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Abstract: In this paper, we consider a Beddington-DeAngelis predator-prey system with stage structure for
predator and time delay incorporating prey refuge. By analyzing the characteristic equations, we study
the local stability of the equilibrium of the system. Using the delay as a bifurcation parameter, the model
undergoes a Hopf bifurcation at the coexistence equilibrium when the delay crosses some critical values.
After that, by constructing a suitable Lyapunov functional, su�cient conditions are derived for the global
stability of the system. Finally, the in�uence of prey refuge on densities of prey species and predator species
is discussed.
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1 Introduction
Predator-prey model is one of the basic models between di�erent species in real world. As we all know,
there are always many species going through two stages, immature and mature, which re�ect the di�erent
characteristics of species at each stage. Therefore, to exhibit the real world phenomenon, stage structure
populationmodels aremore reasonable thanothermodels. In recent years, numerouspapers have considered
the predator-prey system with stage structure (see [1-5]).

On the other hand, in general, the consumption of prey by predator throughout its past history governs
the present birth rate of the predator, in other words, time delay due to gestation is a common example.
Obviously, delay di�erential equations exhibit much more complicated dynamics than ordinary di�erential
equations (see [6-14]). For example, Wang and Chen [15] considered the following predator prey system with
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stage structure for the predator population:

ẋ(t) = x(t)
(
r − ax(t − τ1) − µy2(t)

)
,

ẏ1(t) = ηµx(t − τ2)y2(t − τ2) − βy1(t) − dy1(t),
ẏ2(t) = βy1(t) − ey2(t).

(1.1)

The authors studied the asymptotic behavior of system (1.1). When a time delay due to gestation of the
predators and a time delay from a crowding e�ect of the prey are incorporated, we establish conditions
for the permanence of the populations and su�cient conditions for the existence of globally stable positive
equilibrium of system (1.1).

Beddington [16] and DeAngelis et al. [17] established a famous B-D functional response that is a predator
dependent functional response. In many cases, predators need to search for food and share or compete for
food. Therefore, the stage-structured predator-prey models incorporating Beddington-DeAngelis functional
response better re�ect the ecology. Chen et al. [18] discussed the stability of the boundary solution of a
nonautonomous predator-prey model with the Beddington-DeAngelis functional response, which re�ects
the dynamics of interacting predators and prey in a �uctuating environment. Xia et al. [19] considered sta-
bility and traveling waves in a Beddington-DeAngelis type stage-structured predator-prey reaction-di�usion
systems with nonlocal delays and harvesting. Chen et al. [20] discussed the extinction of a two species non-
autonomous competitive system with Beddington-DeAngelis functional response and the e�ect of toxic sub-
stances. Khajanchi [21] investigated the dynamic behavior of a Beddington-DeAngelis type stage structured
predator-prey model:

ẋ(t) = x(t)
(
r − rk x(t)

)
− µx(t)y2(t)
1 + bx(t) + cy2(t)

,

ẏ1(t) =
ηµx(t)y2(t)

1 + bx(t) + cy2(t)
− βy1(t) − dy1(t),

ẏ2(t) = βy1(t) − ey2(t).

(1.2)

By analyzing the above system, conditions for positivity, boundedness, uniform persistence, existence of
positive equilibria with their local stability have been established. Also, the author showed the existence
of Hopf bifurcation when the conversion parameter k1 passes the critical value. Finally, the conditions for
the occurrence of global stability for the unique interior equilibrium point were derived.

In the real world, refuge is a strategy to reduce the risk of predation. It is clear that the existence of refuge
can have a signi�cant impact on the coexistence of predator species and prey species. In recent years, many
papers [22-27] have proposed and analyzed predator-prey models incorporating prey refuges. Recently, Wei
andFu [28] discussed theHopf bifurcation and stability for predator-prey systemswithBeddington-DeAngelis
type functional response and stage structure for prey incorporating refuge

ẋ1(t) = ax2(t) − rx1(t) − bx1(t),

ẋ2(t) = bx1(t) − cx2(t) − αx22(t) −
β(1 − m)x2(t)y(t)

a1 + b1(1 − m)x2(t) + c1y(t)
,

ẏ(t) = dβ(1 − m)x2(t − τ)y(t − τ)
a1 + b1(1 − m)x2(t − τ) + c1y(t − τ)

− γy(t).

(1.3)

By using the characteristic equations, the local stability of each feasible equilibrium of model (1.3) was
discussed, and the existence of a Hopf bifurcation at the coexistence equilibrium was established.

Motivated by the works [21] and [28], a Beddington-DeAngelis predator-prey model with stage structure
for predator and time delay incorporating prey refuge is investigated in this paper. The proposed model is as
follows:

ẋ(t) = x(t)(r − ax(t)) − µ(1 − m)x(t)y2(t)
1 + b(1 − m)x(t) + cy2(t)

,

ẏ1(t) =
ηµ(1 − m)x(t − τ)y2(t − τ)

1 + b(1 − m)x(t − τ) + cy2(t − τ)
− βy1(t) − dy1(t),

ẏ2(t) = βy1(t) − ey2(t),

(1.4)

where x(t), y1(t) and y2(t) denote the densities of prey species, immature predator species and mature
predator species at time t, respectively; r is the intrinsic growth rate of prey species; a is the intraspeci�c



Hopf bifurcation and stability in a Beddington-DeAngelis predator-prey model with stage structure | 143

competition rate of prey species; d and e are the death rates of the immature and mature predator species
respectively; µ(1 − m) is the capturing rate of the mature predator; η is the conversion rate of nutrients into
the production of predator species; τ denotes the time delay due to the gestation of the mature predator;
m ∈ [0, 1) is refuge rate to prey; the predator species consumes the prey species with Beddington-DeAngelis
functional response incorporating prey refuge µ(1−m)x(t)y2(t)

1+b(1−m)x(t)+cy2(t) , and
ηµ(1−m)x(t−τ)y2(t−τ)

1+b(1−m)x(t−τ)+cy2(t−τ) denotes the growth
rate of predator which are pregnant at time t − τ.

