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HOPF BIFURCATION FROM INFINITY
FOR PLANAR CONTROL SYSTEMS

Jaume Llibre and Enrique Ponce

Abstract
Symmetric piecewise linear bi-dimensional systems are very com-
mon in control engineering. They constitute a class of non-differ-
entiable vector fields for which classical Hopf bifurcation theorems
are not applicable. For such systems, sufficient and necessary con-
ditions for bifurcation of a limit cycle from the periodic orbit at
infinity are given.

1. Introduction and statement of main results

In this paper we are concerned with the appearance of one limit cycle
from infinity for symmetric piecewise linear bi-dimensional systems. This
phenomenon can be considered as a kind of generalized Hopf bifurcation
from the infinity.

The systems under study are of great importance in direct control
theory [1], [2], being very common in control engineering as they include
the case where the nonlinearities involved are of saturation type. They
constitute a class of non-differentiable vector fields for which classical
Hopf bifurcation theorems are not applicable so that specific techniques
are needed in their analysis.

Thus, we consider differential systems of the form

(1) ẋ = Ax + ψ(cT x)b,

where A is a 2 × 2 real matrix and x,b, c belong to R2. Here the dot
denotes derivatives with respect to the variable s. The nonlinearity of
these systems results from the presence of the characteristic function ψ.
A common assumption in control theory is to consider odd piecewise
linear characteristic functions of the form

(2) ψ(σ) =




k2σ − (k1 − k2)w if σ ≤ −w,
k1σ if − w < σ < w,

k2σ + (k1 − k2)w if w ≤ σ.
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Note that for k2 = 0 the nonlinearity ψ corresponds with a saturation
function, one of the most frequent nonlinearities involved in practice.

Clearly a system (1)-(2) splits into three linear systems on the regions
cT x ≤ −w, −w ≤ cT x ≤ w and cT x ≥ w and it is invariant under
the symmetry x → −x. So, system (1)-(2) is also called an odd three-
piecewise linear system.

Systems (1)-(2) are linearly dominated at infinity , that is, there exists
a constant matrix B = A + k2bcT such that

lim
||x||→∞

||Ax + ψ(cT x)b − Bx||
||x|| = 0,

and so the results of Glover [3] and He [4], which give sufficient conditions
in order that a periodic orbit bifurcates from infinity, apply. However,
assuming that this bifurcation occurs for a critical value of a parameter,
say µ = 0, they do not provide any information about:

(1) whether the bifurcated periodic orbit exists for µ < 0 or µ > 0
with |µ| sufficiently small,

(2) the uniqueness of the bifurcated periodic orbit,

(3) the stability of the bifurcated periodic orbit, and

(4) an asymptotic estimate for the size of the bifurcated periodic or-
bit.

Our results answer the four questions just mentioned.
System (1) is called observable if the subspace span{c,AT c} = R2.

For systems (1)-(2) we define the following four parameters

T = trace(A + k1bcT ), t = trace(A + k2bcT ),

D = det(A + k1bcT ), d = det(A + k2bcT ).

Our first result is the following.

Proposition 1. Systems (1)-(2) have a periodic orbit at infinity if
and only if they are observable and 4d− t2 > 0.

As it will be shown, by means of a linear change of variables, observable
systems (1)-(2) can be written in the form

(3)
(
ẋ
ẏ

)
=

(
0 −d
1 t

) (
x
y

)
+ ϕ(y)

(
d−D
T − t

)
,
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where

(4) ϕ(σ) =
{

sign(σ) if | σ |≥ 1,
σ if | σ |≤ 1.

We remark that (3)-(4) correspond to the observable canonical form of
systems (1)-(2) where the nonlinearity ϕ is further a normalized satura-
tion. Selecting t as the bifurcation parameter, we will use this form to
show our main result, which is the following.

Theorem 2. For systems (1)-(2) having a periodic orbit at infinity,
the following statements hold.

(a) If T 	= 0 then for t = 0 a unique limit cycle bifurcates from the
periodic orbit at infinity.

