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Abstract

In this paper, the van der Pol equation with a time delay is considered, where the time delay is
regarded as a parameter. It is found that Hopf bifurcation occurs when this delay passes through
a sequence of critical value. A formula for determining the direction of the Hopf bifurcation and
the stability of bifurcating periodic solutions is given by using the normal form method and center
manifold theorem.
© 2005 Published by Elsevier Ltd.
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1. Introduction

Thewell-knownvanderPol equation,which describes the oscillations is the second-order
nonlinear damped system governed by{

ẋ(t)= y(t)− f (x(t)),

ẏ(t)= −x(t). (1.1)

This model is considered as one of the most intensely studied system in nonlinear system
[9,12,23]and has served as a basic model in physics, electronics, biology, neurology and
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so on. Many efforts have been made to find its approximate solutions[1,10,24]. As we
know, in ordinary differential equation, a non-constant periodic solution can arise a Hopf
bifurcation. This occurs when a eigenvalue crosses the imaginary axis from left to right as
a real parameter in the equation passes through a critical value[15,21]. In [10], the authors
proposed a class of relaxation algorithms for finding the periodic steady-state solution of a
van der Pol oscillation. In[1], the periodic solution of van der Pol equation is given in the
form of a series converging for all values of the damping parameter. Recently, dynamical
systems with time delays have been found in neural networks[2–8,11,18,20]. It is worth
noting that the dynamical characteristics (including stable, unstable, oscillatory, and chaotic
behavior) of neural networks with time delays have become a subject of intense research
activities ([2–8,11,18,20]and the references cited therein), and neural networks involving
persistent oscillations such as limit cycle may be applied to pattern recognition and asso-
ciative memory. Thus it is of great interest to understand the mechanism of neural networks
that cause and sustain such periodic activities. However, neural networks are complex and
large-scale nonlinear dynamical systems. For simplicity, many researchers have directed
their attention to the study of simple systems. This is still useful since the complexity found
may be carried over to large networks. In[22], Murakaimi introduced a discrete time delay
into the van der Pol equation (1.1) and the following delayed differential equation was
obtained:{

ẋ(t)= y(t − �)− f (x(t − �)),
ẏ(t)= −x(t − �).

(1.2)

And the author discussed in detail the existence of periodic solution by using the centerman-
ifold approaches. However, the stability of bifurcating periodic solution was not discussed.
Clearly, if�=0, (1.2) can reduce to (1.1). In[17], Liao studiedHopf bifurcation and stability
of periodic solutions for van der Pol equation with distributed delay. Therefore, dynamical
analysis of time-delay systems is an important topic in many fields[13,14,16,19,25].
In this paper, we will consider the van der Pol equation with a discrete delay, and study

the existence of a Hopf bifurcation and the stability of bifurcating periodic solutions of Eq.
(1.2). The obtained results find that both of them depend on the parametersa and the delay
�.
The organization of this paper is as follows: In Section 2, we will discuss the stability

of the trivial solutions and the existence of Hopf bifurcation. In Section 3, a formula for
determining the direction of the Hopf bifurcation and the stability of bifurcating periodic
solutions will be given by using the normal form method and center manifold theorem
introduced by Hassard et al.[14]. In Section 4, numerical simulations aimed at justifying
the theoretical analysis will be reported.

2. Stability of trivial solutions and existence of Hopf bifurcation

In this section, we consider the following delayed differential equation:{
ẋ(t)= y(t − �)− f (x(t − �)),
ẏ(t)= −x(t − �),

(2.1)
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wheref (x) = ax + bx2, a andb are positive and real. The linear equation of (2.1) are as
follows:{

ẋ(t)= −ax(t − �)+ y(t − �),
ẏ(t)= −x(t − �).

(2.2)

Clearly, the point(0,0) is the unique equilibria of (2.2).
The characteristic equation of the linearized system (2.2) is

det

(
� + ae−�� −e−��

e−�� �

)
= 0. (2.3)

By simple calculation, we obtain the following characteristic equation:

�2 + a�e−�� + e−2�� = 0. (2.4)

Lemma 2.1. (i) If a >2 holds, then(2.4)has a pair of purely imaginary roots±iw0l when
� = �nl (l = 1,2; n= 0,1,2, . . .), where

w0l = a ± √
a2 − 4

2
, (2.5)

�nl = 2n� + �/2
w0l

(l = 1,2; n= 0,1,2, . . .). (2.6)

(ii) If 0<a�2 holds, then(2.4) has a pair of purely imaginary roots±iw0 when� =
�j (j = 0,1,2, . . .), where

w0 = 1, (2.7)

�j = arcsin
a

2
+ 2j�. (2.8)

Proof. Suppose that� = iw, with w>0, is a root of Eq. (2.4), then we obtain

−w2 + aiw(cos(w�)− i sin(w�))+ (cos(2w�)− i sin(2w�))= 0.

Separating the real and imaginary parts, we have

{
w2 − aw sin(w�)− cos(2w�)= 0,
aw cos(w�)− sin(2w�)= 0.

(2.9)

Which can be rewritten as the following two equations:

{
w2 − aw sin(w�)− cos(2w�)= 0,
cos(w�)= 0,

(2.10)
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or {
w2 − aw sin(w�)− cos(2w�)= 0,

sin(w�)= aw

2
.