The initial conditions for system (1.4) take the form

x(θ) = ϕ(θ), y1(θ) = ψ1(θ), y2(θ) = ψ2(θ),
ϕ(θ) ≥ 0, ψ1(θ) ≥ 0, ψ2(θ) ≥ 0, θ ∈ [−τ, 0),
ϕ(0) > 0, ψ1(0) > 0, ψ2(0) > 0,

(1.5)

where
(
ϕ(θ), ψ1(θ), ψ2(θ)

)
∈ C([−τ, 0],R3

+), which is the Banach space of continuous functions mapping the
interval [−τ, 0] into R3

+, where R3
+ = {(x1, x2, x3) : xi ≥ 0, i = 1, 2, 3}.

The rest of this paper is organized as follows. The boundedness and local stability of the equilibrium
and the existence of Hopf bifurcation at positive equilibrium of system (1.4) are derived in the next section.
In Section 3, we study the permanence of system (1.4). In Section 4, the global stability of system (1.4) are
investigated. In Section 5, the in�uence of refuge rate on the densities to predator species and prey species is
discussed. We end this paper with some examples and a brie�y discussion.

2 Boundedness, Local stability and Hopf bifurcation
In this section, we study the boundedness and local stability of the equilibrium as well as the existence of
Hopf bifurcation at positive equilibrium of system (1.4). It is obvious that solutions of model (1.4) with initial
conditions (1.5) are positive for all t ≥ 0. The result is a direct consequence of Nagumo’s theorem [29].

2.1 Boundedness

Theorem 2.1. Every solution of system (1.4) with initial conditions (1.5) is bounded for all t ≥ 0 and all of these
solutions are ultimately bounded.

Proof. Let V(t) = ηx(t − τ) + y1(t) + y2(t), and calculating the derivative of V(t) with respect to t along the
positive solution of system (1.4), we have

V̇(t) = ηẋ(t) + ẏ1(t) + ẏ2(t)

= η
[
x(t − τ)

(
r − ax(t − τ)

)
− µ(1 − m)x(t − τ)y2(t − τ)
1 + b(1 − m)x(t − τ) + cy2(t − τ)

]
+ ηµ(1 − m)x(t − τ)y2(t − τ)
1 + b(1 − m)x(t − τ) + cy2(t − τ)

− βy1(t) − dy1(t)

+βy1(t) − ey2(t)
= ηx(t − τ)[r − ax(t − τ)] − dy1(t) − ey2(t).

(2.1)

For a small positive constant s ≤ min{d, e},

V̇(t) + sV(t) = (s − d)y1(t) + (s − e)y2(t) + ηx(t − τ)[s + r − ax(t − τ)]
≤ ηx(t − τ)[s + r − ax(t − τ)].

(2.2)

Hence there exists a positive constant M = η(s+r)2
4a such that

V̇(t) + sV(t) ≤ M, (2.3)

that is
V(t) ≤

(
V(0) − Ms

)
e−st + Ms .

(2.4)
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Thus V(t) is ultimately bounded, that is, each solution z(t) = (x(t), y1(t), y2(t)) of system (1.4) is ultimately
bounded. The proof is complete.

2.2 Equilibria

Obviously, system (1.4) always has a trivial equilibrium E0(0, 0, 0) and a predator-extinction equilibrium
E1(r/a, 0, 0). Further, if the following holds:

µη > be
(
1 + dβ

)
, 0 ≤ m < 1 −

ae(1 + d
β )

r[µη − be(1 + d
β )]

, (H1)

then model (1.4) has a unique coexistence equilibrium E*(x*, y*1, y*2), where

x* = −K +
√
∆

2 , y*1 =
e
β y

*
2, y*2 =

(1 − m)[µη − be(1 + d
β )]x

* − e(1 + d
β )

ce(1 + d
β )

(2.5)

with

K = 1
a

( (1 − m)[µη − be(1 + d
β )]

ηc − r
)
, ∆ = K2 + 4e

acη

(
1 + dβ

)
.

Let Ẽ = (x̃, ỹ1, ỹ2) be any arbitrary equilibrium, then the variational matrix of system (1.4) at Ẽ is given
by

J =


r − 2ax̃ − µ(1 − m)ỹ2(1 + cỹ2)

[1 + b(1 − m)x̃ + cỹ2]2
0 −µ(1 − m)x̃[1 + b(1 − m)x̃]

[1 + b(1 − m)x̃ + cỹ2]2

ηµ(1 − m)ỹ2(1 + cỹ2)e−λτ
[1 + b(1 − m)x̃ + cỹ2]2

−(β + d) ηµ(1 − m)x̃[1 + b(1 − m)x̃]e
−λτ

[1 + b(1 − m)x̃ + cỹ2]2
0 β −e


and the characteristic equation becomes

(λ + β + d)(λ + e)
(
λ − r + 2ax̃ + µ(1 − m)ỹ2(1 + cỹ2)

[1 + b(1 − m)x̃ + cỹ2]2

)
+ µ(1 − m)ỹ2(1 + cỹ2)
[1 + b(1 − m)x̃ + cỹ2]2

×βηµ(1 − m)x̃[1 + b(1 − m)x̃]
[1 + b(1 − m)x̃ + cỹ2]2

e−λτ −
(
λ − r + 2ax̃ + µ(1 − m)ỹ2(1 + cỹ2)

[1 + b(1 − m)x̃ + cỹ2]2

)
×βηµ(1 − m)x̃[1 + b(1 − m)x̃]

[1 + b(1 − m)x̃ + cỹ2]2
e−λτ = 0.

(2.6)

2.3 E0 = (0, 0, 0)

First, we analyze the stability of equilibrium E0.

Theorem 2.2. The trivial equilibrium E0(0, 0, 0) of system (1.4) is unstable.

Proof. The characteristic equation (2.6) takes the form at the trivial equilibrium E0(0, 0, 0)

(λ − r)(λ + β + d)(λ + e) = 0. (2.7)

It is readily seen that Eq.(2.7) has a positive root, thus the equilibrium E0 is always unstable. The proof is
complete.

2.4 E1 = (r/a, 0, 0)

After that, we consider the stability of equilibrium E1.
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Theorem 2.3. If the following holds:

µη > be
(
1 + dβ

)
, 1 −

ae(1 + d
β )

r[µη − be(1 + d
β )]

< m < 1, (H2)

then the predator-extinction equilibrium E1(r/a, 0, 0) of system (1.4) is locally asymptotically stable; if (H1)
holds, then E1 is unstable.

