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A delayed ecoepidemic model with ratio-dependent transmission rate has been proposed in this paper. E	ects of the time delay
due to the gestation of the predator are the main focus of our work. Su
cient conditions for local stability and existence of a Hopf
bifurcation of the model are derived by regarding the time delay as the bifurcation parameter. Furthermore, properties of the Hopf
bifurcation are investigated by using the normal form theory and the center manifold theorem. Finally, numerical simulations are
carried out in order to validate our obtained theoretical results.

1. Introduction

In recent years, many dynamical models characterizing the
propagation of infectious disease [1–3], spread of computer
viruses [4–6], and dynamics of some other systems [7–10] are
studied by scholars. Ecoepidemiological research deals with
the study of the spread of diseases among interacting pop-
ulations, where the epidemic and demographic aspects are
merged within one model. And they have been investigated
by many scholars at home and abroad since the pioneer
work of Kermack and McKendrick [11], and the interests
in investigating the dynamics of ecoepidemic models will
be increasing steadily due to its importance from both the
mathematical and the ecological points of view.

Many scholars studied di	erent predator-prey models
with disease infection in the prey. Chakraborty et al. [12] stud-
ied a ratio-dependent ecoepidemic model with prey harvest-
ing and they assumed that both the susceptible and infected
prey are subjected to combined harvesting. Upadhyay and
Roy [13] proposed an ecoepidemic model with simple law of
mass action andmodi�ed Holling type II functional response
based on the model in [14]. �ey analyzed stability (linear
and nonlinear) of the model. Zhang et al. [15] proposed a
three species ecoepidemic model perturbed by white noise

and they studied stochastic stability and longtime behavior of
the model. Zhou et al. [16] studied local and global stability
of a modi�ed Leslie-Gower predator-prey model with prey
infection. Some delayed ecoepidemic models with disease
infection in the prey have been proposed, and the e	ect of the
delay on the models has been investigated [17–19]. Similarly,
some scholars proposed and investigated the ecoepidemic
models with disease in predators. Sarwardi et al. [20] and
Shaikh et al. [21] studied a Leslie-Gower Holling type II pre-
dator-prey model with disease in predator and Leslie-Gower
Holling type III predator-preymodelwith disease in predator,
respectively. Some other ecoepidemic models with disease in
predators one can refer to include [22–29].

Clearly, most of the epidemic models above are formu-
lated based on the bilinear transmission rate, which is based
on the law of mass action. As stated in [30], transmission
rate plays an important role in the modelling of epidemic
dynamics and the infection probability per contact is likely
in�uenced by the number of infective individuals.�us, it can
be concluded that nonlinear transmission rate seems more
reasonable than the bilinear one. To study the e	ect of a
nonlinear incidence rate on the dynamics of an ecoepidemic
model, Maji et al. [31] proposed the following ecoepidemic
model based the work of Morozov [32]:
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�� (�)�� = � (�) [� (1 − � (�) + � (�)	 )
− (�0 + � (�)1 + �� (�)) � (�)� (�) + � (�)] ,�� (�)�� = (�0 + � (�)1 + �� (�)) � (�) � (�)� (�) + � (�) − �� (�)
− �1� (�) � (�)1 + �� (�) ,�� (�)�� = �2� (�) � (�)1 + �� (�) − �� (�) ,

(1)

where �(�) > 0, �(�) ≥ 0, and �(�) > 0 present the
densities of the healthy prey, the infected prey, and the
predator population, respectively. More parameters are listed
in Table 1.�ey studied stability and persistence of system (1).

