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Abstract: In this paper, we consider a Beddington-DeAngelis predator-prey system with stage structure for
predator and time delay incorporating prey refuge. By analyzing the characteristic equations, we study
the local stability of the equilibrium of the system. Using the delay as a bifurcation parameter, the model
undergoes a Hopf bifurcation at the coexistence equilibrium when the delay crosses some critical values.
After that, by constructing a suitable Lyapunov functional, sufficient conditions are derived for the global
stability of the system. Finally, the influence of prey refuge on densities of prey species and predator species
is discussed.
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1 Introduction

Predator-prey model is one of the basic models between different species in real world. As we all know,
there are always many species going through two stages, immature and mature, which reflect the different
characteristics of species at each stage. Therefore, to exhibit the real world phenomenon, stage structure
population models are more reasonable than other models. In recent years, numerous papers have considered
the predator-prey system with stage structure (see [1-5]).

On the other hand, in general, the consumption of prey by predator throughout its past history governs
the present birth rate of the predator, in other words, time delay due to gestation is a common example.
Obviously, delay differential equations exhibit much more complicated dynamics than ordinary differential
equations (see [6-14]). For example, Wang and Chen [15] considered the following predator prey system with
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stage structure for the predator population:

x(t) = x()(r - ax(t - 11) - py2(t)),
y1(t) = nux(t - 72)y2(t - 72) - By1 () — dy1(0), (11)
Va(8) = By1(t) — ey, (8).

The authors studied the asymptotic behavior of system (1.1). When a time delay due to gestation of the
predators and a time delay from a crowding effect of the prey are incorporated, we establish conditions
for the permanence of the populations and sufficient conditions for the existence of globally stable positive
equilibrium of system (1.1).

Beddington [16] and DeAngelis et al. [17] established a famous B-D functional response that is a predator
dependent functional response. In many cases, predators need to search for food and share or compete for
food. Therefore, the stage-structured predator-prey models incorporating Beddington-DeAngelis functional
response better reflect the ecology. Chen et al. [18] discussed the stability of the boundary solution of a
nonautonomous predator-prey model with the Beddington-DeAngelis functional response, which reflects
the dynamics of interacting predators and prey in a fluctuating environment. Xia et al. [19] considered sta-
bility and traveling waves in a Beddington-DeAngelis type stage-structured predator-prey reaction-diffusion
systems with nonlocal delays and harvesting. Chen et al. [20] discussed the extinction of a two species non-
autonomous competitive system with Beddington-DeAngelis functional response and the effect of toxic sub-
stances. Khajanchi [21] investigated the dynamic behavior of a Beddington-DeAngelis type stage structured
predator-prey model:

€ = xO(r— "x(@) - POy
x(6) = x(®)(r kx(t)) 1+ bx(t) + cy,(t)’

ooy nux@y2(8) B (1.2)
yl(t) = 1+ bX(t) n C)/z(t) ﬁyl(t) dyl(t)’

y2(6) = By1(t) - ey ().
By analyzing the above system, conditions for positivity, boundedness, uniform persistence, existence of
positive equilibria with their local stability have been established. Also, the author showed the existence
of Hopf bifurcation when the conversion parameter k; passes the critical value. Finally, the conditions for
the occurrence of global stability for the unique interior equilibrium point were derived.

In the real world, refuge is a strategy to reduce the risk of predation. It is clear that the existence of refuge
can have a significant impact on the coexistence of predator species and prey species. In recent years, many
papers [22-27] have proposed and analyzed predator-prey models incorporating prey refuges. Recently, Wei
and Fu [28] discussed the Hopf bifurcation and stability for predator-prey systems with Beddington-DeAngelis
type functional response and stage structure for prey incorporating refuge

x1(t) = axa () — rxq (8) - bx1(8),
B - m)x,(£)y(t)

. _ _ _ 2 _

X2(t) = bxa(t) - ex2(6) - ax3(t) 4 by (=m0 + iy @’ (13)
dpd -mxp(t-1ly(t-7)

ay +b1(1-mx,(t - 1)+ c1y(t - 1) W

y) =

By using the characteristic equations, the local stability of each feasible equilibrium of model (1.3) was

discussed, and the existence of a Hopf bifurcation at the coexistence equilibrium was established.
Motivated by the works [21] and [28], a Beddington-DeAngelis predator-prey model with stage structure

for predator and time delay incorporating prey refuge is investigated in this paper. The proposed model is as

follows: 1 1X(Oy(0

W(f) = _ __ pd-mixtt)ys

x(t) = x(O(r ( aX(t))) ( I +)b(1( - m))x( D+ cyy @’
. _ nu(l -m)x(t-1)y,(t -1 _ 3

710 = 1+b(1-m)x(t-1)+cy(t-1) Pya (0 - dy (0,
y2(8) = By1(8) - eya (),

where x(t), y1(t) and y,(t) denote the densities of prey species, immature predator species and mature
predator species at time t, respectively; r is the intrinsic growth rate of prey species; a is the intraspecific

(1.4)
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competition rate of prey species; d and e are the death rates of the immature and mature predator species
respectively; u(1 — m) is the capturing rate of the mature predator; 7 is the conversion rate of nutrients into
the production of predator species; 7 denotes the time delay due to the gestation of the mature predator;
m € [0, 1) is refuge rate to prey; the predator species consumes the prey species with Beddington-DeAngelis
functional response incorporating prey refuge 1+’;8:’;§’;E3{ Zc(ytz( 5> and 1:1&(11;"'")))("(({{’:))3’5;;&) denotes the growth
rate of predator which are pregnant at time ¢ - 7.