(2.11)

Next we discuss it in two cases:
CaseI: Fromcos(w�)=0, it follows that cos(2w�)=−1. If sin(w�)=−1, thensubstituting

this into the first equation of (2.10), we havew2 + aw+ 1= 0. Supposew1 andw2 are the
two roots of this equation. Clearly,

w1 + w2 = −a <0, w1w2 = 1>0.

The equation have two negative roots. Since we supposew>0, we choose sin(w�) = 1.
Substituting this into the first equation of (2.10), we obtain

w2 − aw + 1= 0. (2.12)

For the casea >2, we have two roots of Eq. (2.12):w0l =a±√
a2 − 4/2, thus�nl =2n�+

�/2/w0l (l = 1,2; n= 0,1,2, . . .). The proof is completed.
CaseII: From sin(w�) = aw/2, we have cos(2w�) = 1 − 2 sin2(w�) = 1 − a2w2/2.

Substituting these into the first equation of (2.11), from 0<a�2, we obtainw0 = 1 and
�j = arcsina/2+ 2j�. The proof is completed.
Denote

�(�)= �(�)+ iw(�),

is the root of Eq. (2.4) satisfying

�(�nl)= 0, w(�nl)= w0l ,

where�nl is defined by (2.6). �

Lemma 2.2. If a >2 holds, then we have

d�(�nl)
d�

>0. (2.13)

Proof. Taking the derivative of� with respect to� in (2.4), we have

2��′ + a�′e−�� + a�(−�)e−�� + a�(−�′�)e−�� − 2(� + �′�)e−2�� = 0,

it follows that:

d�(�)
d�

= a�2e−�� + 2�e−2��

2� + ae−�� − a��e−�� − 2�e−2��
. (2.14)
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For the sake of simplicity, we denotew0l and�nl byw, �, respectively, then

d�
d�

= −aw2e−iw� + 2iwe−2iw�

2iw + ae−iw� − aiw�e−iw� − 2�e−2iw�

= −aw2[cos(w�)−i sin(w�)]+2iw[ cos(2w�)−i sin(2w�)]
2iw+a[cos(w�)−i sin(w�)]−aiw�[cos(w�)−i sin(w�)]−2�[cos(2w�)−i sin(2w�)]

= [−aw2 cos(w�)+2w sin(2w�)]+i[aw2 sin(w�)+2w cos(2w�)]
[a cos(w�)−aw� sin(w�)−2� cos(2w�)]+i[2w−a sin(w�)−aw� cos(w�)+2� sin(2w�)] .

Let

Q= [a cos(w�)− aw� sin(w�)− 2� cos(2w�)]2
+ [2w − a sin(w�)− aw� cos(w�)+ 2� sin(2w�)]2.

QRe

(
d�
d�

)
= [−aw2 cos(w�)+ 2w sin(2w�)]

× [a cos(w�)− aw� sin(w�)− 2� cos(2w�)]
+ [aw2 sin(w�)+ 2w cos(2w�)]
× [2w − a sin(w�)− aw� cos(w�)+ 2� sin(2w�)] (2.15)

QRe

(
d�
d�

)∣∣∣∣
�=�nl

= (aw2 − 2w)(2w − a)

=w(2aw2 − a2w − 4w + 2a)

=w(2a2w − 2a − a2w − 4w + 2a)

=w2(a2 − 4)>0,

this completes the proof.
Denote

�(�)= �(�)+ iw(�),

is the root of Eq. (2.4) satisfying

�(�j )= 0, w(�j )= w0,

where�j is defined by (2.8). �

Lemma 2.3. If 0<a�2 holds, then

d�(�j )
d�

>0. (2.16)
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Proof. If 0<a<2, from (2.15) we have

QRe

(
d�
d�

)∣∣∣∣
�=�j

= [−a cos� + 2 sin(2�)][a cos� − a2�/2− 2�(1− a2)/2]

+ [a2/2+ 2− a2][2− a2/2− a� cos� + 2� sin(2�)]
= a cos�(a cos� + a2�/2− 2�)

+ (2− a2/2)(2− a2/2+ a� cos�)

= a2 cos2 � + a� cos�(a2/2− 2)

+ (2− a2/2)a� cos� + (2− a2/2)2

= a2(1− a2/4)+ (4+ a4/4− 2a2)

= a2 − a4/4+ 4+ a4/4− 2a2

= 4− a2>0.

If a = 2 holds, then (2.4) is equivalent to the following equation:

� + e−�� = 0. (2.17)

Here, w= 1, � = �/2. Using the same method as Lemma 2.2, we can obtain

Re

(
d�
d�

)∣∣∣∣
�=�j

= 1>0.

This completes the proof.�

Lemma 2.4. For Eq. (2.4).
(I) If a >2,all the roots of Eq.(2.4)have strictly negative real parts for� ∈ [0, �01), and

Eq.(2.4)has a pair of imaginary roots±iw01 and all the other roots have strictly negative
real parts when� = �01, as well as Eq.(2.4)has at least a pair of roots with positive real
parts when�> �01.
(II) If 0<a�2,all the roots of Eq.(2.4)have strictly negative real parts for� ∈ [0, �0),

and Eq.(2.4) has a pair of imaginary roots±iw0 and all the other roots have strictly
negative real parts when�=�0, as well as Eq.(2.4)has at least a pair of roots with positive
real parts when�> �0.