Proof. The characteristic equation (2.6) at predator-extinction equilibrium E1 becomes

(λ + r)
[
(λ + β + d)(λ + e) − βηµr(1 − m)

a + br(1 − m) e
−λτ
]
= 0. (2.8)

Clearly, the equation λ + r = 0 has one negative real root, which implies that all other roots of Eq.(2.8) are
determined by

λ2 + h1λ + h2 + h3e−λτ = 0, (2.9)

where h1 = e + β + d > 0, h2 = e(β + d), h3 = −
βηµr(1 − m)
a + br(1 − m) .

When τ = 0, Eq.(2.9) turns to
λ2 + h1λ + h2 + h3 = 0. (2.10)

According to (H2), we have h2 + h3 > 0. By the Routh-Hurwitz criterion, the boundary equilibrium E1 is
locally asymptotically stable. If (H1) holds, then Eq.(2.10) has at least a positive real root, thus the predator-
extinction equilibrium E1 is unstable.

For τ > 0, we investigate the existence of purely imaginary roots of (2.9). If iω1(ω1 > 0) is a solution of
(2.9) if and only if ω1 satis�es

−ω2
1 + h1ω1i + h2 + h3

(
cos(τω1) − i sin(τω1)

)
= 0.

Separating the real and imaginary parts, we obtain

h1ω1 = h3 sin(τω1),
ω2
1 − h2 = h3 cos(τω1),

(2.11)

which implies
ω4
1 + (h21 − 2h2)ω2

1 + h22 − h23 = 0. (2.12)

Note that
h21 − 2h2 = (e + β + d)2 − 2e(β + d) = e2 + (β + d)2 > 0,

h2 − h3 = e(β + d) +
βηµr(1 − m)
a + br(1 − m) > 0,

and h2 +h3 > 0, then h22 −h23 > 0. Hence (2.9) has no positive real roots. By Theorem 3.4.1 in [30], if (H2) holds,
then all the roots of (2.9) have negative real parts for all τ ≥ 0, this implies that the boundary equilibrium E1
is locally asymptotically stable for all τ ≥ 0. The proof is complete.

2.5 E* = (x*, y*1, y*2)

Further, we analyze the stability of equilibrium E*.
For the positive equilibrium E*(x*, y*1, y*2), the characteristic equation (2.6) reduces to

λ3 + p2λ2 + p1λ + p0 + (q1λ + q0)e−λτ = 0, (2.13)

where
p2 = β + d + e + A + 2ax* − r,
p1 = Q + (β + d + e)(A + 2ax* − r),
p0 = Q(A + 2ax* − r),
q1 = −B,
q0 = −B(2ax* − r),
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with
Q = e(β + d), A = µ(1 − m)y*2(1 + cy*2)

[1 + b(1 − m)x* + cy*2]2
,

B = βηµ(1 − m)x
*[1 + b(1 − m)x*]

[1 + b(1 − m)x* + cy*2]2
=
Q[e(1 + d

β ) + be(1 +
d
β )(1 − m)x

*]
µη(1 − m)x* .

When τ = 0, Eq.(2.13) turns to
λ3 + p2λ2 + (p1 + q1)λ + p0 + q0 = 0. (2.14)

From (H1), we derive that B =
Q[e(1 + d

β ) + be(1 +
d
β )(1 − m)x

*]
µη(1 − m)x* < Q, thus

p2 = β + d + e + (A + 2ax* − r),
p1 + q1 = Q − B + (β + d + e)(A + 2ax* − r),
p0 + q0 = QA + (Q − B)2ax* − (Q − B)r,
p2(p1 + q1) − (p0 + q0) = (β + d + e + A + 2ax* − r)(Q − B) + (A + 2ax* − r)

×[(β + d)(β + d + A + 2ax* − r) + e(e + A + 2ax* − r)]
+QA + (Q + B)2ax* − (Q + B)r.

Denote
r1 =

QA
Q + B + 2ax*, r2 = A + 2ax*, r3 =

QA
Q − B + 2ax*,

r4 = r1 +
(β + d + e + r2 − r)(Q − B)

Q + B + (r2 − r)[(β + d)(β + d + r2 − r) + e(e + r2 − r)]
Q + B .

We see that if r < min{r2, r4} and (H1) hold, then p2 > 0, p1+q1 > 0, p0+q0 > 0 and p2(p1+q1)−(p0+q0) > 0.
Therefore, by the Routh-Hurwitz criterion, the positive equilibrium E* is locally asymptotically stable.

For τ > 0, if iω(ω > 0) is a solution of (2.13) if and only if ω satis�es

−ω3i − p2ω2 + p1ωi + p0 + (q1ωi + q0)
(
cos(τω) − i sin(τω)

)
= 0.

Separating the real and imaginary parts, we have

ω3 − p1ω = q1ω cos(τω) − q0 sin(τω),
p2ω2 − p0 = q1ω sin(τω) + q0 cos(τω),

(2.15)

which implies
ω6 + (p22 − 2p1)ω4 + (p21 − 2p0p2 − q21)ω2 + p20 − q20 = 0, (2.16)

where
p22 − 2p1 = (β + d + e + A + 2ax* − r)2 − 2Q − 2(β + d + e)(A + 2ax* − r)

= (β + d)2 + e2 + (A + 2ax* − r)2 > 0,
p21 − 2p0p2 − q21 = [Q + (β + d + e)(A + 2ax* − r)]2 − 2Q(A + 2ax* − r)

×(β + d + e + A + 2ax* − r) − B2

> (A + 2ax* − r)2[(β + d)2 + e2] > 0,
p20 − q20 = [QA + (Q − B)2ax* − (Q − B)r] × [QA + (Q + B)2ax* − (Q + B)r].

Obviously, if r < r1 and (H1) hold, then p20−q20 > 0, this implies that (2.16) has no positive real roots. Therefore,
by Theorem 3.4.1 in [30], if r < r1 and (H1) are satis�ed, then all the roots of (2.16) have negative real parts for
all τ ≥ 0. Hence the positive equilibrium E* = (x*, y*1, y*2) is locally asymptotically stable for all τ ≥ 0.

If r1 < r < min{r2, r4} holds, which implies p20 − q20 < 0, then there exists a unique positive root ω0
satisfying (2.16). From (2.15), we have

cos(τω0) =
q1ω4

0 + (p2q0 − p1q1)ω2
0 − p0q0

q21ω2
0 + q20

. (2.17)

Denote
τ0n =

1
ω0

arccos q1ω
4
0 + (p2q0 − p1q1)ω2

0 − p0q0
q21ω2

0 + q20
+ 2nπ
ω0

, n = 0, 1, 2, · · · . (2.18)
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By Theorem 3.4.1 in Kuang [30], we see that if p20 − q20 < 0 hold, then E* remains stable for τ < τ0 := τ00.
We now claim that {

d(Reλ)
dτ

}
τ=τ0

> 0.