The initial conditions for system (1.4) take the form

x(0) = ¢(0), y1(0) =1(6), y2(0) = ,(6),
$@) =0, P1(6)=0, P2(0)20, Oel-1,0), (1.5)
¢(0) > 09 ll)l(o) > 0’ lpZ(O) > 09

where (¢(6), ¥1(6), ¥»(0)) € C([-1, 0], RR2), which is the Banach space of continuous functions mapping the
interval [T, 0] into R2, where R = {(x1,x2,x3) : x;20,i=1,2,3}.

The rest of this paper is organized as follows. The boundedness and local stability of the equilibrium
and the existence of Hopf bifurcation at positive equilibrium of system (1.4) are derived in the next section.
In Section 3, we study the permanence of system (1.4). In Section 4, the global stability of system (1.4) are
investigated. In Section 5, the influence of refuge rate on the densities to predator species and prey species is
discussed. We end this paper with some examples and a briefly discussion.

2 Boundedness, Local stability and Hopf bifurcation

In this section, we study the boundedness and local stability of the equilibrium as well as the existence of
Hopf bifurcation at positive equilibrium of system (1.4). It is obvious that solutions of model (1.4) with initial
conditions (1.5) are positive for all t > 0. The result is a direct consequence of Nagumo’s theorem [29].

2.1 Boundedness

Theorem 2.1. Every solution of system (1.4) with initial conditions (1.5) is bounded for all t > 0 and all of these
solutions are ultimately bounded.

Proof. Let V(t) = nx(t — 7) + y1(t) + y2(t), and calculating the derivative of V(t) with respect to t along the
positive solution of system (1.4), we have

V() = nx(6) + y1(8) + y2(8)
(1 - m)x(t - 1)ya(t-1)

=N {X(t B r)(r - ax(t- T)) T1+b(-mx(t-1) + cy (t-1)
nu(1 - m)x(t - 1)y, (t - 1) 1)
T+ b(L-mx(t-1) +oyy(t - PO~
+By1(t) - eya(t)
= nx(t - D)lr — ax(t - 7)] - dy1(t) - ey, (b).

For a small positive constant s < min{d, e},

V() +sV(t) = (s - A)y1(t) + (s - e)y2(t) + nx(t = T)[s + r — ax(t — T)]

2.2
< nx(t - 1)s + r— ax(t - 1)]. @2

Hence there exists a positive constant M = '7(2%)2 such that
V() +sV(t) < M, (23)

that is
CHUCE %)e-sf ; % @.4)
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Thus V(t) is ultimately bounded, that is, each solution z(t) = (x(t), y1(t), y2(t)) of system (1.4) is ultimately
bounded. The proof is complete.

2.2 Equilibria

Obviously, system (1.4) always has a trivial equilibrium E(0, 0, 0) and a predator-extinction equilibrium
Ei(r/a, 0, 0). Further, if the following holds:

ae(1+49)
yq>be(1+g>,0sm<1——ﬁ it (H1)
B rlun - be(1+ 3)l
then model (1.4) has a unique coexistence equilibrium E*(x", y], y;), where
. K+vh . e. . (Q-mlun-be(l+ D -el+4)
N SAT I 4 £ 25)

2 B’ ce(1+ %)

with

1- - be(1+4
1<=1<( mlpn ~ el +5)]—r), A=K+ e (1+§).
a nc acn B

Let E = (X, V1, ¥») be any arbitrary equilibrium, then the variational matrix of system (1.4) at E is given
by

e MO-MpA ) o (- mR(Ls b0 - m)R]
[1+b(1-m)x+cy;)? [1+b(1-m)x+cy,)?
J= nu(1 - m)y,(1 + cy,)e ™™™ (B +d) nu(1 = m)X[1 + b(1 - m)x]e™ ™

[1+b(1-m)x+cy;,)? [1+b(1-m)x+cy;)?
0 B -e

and the characteristic equation becomes

[1+b(1-m)x+cy;]? [1+b(1-m)x+cy;]?
Bl - m)F[1 + b - m)T] e ( et 2ai s MM+ ) ) 06

(/\+ﬁ+d)()l+e)<)l—r+2a)~(+ Il(l—m)92(1+cyz) ) + H(l—m);’z(lJrCyz)

[1+b(1-mx+cy.l2 [1+ b1 - m)x + ¢y, 2

B = m)x{1 + b - mX] ae

[1+b(1-mx+cy,]? =0

2.3 E, = (0,0,0)

First, we analyze the stability of equilibrium Ej.
Theorem 2.2. The trivial equilibrium Eo(0, 0, 0) of system (1.4) is unstable.

Proof. The characteristic equation (2.6) takes the form at the trivial equilibrium E,(0, 0, 0)
A-NA+B+d)A+e)=0. 2.7)

It is readily seen that Eq.(2.7) has a positive root, thus the equilibrium E, is always unstable. The proof is
complete.

2.4 E;, = (r/a,0,0)

After that, we consider the stability of equilibrium E;.
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Theorem 2.3. If the following holds:
ae(1 + %)

- —r[}Ul “he( 1 %)] <m<1, (H2)

d
yrl>be(1+p) , 1
then the predator-extinction equilibrium E1(r/a, 0, 0) of system (1.4) is locally asymptotically stable; if (H1)
holds, then E is unstable.