Proof. (I) Obviously, the roots of Eq. (2.4) continuously depend on the parameter�. When
� = 0, we know that (2.4) has two roots�1 and�2, the product of the roots satisfy

�1 + �2 = −a(a >0), �1�2 = 1.

We obtain that�1 and�2 both have negative real parts.�01 is the smallest positive value
whenEq. (2.4) has a pair of purely imaginary roots. Since the roots of Eq. (2.4) continuously
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depend on the parameter�, we know that the roots of Eq. (2.4) have negative real parts
when� ∈ [0, �01).
Next we show that Eq. (2.4) has a pair of imaginary roots±iw01 and all the other roots

have strictly negative real parts when�= �01. Suppose, on the contrary, that�=u+ iv with
u>0 is a root of Eq. (2.4) with� = �01. Since the roots of Eq. (2.4) continuously depend
on the parameter�, there exists�′ ∈ (0, �01) such that (2.4) has a purely imaginary root at
� = �′, which contradicts with the fact that�01 is the smallest such�.
Thirdly, we will show Eq. (2.4) has at least a pair of roots with positive real parts when

�> �01. From Lemma 2.2, we have d�(�01)/d�>0. The proof is completed.
(II) The approach is the same as (I), we omit it.�

Theorem 2.1. For Eq. (2.1).
(I) If a >2 and from Lemma2.4(I),we obtain its zero solution is asymptotically stable

for � ∈ [0, �01), and unstable for�> �01, and Eq.(2.1)undergoes a Hopf bifurcation at the
origin when� = �01. That is, system(2.1) has a branch of periodic solutions bifurcating
from the zero solution near� = �01.
(II) If 0<a�2 and from Lemma2.4(II), we obtain its zero solution is asymptotically

stable for� ∈ [0, �0),and unstable for�> �0,and Eq.(2.1)undergoes aHopf bifurcation at
the origin when� = �0. That is, system(2.1)has a branch of periodic solutions bifurcating
from the zero solution near� = �0.

Remark. In [17], it is simpler than our models since the characteristic equation of ours is
transcendental equation corresponding to polynomial equation of Liao. So he discussed the
local stability and existence of Hopf bifurcation using Routh–Hurwitz criteria. The stability
and existence of Hopf bifurcation which is studied in our paper are not as simple as his.

3. Stability of bifurcating periodic solutions

In this section, formulae for determining the direction of Hopf bifurcation and stability
of bifurcating periodic solutions of system (2.1) at�0 shall be presented by employing the
normal form method and center manifold theorem introduced by Hassard et al.[14].
For convenience, lett = s�, x(s�)= x1(s), y(s�)= x2(s) and� = �0 + �, � ∈ R. Denote

t = s, then system (2.1) is equivalent to the system:{
ẋ1(t)= (�0 + �)(−ax1(t − 1)+ x2(t − 1)− bx21(t − 1)),
ẋ2(t)= −(�0 + �)x1(t − 1).

(3.1)

Its linear part is given by{
ẋ1(t)= (�0 + �)(−ax1(t − 1)+ x2(t − 1)),
ẋ2(t)= −(�0 + �)x1(t − 1).

(3.2)

The nonlinear part of (3.1) is

f (�, ut )= (�0 + �)
(−bx21(t − 1)

0

)
. (3.3)
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DenoteCk[−1,0] = {�|� : [−1,0] → R2, each component of� hask order continuous
derivative}. For convenience, denoteC[−1,0] byC0[−1,0]. The solutionsmap continuous
initial data intoR2. We are interested in periodic solutions. For�(�)= (�1(�) �2(�))

T ∈
C[−1,0], define an operator

L�� = (�0 + �)
(−a 1

−1 0

)(
�1(−1)
�2(−1)

)
, (3.4)

whereL� is a one-parameter family of bounded linear operators inC[−1,0] → R2. By
the Riesz representation theorem, there exists a matrix whose components are bounded
variation functions	(�,�) in [−1,0] → R2, such that

L�� =
∫ 0

−1
d	(�,�)�(�).

In fact, we choose

	(�,�)= (�0 + �)
(−a 1

−1 0

)

(� + 1) (3.5)

(where
(�) is Dirac function), then (3.4) is satisfied.
For� ∈ C1[−1,0], define

A(�)� =
{ d�(�)

d�
, −1��<0,∫ 0

−1 d	(�,�)�(�), � = 0
(3.6)

and

R(�)� =



(
0
0

)
, −1��<0,

(�0 + �)
(−b�2

1(−1)
0

)
, � = 0.

(3.7)

In order to conveniently study Hopf bifurcation problem, we transform system (3.1) into
a operator equation of the form:

u̇t = A(�)ut + Rut , (3.8)

whereu= (x1, x2)
T. As in [13], ut = u(t + �), � ∈ (−1,0].