This shows that there exists at least one eigenvalue with a positive real part for τ > τ0. Moreover, the
conditions for the existence of a Hopf bifurcation [31] are then satis�ed yielding a periodic solution. To this
end, di�erentiating Eq.(2.13) with respect to τ, it follows that(

dλ
dτ

)−1
= − 3λ2 + 2p2λ + p1

λ(λ3 + p2λ2 + p1λ + p0)
+ q1
λ(q1λ + q0)

− τλ .

Hence, a direct calculation shows that

sgn
{
d(Reλ)
dτ

}
λ=iω0

= sgn
{
Re
(
dλ
dτ

)−1}
λ=iω0

= sgn
{
−(p1 − 3ω

2
0)(ω2

0 − p1) + 2p2(p0 − p2ω2
0)

(ω3
0 − p1ω0)2 + (p0 − p2ω2

0)2
− q21
q21ω2

0 + q20

}
.

We derive from (2.15) that
(ω3

0 − p1ω0)2 + (p0 − p2ω2
0)2 = q21ω2

0 + q20.

Therefore, we yield

sgn
{
d(Reλ)
dτ

}
λ=iω0

= sgn
{
3ω4

0 + 2(p22 − 2p1)ω2
0 + p21 − 2p0p2 − q21

q21ω2
0 + q20

}
> 0.

Thus, the transversal condition holds and aHopf bifurcation occurs atω = ω0, τ = τ0. Now, let us summarize
our results as follows:

Theorem 2.4. (i) If (H1) and r < r1 hold, then the positive equilibrium E* of system (1.4) is locally asymptoti-
cally stable for all τ ≥ 0.

(ii) If (H1) and r1 < r < min{r2, r4} hold, then there exists a τ0 > 0 such that E* is locally asymptotically
stable when τ ∈ [0, τ0). Furthermore, system (1.4) undergoes a Hopf bifurcation at E* when τ = τ0.

Remark (i) Let τ = 0 and m = 0 in (1.4), then Theorem 2.3 of this paper is equivalent to Theorem 3 of [21].
Obviously, we generalize the conclusion of boundary equilibrium in [21], and show that prey refuge a�ect the
stability of the boundary equilibrium. Further, the global stability of the boundary equilibrium will be studied in
Section 4 .

(ii) Notice that the conditions of positive equilibrium E* is locally asymptotically stable in [21] is very
complicated. Let τ = 0 and m = 0 in model (1.4), compare Theorem 2.4 of this paper with Lemma 4 of [21],
we �nd that the conditions of our positive equilibrium locally stable are more extensive and concise than that of
[21].

3 Permanence

Lemma 3.1. Let (x(t), y1(t), y2(t)) be any positive solution of system (1.4) with initial conditions (1.5). Assume
that (H1) holds, then

lim sup
t→+∞

x(t) ≤ L1, lim sup
t→+∞

y1(t) ≤ L2, lim sup
t→+∞

y2(t) ≤ L3, (3.1)

where
L1 =

r
a , L2 =

βηµ(1 − m)L1 − e(β + d)[1 + b(1 − m)L1]
cβ(β + d) , L3 =

β
e L2.
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Proof. It follows from (H1) that L2 = βηµ(1−m)L1−e(β+d)[1+b(1−m)L1]
cβ(β+d) > 0. Hence, there exists an enough small

positive constant ε such that

L2ε
def= βηµ(1 − m)(L1 + ε) − e(β + d)[1 + b(1 − m)(L1 + ε)]

cβ(β + d) > 0,

L3ε
def= β

e L2ε > 0.

Let (x(t), y1(t), y2(t)) be any positive solution of system (1.4) with initial conditions (1.5). From the �rst
equation of system (1.4), it follows that

ẋ(t) = x(t)(r − ax(t)) − µ(1 − m)x(t)y2(t)
1 + b(1 − m)x(t) + cy2(t)

≤ x(t)(r − ax(t)).
(3.2)

Applying Lemma 2.3 in [32] to (3.2), it immediately follows that

lim sup
t→+∞

x(t) ≤ ra
def= L1. (3.3)

Then for above ε > 0 su�ciently small there exists a T1 > 0 such that if t > T1, x(t) ≤ L1 + ε. We derive from
the second and the third equations of system (1.4) that for t > T1 + τ,

ẏ1(t) ≤
ηµ(1 − m)(L1 + ε)y2(t − τ)

1 + b(1 − m)(L1 + ε) + cy2(t − τ)
− βy1(t) − dy1(t),

ẏ2(t) = βy1(t) − ey2(t).
(3.4)

Consider the following auxiliary equations:

u̇1(t) =
ηµ(1 − m)(L1 + ε)u2(t − τ)

1 + b(1 − m)(L1 + ε) + cu2(t − τ)
− βu1(t) − du1(t),

u̇2(t) = βu1(t) − eu2(t).
(3.5)

Using a similar argument as that in the proof of Lemma 2.4 in [33], it follows from (3.5) that

lim
t→+∞

u1(t) = L2ε , lim
t→+∞

u2(t) = L3ε . (3.6)

By comparison, we obtain that

lim sup
t→+∞

y1(t) ≤ L2ε , lim sup
t→+∞

y2(t) ≤ L3ε . (3.7)

Let ε → 0, it follows that
lim sup
t→+∞

y1(t) ≤ L2, lim sup
t→+∞

y2(t) ≤ L3. (3.8)

The proof is complete.