Proof. The characteristic equation (2.6) at predator-extinction equilibrium E; becomes

A n[A+prdd+e)- %eﬂ _o. 2.8)

Clearly, the equation A + r = 0 has one negative real root, which implies that all other roots of Eq.(2.8) are

determined by
A +hAd+hy +hse™ =0, 2.9

Wherehl:e+ﬁ+d>09h2=e(ﬁ+d),h3:—M

a+br(1-m)’
When 7 = 0, Eq.(2.9) turns to
A2 +hiA+hy +hy =0. (2.10)

According to (H2), we have h, + h3 > 0. By the Routh-Hurwitz criterion, the boundary equilibrium E; is
locally asymptotically stable. If (H1) holds, then Eq.(2.10) has at least a positive real root, thus the predator-
extinction equilibrium E; is unstable.

For 7 > 0, we investigate the existence of purely imaginary roots of (2.9). If iw (w1 > 0) is a solution of
(2.9) if and only if w; satisfies

—wi + hyw1i + hy + hs (cos(tw,) - isin(tw1)) = 0.
Separating the real and imaginary parts, we obtain

h1w1 = h3 sin(rwl),

2.11
w? - hy = h3 cos(Twy), @1)

which implies
w? + (h} - 2hy))w? + h3 - h3 = 0. (212)
Note that
h? -2h, =(e+,8+d)2—2e(,8+d)=ez+(ﬁ+d)2 >0,

i Bnur(1-m)
ha=hy = e(@ra)+ T 0,

and h, +hs > 0, then h3 - h% > 0. Hence (2.9) has no positive real roots. By Theorem 3.4.1in [30], if (H2) holds,
then all the roots of (2.9) have negative real parts for all T > 0, this implies that the boundary equilibrium E,
is locally asymptotically stable for all T = 0. The proof is complete.

25 E = (X,y;, ¥,)

Further, we analyze the stability of equilibrium E".
For the positive equilibrium E*(x", y7, y>), the characteristic equation (2.6) reduces to

2+ prA% + pid+po + (1A + go)e ™ =0, (2.13)
where .
p2=B+d+e+A+2ax -r,
P1 =Q+(ﬁ+d+e)(A+2ax*—r),
Po=Q(A+ 2ax" - 1),

ql = _B’
do = -B(2ax" - 1),
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with . .
u(1 -m)y,(1 +cy;)
[1+b(1-mx*+cys]?’
 Bnu(1 - m)xX'[1+ b(1 - m)x’] _ Qle(+ §)+be(1+ §)(1-m)x]
[+ b(1-mx+ cy51? - un(1 - m)x* ’

When 1 = 0, Eq.(2.13) turns to

Q=eB+d), A=

A%+ paA% + (p1+ @A+ po + qo = 0. (214)
Qle(1 + %) +be(1 + %)(1 -m)x’]

From (H1), we derive that B = -
un(1 - m)x

< Q, thus

pr=PB+d+e+(A+2ax -r),

p1+q1=Q-B+(B+d+e)A+2ax -1,

Po+qo=QA+(Q-B)2ax" -(Q-B)r,

P2(p1+q1)-o+qo)=B+d+e+A+2ax —-1)(Q-B)+(A+2ax" -71)
x[(B+d)(B+d+A+2ax -1)+e(e+A+2ax" -71)]
+QA +(Q+B)2ax" - (Q + B)r.

Denote 04 04
r1=m+2ax, r, =A+2ax, r3=Q_B+2ax,
B, +(B+d+e+r2—r)(Q—B)+(rz—r)[(,8+d)(,8+d+r2—r)+e(e+r2—r)]
4= Q+B Q+B :

We see that if r < min{r,, r,} and (H1) hold, then p, > 0, p;+q1 > 0, po+qo > 0and p2(p1+91)-(Po+q0) > O.
Therefore, by the Routh-Hurwitz criterion, the positive equilibrium E” is locally asymptotically stable.
For 7 > 0, if iw(w > 0) is a solution of (2.13) if and only if w satisfies

—w’i-prw? + prwi+po + (qrwi + qo)(cos(tw) - isin(tw)) = 0.

Separating the real and imaginary parts, we have

w? - prw = 1w cos(Tw) - go sin(tw),

2 . (2.15)
Prw* - po = q1w sin(tw) + qo cos(Tw),

which implies
w® + (p3 - 2p1)w* + (p7 - 2pop2 - g1 w? + p§ - q5 = 0, (2.16)

where

p3-2p; =([3+d+e+A+2ax*—r)2—2Q—2(B+d+e)(A+2ax*—r)

=([3+d)2+e2+(A+2ax*—r)2 >0,
P -2pop2—q3 =1Q+ B+d+e)A+ 2ax" - 1]* - 20(4 + 2ax" - 1)
><(ﬁ+d+e+A+2ax*—r)—B2
>(A+2ax" -r)?’[(B+d)>? +e*] >0,
P5 - 45 = [QA +(Q-B)2ax" - (Q- B)r] x[QA + (Q + B)2ax" - (Q + B)r.

Obviously, if r < r; and (H1) hold, then p3—g3 > 0, this implies that (2.16) has no positive real roots. Therefore,
by Theorem 3.4.11in [30], if r < r; and (H1) are satisfied, then all the roots of (2.16) have negative real parts for
all T > 0. Hence the positive equilibrium E" = (x", y3, y5) is locally asymptotically stable for all T = 0.

If r; < r < min{r,, r4} holds, which implies p3 - g3 < 0, then there exists a unique positive root wg
satisfying (2.16). From (2.15), we have

q1ws + (290 - P191)W§ - Pogo 1)

cos(twg) =
qiwg +d5

Denote

q1wg + (P290 - P191)W§ - Podo L 2nm

, n=0,1,2,---. (2.18)
91wy + 4 Wo

1
Ton = — arccos
on wo
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By Theorem 3.4.1 in Kuang [30], we see that if pj — g3 < 0 hold, then E" remains stable for 7 < ¢ := Tqo.

