyi j — • 

2* 
*o,A(y)> *AQ0I to,\(Y) a r e defined analogously (clearly i0,\(

Y) = ^jy)» 
*A = ^5) ( = *O,AQO = *A for all Y £ S, see also Notation 1.2). 

Of course, all our former assertions could be reformulated in terms of this new 
notation. In the following we will have on mind such reformulations automatically if 
necessary. 

Further, we will consider fixed A > |A0|, t-jv^ > 1^ and the corresponding g0 from 
Lemma 2.L 

Notation 3.2. For any e > 0 and X = [x\,... ,xn] G RN we will denote 
P0K = [0,0,X3,. . . ,^] , 
S£ = { K G V ; 1^1 ^ | P ° K | } , 
S°£={XeV',\x1\<e\P°X\}, 

P£X = [e s ignal • \P°X\,0,x3,... ,xN] for X G S£\S, 

P£X = X ioi X ev\s£, 
go = inf{|F|; |VA

y| = D0, A G [-A, A]} where D0 is from Lemma 2.1, 
d(L) = deg(I — L,0,Ur(0))—the Leray-Schauder degree of I — L with respect 

to 0, Ur(0)—for any linear completely continuous mapping L in a Banach space 
satisfying Ker(I — L) = {0}. (Note that for such L, deg(I — L,0,Ur(0)) exists and is 
independent of r > 0, see e.g. [11].) 

Remark 3.3. According to Remark 3.1 our mapping will be defined naturally 
as a Poincare map at points Y e V \ S£ such that ix(Y) < tM, (px^iX)^) < 
0. Then it will be prolonged to Y G V such that Y G S£ \ S, iT

x(P
£Y) < tM, 
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(pT
x(t

T
x(P

£Y), P€Y) < 0. (Recall that P£Y $ S and therefore iT
x(P

£Y) is well defined.) 
It follows from Theorem 2.4 and Consequence 2.1 that for such A, Y, r 

J there is r > 0 such that i^(P£Z) < tM, (p^(i^(P£Z), P£Z) < 0 

\ for any [n, Z, £] G Ur(\, Y, r) such that Z G V, Z $ S. 

Of course, Z £ S automatically for all [fi, Z, £] G Ur(\, Y, r) if Y £ 5 and r is small 
enough. If Y £ S then t^(FeY) is not determined but our mapping can be defined 
at such points provided (3.1) is fulfilled, as we will see below. 

Definition 3.1. Let A > |A0|, tM > |^ , let Q0 be from Notation 3.2. For any 
e > 0 set 

De = {[\,Y,T] G (-A, A) x V x R; \Y\ < Q0, (3.1) holds} 

and define a mapping R£: D£ -» V as follows: 

R£(\,Y,T) = UJ(^(Y),Y) for [A,Y,r] E D£, Y £ S£, r ^ 0, 

- ^ j ^ K ( j P 5 y ) , j P £ y ) + (*" 7^)°oA^p°Y) 

for [ A , Y , T ] G £ > „ Y = [yi,...,yN]zS£\S, r > 0, 

= Uo,A(?A,Y) for [A,y , r ]€ .D c , Y G 5 , r ^ 0. 

= F?£(A, Y, |r|) for [A, Y,r] G D , , r < 0. 

Lemma 3 .1 . Let A > |A0|, tM > |*-. Then for any s > 0 there are Q£ > 0, T£ > 0 
such that 

%(y) < tM for any |A| < A, Y G V \ 5 £ , \Y\ < Q£, \T\ < re. 

P r o o f . Suppose the contrary. Then there are [An,Yn,rn] such that |An| < A, 
An -+ A, |A| ^ A, Yn G V \ S£, Yn -> 0, Zn = - £ - -> Z, rn -» 0, t ^ (Y n ) ^ tM-
Clearly Z <£ S. We have t0,A(Z) = tA < t M , (£0)A(tA,Z) < 0 by Remark 1.4 (and 
our agreement from the end of Notation 3.1). Hence, Theorem 2.4 (together with 
Notation 3.1) implies iT

x (Yn) —•» i0\(Z), which is the contradiction. • 

Remark 3.4. If Y G S£ \ S then 

|P£Y|2 = e2 |P°Y|2 + |P°Y|2 ^ (1 + £2)|Y|2. 
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Remark 3.5.  Let  Ú(t)  =  ÚT

x(t,Y),  ~g(ť)  =  QT

x(t,Y),  <p(t)  =  <pT

x(t,Y)  for  some 

A € R, Y 6 V, T e [0, +oo] and \PLÚT(t,Y)\ > 0 for t G [0,T). Then 

PLÚ(t) = g(t){- sin(v(t) + <pY)Ht)[h0,... ,0] +  cos(č(ť) + (pY)<p(t)[0,1,...  ,0]} 

+  'Q(t){cos((p(t) + 'ifiY)[l,  0, . . . , 0] + sin(č(t)  + (pY)[0,1,...,  0]}, 

P[Ú(t)  = Q(t){-  sm(<p(t)  + <pY)[l, 0, . . . , 0] + cos(^(ť) + CpY)[0,1,...,  0]} 

for  a.a.  í  e  (0,T). 

Hence 

(Ó(t),PjÚ(t))  =  (PLÚ(t),PjÚ(t)) 

\PLÚ(t)\>  \PLÚ(t)\* 
=  ф{ť)  for  all  te  (0,Г). 

L e m m a  3.2.  Let  A  >  |A
0
|, £M > §^ -*et £o be from Notation 3.2. Then for any 

s > 0, 6 G (0, £0) there exists 7 > 0 such that if |A| ^ A, 5 ^ \Y| ^ £0, ^ € V \ S°, 
r G [0,+oo), UJ(-,y) is periodic then iT

x{Y) ^ 7. 

P r o o f . Suppose by contradiction that [An,yn,Tn] -> [A,y,T] with |yn | ^ £0, 

y £ s° , |y| > 0, T G [o,+oc], iT£(Yn) -> o. Set Un(t) = UA
r;;(^,yn), £n(t) = 

(fT
x
n

n (6,yn), *n = iT
x
7'ri (yn). It follows from Theorems 2.2, 2.3 that 

(3.2) UT{t)Y) = Y for all t^0. 