Lemma 3.2. Let (x(t), y1(t), y2(t)) be any positive solution of system (1.4) with initial conditions (1.5), if (H1)
and

r > µ(1 − m)L31 + cL3
, µη > e(β + d)[1 + b(1 − m)l1]β(1 − m)l1

(3.9)

hold, then
lim inf
t→+∞

x(t) ≥ l1, lim inf
t→+∞

y1(t) ≥ l2, lim inf
t→+∞

y2(t) ≥ l3, (3.10)

where
l1 =

r(1 + cL3) − µ(1 − m)L3
a(1 + cL3)

, l2 =
βηµ(1 − m)l1 − e(β + d)[1 + b(1 − m)l1]

cβ(β + d) ,

l3 =
β
e l2.
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Proof. It follows from (H1) and condition (3.9) that l1 = r(1+cL3)−µ(1−m)L3
a(1+cL3) > 0, l2 = βηµ(1−m)l1−e(β+d)[1+b(1−m)l1]

cβ(β+d) >
0. Hence, there exists an enough small positive constant ε such that

l1ε =
r(1 + c(L3 + ε)) − µ(1 − m)(L3 + ε)

a(1 + c(L3 + ε))
> 0,

l2ε =
βηµ(1 − m)(l1 − ε) − e(β + d)[1 + b(1 − m)(l1 − ε)]

cβ(β + d) > 0,

l3ε =
β
e l2ε > 0.

Let (x(t), y1(t), y2(t)) be any positive solution of system (1.4) with initial conditions (1.5). For above ε > 0
su�ciently small, it follows from Lemma 3.1 that there exists a T2 > 0 such that if t > T2, y1(t) ≤ L2 + ε,
y2(t) ≤ L3 + ε. Hence, we derive from the �rst equation of system (1.4) that for t > T2,

ẋ(t) ≥ x(t)
(
r − ax(t) − µ(1 − m)(L3 + ε)1 + c(L3 + ε)

)
.

According to condition (3.9) and similar to the proof of Lemma 3.1, we have

lim inf
t→+∞

x(t) ≥ r(1 + cL3) − µ(1 − m)L3a(1 + cL3)
def= l1 > 0. (3.11)

For above ε > 0 su�ciently small, there exists a T3 ≥ T2 such that if t > T3, x(t) ≥ l1 − ε. Therefore, it follows
from the second and the third equations of system (1.4) that for t > T3 + τ,

ẏ1(t) ≥
ηµ(1 − m)(l1 − ε)y2(t − τ)

1 + b(1 − m)(l1 − ε) + cy2(t − τ)
− βy1(t) − dy1(t),

ẏ2(t) = βy1(t) − ey2(t).
(3.12)

Consider the following auxiliary equations:

u̇1(t) =
ηµ(1 − m)(l1 − ε)u2(t − τ)

1 + b(1 − m)(l1 − ε) + cu2(t − τ)
− βu1(t) − du1(t),

u̇2(t) = βu1(t) − eu2(t).
(3.13)

Using a similar argument as that in the proof of Lemma 2.4 in [33], it follows from (3.13) that

lim
t→+∞

u1(t) ≥ l2ε , lim
t→+∞

u1(t) ≥ l3ε . (3.14)

By comparison, we obtain that

lim inf
t→+∞

y1(t) ≥ l2ε , lim inf
t→+∞

y2(t) ≥ l3ε . (3.15)

Let ε → 0, we conclude that
lim inf
t→+∞

y1(t) ≥ l2, lim inf
t→+∞

y2(t) ≥ l3. (3.16)

The proof is complete.

As a direct corollary of Lemmas 3.1 and 3.2 we have the following theorem.

Theorem 3.1. Assume that (H1) and (3.9) hold, then system (1.4) is permanent.

4 Global stability
In this section, we study the global stability of the predator-extinction equilibrium E1 and the global attrac-
tivity of the coexistence equilibrium E* of system (1.4). The strategy of proofs is to use Lyapunov functionals
and the LaSalle invariance principle.

Theorem 4.1. If (H2) holds, then the predator-extinction equilibrium E1(r/a, 0, 0) of system (1.4) is globally
asymptotically stable.
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Proof. Let (x(t), y1(t), y2(t)) be any positive solution of system (1.4) with initial conditions (1.5). Denote x0 =
r/a.

De�ne
V11(t) = x − x0 − x0ln

x
x0

+ ξ1y1 + ξ2y2, (4.1)

where ξ1 = 1+b(1−m)x0
η , ξ2 = µ(1−m)x0

e .
Calculating the derivative of V11 along positive solutions of system (1.4), it follows that

d
dt V11(t) =

(
1 − x0x

)[
x(t)(r − ax(t)) − µ(1 − m)x(t)y2(t)

1 + b(1 − m)x(t) + cy2(t)

]
+ξ1
[ ηµ(1 − m)x(t − τ)y2(t − τ)
1 + b(1 − m)x(t − τ) + cy2(t − τ)

− βy1(t) − dy1(t)
]

+ξ2[βy1(t) − ey2(t)].

(4.2)

Substituting r = ax0 into (4.2), we obtain that
d
dt V11(t) = −

r
x0

(x(t) − x0)2 − [1 + b(1 − m)x0]
µ(1 − m)x(t)y2(t)

1 + b(1 − m)x(t) + cy2(t)

+µ(1 − m)x0y2(t) −
µ(1 − m)cx0y22(t)

1 + b(1 − m)x(t) + cy2(t)
+ξ1

ηµ(1 − m)x(t − τ)y2(t − τ)
1 + b(1 − m)x(t − τ) + cy2(t − τ)

− ξ1βy1(t)

−ξ1dy1(t) + ξ2βy1(t) − ξ2ey2(t).

(4.3)

De�ne

V1(t) = V11(t) + ξ1ηµ(1 − m)
t∫

t−τ

x(s)y2(s)
1 + b(1 − m)x(s) + cy2(s)

ds. (4.4)

We derive from (4.3) and (4.4) that

d
dt V1(t) = −

r
x0

(x(t) − x0)2 −
µ(1 − m)cx0y22(t)

1 + b(1 − m)x(t) + cy2(t)
−
[
(β + d)[a + br(1 − m)]

ηa − βµr(1 − m)ae

]
y1(t). (4.5)

If (H2) holds, it then follows from (4.5) that V̇1(t) ≤ 0. By Theorem 5.3.1 in [34], solutions limit to M, the
largest invariant subset of {V̇1(t) = 0}. Obviously, we see from (4.5) that V̇1(t) = 0 if and only if x = x0, y2 = 0.
Noting that M is invariant, for each element in M, we have x(t) = x0, y2(t) = 0. It therefore follows from the
third equation of system (1.4) that 0 = ẏ2(t) = βy1(t), which yields y1(t) = 0. Therefore, V̇1(t) = 0 if and only
if (x, y1, y2) = (x0, 0, 0). Accordingly, the global asymptotic stability of E1 follows from LaSalle invariance
principle. This completes the proof.