We now claim that
{ d(Rel) } 50
dT T=To

This shows that there exists at least one eigenvalue with a positive real part for T > 1y. Moreover, the
conditions for the existence of a Hopf bifurcation [31] are then satisfied yielding a periodic solution. To this
end, differentiating Eq.(2.13) with respect to , it follows that

<d/1)1 B 3A% +2pyA + py . q1 T

dt) AW +pA2+pid+py) AMgad+gqo) A

Hence, a direct calculation shows that

-1
o) ()
A=iw0 AZI'CU()

_ sen {_(m - 3wg)(wf - p1) + 2p2(po - P2wj) qi } )
(W3 - P1wo)? + (po — P2 w})? qiw} +q}

We derive from (2.15) that
(w% —P1wo)2 +(po —Pzw(z))2 = Q%w(z) + q(z).

Therefore, we yield

4 2 _ 2,2 2
sgn { d(ReA)} _ sgn { 3wg +2(p3 2p21)a210 *P1 = 2Pop2 = 4 } 5 0.
av i, q1Wo *+ 45

Thus, the transversal condition holds and a Hopf bifurcation occurs at w = wg, T = T¢. Now, let us summarize
our results as follows:

Theorem 2.4. (i) If (H1) and r < ry hold, then the positive equilibrium E" of system (1.4) is locally asymptoti-
cally stable for all T = 0.

(i) If (H1) and ry < r < min{r,, r4} hold, then there exists a To > O such that E" is locally asymptotically
stable when T € [0, T¢). Furthermore, system (1.4) undergoes a Hopf bifurcation at E* when T = 7.

Remark (i) Let T = 0 and m = 0 in (1.4), then Theorem 2.3 of this paper is equivalent to Theorem 3 of [21].
Obviously, we generalize the conclusion of boundary equilibrium in [21], and show that prey refuge affect the
stability of the boundary equilibrium. Further, the global stability of the boundary equilibrium will be studied in
Section 4 .

(ii) Notice that the conditions of positive equilibrium E" is locally asymptotically stable in [21] is very
complicated. Let T = 0 and m = 0 in model (1.4), compare Theorem 2.4 of this paper with Lemma 4 of [21],
we find that the conditions of our positive equilibrium locally stable are more extensive and concise than that of
[21].

3 Permanence

Lemma 3.1. Let (x(t), y1(t), y»(t)) be any positive solution of system (1.4) with initial conditions (1.5). Assume
that (H1) holds, then

limsup x(t) < Ly, limsup y.(t) < L,, limsup y,(¢) < Ls, (3.1)
t—+oo t—>+oo t—r+oo
where
[T _PmmQ-mLi-e+d1+b(1-mL] B,
1 a, 2 Cﬂ(ﬁ n d) ’ 3 e 2
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Proof. It follows from (H;) that L, = ﬁ””(l’m)Ll’C‘;fﬁ}++’2)[l+b (-mlLil 5 (. Hence, there exists an enough small
positive constant € such that

L def Bnu(1 —m)(Ly + &) - e(B+d)[1+b(1-m)(Ly +¢)] 50
2¢e C,B(B“’ d) )

d
Ly @ ELye > 0.

Let (x(t), y1(t), y2(t)) be any positive solution of system (1.4) with initial conditions (1.5). From the first
equation of system (1.4), it follows that

Co) _ (@ -mx()y2(0)
X = x(O)(r - ax(t)) 1+ b(1 - m)x(t) + cya(t) (3.2)

< x(O)(r - ax(t)).
Applying Lemma 2.3 in [32] to (3.2), it immediately follows that

limsup x(t) < def Lq. (3.3)

t—+oo

Q=

Then for above ¢ > 0 sufficiently small there exists a Ty > 0 such thatif t > T{, x(t) < L, + €. We derive from
the second and the third equations of system (1.4) that for t > Ty + T,

nu(l -m)(Lq + €)y,(t - 1)

1 < 1+b(A-m)(Ly+&)+cy,(t-1) Bya(0) - dya(0), (3.4)
y2(t) = By1(t) - ey ().
Consider the following auxiliary equations:
oy~ MU -m) Ly +up(t-T) _
(0 1+b(1-m)(Ly +&)+cuy(t-1) Aua(0) = dia (), (3.5
Uy (t) = Buy(t) - eus(6).
Using a similar argument as that in the proof of Lemma 2.4 in [33], it follows from (3.5) that
lim wui(f) =Ly, lim up(f) = L3e. (3.6)
t—+oo t—+oo
By comparison, we obtain that
limsup y;1(t) < Ly, limsup y,(t) < L3e. (3.7)
t—+oo t—+oo
Let € — 0, it follows that
limsup yq(t) < L,, limsup y,(t) < Ls. (3.8)
t—+oo t—+oo

The proof is complete.

Lemma 3.2. Let (x(t), y1(t), y»(t)) be any positive solution of system (1.4) with initial conditions (1.5), if (H,)
and

u(1-m)Ls e(f+d)1+b(1-m)]
T2y cly ’ un > B - m)ly (3.9)
hold, then
liminf x(t) > I;, liminf y,(t) 2 I, liminf y,(¢) > I3, (3.10)
t—>+oo t—>+oo t—+oo
where

o M+cly) -pd-miLs _ pru(1-m)l —e(f+d)1 +b(1 - m),]
! a(l +cLs) v cB(B+d) ’

13 = Elz.
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Proof. It follows from (H1) and condition (3.9) that l; = % >0, 1, = ﬂ”"(l”")“’Cj}(é:d;)[“b(l’m)ll] >

0. Hence, there exists an enough small positive constant € such that

o r(1+c(Ls+¢€)-u(l-m)Ls +¢) 50
1e a(l+c(Ls +¢)) ’

L. _ Bl -m)ls — &) - e(B+ D1+ b(1-m)(la - )] |
2¢e CB(B + d) ’

I3¢ = [2128 > 0.