As we know, delay di	erential equations exhibit much
more complicated dynamics than ordinary di	erential equa-
tions, and delays can make a dynamical system lose its
stability and can induce various oscillations and periodic
solutions [17, 23, 26, 33–38]. It is interesting to study the e	ect
of time delay on system (1). To this end, and considering the
time required for the gestation of the predator, we incorporate
time delay due to the gestation of the predator into system (1)
and get the following delayed ecoepidemic system:

�� (�)�� = � (�) [� (1 − � (�) + � (�)	 )
− (�0 + � (�)1 + �� (�)) � (�)� (�) + � (�)] ,�� (�)�� = (�0 + � (�)1 + �� (�)) � (�) � (�)� (�) + � (�) − �� (�)
− �1� (�) � (�)1 + �� (�) ,�� (�)�� = �2� (� − �) � (� − �)1 + �� (� − �) − �� (�) ,

(2)

subjected to the initial condition:

� (�) = �1 (�) > 0,� (�) = �2 (�) > 0,� (�) = �3 (�) > 0, � ∈ [−�, 0) (3)

where � is the time delay due to the gestation of the predator.
�is paper is organized as follows. Section 2 deals with

local stability and existence of the Hopf bifurcation. In
Section 3, direction and stability of the Hopf bifurcation are
obtained by using center manifold and normal form theory.
In Section 4, some numerical simulations are presented in
order to verify the analytical �ndings. Conclusions and
discussions are presented in Section 5.

2. Local Stability of the Positive Equilibrium

By direct computation, we can conclude that if �2 > ��, then
system (2) has positive equilibrium �∗(�∗, �∗, �∗), where

�∗ = ��2 − ��,
�∗ = �2�2∗ + �1�∗ + �0�2�2∗ + �1�∗ + �0 ,

(4)

where �∗ is the positive root of (5)	5�5 + 	4�4 + 	3�3 + 	2�2 + 	1� + 	0 = 0, (5)

with	0 = − (�2�20 + �1�0�0 + �0�20) ,	1 =  2�20 +  1�0�0 +  0�20 − 2�2�0�1 − �1�1�0− �1�0�1 − 2�0�0�1,	2 = 2 2�0�1 +  1�1�0 +  1�0�1 + 2 0�0�1− �2�21 − 2�2�0�2 − �1�2�0 − �1�1�1− �1�0�2 − �0�21 − 2�0�0�2,	3 =  2�21 + 2 2�0�2 +  1�2�0 +  1�1�1+  1�0�2 +  0�21 + 2 0�0�2 − 2�2�1�2− �1�2�1 − �1�1�2 − 2�0�1�2,	4 = 2 2�1�2 +  1�2�1 +  1�1�2 + 2 0�1�2− �2�22 − �1�2�2 − �0�22,	5 =  2�22 +  1�2�2,

(6)

and �0 = ��∗ (1 + ��∗) ,�1 = �1�∗ + ���∗ (1 + ��∗) ,�2 = ��1�∗, 0 = (�0 − ��∗) (1 + ��∗) , 1 = [ + � (�0 − ��∗)] (1 + ��∗) − �1, 2 = −��1,�0 = � (	 − �∗) �∗ − %�0�∗,�1 = & (	 − 2�∗) ,�2 = −�,�0 = 	�∗ (��0 + ) ,�1 = ���∗,�2 = ��.

(7)
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Table 1: Parameters and their meanings in this paper.

Parameter Description	 �e carrying capacity of the environment� �emaximal per capita growth rate of the healthy prey�0 �e transmission rate in the absence of predator �e predator density mediated additional disease transmission rate� �e inhibitory e	ect� �e death rate of the infected prey population�1 �e per capita predator consumption rate�2 �e conversion e
ciency of the predator� �e encounter rate between the predator and the infected prey

�e Jacobian matrix of system (2) at �∗(�∗, �∗, �∗) is
' (�∗) = (11 12 1321 22 230 �32-−�� 33 + �33-−��), (8)

where

11 = �∗�∗(�∗ + �∗)2 (�0 + �∗1 + ��∗) − ��∗	 ,
12 = −(�0 + �∗1 + ��∗) �2∗(�∗ + �∗)2 − ��∗	 ,
13 = − �∗�∗(�∗ + �∗) (1 + ��∗)2 ,
21 = (�0 + �∗1 + ��∗) �2∗(�∗ + �∗)2 ,22 = �1��∗�∗(1 + ��∗)2 − (�0 + �∗1 + ��∗ ) �∗�∗(�∗ + �∗)2 ,23 = �∗�∗(�∗ + �∗) (1 + ��∗)2 − �1�∗1 + ��∗ ,33 = −�,
�32 = �2�∗(1 + ��∗)2 ,�33 = �2�∗1 + ��∗ .