Theorems 2T, 2.3 ensure \PLUn{t,Y)\ > 0 for all t ^ 0, n large enough. We shall 
show that there exists C > 0 such that 

(3.3-) \<j>n(t)\ ^ C\Un{t)\ for all n, a.a. t G [0,lM]-

Suppose that (3.3) is not satisfied: for any C > 0 there exist nc > 0 and Ec C [0, tj^j], 

meas(F'c) > 0 such that 

(3.4) \$nc(t)\ > C\Onq(t)\ for a.a. t G Ec. 

Remark 3.5 implies that 

^nc{t)\^T^^ior^^e^tMY 

This together with (3.4) implies that 

\PLUnc{t)\ < 1 for a.a. t G Ec. 

590 



It follows by using Theorem 2.1 that there is to G [0,-'M] such that 

PLUT
x(to,Y) = 0. 

This is a contradiction with the assumption Y G V \ 5", \Y\ > 0, and (3.2). The 
estimate (3.3) is proved. 

It follows from (2.3) (or (2.4)) in Remark 2.3 and from (3.3) that there is C2 > 0 
such that 

(3.5) f"\(pn(t)\
24t<C2. 

JO 

From the periodicity of Un we have 

2ÏÏ = ф
n
{0)  -фn(t

n
) ^ í " (pn(t) át <Ú-(f " \K(t)\2 dtj \Ú-C3^ 0. 

This is a contradiction and our assertion is proved. • 

Lemma 3.3. Let A > |A0|, tM > 1^, let Q0 be from Notation 3.2. Then for any 

e > 0, D£ is open (in U x V x U) and there is O° > 0 such that [A,y,0] G D£ if 

|A| < A, \Y\ < O°. The mapping R£ is continuous on D£. 

P r o o f . It follows directly from Definition 3.1 that D£ is open. Lemma 3.1 and 
Remark 3.4 imply that 

tl(P£Z)< tM if H < A, zts, \z\<e°e = ee(i + e2)-i, \z\<Te, 

where Q£ is the number from Lemma 3.L Clearly, for any |A| < A, \Y\ < O° there 
is r > 0 such that |Li| < A, |£| < re, \Z\ < O° for any [/L/,Z,f] G Wr(A,y,0). Hence, 
[A,y, 0] G £>e by Definition 3.1 and Consequence 2.L The continuity of R£ follows 
from Definition 3.1, Theorems 2.1, 2.4 and the choice oi Q0. • 

Definition 3.2. Let A > |A0|, tM > ^ , let Q0 be from Notation 3.2. Set 

E = {[y, r] eV x R}. For any O G (0, £0), £ > 0 introduce a mapping T/: D£ -+ E 

by 

(3.6) r / (A ,£ ) = [ H , ( A , y , r ) , | y | 2 - ^ ^ ] for any [A,y,r] = [A,£] G £>,. 

Set 

||3£|| = |y | + |r| forany 3E=[y,r] . 

Lemma 3.4. Let [A,y,r] G L>e, £ - T / ( A , £ ) = 0, X = [y,r]. Then |y|2 = _£!_. 
If, moreover, y g 5° and r > 0 then y = U^(^(y), y ) and iT

x(Y) <tMm 

P r o o f follows directly from Definitions 3.1, 3.2. • 
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Definition 3.3.  For any  A G R introduce  a  linear mapping L(A):  E  -»  E  by 

L(X)X  =  [UoAh,Y),0]  for  all  X  =  [Y,r]  G E. 

L e m m a  3.5.  If  S >  0  then 

(3.7)  d(L(A
0
+<*))*-= d ( L ( A

0
- * ) ) . 

P r o o f .  Recall  that 

(3.8)  d(L) =  (- l)->< 

where the sum is taken over all eigenvalues V{  >  1 of the operator L, n; is the algebraic 

multiplicity  of  t/j.  (This  holds  for  any  linear  completely  continuous  operator L  in 

a  real  Banach space,  see  e.g.  [11].)  It  follows  from  (Li)  (see  also  Remark  1.4)  and 

Notation  3.1  that  for  any  A >  Ao there  is  precisely  one v  = v(X)  >  1 such  that 

vY  =  Uo,\(ix,Y) 

has  a  nontrivial  solution  Y e  V  and  this  solution  is  of  the  form  [c, 0, . . . , 0 ] .  If 

A <  Ao  then  the  last  equation can have  a  nontrivial solution only  with  v  <  1.  This 

means  that  if  A  >  Ao  then  L(A)  has  precisely  one  eigenvalue  ^i(A)  >  1  with  the 

only  corresponding (normed)  eigenvector Xi  =  [1,0,... ,0],  and if  A <  Ao then  L(A) 

has  no  eigenvalue  greater  than  1.  Let  us  show  that  the  eigenvalue  mentioned  is 

algebraically  simple, i.e. 

dim  Q  Ker(i/i(Л)/  -  L(Л))
fc
  = 1. 

k = l 

If  Y  G V  \ Lin{[l,0,...  ,0]}  then  P°Y  ^  0  and  vP°Y  -  U
0
,\(i\,P°Y)  =  vP°Y  -

P
0
U

0
,\(i*i

y
)  7--  0  for  any  v  >  1, A G R by  Remark 1.4.  This means 

i / F - U
0
,

A
( ^ , y ) ^ L i n { [ l , 0 , . . . , 0 ] } f o r a l l F € V \ L i n { [ l , 0 , . . . , 0 ] } , v > 1, A G R, 

i.e. 
vX - L(X)X i Lin{£i} for all X £ Lin{£i}, v > 1, A G R. 