The adjoint operatorA∗ of A is defined by

A∗(�)� =
{

−d�(s)
ds

, 0<s�1,∫ 0
−1 d	

T(s,�)�(−s), s = 0
(3.9)

where	T is the transpose of the matrix	.
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The domains ofA andA∗ areC1[−1,0] andC1[0,1], respectively. For� ∈ C[−1,0]
and� ∈ C[0,1]. In order to normalize the eigenvectors of operatorA and adjoint operator
A∗, we need to introduce the following bilinear form:

〈�,�〉 = �̄(0) · �(0)−
∫ 0

�=−1

∫ �

�=0
�̄
T
(� − �)d	(�)�(�)d�. (3.10)

Here	(�) = 	(�,0), C2 is complex plane. And forc andd in C2, c · d means∑2
i=1cidi ,

whereci anddi are components ofc andd, respectively. Then, as usual,

〈�, A�〉 = 〈A∗�,�〉 (3.11)

for (�,�) ∈ D(A)×D(A∗). We normalizeq andq∗ by the condition

〈q∗, q〉 = 1, 〈q∗, q̄〉 = 0.

Bydiscussion inSection2and transformationt=s�,weknow that±i�0w0 areeigenvalues
ofA(0)andother eigenvalueshave strictly negative real parts.Thus theyarealsoeigenvalues
of A∗. Next we calculate the eigenvectorq of A belonging to the eigenvalue i�0w0 and the
eigenvectorq∗ of A∗ belonging to the eigenvalue−i�0w0. Let

q(�)=
(
1
�

)
ei�0w0�, −1< ��0. (3.12)

From the above discussion, we know that

Aq(0)= i�0w0q(0),

�0

(−a 1
−1 0

)(
e−i�0w0

�e−i�0w0

)
= i�0w0

(
1
�

)
,

i.e., {
(−a + �)e−i�0w0 = iw0,

−e−i�0w0 = i�w0.

Hence, we obtain

� = a + iw0e
i�0w0 or � = i

w0
e−i�0w0. (3.13)

Suppose that the eigenvectorq∗ of A∗ is

q∗(s)= 1



(
1
�

)
ei�0w0s , 0�s <1. (3.14)

Then we have the following relationship:

A∗q∗(0)= −i�0w0q
∗(0).

�0

(−a −1
1 0

)(
ei�0w0

�ei�0w0

)
= −i�0w0

(
1
�

)
,
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i.e., {
(−a − �)ei�0w0 = −iw0,

ei�0w0 = −i�w0.

Hence, we obtain

� = −a + iw0e
−i�0w0 or � = i

w0
ei�0w0. (3.15)

Let

〈q∗, q〉 = 1.

One can obtain,

〈q∗, q〉 = q̄∗(0) · q(0)−
∫ 0

�=−1

∫ �

�=0
q̄∗T(� − �)d	(�)q(�)d�

= 1

̄
(1+ �̄�)−

∫ 0

�=−1

∫ �

�=0

1

̄
(1 �̄)e−i�0w0(�−�) d	(�)

(
1
�

)
ei�0w0� d�

= 1

̄
(1+ �̄�)−

∫ 0

�=−1

∫ �

�=0
�0
1

̄
(1 �̄)

(−a 1
−1 0

)(
1
�

)
× ei�0w0�
(� + 1)d�d�

= 1

̄
(1+ �̄�)− 1

̄
�0(a + �̄ − �)e−i�0w0

= 1.

Hence, we have

̄ = (1+ �̄�)− �0(a + �̄ − �)e−i�0w0. (3.16)

Note that�̄ = −�, �̄ = −�, using the same method it is easy to proof〈q∗, q̄〉 = 0, we omit
it. Now we obtainq andq∗.
Next, we study the stability of bifurcating periodic solutions. As in[14], the bifurcating

periodic solutionsZ(t,�(�)) has amplitude O(�) and non-zero Floquet exponent�(�) with
�(0)= 0. Under our hypotheses,�, � are given by{

� = �2�
2 + �4�

4 + · · · ,
� = �2�

2 + �4�
4 + · · · . (3.17)

The sign of�2 indicates the direction of bifurcation while that�2 determines the stability
of Z(t,�(�)).Z(t,�(�)) is stable if�2<0 and unstable if�2>0. In the following, we will
show how to derive the coefficients in this expansions, but we compute�2 and�2 only.
We first construct the coordinates to describe a center manifold�0 near� = 0, which is

a local invariant, attracting a two-dimensional manifold[14]. Let

z(t)= 〈q∗, ut 〉 (3.18)
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and

W(t, �)= ut − 2Re[z(t)q(�)]. (3.19)

Whereut is a solution of (3.8). On the manifold�0 : w(t, �)= w(z(t), z̄(t), �), where

W(z, z̄, �)=W20(�)
z2

2
+W11(�)zz̄+W02(�)

z̄2

2
+ · · · . (3.20)

In fact, z and z̄ are local coordinates of center manifold�0 in the direction ofq andq∗,
respectively.
The existence of center manifold�0 enables us to reduce (3.8) to an ordinary differential

equation in a single complex variable on�0. For the solutionut ∈ �0 of (3.8), since�= 0,

ż(t)= 〈q∗, u̇t 〉
= 〈q∗,Aut + Rut 〉
= 〈q∗,Aut 〉 + 〈q∗, Rut 〉
= 〈A∗q∗, ut 〉 + 〈q∗, Rut 〉
= i�0w0z+ q̄∗(0) · f (0,W(t,0)+ 2Re[z(t)q(0)]). (3.21)

Rewrite (3.21) as

ż(t)= i�0w0z+ g(z, z̄), (3.22)

where

g(z, z̄)= g20
z2

2
+ g11zz̄+ g02

z̄2

2
+ g21

z2z̄

2
+ · · · . (3.23)