(b) If T < 0 then, for ε > 0 sufficiently small, the bifurcated limit
cycle exists for t ∈ (0, ε) and is unstable, and it does not exist for
t ∈ (−ε, 0).

(c) If T > 0 then, for ε > 0 sufficiently small, the bifurcated limit
cycle exists for t ∈ (−ε, 0) and is stable, and it does not exist for
t ∈ (0, ε).

(d) For their observable canonical form (3)-(4), the bifurcated limit
cycle is near the ellipse of x-semiaxis

a =
Td− tD

d
·
1 + exp

(
− πt√

4d−t2

)
1 − exp

(
πt√

4d−t2

) ,

and y-semiaxis b = a/
√
d.

(e) If T = 0 then for t = 0 no limit cycles bifurcate from the periodic
orbit at infinity.

(f) For t 	= 0 no limit cycles bifurcate from the periodic orbit at in-
finity.

Particular cases which can be studied by Theorem 2 appeared in Lum
and Chua [5], Llibre and Sotomayor [6] and Llibre and Ponce [7].

Our main tool for proving Theorem 2 is the study of the first deriva-
tives of the Poincaré map in a neighborhood of infinity. To compute
these derivatives, we use a extension to piecewise smooth systems of
some results of Lloyd [8].

Bifurcation of a periodic orbit from infinity has been also studied for
polynomial planar vector fields, see for instance Sotomayor and Paterlini
[9], Blows and Rousseau [10], and Gúıñez, Sáez and Szantó [11].
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Other papers about bifurcation of periodic orbits from infinity are due
to Keith and Rand [12], Malaguti [13] and Sabatini [14], where they
study the Rayleigh, Van der Pol and Liénard systems.

The paper is organized as follows. In Section 2, we summarize the
results in a previous work [15] about formulas for the first derivatives of
the Poincaré map for piecewise smooth systems. The proof of Proposi-
tion 1 and the use of these formulas to prove Theorem 2 are included in
Section 3.

2. First derivatives of the Poincaré map at infinity
for piecewise smooth systems

The study of the Poincaré map in a neighborhood of infinity for planar
vector fields, when it is well defined, can be conveniently made by using
the Bendixson transformation. This reduces the problem to a similar
study in a neighborhood of the origin for the transformed system, see for
instance Andronov and others [16].

To fix ideas, we consider the planar system,

(5)
ẋ = f(x, y),
ẏ = g(x, y),

where f and g are Lipschitz functions. Through the inversion given by
the Bendixson change of variables

(
u
v

)
=

1
x2 + y2

(
x
y

)
,

we can formulate an equivalent system which behaves in a neighborhood
of the origin like system (5) near infinity. Using now the polar coordi-
nates u = r cos θ, v = r sin θ, what of course corresponds to do from the
beginning the change of variables

x =
cos θ
r

, y =
sin θ
r

,

the system becomes

(6)

ṙ = −r2
[
f

(
cos θ
r

,
sin θ
r

)
cos θ + g

(
cos θ
r

,
sin θ
r

)
sin θ

]
,

θ̇ = −r
[
f

(
cos θ
r

,
sin θ
r

)
sin θ − g

(
cos θ
r

,
sin θ
r

)
cos θ

]
,



Hopf bifurcation from infinity 185

and we will be interested in the flow defined in the half-cylinder R+ ×
S1 = {(r, θ) : r ≥ 0, θ ∈ [0, 2π)}.

System (6) has in most cases no sense for r = 0, but this difficulty
can be normally overcomed by a time reparametrization, and typically
it suffices to multiply its vector field by an adequate power of r. Also
note that, after extending continuously the flow to r = 0 if needed, the
existence of a periodic orbit at infinity for system (5) is equivalent to
have r = 0 as a periodic orbit on the cylinder for system (6).

To be more precise, we assume in the sequel that system (6) can be
extended to the system,

(7)
ṙ = R(r, θ),

θ̇ = Θ(r, θ),

where the functions R and Θ verify the following assumptions:

(A1) R and Θ both are Lipschitz functions and they have period 2π
in θ.