If (v±(X)I - L(X))kX = M A ) / - L(A))MA) - L(X))k~lX = 0 then we obtain 

(vi(X)I — L(X))jX G Lin{Xi} successively for j = k — 1, . . . , 1,0 because Xi is the 

only eigenvector of L(A) corresponding to ui(A). This means X G Lin{36i} and the 

simplicity of our eigenvalue is proved. Now the assertion of Lemma 3.5 follows from 

(3.8). D 
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Remark 3.6. If Yn -> 0, Yn € V \ S, Zn = fo -> Z e V \ S, An -> A, rn -> 0, 
then 

Un(in(P*Yn),P*Yn) 

\Yn\ 
Uo,л(íл,P£z) 

where we write Un = UA", in = £A" . Indeed, we have 

PeYn P'Yn PeYn \P*Yn\ 

|yn | ""* ' \Yn\ \PtYn\ \Yn\ 

and therefore 

\PeYn\ \P'Z\ 

Of course, i® A(W) = < A < tM, <p0X(i\,W) < 0. Hence, Theorems 2.1 and 2.4 imply 

tn(P*Yn) -> ' ^ ( W ) = «x and 

U„(in(P
£yn), p£yn) un(in(P*Yn), p*Yn) \p*Yn\ 

\Yn\ \P*Yn\ \Yn\ 

-* ÍŽO,A(ÍA, W) • l ^ z l = Uo,A(ÍA,P£z). 

Similarly, it follows from Theorem 2.1 that 

UA71(iA„,P°yn) v 
Uo,л(ťл,P°z). 

\Yn\ 

Lemma 3.6.  For any fixed  Q G (0, Qo),  S > 0 we have 

\\T
e
(X  X) —  L(X)X\\ 

(3.9)  lim  — - — ,
l/
^„  = 0  uniformly  on compact  X-intervals. 

K  }
  PII-0 ||3£|| 

P r o o f . It is sufficient to show that if 

An-+A, [y?,...,y%] = Yn-+0, T n - * 0 , -2--+Z = [zu...,zN], Xn = [Yn,rn] 
I -* TX I 

then 
H m ||r/(Aw>3Ew)-L(Aw)3Ew|| = Q 

™->°° | |£n | | 

Using Theorems 2.1, 2.4 we obtain 

UT
x:(iZ(Yn),Yn) 

|ľn| 

U0,A„(jA„,Уn) 

-+Üo,x{h,Z)  iîYníSe 

-4Ů0,л(ÍA,z)  i f У г Є S . 
\Yn\ 
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If yn G S£ \ S then we obtain by using the definition of P£, Remark 3.6 and the 
linearity of (LE) that 

~* 70z\°oAix'p'z) + i1 ~ ^4 j )^^ ' p 0 z ) = UoAh,z). 

Notice that P£Z has no sense if Z G S but in this case gipu\l • -> g.j-^L = 0, the 
terms containing PeZ can be understood as zeros and we have P°Z = Z. Hence, 
the resulting expression is obtained directly 

Now, Definition 3.1 implies 

l^ (A n ,y n , r n ) -U 0 > A T ) f t A u ,y n ) i |H £ (A n ,y n , r n ) -U 0 , A n ( f A 7 t ,y n ) | 
l̂ nl + W " \Yn\ ~* ' 

Simultaneously 
\Yn\2(l + rn) 

<?(.*»,+ |r„|) 

and our assertion follows from Definitions 3.2, 3.3. D 

Lemma 3.7. Let A > |A0|, tM > §*, £ > 0, let g0 be from Notation 3.2. If 

-.> [An ,yn ,rn] G D£, Yn ^ 0 , [An ,yn ,rn] -> [A0,0,0], yn = 1L£(An,yn,rn), Z n = - ^ 
Z then either Z = [1,0, . . . ,0] or Z = [ -1 ,0 , . . . ,0]. There is r > 0 such that if 
[A,y,r] G D £ n t ^ r ( A o , 0 , 0 ) , y = I7£(A,y,r), \Y\ > 0 then Y $ S£. 

P r o o f . Write Un = UA", in = tA
Tl . First, let us realize that Definition 3.1 gives 

in(P
£Yn) < tM for n such that Yn £ S. 

We can suppose without loss of generality that one of the following cases (i)-(iii) 
occurs: 

(i) yn i S£: Then Yn = R£(Xn,Yn,rn) reads Yn - Un(tn(Yn),Yn) = 0. Dividing it 
by |yn | and letting n -> oo we obtain by using Theorems 2.1 and 2.4 (precisely see 
Remark 3.6) 

Z = Uo,\0(t\(),Z). 

It follows that Z G L by the assumption (Lt) (see Remark 1.4) and therefore Z = 
[±1,0, . . . ,0] because Z eV. 

(ii) yn G 5 : Then 
Yn-Uo^i(i\n,Yn) = 0 
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and it follows that 
Z-UOM(iXo,Z) = 0, Z$L 

which is impossible by the assumption (/i) (see Remark 1.4). 

(iii) Yne S£\S: Then 

Yn ~ J^^(in(P
eYn),P^Yn) - (l - ^ML^xAh^Yn) = 0. 

If Z £ S then Theorems 2.1, 2.4 (see Remark 3.6) and the definition of Pe yield 

z - ^4|£lo,A„(<A„, P£Z) - (l - ^L)i!o,A„fe„,P0z) = z- U0M(tXo,Z) = 0. 

If Z G 5 then FeZ has no sense but in this case the terms containing P£Yn tend 
to zero, P°Z = Z and the resulting expression is obtained directly. We have Z £ L 

and the last equality is excluded by Remark 1.4 as in (ii). 
The last assertion of Lemma 3.7 is a consequence of the first because of Z = 

[±1,0, . . . ,0] g S£. D 

Theorem 3.1. Let E be a real Banach space with the norm \\ • ||, D an open set 

in (R x E, T,L: D —> E completely continuous mappings such that L(X) is linear for 

X fixed. Suppose that [Ao,0] G D and there is So > 0 with the following property: 

(a) Ker(I - L(X)) = {0} for all X G (A0 - S0, X0 + 60), A ^ A0, 

(b) d(L(A0 - S)) ? d(L(A0 + S)) for any S G (0,oo), 
\\T(X,X)-L(X)X\\ .r , 

(c) hm r——, = 0 umroririly on compact X-intervals. 
V } HXIHo ||3£|| 
Set 

C = {[A,X]e D;X- T(A,X) = 0, | |£|| ^ 0} (the closure in D). 