In the following, our motivation is to expandg in powers ofzandz̄ and then obtain, from
the coefficients of this expansion, the values of�2 and�2 using algorithm presented by
Hassard et al.[14]. Substituting (3.8) and (3.21) into

Ẇ = u̇t − żq − ˙̄zq̄,
we have

Ẇ = u̇t − żq − ˙̄zq̄
=Aut + Rut − [i�0w0z+ q̄∗(0) · f (z, z̄)]q − [−i�0w0z̄+ q∗(0) · f̄ (z, z̄)]q̄
=AW+ 2ARe(zq)+ Rut − 2Re[q̄∗(0) · f (z, z̄)q(�)] − 2Re[i�0w0zq(�)]
=AW− 2Re[q̄∗(0) · f (z, z̄)q(�)] + Rut

=
{
AW− 2Re[q̄∗(0) · f (z, z̄)q(�)], −1��<0,
AW− 2Re[q̄∗(0) · f (z, z̄)q(�)] + f, � = 0.

(3.24)

Let

Ẇ = AW+H(z, z̄, �), (3.25)

where

H(z, z̄, �)=H20(�)
z2

2
+H11(�)zz̄+H02(�)

z̄2

2
+ · · · . (3.26)
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Taking the derivative ofWwith respect tot in (3.20), we have

Ẇ =Wzż+Wz̄
˙̄z. (3.27)

Substituting (3.20) and (3.22) into (3.27), we obtain

Ẇ = (W20z+W11z̄+ · · ·)(i�0w0z+ g)

+ (W11z+W02z̄ · · ·)(−i�0w0z̄+ ḡ). (3.28)

Then substituting (3.20) and (3.26) into (3.25), we have the following results:

Ẇ = (AW20 +H20)
z2

2
+ (AW11+H11)zz̄+ (AW02 +H02)

z̄2

2
+ · · · . (3.29)

Comparing the coefficients of (3.28) with (3.29),

(A− 2i�0w0)W20(�)= −H20(�), (3.30)

AW11(�)= −H11(�) (3.31)

hold.
According to (3.21) and (3.22), we know

g(z, z̄)= q̄∗(0) · f (z, z̄)= �0
̄

(
1
�̄

)
·
(−bx21(t − 1)

0

)
, (3.32)

where

x1(t + �)=W(1)(t, �)+ z(t)q(1)(�)+ z̄(t)q̄(1)(�),

x2(t + �)=W(2)(t, �)+ z(t)q(2)(�)+ z̄(t)q̄(2)(�).

From (3.32) and (3.21), we have

g(z, z̄)= − �0b
̄
x21(t − 1)

= − �0b
̄

[W(1)(t, �)+ z(t)q(1)(�)+ z̄(t)q̄(1)(�)]2

= − �0b
̄

[W(1)
20 (−1)

z2

2
+W

(1)
11 (−1)zz̄+W

(1)
02 (−1)

z̄2

2

+ z(t)q(1)(−1)+ z̄(t)q̄(1)(−1)]2. (3.33)

Comparing the coefficients in (3.23) with those in (3.33), it follows that:

g20 = −2�0b
̄

[q(1)(−1)]2,

g11= −2�0b
̄
q(1)(−1)q̄(1)(−1),

g02 = −2�0b
̄

[q̄(1)(−1)]2,

g21= −2�0b
̄
W
(1)
20 (−1)q̄(1)(−1). (3.34)
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In the following, we focus on the computation ofW20(�). Eqs. (3.24) and (3.25) imply that

H(z, z̄, �)= − 2Re(q̄∗(0) · f (z, z̄)q(�))+ Rut

= − gq(�)− ḡq̄(�)+ Rut

= −
(
1

2
g20z

2 + g11zz̄+ 1

2
g02z̄

2 + · · ·
)
q(�)

−
(
1

2
ḡ20z̄

2 + ḡ11zz̄+ 1

2
ḡ02z

2 + · · ·
)
q̄(�)+ Rut . (3.35)

From (3.33),Rut =�0
(−bx21(t−1)

0

)
=
(

̄g
0

)
, when�=0 at�=0. Comparing the coefficients

in (3.26) with those in (3.35), we can obtain that

H20(�)=
{−g20q(�)− ḡ02q̄(�), −1��<0,

−g20q(0)− ḡ02q̄(0)+
(

̄g20
0

)
, � = 0

(3.36)

and

H11(�)=
{−g11q(�)− ḡ11q̄(�), −1��<0,

−g11q(0)− ḡ11q̄(0)+
(

̄g11
0

)
, � = 0.

(3.37)

Substituting (3.36) into (3.30) and (3.37) into (3.31) respectively, it follows that:{
Ẇ20(�)= 2i�0w0W20(�)+ g20q(�)+ ḡ02q̄(�),
Ẇ11(�)= g11q(�)+ ḡ11q̄(�).

(3.38)

We can easily obtain the solutions of (3.38):

W20(�)= ig20

�0w0
q(0)ei�0w0� − ḡ02

3i�0w0
q̄(0)e−i�0w0� + E1e2i�0w0�,

W11(�)= g11

i�0w0
q(0)ei�0w0� − ḡ11

i�0w0
q̄(0)e−i�0w0� + E2.