Theorem 4.2. Assume that (H1) and (3.9) are satis�ed. If the following holds:

a(l1 + x*) − r ≥ ρ1, l1x
* + b(1 − m)l1x*

2 ≥ ρ2, (4.6)

where ρ1 =
2µ(1−m)cL3y*2(1+cy*2)+µc(1−m)x*y*2[b(1−m)L1+cL3]

2[1+b(1−m)l1+cl3][1+b(1−m)x*+cy*2]
, ρ2 =

x*y*2[b(1−m)L1+cL3]
2 , and Li, li (i = 1, 2, 3) are de�ned

as those in Theorem 3.1, then the positive equilibrium E*(x*, y*1, y*2) of system (1.4) is globally attractive.

Proof. Let (x(t), y1(t), y2(t)) be any positive solution of system (1.4) with initial conditions (1.5). De�ne

V21(t) = x − x* − x*ln
x
x* + k1

(
y1 − y*1 − y*1ln

y1
y*1

)
+ k2

(
y2 − y*2 − y*2ln

y2
y*2

)
, (4.7)

where k1 = 1+b(1−m)x*+cy*2
η , k2 = k1(β+d)

β .
Calculating the derivative of V11 along positive solutions of system (1.4), it follows that

d
dt V21(t) =

(
1 − x

*

x

)[
x(t)(r − ax(t)) − µ(1 − m)x(t)y2(t)

1 + b(1 − m)x(t) + cy2(t)

]
+k1

(
1 − y

*
1
y1

)[ ηµ(1 − m)x(t − τ)y2(t − τ)
1 + b(1 − m)x(t − τ) + cy2(t − τ)

− βy1(t) − dy1(t)
]

+k2
(
1 − y

*
2
y2

)
[βy1(t) − ey2(t)].

(4.8)
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Substituting r = ax* + µ(1−m)y*2
1+b(1−m)x*+cy*2

into (4.8), we derive that

d
dt V21(t) =

(
1 − x

*

x

)[
x(r − ax) − x*(r − ax*) + µ(1 − m)x*y*2

1 + b(1 − m)x* + cy*2

]
−µ(1 − m)

[
[1 + b(1 − m)x* + cy*2] −

x*[1 + b(1 − m)x + cy2]
x

+ c(x
*y2 − xy*2)
x

]
× x(t)y2(t)
1 + b(1 − m)x(t) + cy2(t)

+ k1
(
1 − y

*
1
y1

)
×
[ ηµ(1 − m)x(t − τ)y2(t − τ)
1 + b(1 − m)x(t − τ) + cy2(t − τ)

− dy1(t) − βy1(t)
]

+k2
(
1 − y

*
2
y2

)
[βy1(t) − ey2(t)]

=
(
1 − x

*

x

)[
x(r − ax) − x*(r − ax*) + µ(1 − m)x*y*2

1 + b(1 − m)x* + cy*2

]
−µ(1 − m)[1 + b(1 − m)x* + cy*2] ×

x(t)y2(t)
1 + b(1 − m)x(t) + cy2(t)

−µ(1 − m)cx(t)y2(t)(x
*y2 − xy*2)

x[1 + b(1 − m)x(t) + cy2(t)]
+ k1ηµ(1 − m)x(t − τ)y2(t − τ)
1 + b(1 − m)x(t − τ) + cy2(t − τ)

−k1ηµ(1 − m)
y*1x(t − τ)y2(t − τ)

y1[1 + b(1 − m)x(t − τ) + cy2(t − τ)]
+ k1(β + d)y*1

−k2βy*1
y*2
y*1
y1(t)
y2(t)

+ k2ey*2.

(4.9)

De�ne

V2(t) = V21(t) + k1ηµ(1 − m)
t∫

t−τ

[
x(s)y2(s)

1 + b(1 − m)x(s) + cy2(s)

− x*y*2
1 + b(1 − m)x* + cy*2

− x*y*2
1 + b(1 − m)x* + cy*2

×ln [1 + b(1 − m)x* + cy*2]x(s)y2(s)
x*y*2[1 + b(1 − m)x(s) + cy2(s)]

]
ds.

(4.10)

It follows from (4.9) and (4.10) that
d
dt V2(t) =

(
1 − x

*

x

)[
x(r − ax) − x*(r − ax*) + µ(1 − m)x*y*2

1 + b(1 − m)x* + cy*2

]
−µ(1 − m)cx(t)y2(t)(x

*y2 − xy*2)
x[1 + b(1 − m)x(t) + cy2(t)]

− k1ηµ(1 − m)
x*y*2

1 + b(1 − m)x* + cy*2

× y
*
1[1 + b(1 − m)x* + cy*2]x(t − τ)y2(t − τ)
x*y*2y1[1 + b(1 − m)x(t − τ) + cy2(t − τ)]

+ k1(β + d)y*1

−k2βy*1
y*2
y*1
y1(t)
y2(t)

+ k2ey*2 + k1ηµ(1 − m)
x*y*2

1 + b(1 − m)x* + cy*2
×ln [1 + b(1 − m)x(t) + cy2(t)]x(t − τ)y2(t − τ)

x(t)y2(t)[1 + b(1 − m)x(t − τ) + cy2(t − τ)]
.

(4.11)

Noting that

k2ey*2 = k2βy*1 = k1(β + d)y*1 = k1ηµ(1 − m)
x*y*2

1 + b(1 − m)x* + cy*2
= µ(1 − m)x*y*2,

and (
1 − x

*

x

) µ(1 − m)x*y*2
1 + b(1 − m)x* + cy*2

= µ(1 − m)x*y*2
(
1 − x

*[1 + b(1 − m)x(t) + cy2(t)]
x(t)[1 + b(1 − m)x* + cy*2]

)
+µ(1 − m)cx

*y*2(x*y2 − xy*2)
x(t)[1 + b(1 − m)x* + cy*2]

,
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we derive from (4.11) that

d
dt V2(t) =

(x − x*)2
x [r − a(x + x*)] −

µ(1 − m)cx(t)y2(t)
(
x*y2 − xy*2

)
x(t)[1 + b(1 − m)x(t) + cy2(t)]

+µ(1 − m)cx
*y*2(x*y2 − xy*2)

x(t)[1 + b(1 − m)x* + cy*2]
− µ(1 − m)x*y*2

×
[
x*[1 + b(1 − m)x + cy2]
x*[1 + b(1 − m)x* + cy*2]