(A2) R(0, θ) = 0 for all θ, and Θ(0, θ) 	= 0 for all θ.

Note that the last assumption implies that r = 0 is a periodic orbit of
system (7) and that it has no equilibrium points in [0, ρ) × S1 for some
ρ sufficiently small. This represents a sufficient and necessary condition
for system (5) to have a periodic orbit at infinity.

Since Θ 	= 0 in a neighborhood of r = 0, we can regard (7) as the first
order equation

(8)
dr

dθ
= S(r, θ) =

R(r, θ)
Θ(r, θ)

,

where r ∈ [0, ρ), θ ∈ S1. For ξ ∈ [0, ρ), we denote with r(θ, ξ) the
solution of (8) satisfying r(0, ξ) = ξ. We consider the Poincaré map
ξ �→ h(ξ) = r(2π, ξ) and assume that h(ξ) is defined in [0, ρ). Of course,
h(0) = 0. As it is well-known, h is monotonically increasing on its
domain of definition and every solution of h(ξ)− ξ = 0 corresponds with
a periodic orbit of (8) and consequently of (7), (6) and (5).

By studying the behaviour of the first derivatives of h, we can deduce
whether additional solutions of the equation h(ξ)− ξ = 0 bifurcate from
the solution ξ = 0. New solutions, if any, will correspond with periodic
orbits of system (5) bifurcating from the periodic orbit at infinity.

WhenR and Θ, and so S, are sufficiently smooth, these first derivatives
can be computed following Lloyd [8]. However, the lack of smoothness of
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differential systems (1)-(2) requires additional caveats. In what follows,
we consider the case when the corresponding vector field S(r, θ) is only
piecewise differentiable and we are interested in computing the first and
second derivatives of a generic Poincaré map.

We assume a domain D = {(r, θ) ∈ [0, ρ) × [θ1, θ2]} which is halved
by the graph of a C1-function θ̄ : [0, ρ) �→ [θ1, θ2] in the two pieces
D1 = {(r, θ) : r ∈ [0, ρ), θ ∈ [θ1, θ̄(r)]} and D2 = {(r, θ) : r ∈ [0, ρ), θ ∈
[θ̄(r), θ2]}, so that

(9) S(r, θ) =
{ S1(r, θ) for (r, θ) ∈ D1,

S2(r, θ) for (r, θ) ∈ D2 \ D1,

where both S1 : D1 �→ R and S2 : D2 �→ R are smooth, and S(0, θ) = 0,
for all θ ∈ [θ1, θ2].

r
ρ

h1(ξ)

ξ

θ1 θ̄(ξ) θ∗(ξ) θ2

θ

h(ξ)

D1

D2

Figure 1. Scheme of the situation considered in this section.

We suppose that the corresponding equation (8) with S given in (9) has
for all ξ ∈ [0, ρ) a continuous solution r(θ, ξ) defined in θ1 ≤ θ ≤ θ2 which
verifies r(θ1, ξ) = ξ. We also assume for all ξ ∈ [0, ρ) a transversality
condition

(10) S1(ξ, θ̄(ξ)) ·
dθ̄

dr
(ξ) 	= 1

on the curve θ̄([0, ρ)), and the existence of a C1 crossing phase function,

θ∗ : [0, ρ) �→ [θ1, θ2] with θ∗(ξ) = θ̄(r(θ∗(ξ), ξ)),
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which permits to define the intermediate Poincaré map

ξ �→ h1(ξ) = r(θ∗(ξ), ξ).

See Figure 1. The following result has been proved in a previous work
[15].

Proposition 3. Under the previous assumptions, for ξ ∈ [0, ρ) and
θ ∈ [θ1, θ2] we define the functions:

E(ξ, θ1, θ) = exp

(∫ θ

θ1

∂S
∂r

(r(φ, ξ), φ) dφ

)
,

D(ξ, θ) = E(ξ, θ1, θ) ·
∂2S
∂r2

(r(θ, ξ), θ).