Denote by Co the component of C containing [Ao,0]. Then at least one of the 
following conditions is fulfilled: 

(i) there is Ai ^ A0 such that Ker(I - L(Ai)) ^ {0}, [Ai,0] G C0, 
(ii) C0 is not compact. 

P r o o f can be done similarly as that of Theorem 1.3 and Corollary 1.12 in [13]. 
In [13], operators of the form L(X)X = AL3C, T(A, X) = AL3tH-7V(A, X) are considered, 
where L is linear completely continuous, IV is a small (at zero) compact perturbation. 
It is supposed that A0 is a characteristic value of L of an odd multiplicity. Our 
conditions (a), (b), (c) are automatically fulfilled under these assumptions. In fact, 
only these conditions are used in the proof and the special form of the operators is 
unnecessary D 
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P r o o f of Theorem 1.2. First, suppose that (1.2) is fulfilled and let A, CM and 

,O
0
 be from this assumption and from Notation 3.2, respectively. For any  Q G (0, ^

0
) , 

e  > 0 denote by  C
e

Q
 the component of the set 

гDc 
{{\,X}eD

e
;X  = T%(\,X), 3E--0}  '  = 

=  {[\,Y,r]eD
e
;Y  = R

t
(\,Y,T),  \Y\

2
  =  ^L-,T  ?o} 

(the closure in D£) containing [Ao,0], where De, Re, TE
Q are from Definitions 3.1, 

3.2. Lemma 3.4 implies that 

J if [A, y, r] G C\ then \Y|2 = ^ ; if moreover Y $ S°, r £ 0 " 

\ then y = U;(^(y),y), *j(y) < tM. 

It follows from the definition of C£
Q that r ^ 0 for any [A,y, r] G C| . First, let us 

show that g0 could be chosen such that there is e > 0 satisfying 

(3.11) y i S£ for any [A, Y,r] G C*, r # 0, D G (0,£0). 

Suppose the contrary. Then it follows from the last assertion of Lemma 3.7 and the 
connectedness of any Ce

Q that there exist Qn > 0, en > 0, rn G (0, +oo), [An, Yn, rn] G 
C7|; such that Qn -> 0, en -> 0, An -i> A G [-A,A], rn -» r G [0,+oo], |Yn| -> 0, 
Zn = - ^ j -> Z, yn G 5ffn \ S°n . Consequently, Z G 5 . Writing Un = £/£, tn = F£ 
we obtain 

(3A2) yn = Un(ln(yn),yn), o < *n(Yn) < tM 

by (3.10). We can suppose in{Yn) -> t0 e [0,£M]. Theorems 2.1, 2.4 give 

Un\*n\Yn)-) - n 

\Yn 

i.e. we obtain 

U
0

т
,л(<o,z), 

(3.13) Z =  UJ
A
(l

0
,Z) 

with Z G S, which contradicts (1.2) if  t
0
 > 0. It follows from Theorems 2.2, 2.3 

that for  t
0
 = 0, t/

0

T

A
(t, Z) is a stationary solution of (LPE) or of (LI) if r < +oo or 

r = +oo, respectively. Hence  Z =  U
T

x
{t,Z) for alH ^ 0 and this contradicts (1.2) 

again. The existence of  Q
0
 and e satisfying (3.11) is proved. 
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Further, we will consider this fixed e and an arbitrary g G (0, g0) and write Ce 

instead of CQ. 

We will use Theorem 3A for T = TQ with an arbitrary fixed ljG(0,/5o). In this 
case, C0 in Theorem 3.1 coincides with our Ce. 

If Ker(I - L{\)) ^ {0} then (3.13) holds with some Z 7- 0, r = 0, t0 = h and this 
is excluded for A ̂  An by Remark 1.4. In particular, the assumption (a) is fulfilled 
with any 60 > 0 and the case (i) in Theorem 3.1 is excluded. The other assumptions 
of Theorem 3.1 follow from Lemmas 3.3, 3.5, 3.6. Hence, the case (ii) in Theorem 
3.1 occurs. 

Set 

N 

ce = {[\,v,T];V = YtyjUj(\), [A,y,r]ec; 
i= i 

with y = [yi , . . . ,7/Al] and r G [0,+oo)}. 

We shall show that Ce has all the properties announced in Theorem 1.2 with T0 = 
+00. 

First, the condition (1.3) follows from (3.10), (3.11) and Notation 3.1. It follows 
from (ii) in Theorem 3.1 that there are [An ,yn ,rn] G Ce such that 

[An ,yn ,rn] -> [A.y,r] $ Ce,\\\ < A, Y G V , r G [0,+oo]. 

We will write [A, Y, r] G C^ also in the case r = +oo. It follows that [A,Y, r] ^ De. 

We have [A, 0,0] G .De by Lemma 3.3 and therefore \Y\ ^ 0, r > 0. We obtain 
(3.12) by (3.10), (3.11) again. We can suppose in(Yn) -> t0 > 0 by Lemma 3.2. The 
limiting process in (3.12) (by using Theorem 2.1 and (3.11)) gives 

(3.14) y = UA
T(lo, Y), 0 < t0 ^ lM, Y g S°. 

The fact that [A, Y, r] ^ J9£ (together with (3.11)) implies that at least one of the 
following conditions is fulfilled: 

(3.15) r = +oo, 

(3.16) |A |=A, 

(3A7) * I ( m * M , *) 

(3.18) < ^ ( Y ) , Y ) ^ 0 . 

*) In fact, it is possible to show that the sign ">" is excluded in (3.17). (First, it would 
be necessary to know that U\(t,Y) £ S for all i, i.e. that i\(Y) < +00.) But this is not 
important for our further considerations where (3.14) is essential. 
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Hence, for any g G (0, g0) there is [A, y, r] € CQ\ D£ satisfying (3.14) and at least 

one of the conditions (3.15)-(3T8). Our aim is to show that in fact (3.15) holds for 
Q £ (0,£o) if g0 is small enough. Suppose by contradiction that there are gn > 0, 
[An, yn , Tn] G CQri \ D£ and t0 > 0 such that gn -> 0, Tn G [0, +oo), 

(3A9) yn = Un(^,yn), 0 < t ^ tM, Yn $ S° 

and at least one of the following conditions is fulfilled: 

(3.20) |An| = A, n = l , 2 , . . . , 

(3.21) in(Yn)>tM, n = l , 2 , . . . , 

(3.22) ^ n ( f n ( y n ) , y n ) ^ o , n = i , 2 , . . . . 