(9)

�us, the characteristic equation of '(�∗) about the
positive equilibrium �∗ is given by

�3 + �02�2 + �01� + �00+ ( 02�2 +  01� +  00) -−�� = 0, (10)

with �00 = 33 (1221 − 1122) ,�01 = 1122 + 1133 + 2233 − 1221,

�02 = − (11 + 22 + 33) ,
 00 = �32 (1123 − 1321) + �33 (1221 − 1122) , 01 = �33 (11 + 22) − 23�32, 02 = −�33.

(11)

When � = 0, (10) becomes�3 + 32�2 + 31� + 30 = 0, (12)

where 30 = �00 +  00,31 = �01 +  01,32 = �02 +  02. (13)

Based on the Routh-Hurwitz criterion and the discussion
in [31], it follows that the positive equilibrium �∗ is locally
asymptotically stable if the following condition holds: (41):30 > 0, 31 > 0 and 3132 > 30.

For � > 0, let � = 56(6 > 0) be the root of (10); then 01 sin �6 + ( 00 −  0262) cos �6 = �0262 − �00, 01 cos �6 − ( 00 −  0262) sin �6 = 63 − �016. (14)

�us, 66 + 7264 + 7162 + 70, (15)

where 70 = �200 −  200,
71 = �201 −  201 − 2�00�02 + 2 00 02,
72 = �202 −  202 − 2�01.

(16)

Suppose that(42) (15) has at least one positive root 60.
For 60, from (14)



4 Journal of Function Spaces

�0 = 160 × arccos{( 01 − �02 02) 640 + (�00 02 + �02 22 − �01 01) 620 − �00 00 201620 + ( 00 −  02620)2 } . (17)

Di	erentiating both sides of (10) with respect to � yields
[����]−1 = − 3�2 + 2�02� + �01� (�3 + �02�2 + �01� + �00)

+ 2 02� +  01� ( 02�2 +  01� +  00) − �� .
(18)

Further, we have

Re [����]−1�=�0 = ;� (V∗∗)(�160 − �3630)2 + (�0 − �2620)2 , (19)

where ;(V) = V
3 + 72V2 + 71V + 70 and V = 62, V∗∗ = 620.

Obviously, if the condition (43);�(620) ̸= 0 holds, then

Re[��/��]−1�=�0 ̸= 0. �erefore, based on the Hopf bifurcation

theorem in [39], we can obtain the following results.

�eorem 1. Suppose that the conditions (41)-(43) hold for
system (2). �e positive equilibrium �∗(�∗, �∗, �∗) is locally
asymptotically stable when � ∈ [0, �0) and a Hopf bifurcation
occurs at the positive equilibrium �∗(�∗, �∗, �∗) when � = �0.
3. Property of the Hopf Bifurcation

Let � = �0 + @, @ ∈ &; then @ = 0 is the Hopf bifurcation
value of system (2). Rescaling the time delay � A→ (�/�), then
system (2) can be transformed into a functional di	erential

equation in � = �([−1, 0], &3) as
Ḋ (�) = E�D� + F (@, D�) (20)

where

E�� = (�0 + @) (G1� (0) + G2� (−1)) (21)

and

F (@, �) = (�0 + @) (F1, F2, F3)� , (22)

with

G1 = (11 12 1321 22 230 0 33),
G2 = (0 0 00 0 00 �32 �33),

(23)

and F1 = H1�21 (0) + H2�1 (0) �2 (0) + H3�1 (0) �3 (0)+ H4�2 (0) �3 (0) + H5�22 (0) + H6�23 (0)+ H7�31 (0) + H8�32 (0) + H9�33 (0)+ H10�1 (0) �22 (0) + ⋅ ⋅ ⋅ ,F2 = ℎ1�21 (0) + ℎ2�1 (0) �2 (0) + ℎ3�1 (0) �3 (0)+ ℎ4�2 (0) �3 (0) + ℎ5�22 (0) + ℎ6�23 (0)+ ℎ7�31 (0) + ℎ8�32 (0) + ℎ9�33 (0)+ ℎ10�1 (0) �22 (0) + ⋅ ⋅ ⋅ ,F3 = %1�22 (−1) + %2�2 (−1) �3 (−1) + %3�32 (−1)+ %4�22 (−1) �3 (−1) + ⋅ ⋅ ⋅ ,