Let (x(f), y1(t), y>(t)) be any positive solution of system (1.4) with initial conditions (1.5). For above € > 0
sufficiently small, it follows from Lemma 3.1 that there exists a T, > 0 such that if t > T, y;(t) < L, + ¢,
y»(t) < L3 + €. Hence, we derive from the first equation of system (1.4) that for t > T,

s _ (1 -m)(Ls +¢)
(0 > x(t)(r ax(t) - TP E s )

According to condition (3.9) and similar to the proof of Lemma 3.1, we have

l}minf NOR r(1+cL3) - u(1-m)Ls def

. 11
—>+o0 a(1+cL3) hi>0 (G.1)

For above ¢ > O sufficiently small, there exists a T5 > T, such thatif t > T3, x(t) = l; — . Therefore, it follows
from the second and the third equations of system (1.4) that for t > T3 + T,

. nu( -m)(lh - ey (t-17) B
N0z T d T o oo P -dn, (3.12)
V2(t) = By1(t) - eya(0).
Consider the following auxiliary equations:
. _ nu(-m)(lh - upt-1) B
L0 = T m — )+ a7 PO dn, (313)
uy(t) = Buq(t) — euy ().
Using a similar argument as that in the proof of Lemma 2.4 in [33], it follows from (3.13) that
lim ui(t)zl, lim uq(t) = L. (3.14)
t—+oo t—r+oo
By comparison, we obtain that
liminf y{(t) 2 I, liminf y,(t) > I3,. (3.15)
t—r+oo t—+oo
Let € — 0, we conclude that
liminf y,(t) > 1,, liminf y,(t) > 5. (3.16)
t—+oo t—r+oo

The proof is complete.
As a direct corollary of Lemmas 3.1 and 3.2 we have the following theorem.

Theorem 3.1. Assume that (H1) and (3.9) hold, then system (1.4) is permanent.

4 Global stability

In this section, we study the global stability of the predator-extinction equilibrium E; and the global attrac-
tivity of the coexistence equilibrium E* of system (1.4). The strategy of proofs is to use Lyapunov functionals
and the LaSalle invariance principle.

Theorem 4.1. If (H2) holds, then the predator-extinction equilibrium E{(r/a, 0, 0) of system (1.4) is globally
asymptotically stable.
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Proof. Let (x(t), y1(t), y2(t)) be any positive solution of system (1.4) with initial conditions (1.5). Denote xq =
r/a.
Define
V1a(0) = X~ x0 = Xoln g + £1y1 + v, 4.)

where &; = Lb0-mxo g pli-mxo
1 ’ ramt
Calculating the derivative of V;; along positive solutions of system (1.4), it follows that

d _(1_ X _ _ u( - mx(®)ya(0)
Evll(t) - (1 X ) {x(t)(r ax() 1+ b(1 - m)x(t) + cyz(t)}

nu( -mx(t-1ya(t-1) ~ (4.2)
o {1 +b(1 -m)x(t-1)+cy,(t-1) By1(0) dh(t)}
+&[By1(t) — ey (0)].

Substituting r = axg into (4.2), we obtain that

d
EVu(t) = -

u(1 - mx(t)y»(t)
1+ b(1 - m)x(t) + cy,(t)
u(1 - m)exoys(t)
: : (tl + )b(l(t— m))x(t) +cyo(t) (4.3)
nu(l -m)x(t-1)y,(t -1
o 1+b(1-m)x(t-1)+cy(t-1) ~ 61y
=&1dy1(6) + &Py (1) - &reya(0).

(x() - x0)* = [1 + b(1 - m)xo]

r
Xo

+u(1 - m)xoy, () -

Define ;
Va0 = Var(0+ i1 —m) [ oy KON g, (a)
t-1
We derive from (4.3) and (4.4) that
d o v pa-m)exoy3()  [B+dla+br(1-m)]  Pur(l-m)
a0 = To(x(t) Xo)" =77 b(1 - m)x(t) +2cy2(t) [ na ae n@®. @5

If (H2) holds, it then follows from (4.5) that V;(t) < 0. By Theorem 5.3.1 in [34], solutions limit to M, the
largest invariant subset of { 1 (t) = 0}. Obviously, we see from (4.5) that V;(¢) = 0 if and only if x = x, y> = O.
Noting that M is invariant, for each element in M, we have x(t) = xq, y,(t) = 0. It therefore follows from the
third equation of system (1.4) that 0 = y,(t) = By1(t), which yields y;(t) = 0. Therefore, V1(t) = 0 if and only
if (x, y1,y2) = (x0, 0, 0). Accordingly, the global asymptotic stability of E; follows from LaSalle invariance
principle. This completes the proof.

Theorem 4.2. Assume that (H1) and (3.9) are satisfied. If the following holds:
a(ly +x)-r=p;, Lhx +b(1- m)llx*2 >p,, (4.6)
2p(1-m)cLsy, (1+cys)+pc(1-m)x"y5 [b(1-m)Ly +cLs] D, = x*y§[b7(1‘£")L1”L3], and L;, 1; (i = 1, 2, 3) are defined

2[1+b(1-m)l +cl3][1+b(1-m)x* +cy}] ’
as those in Theorem 3.1, then the positive equilibrium E"(x", y, y5) of system (1.4) is globally attractive.

wherep; =

Proof. Let (x(t), y1(t), y»(t)) be any positive solution of system (1.4) with initial conditions (1.5). Define

_ _ *_ * i _ *_ * yil _ *_ * yiz
Vo1() =x-x xlnX*+k1(y1 Y1 yllny;)+kz(yz Y2 J’21Hy;>, (4.7)

where kl _ 1+b(1-m)x +cy, , k2 _ kl(ﬁ+d).