We can suppose An -> A, Zn = -£h -> Z, Tn -> T G [0, -f-oo], t0 -> f0- Dividing (3.19) 
by |yn | and using Theorem 2.1 or 2.3 we obtain (3.13). Ift0 > 0 then the assumption 
(1.2) implies that |A| < A, iT

0X(Z) < tM, ^O,A(*O,A(^)>^) < °- T h i s t o S e t n e r w i t h 

Theorem 2.1, Consequence 2.1, Theorems 2.4, 2.5 leads to the contradiction with 
the fact that one of the conditions (3.20)-(3.22) holds. The case t0 = 0 is excluded 
because UQA(-,Z) would be stationary by Theorems 2.2, 2.3 and this is impossible 
by the assumption (1.2). 

Hence, g0 could be chosen such that for any g G (0, g0) there is a point [A, Y, T] G CQ 

satisfying (3.15). The connectedness of CQ implies that for any r G [0, +oo] there 
are A, Y such that [A,y, r] G CQ. The condition (1.4) with To = +oo follows. 

It remains to show that the first part of the assertion of Theorem 1.2 (about the 
existence of Oo, To with the properties required) holds even if the assumption (1.2) 
is omitted. In this case, choose arbitrary fixed A > |Ao|, tM > i5-- Let g0 be the 
corresponding number from Notation 3.2. For any g G (0, g0), e > 0 we can introduce 
C£

Q as above. 
We will show by almost the same considerations as in the proof of (3.11) above 

that g0 could be chosen such that there are T\ > 0, e > 0 satisfying 

(3.23) y <£S£ for any [A,y,T] G C\,T G (0,n],OG (0,r50). 

Suppose the contrary Then there exist gn > 0, en > 0, [An,yn,Tn] G Ce^-, Tn > 0 
such that gn -> 0, en -> 0, Tn -> 0, An -> A, \Yn\ -> 0, Zn = - ^ -> Z, yn G S£n \S° w . 
(Cf. the proof of (3.11).) We have (3.12) again and the limiting process (after dividing 
by \Yn\ and using Theorem 2.1) gives (3.13) with t0 G [0,lM], Z G 5 , |Z| ^ 0 and 
T = 0. This contradicts the behaviour of the solutions of the equation (LE) (see 
Remark 1.4). (Recall that if t0 = 0 then Uo,A(-> Z) is stationary by Theorem 2.2.) 
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Further, we consider a fixed e satisfying (3.23) and denote by CQ the component 

of 
{ [ A , y , T ] e q ; T ^ T i } 

containing [A0,0,0] (for any Q G (0,130)). We apply Theorem 3.1 to TJ for an arbitrary 
fixed Q G (0, Q0) again. We set 

Iv 

CQ = {[A, V,T];V = ^TyjUj(\), [A,y,T] G C~Q with Y = [yu .. .,yN]} 
3 = 1 

and show that CQ has all the properties announced in Theorem 1.2. The condition 
(1.3) follows from (3.10), (3.23). Suppose that I30, To cannot be chosen such that 

(1.4) in Theorem 1.2 holds for all Q G (0,£0)- Then there are Qn > 0, 0 < Tn < Ti 
such that Qn —•> 0, Tn —•> 0 and 

(3.24) T < Tn for all [A, K, T] G CQn. 

In particular, CQn = Ce
Qn. Analogously as above we can show that the condition (i) 

(for C0 replaced by CQn) from Theorem 3.1 cannot be fulfilled. Thus, the case (ii) 
in Theorem 3.1 occurs, i.e. CQn are not compact. By using similar considerations 
as above together with (3.24) we obtain that there exist [An,yn,Tn] G CQn \ CQn 

satisfying (3.19) and at least one of the conditions (3.20), (3.21), (3.22). (The case 
rn = n is excluded by (3.24).) We can suppose An —> A, Zn = T^T —•> Z. Dividing 
(3.19) by |yn | and letting n —> oo we obtain (by using Theorem 2.1) (3.13) with T = 0. 
The case t0 = 0 is excluded because there is no nontrivial stationary solution of (LE). 
The case to > 0 is possible only for A = Ao, Z = [±1,0 , . . . ,0] by Remark 1.4. We 
have |A0| < A, ^O,A()(

Z) = ^o < *M, ^O,A„(^A„,-^) = <£o.Alf(*Ao» )̂ < °- Consequence 
2.1 and Theorem 2.4 give in(Yn) —? i\0, <pn(in(Yn),Yn) < 0 for n large enough. 
Hence, (3.20), (3.21), (3.22) are excluded, which is a contradiction. • 

P r o o f of Theorem 1.1. For any given Q G (0,Oo) we can find Q small enough 
such that 

Iv 
|V| ^ Q for all V = Y^VJUM) with \Y\ < Q, Y = [yu • •. ,2/N], |A| ^ A. 

3 = 1 

We have To = -f oo in (1.4) under the assumptions of Theorem IT by the last assertion 
of Theorem 1.2. Hence, there exists a sequence of triplets [An,Vn,Tn] G CQ such 

/v 
that Tn -> -roo,An -> Â  G [-A,A], Vn -> Ve G VAc, Vn = "£ H7U,-(An), VQ = 

3 = 1 
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£ y?tli(AB), |Y„|2 = fa -> |YJ2 = e, |VB| < e with Yn = [y?,...,v%], Ye = 
.7 = 1 

b i \ • • • > 2//vL ^.x"(''^»-) a r e Pe r i°d lC w i t r i *I"(^-) < <Mi *I"(^n) -> *o- Lemma 3.2 
ensures £0 > 0 and Theorem 2.3 implies that U£| (•, Vn) -> U^(-, Ve) in C([0, £M]) and 
Ux°(-, Ve) is periodic. Notice that it follows from the properties of Ce that U£°(-, Ve) 
is not stationary. Indeed, we have PLXVQ ¥" 0 because Ve $ S® (see (3.11)). If 
it were U^°{t,Ve) = VQ for all t then we would have PLAnU£;(-, Vn) -> P L J ^ 
in C( [0 ,CM]) by Theorem 3.1 which would contradict the fact that PLXnUln(',Vn) 
circulate around the origin. 