− 1 − ln x*[1 + b(1 − m)x + cy2]
x*[1 + b(1 − m)x* + cy*2]

]
−µ(1 − m)x*y*2 ×

[
y*2y1(t)
y*1y2(t)

− 1 − ln y
*
2y1(t)
y*1y2(t)

]
−µ(1 − m)x*y*2 ×

[
y*1[1 + b(1 − m)x* + cy*2]x(t − τ)y2(t − τ)
x*y*2y1[1 + b(1 − m)x(t − τ) + cy2(t − τ)]

− 1

−ln y
*
1[1 + b(1 − m)x* + cy*2]x(t − τ)y2(t − τ)
x*y*2y1[1 + b(1 − m)x(t − τ) + cy2(t − τ)]

]

≤ −(x − x
*)2

x [a(x + x*) − r − ρ1]

− µ(1 − m)c(y − y*2)2[xx* + b(1 − m)xx*
2 − ρ2]

x(t)[1 + b(1 − m)x(t) + cy2(t)][1 + b(1 − m)x* + cy*2]
− µ(1 − m)x*y*2

×
[
x*[1 + b(1 − m)x + cy2]
x*[1 + b(1 − m)x* + cy*2]

− 1 − ln x*[1 + b(1 − m)x + cy2]
x*[1 + b(1 − m)x* + cy*2]

]
−µ(1 − m)x*y*2 ×

[
y*2y1(t)
y*1y2(t)

− 1 − ln y
*
2y1(t)
y*1y2(t)

]
−µ(1 − m)x*y*2 ×

[
y*1[1 + b(1 − m)x* + cy*2]x(t − τ)y2(t − τ)
x*y*2y1[1 + b(1 − m)x(t − τ) + cy2(t − τ)]

− 1

−ln y
*
1[1 + b(1 − m)x* + cy*2]x(t − τ)y2(t − τ)
x*y*2y1[1 + b(1 − m)x(t − τ) + cy2(t − τ)]

]
,

(4.12)

where ρ1 = 2µ(1−m)cy2y*2(1+cy*2)+µc(1−m)x*y*2[b(1−m)x+cy2]
2[1+b(1−m)x(t)+cy2(t)][1+b(1−m)x*+cy*2]

, ρ2 = x*y*2[b(1−m)x+cy2]
2 .

Hence, if (4.6) holds, it then follows from (4.12) that V̇1(t) ≤ 0, with equality if and only if x = x*,
y*1[1+b(1−m)x*+cy*2]x(t−τ)y2(t−τ)
x*y*2y1[1+b(1−m)x(t−τ)+cy2(t−τ)]

= y*2y1(t)
y*1y2(t)

= 1. We now look for the invariant subset M within the set M =

{(x, y1, y2) : x = x*, y*1[1+b(1−m)x*+cy*2]x(t−τ)y2(t−τ)
x*y*2y1[1+b(1−m)x(t−τ)+cy2(t−τ)]

= y*2y1(t)
y*1y2(t)

= 1}. Since x = x* on M and due to 0 =

ẋ(t) = x*(r − ax*) − µ(1−m)x*y2(t)
1+b(1−m)x*+cy2(t) , we obtain y2(t) = y*2. From the third equation of model (1.4) that

0 = ẏ2(t) = βy1(t) − ey*2, which yields y1 = y*1. Therefore, the only invariant set in M is M = {(x*, y*1, y*2)}.
Using the LaSalle invariance principle, then E* of system (1.4) is globally attractive.

5 The influence of prey refuge
In this section, we investigate the in�uence of prey refuge. Under the condition (H1), let us compute the
derivative along the positive equilibrium E* with respect to m, that is

dx*
dm =

[µη − be(1 + d
β )]x

*

aηc
√
∆

> 0,

dy*2
dm =

[µη − be(1 + d
β )]x

*
[
(1 − m)[µη − be(1 + d

β )] − aηc
√
∆
]

aηc2e(1 + d
β )
√
∆

,

dy*1
dm =

[µη − be(1 + d
β )]x

*
[
(1 − m)[µη − be(1 + d

β )] − aηc
√
∆
]

βaηc2(1 + d
β )
√
∆

.
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Denote

R1 =
ηcr2 + 4ae(1 + d

β )

2r[µη − be(1 + d
β )]

>
ae(1 + d

β )

r[µη − be(1 + d
β )]

= R2.

Due to the existence of E*, which implies that x* is a strictly increasing function of m, that is, increasing the
constant amount of prey refuge m leads to the increase of prey densities. When 0 < m < 1 − R1, dy

*
i

dm > 0
(i = 1, 2), it then yields that both y*1 and y*2 are strictly increasing functions on m ∈ (0, 1 − R1); when
1 −R1 < m < 1 −R2, dy

*
i

dm < 0 (i = 1, 2), which implies that both y*1 and y*2 are strictly decreasing functions on
m ∈ (1 −R1, 1 −R2); when m = 1 −R1, the predator species reaches its maximum, and when m = 1 −R2,
the predator species goes to extinction.
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Figure 1: m = τ = 0, E* = (0.5168, 1.5330, 3.0660) of system (1.4) is locally asymptotically stable.
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Figure 2: m = τ = 0, E* = (0.5168, 1.5330, 3.0660) of system (1.4) with di�erent initial values is locally
asymptotically stable.

6 Numerical simulations

Example 6.1. In (1.4), let m = τ = 0, then system (1.4) is degenerated into model (2.1) of [21]. Let r = 6,
a = 3, µ = 20, b = d = e = 1, η = β = 2 and c = 4, then system (1.4) has a positive equilibrium E* =
(0.5168, 1.5330, 3.0660). By calculation, µη = 40 > 1.5 = be(1 + d

β ), 0 < 0.9805 = 1 − ae(1+ d
β )

r[µη−be(1+ d
β )]

,

r < 7.3835 = r2 and r < 17.7279 = r4. Thus E* is locally asymptotically stable.
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Figure 3: µ = 1, τ = 10, E1 = (2, 0, 0) of system (1.4) is globally asymptotically stable.
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Figure 4: µ = 1, τ = 10, E1 = (2, 0, 0) of system (1.4) with di�erent initial values is globally
asymptotically stable.