Calculating the derivative of V1 along positive solutions of system (1.4), it follows that

d (1% . _ pa-mx(0y, ()
EVZl(t) N (1 X ) {x(t)(r ax() 1+ b(1 - mx(t) + cyz(t)}

Vi nu(1 - mx(t - 1ys(t - 1)
*ha (1 - 7;) [1 +b(1 -m)x(t-1)+cy (t-1) B0~ dh(t)} (4.8)

+k, (1 - %) [By1 (D) - ey, (D).
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u(1-m)y)
1+b(1-m)x" +cy,

d (X N u(1 - mx'y;
Evzl(t) - (1 7) [x(r @) = x (r-ax)+ 1+b(1-m)x" +cy,

Substituting r = ax” + into (4.8), we derive that

x"[1+b(1 - mx +cy,]
X

-u(1-m) {[1 +b(1-mx" +cy5] -

c(x"y2 - xy5) x(t)y2(t) Y1
* X : ]X1+b(1—m)x(t)+cy2(t)+k1<1_)’1>

nu(1 - m)x(t - 1y, (t - 1)
x[l +b(1-m)x(t-1)+cy,(t-1) dy(t) ‘/3)/1(0}

+ha (1= 72 ) Bya(0) - eya(0)

(X N u(1 - m)x’y)
_(1 ;>[x(r ax)-x (r aX)+1+b(1_m)x*-ny;:|

x()y2(£)
1+ b(1 - m)x(t) + cy,(t)
M- m)ex(@y2(0(y2 - xy5) | kanu(1 - mx(t - T)ys(t - 1)
x[1 + b1 - m)x(t) + cy,(8)] 1+b(1-mx(t-—1)+cy(t-1)

—u(1 - m)[1+b(1 - m)x" +cy5] x

(4.9)

yix(t - D)y>(t - 1) \
yill+ b(ll— m)x(t - 1) + cy2(t - 7)] +k1(B+ dy,

—kinu(1-m)

Y5 ya(0) :
-k = + kyey,.
zﬁhyl 6 2€Y>

Define

t
Va0 = Var O+ k=) [ [ OO
t-1

_ X'y, _ X'y, (4.10)
1+b(1-m)x"+cy;, 1+b(1-m)x*+cy)
[1+b(1-mx" + C)/SIX(s)yz(s)}
xIn - ds.
x"y5[1+ b(1 - m)x(s) + cy,(s)]
It follows from (4.9) and (4.10) that

Ao (o XN[ e u(1 - mx'y;
EVZ(O = (1 7) {x(r ax)-x (r-ax’)+ 1+ b(1—m)x' jcy;]

X'y
1+b(1-m)x* +cy)

+ki(B+dyy (4.11)

_u(@ - m)ex()y2()(X y2 - xy))
x[1 + b1 - m)x(t) + cy,(t)]

Yall +b( - m)x” + cy)lx(t - Dya(t - 1)

xXy5y1[1+ b(1 - m)x(t - 1) + cy,(t - 7)]

- kinu(1-m)

ot Y2 ya(D) X'y;
kaBy: y; ya(t) 1+b(1-m)x* +cy;
[1+ b1 - m)x(®) + cy2(Dlx(t - 1)y (¢ - 7)
x(8)y2(O[1 + b(1 - m)x(t — 1) + cy,(t - 1)]

+kaey) + kinu(1 - m)

Noting that
* * * X** * *
keeys = koBy1 = k(B + d)y: = kanu(l -m)— - r)rlsx o U1 -m)x ys,
and N p - myy, “[1+ b1 - mx(8) + cy(6)]
X uld-m)xy, x * x [1+ b1 - m)x(t) + cy,(t
1-= =u(1- 1-
( x)1+b(1—m)x*+cy§ M m)xyz( x(t)[1+b(1—m)x*+cy;]>

u(1 - m)ex"y;(x"ya - xy3)
x(O[1 + b1 - m)x* +cy;]’
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we derive from (4.11) that

d _(x-x")? oy M1 -m)ex(y2(8) (X7 y2 - xy))
ae 20 = = ab = S b mx(0 + ¢ (0]
A -m)exX Yy (Cya = xy5) o e
" x(O[1 + b(1 - m)x* + cy’] (1 -m)xys
y [ X'[1+b(1-m)x+cy,] 1 x"[1+b(1-mx +cy,] }
X*[1+b(1 - m)x* + cy;] x*[1+b(1 - m)x* +cy;]
(1 — o [ Y2V 1 yZyl(t)]
u=m)xy {y;h(t) toin y1y2(t)
N Yill+b(1 - m)x" + cyylx(t - T)ys(t- 1)
ui-mxy, {X*y’;yl[l +b(1 - m)x(t - 1) + cy,(t - 7)]
In yi[1+ b1 - m)x" + cy5lx(t - 1)y, (t - T)]
xy3ya[1+ b1 - mx(t - 1) + cy,(t - 7)]
< —%[a(x +x)-r-pi]

_ u(1-m)c(y - y3)*[xx” + b(1 - mxx*’ - p>]
x(O[1 + b(1 - m)x(t) + cy2(O][1 + b(1 - m)x™ + cy5]
><[x*[1+b(1—m)x+cyz] ~ a x"[1+b(1 - m)x +cy,] }

—pu(1-m)x’y;

X*[1+b(1 - m)x* + cy5] X[1+b(1 - m)x* +cy)]

(4.12)

SZ10) yaya()

y1y2(t) 1-ln )’;)’2(0]

yill+b(1 - m)x" + cy5lx(t - Dy,(t-1)

x'yyya[1+ b1 - mx(t - ) + cy,(t - 1)

_pp Yil1+ B - m)x" + cyp]x(t - T)ya(t - T)]
X*y5ya[1+b(1 - m)x(t - 1) + cy,(t - 1))’

—u(1 - mx"y) x {

.