Of course, there is at least one accumulation point A/ of Â  for g -» 0+. Clearly, 
any such accumulation point is a bifurcation point of (I) at which periodic solutions 
bifurcate from the branch of trivial solutions. • 

4. APPENDIX 

P r o o f of Lemma 2.1. Choose g > 0. It follows from (G), (L) that there exists 
C > 0 such that 

- ^ p < C for all |U| ^ O, |A| < A. 

Set U(t) = U{(t,V). Multiplying (PE) by U(t) and using (M) (see Remark 1.3) we 
obtain 

\lTtmt)l2) = ^W'^W) = (F(\,U(t))-T0U(t),U(t)) < 

< (BxU(t) + G(\,U(t)),U(t)) ^ CilUWI2 

for all |A| ^ A, r >. 0 and a.a. t such that \U(t)\ < g 

with some C\ > 0. The Gronwall lemma implies 

|CTC*)|2 < \V\2ert for all t such that \U(t)\ < Q (with r = 2Cj). 

If Q2
0 = 02e-r(«M + D t h e n 

| U ( i ) | 2 0 2 iov\V\^g0,te[0,tM + l) 

and the first estimate in (2.1) follows. In particular, Remark 2.1 ensures the existence 
of our solution on [0, <M + !)• 

Further, it follows from (PE) that there exists C2 > 0 such that 

(U(t), U(t)) ^ \(BxU(t) + G(\, U(t)) - T(f3U(t),U(t))\ 

^C2\U(t)\\U(t)\+T\U(t)\\U(t)\ 

and therefore the later estimate in (2.1) is a consequence of the former one. • 
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P r o o f of Theorem 2'.1. The convergence (2.5) follows from the standard results 
on continuous dependence of solutions of ODE's on parameters (see e.g. [8]). 

Set Un(t) = U£;(i,Vn). Let V = 0, y^j = Wn -> W. Lemma 2.1 implies that 
for any T > 0 there is no such that (2A) with tM and Ux replaced by T and Un 

holds for all n ^ n0 (i.e. for \Vn\ small enough). It follows that T^T is bounded 
in C1([0,T]) and therefore there exists a subsequence convergent in C([0,T]). It is 
sufficient to show that any such subsequence converges in C1([0,T]) to UQX(-,W). 

We will suppose without loss of generality that 4^- -> Uo in C([0,T]) and prove 
U0 = U£A(., IV). It follows from (G) that 

G(\n,Un(t)) _ G(\n,Un(t))\Un(t)\ s0inC{[0T]) 

Further, 

\vn\  |U„(ť)| \v
n
\ 

Ún(t) _ BKUn(t) G(Xn,Un(t)) Tnj3Un(t) 

\Vn\ \Vn\ \Vn\ \Vn\ 

and it follows by the limiting process that |";y converges in C([0,T]), 

Un(t) 

\Vn\ 
Uo(í)inC([0,Г]), 

Uo(0  = B
x
U

0
(t)  -  T0U

o
(t)  for  all  t € (0,T). 

Hence, Uo = Uo A('> W)- Our assertion follows. D 

P r o o f of Theorem 2.2. Set Un(t) = U£; (t, Vn). The periodicity of Un together 
with Theorem 2.1 (and the fact that ( = 0 is the Lebesgue point of BXU + G(X, U) — 

T(3U) imply 

0 = Un(tn) -Vn= Un(t) dt = / F(Xn, Un(t)) - Tn(3Un(t) dt, 
Jo Jo 

1 /•'» 
0 = - / BxMt) + G(Xn, Un(t)) - Tn(iUn(t) dt -> BXV + G(X, V) - T(3V 

tn Jo 

If V = 0 then (G) implies 

1 fK BKUn(t) G(Xn,Un(t)) 0Un(t) 

Our assertion is proved. • 
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P r o o f of Theorem 2.3. Set Un(t) = U^(t,Vn) again. Conditions (P), (M) 

from Remark 1.3 and the equation (PE) give 

ptM ptM 

/ (Un - F(\n, Un), V-Un)dt= (Tn(3V - rn/?Un, V - Un) dt > 0 
JO Jo 

for all V G L2(0,tM) such that V(£) G Iv" for a.a. * G [0,rM]. 

It follows from (2.2), (2.4) in Remark 2.3 that {Un} is bounded in W£(0,tM). Sup-
pose that Un -» U weakly in IV̂ C^M-Vf)- Then Un -> U in C ( [ 0 , £ M ] ) according to 
the compactness of the imbedding, and the limiting process in the last inequality 
gives 

(4 1) (SZ"(U-F(W),V-U)dt2 0 

\ for all V G L2(0,tM) such that V(t) G K for a.a. t G [0,tM]. 

We claim to show that 

(4.2) 
ÍU(t) G KforalltE [ (MM], 

\ (U(t) - F(A, U(t)), V - U(t)) ^ 0 for all V G J<\ a.a. t G [0, t M ] . 

We have 

rtM i r^M A i 

/ (Un(t),Un(t))dt=-J ^|U„W|2d(=-(|Un(<M)|2-|Un(0)|2) 

and it follows from (PE) (multiplied by Un and integrated) and the boundedness of 
Un that there exists C5 > 0 such that 

/ ' 
Jo 

ЛÍ 

(ßUn(t),Un(t))dt^C
ъ
. 

We  have T
n
 -> +00 and it follows  by using  (M) from  Remark  1.3 that 

(0U(t),U(t))  = \im(PU
n
(t)Mn(t))  = 0  for t  G  [0,*

M
]-

Hence,  (P) implies 

(4.3)  U(t) eK  forte  [0,t
M

]. 