(24)

with H1 = (�0 + �∗1 + ��∗) �∗ (�∗ − �∗)2 (�∗ + �∗)3 − �2	,
H2 = (�0 + �∗1 + ��∗) �∗ (�∗ − �∗)2 (�∗ + �∗)3 ,
H3 = �∗�∗(�∗ + �∗)2 (1 + ��∗)2 ,
H4 = �2∗(�∗ + �∗)2 (1 + ��∗)2 ,
H5 = (�0 + �∗1 + ��∗) �2∗(�∗ + �∗)3 ,
H6 = ��∗�∗(�∗ + �∗) (1 + ��∗)3 ,
H7 = (�0 + �∗1 + ��∗) �∗ (2�∗ − �∗)6 (�∗ + �∗)4 ,
H8 = −(�0 + �∗1 + ��∗ ) �2∗6 (�∗ + �∗)4 ,
H9 = (�0 + �∗1 + ��∗) �∗ (2�∗ − �∗)6 (�∗ + �∗)4 ,
H10 = 2�∗ (�∗ − �∗)2 (�∗ + �∗)4 ,
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ℎ1 = −(�0 + �∗1 + ��∗) �2∗(�∗ + �∗)3 ,
ℎ2 = (�0 + �∗1 + ��∗ ) 2�∗�∗(�∗ + �∗)3 ,
ℎ3 = �2∗2 (1 + ��∗)2 (�∗ + �∗)2 ,
ℎ4 = �1��∗(1 + ��∗)2 − �∗�∗(1 + ��∗)2 (�∗ + �∗)2 ,
ℎ5 = �1��∗ (1 − �)2 (1 + ��∗)3

+ (�0 + �∗1 + ��∗) �∗ (�∗ − �∗)2 (1 + ��∗)3 ,
ℎ6 = − ��∗�∗(�∗ + �∗) (1 + ��∗)3 ,
ℎ7 = (�0 + �∗1 + ��∗ ) �2∗(�∗ + �∗)4 ,
ℎ8 = 2�1�3�∗�∗(1 + ��∗)4 + 2�∗ (�∗ − �∗)(�∗ + �∗)4 ,
ℎ9 = �2�∗�∗(�∗ + �∗) (1 + ��∗)4 ,
ℎ10 = −(�0 + �∗1 + ��∗) 3�∗�∗(�∗ + �∗)4 ,
%1 = − �2��∗(1 + ��∗)3 ,%2 = �2(1 + ��∗)2 ,
%3 = �2�2�∗(1 + ��∗)4 ,
%4 = − �2�(1 + ��∗)3 .

(25)

�us, there exists a 3 × 3matrix function L(�, @), � ∈ [−1, 0],
such that

E�� = ∫0
−1
�L (�, @) � (�) , � ∈ �. (26)

In view of (21), we chooseL (�, @) = (�0 + @) (G1� (�) +G2� (� + 1)) , (27)

where � is the Dirac delta function.

For � ∈ �([−1, 0], &3), de�ne
� (@) � = {{{{{{{

�� (�)�� , −1 ≤ � < 0,
∫0
−1
�L (�, @) � (�) , � = 0, (28)

and

& (@) � = {{{
0, −1 ≤ � < 0,F (@, �) , � = 0. (29)

�en system (20) is equivalent to

Ḋ (�) = � (@) D� + & (@) D�. (30)

where D�(�) = D(� + �) for � ∈ [−1, 0].
For T ∈ �1([0, 1], (&3)∗), de�ne

�∗ (T) = {{{{{{{
−�T (U)�U , 0 < U ≤ 1,
∫0
−1
�L� (U, 0) T (−U) , U = 0, (31)

and a bilinear inner product

⟨T (U) , � (�)⟩ = T (0) � (0)
− ∫0
	=−1

∫	

=0

T (X − �) �L (�) � (X) �X, (32)

where L(�) = L(�, 0).�en�(0) and�∗ are adjoint operators.
Next, we suppose that Y(�) = (1, Y2, Y3)�-��0�0	 is

the eigenvector of �(0) belonging to +560�0 and Y∗(U) =�(1, Y∗2 , Y∗3 )-��0�0 is the eigenvector of �∗(0) belonging to−560�0. According to the de�nition of �(0) and �∗, we can
obtain