Then the Poincaré map ξ �→ h(ξ) = r(θ2, ξ) verifies:

h′(ξ) =
1 − S2(h1(ξ), θ̄(h1(ξ))) · θ̄′(h1(ξ))
1 − S1(h1(ξ), θ̄(h1(ξ))) · θ̄′(h1(ξ))

E(ξ, θ1, θ2),(11)

h′(0) = E(0, θ1, θ2).(12)

If furthermore the vector field S given in (9) is continuous, we have

(13)

h′′(ξ) = E(ξ, θ1, θ2) ·
∫ θ2

θ1

D(ξ, θ) dθ

+ E(ξ, θ1, θ2)
E(ξ, θ1, θ̄(h1(ξ))) · θ̄′(h1(ξ))

1 − S1(h1(ξ), θ̄(h1(ξ))) · θ̄′(h1(ξ))

·
(
∂S1

∂r
(h1(ξ), θ̄(h1(ξ))) −

∂S2

∂r
(h1(ξ), θ̄(h1(ξ)))

)
,

and

(14) h′′(0) = E(0, θ1, θ2) ·
[∫ θ2

θ1

D(0, θ) dθ

+ E(0, θ1, θ̄(0)) · θ̄′(0)
(
∂S1

∂r
(0, θ̄(0)) − ∂S2

∂r
(0, θ̄(0))

)]
.

We remark that these formulae are in general different of those ob-
tained by Lloyd [8], and of course both coincide if the vector field S
turns out to be sufficiently differentiable. Proposition 3 will be used in
the next section to prove Theorem 2.
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3. Proof of the main results

We start by showing two intermediate results which will be used in
the proof of Proposition 1.

Lemma 4. If a system (1)-(2) has a periodic orbit at infinity then it
is observable.

Proof: Suppose that a system (1)-(2) is not observable. Then, there
exists a vector v 	= 0 such that

(
c,AT c

)T
v = 0, and so both cT v = 0

and cT Av = 0. Then v is an eigenvector of the matrix A, because if
Av 	= λv for all λ ∈ R we get the contradiction 0 = cT Av 	= λcT v = 0.
Since

(
A + k1bcT

)
v = Av, the vector v is also an eigenvector of the

matrix A + k1bcT . We note that system (1)-(2) is ẋ =
(
A + k1bcT

)
x,

for |cT x| ≤ u. So that the straightline cT x = 0 is invariant under its
flow. Consequently, we have a symmetric pair of critical points in the
equator of the Poincaré sphere and the conclusion follows.

Lemma 5. Observable systems (1)-(2) can be written by means of a
linear change of variables in the form given in (3)-(4).

Proof: If we make in (1)-(2) the changes wy = x, Ā = A+k2bcT and
b̄ = (k1 − k2)b, we obtain the system

(15) ẏ = Āy + ϕ(cT y)b̄,

where ϕ is given in (4). This transformation preserves the hypothesis of
observability because this hypothesis is equivalent to det(c,AT c) 	= 0,
and

det(c, ĀT c) = det
(
c,AT c + (k2bT c)c

)
= det(c,AT c).

Now, from (15) and by means of another linear change of variables, we
can pass to the observable canonical form (see Theorem 7-2 of Chen
[17]):

(16)
(
ẋ
ẏ

)
=

(
0 −d
1 t

) (
x
y

)
+ ϕ(y)

(
b1
b2

)
.

We remark that the quoted theorem guarantees the existence of an in-
vertible matrix T such that

cT T = (0, 1),
(

0 −d
1 t

)
= T−1ĀT, and

(
b1
b2

)
= T−1b̄.
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Comparing now the vector field near the origin of system (16) with that
of (1)-(2), we have b1−d = −D and b2+t = T , and the lemma follows.