(3.39)

Next we focus on the computation ofE1, from (3.30), we have

AW20(0)= 2i�0w0W20(0)−H20(0),

then

�0

(−a 1
−1 0

)
W20(−1)= 2i�0w0W20(0)−H20(0). (3.40)

Substituting (3.36) and (3.39) into (3.40), we have the following relationship:

�0

(−a 1
−1 0

)(
ig20
�0w0

q(0)e−i�0w0 − ḡ02

3i�0w0
q̄(0)ei�0w0 + E1e

−2i�0w0

)

= −2g20q(0)− 2

3
ḡ02q̄(0)+ 2i�0w0E1 + g20q(0)+ ḡ02q̄(0)−

(
̄g20
0

)
,
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2i�0w0 + �0ae−2i�0w0 −�0e−2i�0w0

�0e−2i�0w0 2i�0w0

)
E1

= �0

(−a 1
−1 0

)(
ig20
�0w0

q(0)e−i�0w0 − ḡ02

3i�0w0
q̄(0)ei�0w0

)
+ g20q(0)

− 1

3
ḡ02q̄(0)+

(
̄g20
0

)
.

E1 =
(
2i�0w0 + �0ae−2i�0w0 −�0e−2i�0w0

�0e−2i�0w0 2i�0w0

)−1

×
((−a 1

−1 0

)(
ig20
w0

q(0)e−i�0w0 − ḡ02

3iw0
q̄(0)ei�0w0

)
+ g20q(0)

−1

3
ḡ02q̄(0)+

(
̄g20
0

))
. (3.41)

Hence, we knowW20 and then we can obtaing21. The following parameters can be
calculated:

C1(0)= i

2w

(
g20g11− 2|g11|2 − 1

3
|g02|2

)
+ g21

2
, (3.42)

�2 = −ReC1(0)

Re�′(�0)
, (3.43)

�2 = 2ReC1(0). (3.44)

If you want to know the detail, see appendix. As in[14], we have the following result:

Theorem 3.1. Under the condition of Theorem2.1,
(I) � = 0 is Hopf bifurcation value of system(3.1).
(II) the direction of Hopf bifurcation is determined by the sign of�2: if �2>0, the Hopf

bifurcation is supercritical; if �2<0, the Hopf bifurcation is subcritical.
(III) The stability of bifurcating periodic solutions is determined by�2: if �2<0, the

periodic solutions are stable; if �2>0, they are unstable.

4. Numerical examples

In this section, somenumerical results of simulating system (2.1) arepresentedat different
data ofa, b and�.
First, letb= 0.Thensystem(2.1) is linear,we investigate theHopfbifurcationat�0.Wefix

a= 1.5, then�0 = arcsin(0.75). So we choose� = 0.8< �0, �0 and 0.9> �0, respectively.
The corresponding waveform and phase plots are shown inFigs. 1–3. By Theorem 2.1,
we know inFig. 1 its zero solution is asymptotically stable, inFig. 2 undergoes a Hopf
bifurcation at the origin, and inFig. 3 is unstable.
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Next, letb = 0. Then system (2.1) is linear, we investigate the Hopf bifurcation at�01.
We fix a = 2.5, �01 = �/(a + √

a2 − 4). So we choose� = 0.75< �01, �01 and 0.8> �01,
respectively. The corresponding waveform and phase plots are shown inFigs. 4–6. By
Theorem2.1, we know inFig. 4its zero solution is asymptotically stable, inFig. 5undergoes
a Hopf bifurcation at the origin, and inFig. 6 is unstable.
Finally, we fix a = 1 and� = 0.55> �0 = arcsin(a/2) and we chooseb = 1 and 1.5,

respectively. With these parameters,�2>0. Hence, by Theorem 3.1, we know that the
bifurcating point is supercritical. Correspondingly,�2=−0.962 and−0.4416, and so these
bifurcating periodic solutions are stable, as shown inFigs. 7and8.

5. Conclusions

The van der Pol equation provides rich dynamical behavior. From the viewpoint of non-
linear systems, their analysis are useful in solving problems of both theoretical and practical
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importance. Although the systems with time delay discussed above are quite simple, they
are potentially useful as the complexity found might be carried over to a general van der
Pol equation with time delays.
By calling the time delay as a parameter, we have shown that a Hopf bifurcation occurs

when this parameter passes through a critical value. The direction of Hopf bifurcation and
the stability of the bifurcating periodic orbits are also discussed.

Appendix A.

In this appendix, we want to derive formula (3.42), (3.43) and (3.44).

A.1. Poincaré normal form

We assume we are given a 2× 2 system in the following Poincaré norm form:

Ẋ = A(�)X +
[L/2]∑
j=1

Bj (�)X|X|2j + o(|X||(X,�)|L+1),

= F(X,�), (A.1)

where

A(�)=
(

�(�) −�(�)
�(�) �(�)

)
(�(�)= �(�)+ i�(�)), (A.2)

Bj (�)=
(
Recj (�) −Im cj (�)
Im cj (�) Recj (�)

) (
1�j�

[
L

2

])
, (A.3)

andF(X,�) is jointly CL+2 in X and�.
Eq. (A.1) is equivalent to

�̇ = �(�)� +
[L/2]∑
j=1

cj (�)�|�|2j + o(|�||(�,�)|L+1), (A.4)

where� =X1 + iX2.
We next derive the formula for the initial coefficients in the MacLaurin expansions of