Suppose  that  the  inequality  in (4.2)  does  not  hold.  Let E  C  [0,6M]  and  V
0
  G  Iv 

be  such  that  meas(F)  > 0  and  (U(t)  - F(A,U(£)),V0 - U(t)) < 0 for all t G E. 

Introduce a function 

V(t) = V0 for t G E, 

V(t) = U(t) for t i E. 
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It follows from (4.3) that V(t) e K for a.a. t G [0,tM] and clearly V e A 2 ( 0 , £ M ) . 

Hence 

r*M r 

/ (U - F(A, U), V - U) dt = / (U - F(A, U), V0 -U)dt< 0, 
Jo </E 

which contradicts (4.1) and (4.2) is proved. 

All these considerations could be done for an arbitrary weakly convergent subse-
quence of Un (instead of Un) which implies Un -> U = U%°(-,V) in C([0,tM]) and 
weakly in W^QO.^M])- Further, it follows that to is the period of U£°(-, V) provided 
tQ > 0 . 

Now let us show that if tn —> to = 0, then U%°(-, V) is a stationary solution of (I), 
i.e. 

(F(A, V), Z - V) = (F(A, U(0)), Z - U(0)) ^ 0 for all Z e K. 

We have 

0 = Un(tn) - Vn = / " Un(t) dt = / " F(An, Un(t)) - TnPUn(t) dt. 
Jo Jo 

Multiply this equation by a fixed Z £ K. We obtain 

(4.4) fn(F(\n,Un(t)),Z)dt = Tn [ "(j3Un(t),Z)dt. 
Jo Jo 

Further, 

0 = \Un(tn)\
2 - \Vn\

2 = 2 / "(Un(t),Un(t))dt 
Jo 

= 2 [" (F(Xn, Un(t)) - Tnf3Un(t), Un(t)) dt 
Jo 

and therefore 

(4.5) / " (F(An, Un(t)),Un(t)) dt = Tn [ " (f3Un(t), Un(t)) dt. 
Jo Jo 

It follows from (4.4), (4.5) by using (P) and (M) that for any Z E A' we have 

--- [ "(F(\n,Un(t)),Z-Un(t))dt= ^ [ "(0Un(t)-[3Z,Z-Un(t))dt^O. 
'n Jo 'n Jo 

The limiting process (by using the fact that t = 0 is a Lebesgue point) gives 

1 /'» 
- / (F(\n,Un(t)),Z-Un(t))dt^(F(\,V),Z-V)^0. 
tn Jo 
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The case V = 0 can be treated similarly if we divide all expressions by \Vn\ and 
use the fact that 

G(\n,Un(;Vn)) ) ( ) . r n n , „ 
— •> 0 in C([0, tM\). 
I *n\ 

D 

P r o o f of Theorem 2.4. Set (pn(t, Vn) = v?£(t, Vn), tn(V) = tT
x
n
n(V). UV (£ Sx, 

tx(V) < tM, (pr
x(tx(V), V) < 0, then there is 5 > 0 such that 

(4.6) <p\(t,V)<-2K foral\te(tT
x(V),tl(V)+6). 

Let *0 € (tT
x(V),tT

x(V) + 6) be fixed. Then <pn(t0,Vn) < -2K for n large by Con-
sequence 2.L Hence, there are tn G (0,t0) such that (pn(tn,Vn) = - 2 K due to the 
continuity of (pn(-,Vn). This means tn(Vn) < to. But to > tx(V) was arbitrarily 
close to tx(V) and therefore 

(4.7) \imsuptn(Vn)^tT
x(V). 

Let tin be an arbitrary subsequence of tn(Vn), tin -> t'. We have tiTi < tM + 1 
for n large enough by (4.7) and Consequence 2.1 yields <P/n(^n,V/n) -> <px(t

f,V), 

i.e. <p(t',V) = -2K. It follows that t1 > 0, tT
x(-,V) ^ t'. This holds for an arbitrary 

converging subsequence and therefore lim inf tn(Vn) ^ tx(V) which together with 
(4.7) gives tn(Vn)^t\(V). 

The case V = 0, Wn = r^h —> W £ Sx can be treated similarly using (2.8) instead 
of (2.7) from Consequence 2.L D 

Remark 4.1. Denote by TK(U) the contingent cone to K at a point U G K, i.e. 

TK(U) = U U ' ^ - C/)' 
/ i>0V€E 

For any U e K,W eUN, denote by Pt/VV the projection of IV onto TK(U), i.e. the 
unique element from TK(U) satisfying 

\PUW-W\= min \Z-W\. 
zzTK(uy 

It is known (see [1]) that an absolutely continuous function U: [0,T) —> K is a 
solution of (I) if and only if 

U(t) = Pu{t)(BxU(t) + G(X,U(t))) for a.a. t G [0,T). 

In this case the last equation holds for all t G [0, T) if U(l) is understood as the right 
derivative in accordance with our agreement from Notation 1.2 (cf. Remark 1.1). 
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P r o o f of Theorem 2.5. Set 

N 

(v,z)x = Y,yJ(x)yf(x)' \\nx = (v,v)t 

N N 

for V = 5>/(A)£t,-(A), Z = £j,J(A)U,-(A). 
j = i i = i 

We will write Un(<), ¥>„(«), Ln, U(t), if>(t) instead of U^(t,Vn), <pT
xl(t,Vn), Lx„, 

U£°x(t,W), <p%x{t,W), respectively. 

If W e intK then ^0- ->• U(0), <^n(0) -» v?(0) by Theorem 2.1, Consequence 2.1 
and Remark 1.6. If Vn £ /<; then <pn(0) ^ —?; for n large enough with some n > 0 by 
Remarks 1.6 and 1.4. Hence, it remains to consider the case 

W E dK, Vn $ K. 