In the rest of the paper, we use for system (3)-(4) the notation of (16),
where

(17) b1 = d−D, and b2 = T − t,

and we remark that it is formed by the following linear systems

(
ẋ
ẏ

)
=

(
0 −d
1 t

) (
x
y

)
+

(
b1
b2

)
for y ≥ 1,(18)

(
ẋ
ẏ

)
=

(
0 b1 − d
1 b2 + t

) (
x
y

)
for |y| ≤ 1, and(19)

(
ẋ
ẏ

)
=

(
0 −d
1 t

) (
x
y

)
−

(
b1
b2

)
for y ≤ −1.(20)

Proof of Proposition 1: Assume first that system (1)-(2) is observable.
From Lemma 5, we can pass to the equivalent formulation given in (17)-
(20). We define three regions on the cylinder R+ × S1 = {(r, θ) : r ≥ 0
and θ ∈ [0, 2π)} as follows

DI = {(r, θ) : 0 ≤ θ ≤ π and r ≤ sin θ},
DII = {(r, θ) : 0 ≤ θ ≤ 2π and r ≥ | sin θ|},
DIII = {(r, θ) : π ≤ θ ≤ 2π and r ≤ − sin θ}.

See Figure 2.
If we make the Bendixson transformation, defined in Section 2, we

obtain from (6) and (18)-(20) the following three systems:

(21)
ṙ = −r

[
(1 − d) sin θ cos θ + t sin2 θ + r(b1 cos θ + b2 sin θ)

]
,

θ̇ = d sin2 θ + cos2 θ + t sin θ cos θ − r(b1 sin θ − b2 cos θ),

where (r, θ) ∈ DI ,

(22)
ṙ = −r

[
(1 + b1 − d) sin θ cos θ + (b2 + t) sin2 θ

]
,

θ̇ = −(b1 − d) sin2 θ + cos2 θ − (b2 + t) sin θ cos θ,

where (r, θ) ∈ DII , and

(23)
ṙ = −r

[
(1 − d) sin θ cos θ + t sin2 θ − r(b1 cos θ + b2 sin θ)

]
,

θ̇ = d sin2 θ + cos2 θ + t sin θ cos θ + r(b1 sin θ − b2 cos θ),
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where (r, θ) ∈ DIII . Note that the global flow on the cylinder R+ × S1

is invariant to the change (r, θ) → (r, θ + π), which is a consequence of
the original symmetry x ↔ −x of (1)-(2), and that it verifies assump-
tion (A1) of Section 2.

Regarding assumption (A2), which is then a sufficient and necessary
condition for having a periodic orbit at infinity, we see that R(0, θ) = 0
for all θ and that

Θ(0, θ) = d sin2 θ + cos2 θ + t sin θ cos θ, for 0 ≤ θ ≤ 2π,

which can be seen as a quadratic form in (sin θ, cos θ) with matrix
 d

t

2
t

2
1


 .

r

ρ

θ = 0 θ = π/2 θ = π θ = 3π/2 θ = 2π

DI

DII

DIII

Figure 2. Different regions in R+ × S1 for odd three piecewise linear
systems.

Hence, the condition Θ(0, θ) 	= 0 for all θ is equivalent to the above
matrix be positive or negative definite. Since this is also equivalent to
4d− t2 > 0, the ‘if’ part of the proposition follows.

To show the ‘only if’ part of the Proposition, it suffices to apply first
Lemma 4, and to consider then the necessity of assumption (A2) of
Section 2, which implies that 4d− t2 > 0.

Before to give the proof of Theorem 2, we do some preparation work
assuming that system (1)-(2) has a periodic orbit at infinity and so, from
Proposition 1, that it is observable and 4d−t2 > 0. Thus, we can assume
that d > 0 and start from the equivalent system (16). In order to simplify
the remaining computations, we can do in (16) the change

(24) x =
√
dX, y = Y, s = τ/

√
d,
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getting

(25)

dX

dτ
= −Y + b̄1ϕ(Y ),

dY

dτ
= X + t̄ Y + b̄2ϕ(Y ),

where

(26) b̄1 =
b1
d
, b̄2 =

b2√
d

and t̄ =
t√
d
,

so that |t̄| < 2. Notice that (25) is of the form (16) and so, if we omit
the bar of the parameters b1, b2 and t, writing