� = �(�) andT = T (�). We begin by rewrite the differential equation (A.4) as

�̇ = �(�)� + �
M∑
j=1

cj (�)(��̄)j , (A.5)

where� is a complex variable,�(0)= i�0,M�1 is arbitrary, andcj (�) are complex valued.
This canonical is in Poincaré normal form. Observe that if� is a solution, then so is�ei� for
any real number�, and trajectories of (A.5) are circles with centers at� = 0. This simple
geometry is reflected in efficient computation of MacLaurin expansions of�(�) andT (�).
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Forming�̄�̇ + ¯̇�� from (A.5), we obtain

d

dt
(��̄)= 2��̄


Re�(�)+

M∑
j=1

Recj (�)(��̄)j


 . (A.6)

The right-hand side of (A.6) is zero if and only if� = 0 or

Re�(�)+
M∑
j=1

Recj (�)(��̄)j = 0. (A.7)

But if (A.7) holds, then (A.6) implies that��̄ = �2�0, for some��0. Setting��̄ = �2�0
and� = �(�) in (A.7) and we obtain

Re�(�(�))+
M∑
j=1

Recj (�)�2j = 0. (A.8)

This equation determines the coefficients in the expansion

� =
M∑
j=1

�j �
j +O(�M+1).

In the following analysis below of the case�′(0) �= 0, the coefficients�1,�3,�5, . . . are
shown to vanish, which is a priori obvious from (A.8). Expanding� in powers of� in (A.8),
we find that

�′(0)
M∑
j=1

�j �
j + �′′(0)

2


 M∑
j=1

�j �
j



2

+ · · · + Rec1(0)�2

+ Rec′1(0)


 M∑
j=1

�j �
j


 �2 + · · · + Rec2(0)�4 + · · · = 0. (A.9)

At O(�), (A.9) implies that�′(0)�1 = 0. Thus,

�1 = 0, (A.10)

since�′(0) �= 0 by hypothesis. Using this results in (A.9), we find that at O(�2),

�′(0)�2 + Rec1(0)= 0,

�2 = −Rec1(0)

�′(0)
. (A.11)

Given that (A.8) holds, we may rewrite (A.5) as

�̇ = i� Im


�(�)+

M∑
j=1

cj (�)�2j


 . (A.12)
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Thus,

� = �e2�it/T (�),

where

2�
T (�)

= Im


�(�)+

M∑
j=1

cj (�)�2j


 . (A.13)

From this equation the coefficients in the expansion

T (�)= 2�
�0

M∑
j=0

�i�i +O(�M+1)

may be found. Explicitly at O(1), (A.13) yields

�0 = 1 (A.14)

and, to high order

�0

(
−

4∑
i=1

�i�i
)

+ �0

(
3∑
i=1

�i�i
)2

+ · · · = �′(0)(�2 + �4�
2)�2 + �′′(0)

2
�22�

4

+ Im c1(0)�2 + [Im c′1(0)�2 + Im c2(0)]�4 + · · · . (A.15)

Hence,

−�0�1 = 0,

thus

�1 = 0. (A.16)

since�0>0 by hypothesis. Then at O(�2) (A.15) becomes

−�0�2 = �′(0)�2 + Im c1(0)

then we obtain

�2 = − 1

�0
[Im c1(0)+ �′(0)�2]. (A.17)

A.2. Stability criteria

We shall now apply Floquet theorem to the real 2 by 2 system (A.1).We know that�(�) is
CL+1 in �; henceP�(t)=�y(t, �,�(�)) isCL+1 in t and�. SinceX=P�(t) is a non-constant,
T (�)-periodic solution of (A.1),Ṗ�(t) is a non-trivial,T (�)-periodic solution of variational
systemẏ=A(t, �)y, whereA(t, �)=�F/�X at(P�(t),�(�)). Following Floquet’s theorem,
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one of the characteristic exponents associated withP� is thus 0mod 2�i/T (�). Hence,P�
has 0 and�(�) as a set of characteristic exponents, where we define

�(�)= 1

T (�)

∫ T (�)

0
trA(s, �)ds, (A.18)

sinceT (�)=T (�,�(�)) isCL+1 in � andA(t, �) isCL+1 jointly in t and�, the function�(�)
isCL+1 in �. Next we will expand�(�).
If we write � = x1 + ix2, then

ẋ1 = �x1 − �x2 + [(Rec1)x1 − (Im c1)x2]r2 +O(�4),

ẋ2 = �x1 + �x2 + [(Rec1)x2 + (Im c1)x1]r2 +O(�4)

and

tr
�F
�X

(P (t,�(�)))= 2�(�(�))+ 4[Rec1(�(�))]�2 +O(�3),

where we have selectively used the facts that�(�) = O(�2) andr2 = �2 + O(�5), (L�2).
Hence

1

T (�)

∫ T (�)

0
trA(s, �)ds = 2�(�(�))+ 4[Rec1(�(�))]�2 +O(�3). (A.19)

But

�(�(�))= �′(0)�2�2 + · · · = −Rec1(0)�2 + · · · .
Therefore, following Floquet’s theorem,

0+ �(�)= 2Rec1(0)�2 +O(�3).