_ 2u(1-m)cyay5 (1+cys)+uc(1-m)x"y; [b(1-m)x+cy,] _ X'y, [b(1-m)x+cya]
where p1 = = s, OB m ] P2~ 0 2

Hence, if (4.6) holds, it then follows from (4.12) that V1(t) < 0, with equality if and only if x = x7,
yi[1ebmix ey Itmyalten) - vyl _ g e now look for the invariant subset M within the set M =
X'y5y1[1+b(1-m)x(t-1)+cy> (t-1)] y1y2(8)
*  y [1+bA-m)x" +cy X (t-T)y2 (1) _ yeya(0)

{6, y1,¥2) + x = X, Ym0 0] = yoa® = 1}. Since x = x on M and due to 0 =

#’%, we obtain y,(f) = y5. From the third equation of model (1.4) that
0 = y,(t) = By1(t) - ey5, which yields y; = y]. Therefore, the only invariant set in M is M = {(x", y3,¥>)}.

Using the LaSalle invariance principle, then E™ of system (1.4) is globally attractive.

x(t) = X'(r - ax’) -

5 The influence of prey refuge

In this section, we investigate the influence of prey refuge. Under the condition (H1), let us compute the
derivative along the positive equilibrium E* with respect to m, that is

a I -be(l+ Dl

dm ancvA >0
dy} i [un - be(1 + %)]x* {(1 -m)[un - be(1 + %)] - an\/Z}
dm anc?e(1+ %)\/Z ’

a4y, [ -bei+ DX’ [(1 -m)[un - be(1 + §)] - aﬂC\/Z}
dm Banc2(1 + %)\/Z .
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Denote
ner? + 4ae(1 + %) ae(l+ %)
>

' 2l - be(+ I rlun - be(i+ DI

2

Due to the existence of E*, which implies that x” is a strictly increasing function of m, that is, increasing the
constant amount of prey refuge m leads to the increase of prey densities. When 0 < m < 1 - Ry, Z{rfl >0

(i = 1,2), it then yields that both y] and y5 are strictly increasing functions on m € (0,1 — %;); when
1-Ri<m<1-Ry, Z’r',fl <0 (i = 1, 2), which implies that both y] and y} are strictly decreasing functions on
m < (1 -Rq,1-R,); when m = 1 - R4, the predator species reaches its maximum, and when m = 1 - R,

the predator species goes to extinction.

N

3.5
yZ
3
o
2, 25
=
=] A
2 15
&
l\
0.5f X
o
o 5 10 15
time t

Figure1: m = 7 = 0, E* = (0.5168, 1.5330, 3.0660) of system (1.4) is locally asymptotically stable.

5.5
4.5

3.5

Figure2: m = 7 = 0, E* = (0.5168, 1.5330, 3.0660) of system (1.4) with different initial values is locally
asymptotically stable.

6 Numerical simulations

Example 6.1. In (1.4), let m = 7 = 0, then system (1.4) is degenerated into model (2.1) of [21]. Let r = 6,

a=3,u=20,b=d=e=1,n=p=2andc = 4, then system (1.4) has a positive equilibrium E* =
. _ B d o1 ae(1+%)
(0.5168,1.5330, 3.0660). By calculation, un = 40 > 1.5 = be(1 + 3)’ 0 < 0.9805 =1 T be(1+ DI’

r<7.3835=ryand r < 17.7279 = r4. Thus E” is locally asymptotically stable.
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2.5¢
> X
~
>:
1)
<
=
S
=] 1
=
3
0.5
y2

o

o * 50 100 150

time t

Figure3: u = 1,7 = 10, E; = (2, 0, 0) of system (1.4) is globally asymptotically stable.

Figure4:y = 1,7 = 10,E; = (2,0, 0) of system (1.4) with different initial values is globally
asymptotically stable.

Note that n(1 + bx") = 6.0671 > 0.4778 = 2X%:6+4*0) Therefore, condition (S3) : nB(1 + bx’) <

1+cy,

min { op +d)(1;)3x*+cy 2 b in’i(ﬁl +dve) } in [21] which ensures the local stability of the positive equilibrium E" is
2

not satisfied. This implies that our conditions are weaker that those in [21] (see Figs. 1 and 2).

Example 6.2. In (1.4),letr=6,a=3,m=0.2,b=d=e=1,n=f=2and c = 4, then be(1 + %) =1.5.
ae(1+4)
r[],ln—be(1+%)]
and the predator-extinction equilibrium E; = (2, 0, 0). By Theorem 4.1, E; is globally asymptotically stable

(seeFigs. 3 and 4).