The assumption W $ Sx and Theorem 2.1 imply the existence of T > 0 such that 

||Pr,„Un(«)lk. > 0, ||PiAU(t)|U > 0 on [0,T). It follows from Remarks 3.5, 4.1 that 

(un(t),PjUn(t))x _ (F(\n,Un(t))-rn(3Un(t),PtnUn(t))x 

(4-8) ¥>„(.)- \\pLMt)r^ - ||P i„Un(*)IIL 

(0(t),PiU(t))x (BxU{t) _ (BxU(t) - Pu{t)BxU(t)),PtxU(t))x 

(4-9) * w _ IIP^UWHf " " " WPLMQWI 

for t € [0,T). It follows from the assumption (1.1) that 

(4-10) C-JS.V M = <W) = \BXW-PWBXW[ 

The assumption (G) implies 

(F(\n,vn),Ptyn)Xi (BXW,PIXW)X 

™ IIPLXIIL" ~\\PLMI ' 

It follows from (4.8) that if ((3Vn, P^n Vn)x > 0 then the circulation of PLii U£; (t, V) 
is accelerated by the penalty term and this circulation is stronger than in the case of 
the equation. In particular, there is /; > 0 such that ftn(0) ^ — r/ (see Remark 1.4). 
Hence, we can consider only the case (ftVn,PLyn)x ^ 0. It follows that it is 
sufficient to show that 

-Tn(f5Vn,PiVn) (BXW-PWBXW,PIXW)X 

h m s u P n n T/..2 " ^ PL,yn\\l„ " \\PLXW\\I 
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This can be written as 

-Tn\\ßVn\\xn UK, I k / ßVn, PLVnWx,. 
lim sup 

^ -

»-oo HKJk \\PL„Vn\\X„ \ \\PVn\\K ' \\PL,Vn\\xn , Xn 

BXW - PWBXW\\X I BXW-PWBXW PÍ.W 

\\PLxW\\x \ \\BXW - PwBxW\\x' \\PÍW\\x/x 

We have "fojjfj*- -* \\PL„W\\X, p g t q t -» p ^ ^ f l and it follows from (4.10) 

that the last inequality will be ensured if 

l i m s u p 7 " " ' 1 ^ 1 1 ^ < \\BxW-PwBxW\\x. 
n-->oo H^nlU,. 

According (4T0), this is equivalent to 

limsup ^ S ^ \BxW _ PwBxW\. 
n->oo | V n | 

It is easy to see that 

(4.11) \BXW - PWBXW\ - (BXW, n(W)) 

under the assumption (1.1). (Note that (BxW,n(W)) ^ 0 because otherwise the 
periodic solution U(t) would be directed into the interior of K in a neighbourhood 
of W and U(t) could not reach W = U(0) E dK for t -> 0_.) Hence, it is sufficient 
to prove that 

(4.12) limsup ^ ^ < (BxW,n(W)). 
n—>oo | V?i | 

Suppose that (4.12) does not hold. We can suppose that there is 5 > 0 such that 

(4.13) {BxWMW))-^^^'S. 
lVn| 

Theorem 2.3 together with (G) implies 

(4.14) M - - , U(t), F{Xn£f)] -* BxU(t) in C ( [ - « M , «*/])• 

(Notice that our functions are periodic and therefore we can consider an arbitrary 
time interval.) Hence, it follows from (4.13), (4.10), (4.14) and the continuity of U 
that there exist ?i0 and lo > 0 such that 

( / F ( A „ , t / „ ( 0 ) (3U„{t) \ _ T„\pVn\ < _5_ 
(4 # 1 5) J I \V.,\ ' \l3U„(t)\) IV. I ^ 2 

( for all 71 ̂  ??o and t E [—lo,^o] such that Un(£) ^ A'. 
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We shall show that also 

M 1 f i . (F(\n,Un(t))-Tn0Un(t) /3Un(t)\^ 5 
( 4 J 6 ) I \Vn\ '\PUn(t)\)^ 2 

holds for all n ^ no and t G [—£o.O]. For any n ^ no, consider the set 

Un = {ie H o , 0 ] ; Un(0 £ AT and (4.16) holds for all t G [f,0]}. 

We have 0 €Un for all n ^ n0 because (4.16) reduces to (4.15) for t — 0. According 
to (PE) and (Pt), the formula (4.16) is equivalent to 

(4-17) lft(ll3Un{t)l2) (= ( ^ W ' W ) ) ) < ~l\0Un(t)\\vn\. 

In particular, Hi € Un then |/?Un(i)| = dist(Un((),/v) is strictly decreasing on [i, 0] 
and |/?Vn| < |/?Un(i)| for all t € [ t - »/„,0) with some i]n > 0. Thus, 

(4.18) Un(t) i K for all te[i- r.n, 0]. 

We obtain by (4.15) that 

(F(\n,Un(t))-Tn/3Un(t) _______\ __ /__________) _______\ _ rn|/3Un(t)| 
V |K„| ' l /JvnWK V |Vn| ' l ^ n W K |K.| 

. fF(\n,Un(t)) __C___) \ rn|/3Vn| A 
n ivn| •Bjj ) -w-^2 f o r a l l w ^° a n d t e l t - } '"- 0 1 -

Hence 1/ln is open in [—10,0]. Simultaneously, Un is closed according to the continuity 
argument. (Note that \(3Un(t)\ remains nontrivial due to the monotonicity mentioned 
above.) Hence, 

(4.19) Un = [-60,0] for all n ^ n0. 

We have U(t) G /_" for all t and it follows from (4.18) and (4.14) that 

(4.20) U(t) G dK for all t G [-l0, 0]. 

Now, it is easy to see that 

(4-21) W^k -)• n(U(<)) in C([-<0,0]). 
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Further, (4.16) means by (PE) 

Uoo\ f_^£_____\._S_ 
( ' V | K | ' l /St lnWII^ 2" 

Theorem 2.3 gives ^ Y - -•» £/(£) weakly in JV^O,^ ) - Integrating (4.22) and using 
(4.21), we obtain by the limiting process 

/  (Ů ( í ) ,n(U ( í ) ) )dř<0. 
J —tn 

However, simultaneously (U(t),n(U(t)))  ^  OforaLH G [-£n>0] with respect to (4.20) 

because otherwise U(t) would be directed to the interior of K at some t' G [-£n>0], 

i.e. U(t) € intKT for t € (f ,t' + f) with some f > 0. This contradiction completes 

the proof. • 
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