Thus,�(�)<0 for � sufficiently small if Rec1(0)<0, which is just the criterion derived
earlier for asymptotic, orbital stability ofP(t,�(�)). However, the equality�(�)<0 implies
that the bifurcating periodic solutions of the system (A.1) are asymptotically, orbitally stable
with asymptotic phase.
The above computation can carried out to include terms of order�4, providedL is at least

4. The result is

�(�)= �2�
2 + �4�

4 +O(�5),

where

�2 = 2Rec1(0), �4 = 4Rec2(0)+ 2Rec′1(0)�2. (A.20)

A.3. Reduction of two-dimensional systems to Poincaré normal form

Beforewecanapply thebifurcation formulae, derived in theprecedingsections, to various
model systems, we must show how general autonomous systems, satisfying the hypothesis
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of Hopf Theorem, can be transformed into Poincaré normal form.We begin with the single
complex equation

ż= �z+ g(z, z̄,�), (A.21)

where

g(z, z̄,�)=
∑

2� i+j�L
gij (�)

zi z̄j

i!j ! +O(|z|L+1) (A.22)

and

�(�)= �(�)+ i�(�).

We desire to transform (A.21) by means of a transformation:

z= � + �(�, �̄,�)= � +
∑

2� i+j�L
�ij (�)

�i �̄
j

i!j ! (A.23)

into the Poincaré normal form

�̇ = �(�)� +
[L/2]∑
j=1

cj (�)�|�|2j + o(|�||(�,�)|L+1)= �(�)� + �(�, �̄,�). (A.24)

By the chain rule

ż= �̇ + ���̇ + ��̄
˙̄�

or

���� + �̄�̄��̄ − �� = g(� + �, �̄ + �̄)− (� + ��� + ��̄�̄). (A.25)

From this relation the coefficients�ij in (A.23) can be determined recursively. In powers

of � and�̄ the left-hand side of (A.25) can be written as

∑
2� i+j�L

(�ij )(i� + j �̄ − �)
�i �̄

j

i!j ! . (A.26)

Note that the expansion of the right-hand side of (A.25) to orderk = 2 is independent of
the�ij and to orderk(k = 3, . . . , L) involves exactly the coefficients�ij for 2� i + j�k.
Therefore the undetermined coefficients�ij with i + j = k can be found by expanding
(A.25) to orderk. We begin withk = 2.
To order|�|2, (A.25) is

��20
�2

2
+ �̄�11��̄ + (2�̄ − �)�02

�̄
2

2
= g20

�2

2
+ g11��̄ + g02

�̄
2

2
.
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Thus

�20 = g20

�
, �11= g11

�̄
, �02 = g02

2�̄ − �
. (A.27)

Taking this into account, we next find that equating coefficients of�2�̄ on both sides of
(A.25) implies that

c1(�)= g20g11(2� + �̄)
2|�|2 + |g11|2

�
+ |g02|2

2(2� − �̄)
+ g21

2
. (A.28)

Thus, for� = 0, we obtain

c1(0)= i

2�0

(
g20g11− 2|g11|2 − 1

3
|g02|2

)
+ g21

2
, (A.29)

where we have used the hypothesis that�(0)= i�0.

A.4. Restriction to the center manifold

Writing (A.1) as

Ẋ = A(�)X + f (X,�)= F(X,�). (A.30)

Let q(�) andq∗(�) be eigenvectors for

A(�)= FX(0,�)

andAT, respectively, corresponding to the simple eigenvalues

�(�)= �(�)+ i�(�)

and�̄(�) of A(�); that is

Aq = �q, ATq∗ = �̄q∗. (A.31)

We normalizeq∗ relative toq so that

〈q∗, q〉 = 1, (A.32)

where〈·, ·〉 denotes the Hermitian product〈u, v〉 =∑n
i=1 ūivi .

For any solutionx of (A.30), we define

z(t)= 〈q∗, x(t)〉. (A.33)

We shall usezandz̄ (in the directionsq andq̄) as local coordinates. We also define

w(t)= x(t)− z(t)q(�)− z̄q̄(�)= x(t)− 2Re[z(t)q(�)]. (A.34)

Becausezqandz̄q̄ will always occur together, our choice of complex coordinates will not
introduce complex-valued solutions of (A.30).
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Note that〈q∗, q̄〉 = 0. A slightly different way of looking at the decomposition ofx(t)
into z(t) andw(t) is by means of the projection matrices

P‖ = q(q̄∗)T + q̄(q∗)T = 2Re[q(q̄∗)T],
and

P⊥ = I − P‖ = I − 2Re[q(q̄∗)T].
These obey

P 2‖ = P‖, P 2⊥ = P⊥, P‖P⊥ = 0, P⊥P‖ = 0.

In terms ofP‖ andP⊥

z(t)q + z̄(t)q̄ = P‖x(t)

and

w(t)= P⊥x(t).

In the variableszandw, (A.30) becomes

ż= �(�)z+G(z, z̄, w,�),

ẇ = A(�)w +H(z, z̄, w,�), (A.35)

where

G(z, z̄, w,�)= 〈q∗, f (w + 2Re[zq],�)〉
H(z, z̄, w,�)= f (w + 2Re[zq],�)− 2Re[qG]. (A.36)

Since

〈Req∗, w〉 = 0 and 〈Im q∗, w〉 = 0, 〈q∗, w〉 = 0. (A.37)
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