(27)




dX

dτ

dY

dτ


 =

(
0 −1
1 t

) (
X
Y

)
+ ϕ(Y )

(
b1
b2

)
,

it suffices now to take d = 1 in (21)-(23) to get the vector field on the
cylinder which gives the flow near the point at infinity:

(28)

S(r, θ)=




SI(r, θ)=−r t sin2 θ + r(b1 cos θ + b2 sin θ)
1 + t sin θ cos θ − r(b1 sin θ − b2 cos θ)

in DI ,

SII(r, θ)=−r t sin
2 θ + b1 sin θ cos θ + b2 sin2 θ

1 − b1 sin2 θ − (b2 + t) sin θ cos θ
in DII ,

SIII(r, θ)=−r t sin2 θ − r(b1 cos θ + b2 sin θ)
1 + t sin θ cos θ + r(b1 sin θ − b2 cos θ)

in DIII .

Clearly, it turns out to be piecewise smooth and Lipschitz for |t| < 2.
As assumptions (A1) and (A2) are fulfilled, there exists ρ > 0 such

that for ξ ∈ [0, ρ) the solution r(θ, ξ) with r(0, ξ) = ξ of (8) with S(r, θ)
given in (28) is well defined for 0 ≤ θ ≤ 2π and such that the Poincaré
map ξ �→ h(ξ) = r(2π, ξ) is analytic (we remark that h is composition of
five analytic functions if ρ is sufficiently small, see Figure 2).

Due to the invariance of equation (8) with S given in (28) under the
change (r, θ) → (r, θ+π), we can decompose the Poincaré map as follows,
(29) h(ξ) = h1(h1(ξ)), where h1(ξ) = r(π, ξ),
and we note that ξ0 is a fixed point of h if and only if ξ0 is a fixed point
of h1, and in that case it has the same stability for both maps because
h′(ξ0) = (h′1(ξ0))

2.
In the following result we give the value of the first two derivatives of

the Poincaré map h1.
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Lemma 6. The half Poincaré map h1 of equation (8) with S(r, θ)
given in (28) verifies:

h′1(0) = exp
(
− πt√

4 − t2

)
,(30)

h′′1(0) = −2h′1(0)(b1t+ b2)
(

1 + exp
(
− πt√

4 − t2

))
,(31)

h′′1(0)|t=0 = −4b2.(32)

Proof: Our main tool will be Proposition 3, and to apply it adequately
we first decompose the Poincaré map h1 in the two maps:

ξ �→ h1,1(ξ) = r
(π

2
, ξ

)
for ξ ∈ [0, ρ) with ρ � 1,

η �→ h1,2(η) = r(π, ξ) for ξ such that r
(π

2
, ξ

)
=η, and η∈

[
0, r

(π
2
, ρ

))
,

where r(θ, ξ) is the solution such that r(0, ξ) = ξ.
We note that h1,1 is the Poincaré map which applies the interval [0, ρ)

of the generatrix {θ = 0} into the generatrix {θ = π/2}, see Figure 2.
Similarly h1,2 is the Poincaré map which applies the interval [0, r(π/2, ρ))
of the generatrix {θ = π/2} into the generatrix {θ = π}. We also have
h1,1(0) = 0 and h1,2(0) = 0, because r(θ, 0) = 0 for all θ.

It is clear that h1,1 makes use only of the flow in the region 0 ≤ θ ≤
π/2, where S(r, θ) is piecewise smooth, coinciding with SII(r, θ) of (28)
for 0 ≤ θ ≤ θ̄(r) = sin−1 r, and with SI(r, θ) of (28) for θ̄(r) ≤ θ ≤ π/2.

In order to apply Proposition 3, we must check the transversality con-
dition (10) for SII(r, θ). It comes from a continuity argument by seeing
that θ̄′(0) = 1 and SII(0, 0) = 0.