Note that ηβ(1 + bx*) = 6.0671 > 0.4778 = b2x*y*2(β+d+e)
1+cy*2

. Therefore, condition (S3) : ηβ(1 + bx*) <

min
{
e(β+d)(1+bx*+cy*2)

2

µx* , b2x*y*2(β+d+e)
1+cy*2

}
in [21] which ensures the local stability of the positive equilibrium E* is

not satis�ed. This implies that our conditions are weaker that those in [21] (see Figs. 1 and2).

Example 6.2. In (1.4), let r = 6, a = 3, m = 0.2, b = d = e = 1, η = β = 2 and c = 4, then be(1 + d
β ) = 1.5.

(i) If µ = 1, τ = 10, it is easy to show that µη = 2 > be(1 + d
β ), 1 − m = 0.8 < 1.5 = ae(1+ d

β )
r[µη−be(1+ d

β )]
and the predator-extinction equilibrium E1 = (2, 0, 0). By Theorem 4.1, E1 is globally asymptotically stable
(see Figs. 3 and 4).

(ii) If µ = 20, τ = 10, it is easy to show that µη = 40 > be(1 + d
β ), m < 0.9805 = 1 − ae(1+ d

β )
r[µη−be(1+ d

β )]
,

r < 7.9443 = r1 and the positive equilibrium E* = (0.7953, 1.9162, 3.8323). By Theorem 2.4, E* is locally
asymptotically stable (see Figs. 5 and 6).

(iii) If µ = 36, it is easy to show that µη = 72 > be(1 + d
β ),m < 0.9894 = 1 − ae(1+ d

β )
r[µη−be(1+ d

β )]
, r > 5.2798 = r1,

r < 6.2736 = r2, r < 8.8358 = r4, and the positive equilibrium E* = (0.1302, 0.4868, 0.9735). Further,
by calculation, we have τ0 = 0.9429. By Theorem 2.4, when τ < τ0, E* is locally asymptotically stable
(see Fig. 7); when τ > τ0, the positive equilibrium E* of model (1.4) is unstable, which yields a periodic
solution (see Fig. 8).

(iv) If µ = 2, τ = 2, it is easy to show that µη = 4 > be(1 + d
β ), m < 0.7 = 1 − ae(1+ d

β )
r[µη−be(1+ d

β )]
, a(l1 +

x*) − r = 5.5962 > 0.6417 = ρ1, l1x* + b(1 − m)l1x*
2 = 9.5580 > 1.2781 = ρ2, r > 0.25 = µ(1−m)L3

1+cL3 ,
µη > 2.4783 = e(β+d)[1+b(1−m)l1]

β(1−m)l1 and the positive equilibrium E* = (1.9487, 0.1998, 0.3996). By Theorem 4.2,
E* is globally attractive (see Fig. 9).
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Figure 5: µ = 20, τ = 10, E* = (0.7953, 1.9162, 3.8323) of system (1.4) is locally asymptotically stable.
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Figure 6: µ = 20, τ = 10, E* = (0.7953, 1.9162, 3.8323) of system (1.4) with di�erent initial values is
locally asymptotically stable.
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Figure 7: τ = 0.9 < 0.9429 = τ0, µ = 36, E* = (0.1302, 0.4868, 0.9735) of system (1.4) is locally
asymptotically stable, system (1.4) undergoes a Hopf bifurcation at E* when τ0.

Example 6.3. In (1.4), let r = 10, µ = 6, c = e = 0.5, a = b = d = 1, η = β = 2 and τ = 0. By simple
computations, we �nd µη = 10 > 0.75 = be(1 + d

β ), 1 − R1 = 0.4432, 1 − R2 = 0.9919. Note that, if

m ∈ [0, 0.9919), by calculation, we can obtain m < 1 − ae(1+ d
β )

r[µη−be(1+ d
β )]

, r < min{r2, r4}, then E* is locally
asymptotically stable when τ = 0. Our simulations show that the constant prey refuge m plays an important
role on the coexistence of prey-predator population (see Figs. 10 and11). When m is small and increasing,
the predator density increases, due to the fact that predators have su�cient preys available for predation,
even though the refuge increases (see Fig. 12). But, as m crosses its threshold value, the predator density
decreases with increasing m, the predators was unable to catch preys to sustain themselves and ultimately
goes to extinction due to starvation (see Fig. 13).
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Figure 8: τ = 0.96 > 0.9429 = τ0, µ = 36, E* = (0.1302, 0.4868, 0.9735) of system (1.4) is locally
asymptotically stable, system (1.4) undergoes a Hopf bifurcation at E* when τ0.
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Figure 9: µ = 2, τ = 2, E* = (1.9487, 0.1998, 0.3996) of system (1.4) with di�erent initial values is
globally attractive.
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Figure 10: Bifurcation diagram of the prey species of model (1.4), m as the bifurcation parameter.

7 Conclusion
In this paper we investigate the in�uence of prey refuge on the dynamics of a Beddington-DeAngelis

predator-prey system with stage structure for predator and time delay. Su�cient conditions are derived to
ensure the predator-extinction and the locally asymptotically stability of positive equilibrium. Compared
with [21] we get more precise conditions. Also, we �nd that time delay can cause a stable equilibrium
to become unstable one, even Hopf bifurcation to occur, when time delay passes through some critical
values. Furthermore, the persistence is investigated. After that, we study the global stability of the predator-
extinction and positive equilibrium by constructing some suitable Lyapunov functionals.
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Figure 11: Bifurcation diagram of the predator species of model (1.4), m as the bifurcation parameter.

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

time t

so
lut

ion
  y

2

m=0.05

m=0.1

m=0.2

m=0.3
m=0.4

Figure 12: τ = 0, E* is locally asymptotically stable. Change the values of the refuge m from zero to
1 −R1 = 0.4432, the predator species will increase.
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Figure 13: τ = 0, E* is locally asymptotically stable. Change the values of the refuge m from 1 − R1 =
0.4432 to 0.9919 = 1 −R2, the predator species will decrease.

Also, we discuss the in�uence of prey refuge on the densities of predator species and prey species. When
prey refuge m in the interval (0, 1 − R1), the density of predators will increase with prey refuge m, due to
predator species having su�cient food for their predation with su�ciently small prey refuge m. Predator
population attains its maximumwhen the prey refuge m = 1 −R1. In case of larger values of m (m > 1 −R1),
this implies that predators species are less likely to catch prey, and the predator species deceases with the
increasing of prey refugem. Eventually, the predator population will be extinct when prey refugem = 1−R2.
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