(i) If u = 20, T = 10, it is easy to show that un = 40 > be(1 + %), m < 0.9805 = 1 -

(@) Ifu = 1, T = 10, it is easy to show that un = 2 > be(1 + %), 1-m=0.8< 1.5 =

ae(1+%)
r[yr[—be(1+%)] ’
r < 7.9443 = r; and the positive equilibrium E* = (0.7953, 1.9162, 3.8323). By Theorem 2.4, E” is locally
asymptotically stable (see Figs. 5 and 6).

d
(iii) If 4 = 36, it is easy to show that un = 72 > be(1 + %), m<0.9894 = 1 —205)

rlun-be(1+9)]
r < 6.2736 = 1y, r < 8.8358 = ry4, and the positive equilibrium E* = (0.1302,0.486%,0.9735). Further,
by calculation, we have 7o = 0.9429. By Theorem 2.4, when T < 7o, E" is locally asymptotically stable
(seeFig.7); when 7 > 10, the positive equilibrium E* of model (1.4) is unstable, which yields a periodic
solution (see Fig. 8).

(iv) If u = 2, T = 2, it is easy to show that un = 4 > be(1 + %), m«<o0.7=1

,r>5.2798 =rq,

ae(1+%)
- r[yrl—be(1+%)]’ a(ly +

X) =1 = 5.5962 > 0.6417 = py, hix" + b(1 - mix"* = 9.5580 > 1.2781 = py, r > 0.25 = KLmL
un > 2.4783 = W and the positive equilibrium E* = (1.9487, 0.1998, 0.3996). By Theorem 4.2,
E'is globally attractive (see Fig. 9).
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solution VY,
N
X ]
<
B

o
10 20 30 40
time t

Figure 5: u = 20,7 = 10, E* = (0.7953, 1.9162, 3.8323) of system (1.4) is locally asymptotically stable.

Figure 6: 4 = 20,7 = 10,E" = (0.7953, 1.9162, 3.8323) of system (1.4) with different initial values is
locally asymptotically stable.

solution x, A

AMAA
VW

o)
[e] 100 200 300 400 500
time t

Figure7: 7 = 0.9 < 0.9429 = 1o, u = 36,E" = (0.1302, 0.4868, 0.9735) of system (1.4) is locally
asymptotically stable, system (1.4) undergoes a Hopf bifurcation at E* when 7.

=b=d=1,n=f=2and 1 = 0. By simple

Example 6.3. In (1.4), letr = 10,y = 6,c = e = 0.5, a
), 1 -9 = 0.4432, 1 — %R, = 0.9919. Note that, if

computations, we find un = 10 > 0.75 = be(1 +%

d x
m € [0,0.9919), by calculation, we can obtain m < 1 - %, r < min{ry, 14}, then E" is locally
B

asymptotically stable when T = 0. Our simulations show that the constant prey refuge m plays an important
role on the coexistence of prey-predator population (see Figs. 10 and 11). When m is small and increasing,
the predator density increases, due to the fact that predators have sufficient preys available for predation,
even though the refuge increases (see Fig. 12). But, as m crosses its threshold value, the predator density
decreases with increasing m, the predators was unable to catch preys to sustain themselves and ultimately

goes to extinction due to starvation (see Fig. 13).
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1.41
yZ
1.2
~ 1
=
=" 0.8
Z
= yl
2 0.6
g
=)
2
0.4
©-2 AAAAMWWAMAMAMAMAMMAAAMA,
o
o 50 100 150 200 250 300

time t

Figure 8: 7 = 0.96 > 0.9429 = 7o, u = 36,E" = (0.1302, 0.4868, 0.9735) of system (1.4) is locally
asymptotically stable, system (1.4) undergoes a Hopf bifurcation at E* when 7.

N

=
4l

o 'ﬁk —

solution x, A
[

Yo

Y,

o

20 30 40
time t

Figure9: y = 2,7 = 2,E" = (1.9487,0.1998, 0.3996) of system (1.4) with different initial values is
globally attractive.

10 <

Figure 10: Bifurcation diagram of the prey species of model (1.4), m as the bifurcation parameter.

7 Conclusion

In this paper we investigate the influence of prey refuge on the dynamics of a Beddington-DeAngelis
predator-prey system with stage structure for predator and time delay. Sufficient conditions are derived to
ensure the predator-extinction and the locally asymptotically stability of positive equilibrium. Compared
with [21] we get more precise conditions. Also, we find that time delay can cause a stable equilibrium
to become unstable one, even Hopf bifurcation to occur, when time delay passes through some critical
values. Furthermore, the persistence is investigated. After that, we study the global stability of the predator-
extinction and positive equilibrium by constructing some suitable Lyapunov functionals.
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Figure 11: Bifurcation diagram of the predator species of model (1.4), m as the bifurcation parameter.

solution Y,

m=0.4

m=0.3

m=0.2

m=0.1

m=0.05

15 20 25 30
time t

Figure12: T = 0, E” is locally asymptotically stable. Change the values of the refuge m from zero to
1 -9, = 0.4432, the predator species will increase.

701

60

50

solution Y,

201

10

m=0.4432

m=0.6

m=0.7

N
o
T

m=0.8

30+

m=0.9

m=0.9919

20 30 40 50
time t

Figure13: T = 0, E” is locally asymptotically stable. Change the values of the refuge m from 1 - 9t; =
0.4432t0 0.9919 = 1 - R,, the predator species will decrease.
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Also, we discuss the influence of prey refuge on the densities of predator species and prey species. When
prey refuge m in the interval (0, 1 — RR;), the density of predators will increase with prey refuge m, due to
predator species having sufficient food for their predation with sufficiently small prey refuge m. Predator
population attains its maximum when the prey refuge m = 1 — %R;. In case of larger values of m (m > 1 - Ry),
this implies that predators species are less likely to catch prey, and the predator species deceases with the
increasing of prey refuge m. Eventually, the predator population will be extinct when prey refuge m = 1 -fR,.
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