From (12),
h′1,1(0) = E

(
0, 0,

π

2

)
,

where

(33) E(0, 0, θ) = exp

(∫ θ

0

∂SI

∂r
(0, φ) dφ

)
,

because the value of ∂SII

∂r does not contribute to the integral.
Elementary calculations show that

∂SI

∂r
(0, θ) = − t sin2 θ

1 + t sin θ cos θ
,(34)

∂2SI

∂r2
(0, θ) = −2

b1(cos θ + t sin θ) + b2 sin θ
(1 + t sin θ cos θ)2

,(35)
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and the expression (14) reduces to

h′′1,1(0) = E
(
0, 0,

π

2

) ∫ π
2

0

D(0, θ) dθ,

because ∂SI

∂r (0, 0) = ∂SII

∂r (0, 0) = 0 and so the second term in (14) is zero.
We also have

D(0, θ) = E(0, 0, θ)
∂2SI

∂r2
(0, θ),

because the integration can be made completely in DI . In short, we get

h′′1,1(0) = E
(
0, 0,

π

2

) ∫ π
2

0

∂2SI

∂r2
(0, θ)E(0, 0, θ) dθ.

Now we apply Proposition 3 to h1,2, and note that all the computations
are similar but θ̄(r) = π − sin−1 r, θ1 = π/2, and θ2 = π. So, we obtain

h′1,2(0) = E
(
0,
π

2
, π

)
,

D(0, θ) = E
(
0,
π

2
, θ

) ∂2SI

∂r2
(0, θ), and

h′′1,2(0) = E
(
0,
π

2
, π

) ∫ π

π
2

∂2SI

∂r2
(0, θ)E

(
0,
π

2
, θ

)
dθ.

By using

h′1(0) = h′1,2(0) · h′1,1(0),

h′′1(0) = h′′1,2(0) · h′1,1(0)2 + h′1,2(0) · h′′1,1(0),

we get after applying several times the equality E
(
0, 0, π

2

)
·E

(
0, π

2 , θ
)

=
E(0, 0, θ),

h′1(0) = E(0, 0, π),(36)

h′′1(0) = E(0, 0, π)
∫ π

0

∂2SI

∂r2
(0, θ)E(0, 0, θ) dθ.(37)

To evaluate E(0, 0, π), we write

(38)

∫ π

0

t sin2 θ dθ

1 + t sin θ cos θ
=

1
2

∫ π

0

t dθ

1 + t sin θ cos θ

− 1
2

∫ π

0

t(cos2 θ − sin2 θ) dθ
1 + t sin θ cos θ

=
1
2

∫ π

0

t dθ

1 + t sin θ cos θ
,
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because the second integral has the primitive log(1 + t sin θ cos θ) and it
vanishes. Then, from (33) and (34) we get

(39) E(0, 0, π) = exp
(
−1

2

∫ π

0

t dθ

1 + t sin θ cos θ

)
= exp

(
− πt√

4 − t2

)
.

Therefore, from (36) and (39) it follows (30).
Now, from (37) and using (33), (34) and (35), we see that

h′′1(0) = −2E(0, 0, π)

·
∫ π

0

b1(cos θ + t sin θ) + b2 sin θ
(1 + t sin θ cos θ)2

exp

(∫ θ

0

−t sin2 φdφ

1 + t sinφ cosφ

)
dθ,

and it can be shown (see the Appendix in Llibre and Ponce [15]) that

h′′1(0) = −2E(0, 0, π)(b1t+ b2)
[
1 + exp

(
− πt√

4 − t2

)]
.

Hence, from (39) both (31) and (32) follow directly.

We write now a standard result that will also be used in the proof of
Theorem 2.

Lemma 7. Consider for some δ > 0 sufficiently small a one-para-
meter family of C2 maps ξ �→ hµ(ξ), with |µ| < δ and ξ ∈ R, having
a fixed point at ξ = 0, i.e., hµ(0) = 0 for all |µ| < δ. Suppose that
for µ = 0 this fixed point is non-hyperbolic; that is h′0(0) = 1. If the
conditions

d

dµ
h′µ(0)

∣∣∣∣
µ=0

	= 0, and h′′µ(0) 	= 0

are fulfilled, then the family of maps undergoes for µ = 0 a transcritical
bifurcation at ξ = 0; that is, apart from the fixed point ξ = 0, there
exists a curve ξ(µ) of fixed points in the (µ, ξ)-plane passing through the
origin of that plane and existing on both sides of µ = 0, giving rise to
one additional fixed point for µ < 0 and for µ > 0. The slope of that
curve at the origin is

dξ

dµ
(0) = −

d
dµh

′
µ(0)

∣∣∣
µ=0

h′′µ(0)
.

Proof: See for instance Wiggins [18, pp. 362–366].
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Finally, we give the proof of Theorem 2.

Proof of Theorem 2: We apply Lemma 7 to the Poincaré map h1,
see (29), taking µ = t. From Lemma 6 we know that this map is non-
hyperbolic at ξ = 0 for t = 0, and that

d

dt
h′1(0)

∣∣∣∣
t=0

=
d

dt

{
exp

(
− πt√

4 − t2

)}
t=0

= −π

2
	= 0,

h′′1(0)|t=0 = −4b2.

Thus, from Lemma 7, when b2 	= 0, the map h1(ξ) undergoes for t = 0
a transcritical bifurcation at ξ = 0. From (26) and (17) statement (a)
follows.

The additional curve of fixed points ξ(t) has, at the origin of the plane
(t, ξ), the slope

dξ

dt
(0) = − π

8b2
.

Therefore, since only the fixed points with ξ > 0 correspond to periodic
orbits of system (1)-(2), recalling again (26) and (17) the assertions of
statements (b) and (c) (excepting the stability of limit cycles) are proved.

A local expression of h1(ξ) at ξ = 0 gives

h1(ξ) − ξ = (h′1(0) − 1)ξ +
1
2
h′′1(0)ξ2 +O(ξ3).

Then, eliminating the root ξ = 0 in the equation h1(ξ) − ξ = 0, we get
that the other root ξ(t) 	= 0 satisfies

h′1(0) − 1 +
1
2
h′′1(0)ξ(t) ≈ 0,

for ξ(t) sufficiently small. That is,

(40) ξ(t) ≈ 2
1 − h′1(0)
h′′1(0)

.

Therefore, for ξ(t) sufficiently small, we have

h′1(ξ(t)) ≈ h′1(0) + h′′1(0)ξ(t) ≈ 2 − h′1(0) = 2 − exp
(
− πt√

4 − t2

)
,

where we have used Lemma 6. So, h′1(ξ(t)) is greater than 1 if t > 0
and less than 1 for t < 0. Hence, recalling once more (26) and (17), the
stability assertions of statements (b) and (c) are shown.
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From (40) and Lemma 6, we have

ξ(t) ≈ −
1 − exp

(
− πt√

4−t2

)
(b1t+ b2) exp

(
− πt√

4−t2

) [
1 + exp

(
− πt√

4−t2

)] ,

and so the bifurcated limit cycle for system (27) is near the circle of
radius r = 1/ξ(t). Going backwards through (26), the bifurcated limit
cycle for system (25) is near the circle of radius

1
r

= −
1 − exp

(
− πt√

4d−t2

)
(b1t+ b2d) exp

(
− πt√

4d−t2

) [
1 + exp

(
− πt√

4d−t2

)]√d.

Statement (d) follows at once by using (17) and recalling the transfor-
mation (24), made to get (25) from (16).

Statement (e) comes from the fact that for T = 0 and t 	= 0 the
trace of system (27) has constant sign (see the standard Bendixson-Dulac
criterion but adequately modified to continuous piecewise C1-systems, as
in Proposition 3 of Llibre and Sotomayor [6]).

Statement (f) is a direct consequence of the hyperbolicity of the peri-
odic orbit at infinity, see Lemma 6.
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