Y2 = 21 + 23Y3560 − 22 ,
Y3 = (560 − 11) (560 − 22) − 122113 (560 − 22) − 1223 ,
Y∗2 = −560 + 2221 ,
Y∗3 = (560 + 11) (560 + 22) − 1221�32-��0�0 .

(33)

From (32), we can get

� = [1 + Y2Y∗2 + Y3Y∗3+ �0-−��0�0 (�32Y2Y∗2 + �33Y3Y∗3 )]−1 (34)

such that ⟨Y∗, Y⟩ = 1.
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Following the method in [39] and using similar compu-
tation process in [40], we can get the following coe
cients:H20 = 2�0�[H1 + H2Y2 + H3Y3 + H4Y2Y3 + H5Y22+ H6Y23 + Y∗2 (ℎ1 + ℎ2Y2 + ℎ3Y3 + ℎ4Y2Y3 + ℎ5Y22+ ℎ6Y23) + Y∗3 (%1Y22-−2��0�0 + %2Y2Y3-−2��0�0)] ,H11 = �0�[2H1 + H2 (Y2 + Y2) + H3 (Y3 + Y3)+ H4 (Y2Y3 + Y2) + 2H5Y2Y2 + 2H6Y3Y3 + Y∗2 (2ℎ1+ ℎ2 (Y2 | Y2) +ℎ3 (Y3 + Y3) + ℎ4 (Y2Y3 + Y2)+ 2ℎ5Y2Y2 + 2ℎ6Y3Y3) + Y∗3 (2%1Y2Y2 + %2 (Y2Y3+ Y2Y3))] ,H02 = 2�0�[H1 + H2Y2 + H3Y3 + H4Y2Y3 + H5Y22+ H6Y23 + Y∗2 (ℎ1 + ℎ2Y2 + ℎ3Y3 + ℎ4Y2Y3 + ℎ5Y22+ ℎ6Y23) + Y∗3 (%1Y22-2��0�0 + %2Y2Y3-2��0�0)] ,

H21 = 2�0�[H1 (2a(1)11 (0) + a(1)20 (0)) + H2 (a(1)11 (0)
⋅ Y2 + 12a(1)20 (0) Y2 +a(2)11 (0) + 12a(2)20 (0))+ H3 (a(1)11 (0) Y3 + 12a(1)20 (0) Y3 +a(2)11 (0) + 12⋅ a(2)20 (0)) + H4 (a(2)11 (0) Y3 + 12a(2)20 (0) Y3+a(3)11 (0) Y2 + 12a(3)20 (0) Y2) + H5 (2a(2)11 (0) Y2+a(2)20 (0) Y2) + H6 (2a(3)11 (0) Y3 +a(3)20 (0) Y3)+ 3H7 + 3H8Y22Y2 + 3H9Y23Y3 + H10 (Y2 + 2Y2Y2)+ Y∗2 (ℎ1 (2a(1)11 (0) + a(1)20 (0)) + ℎ2 (a(1)11 (0) Y2
+ 12a(1)20 (0) Y2 +a(2)11 (0) + 12a(2)20 (0))+ ℎ3 (a(1)11 (0) Y3 + 12a(1)20 (0) Y3 +a(2)11 (0)+ 12a(2)20 (0)) + ℎ4 (a(2)11 (0) Y3 + 12a(2)20 (0) Y3+a(3)11 (0) Y2 + 12a(3)20 (0) Y2) + ℎ5 (2a(2)11 (0) Y2+a(2)20 (0) Y2) + H6 (2a(3)11 (0) Y3 +a(3)20 (0) Y3)
+ 3ℎ7 + 3ℎ8Y22Y2 + 3ℎ9Y23Y3 + ℎ10 (Y2 + 2Y2Y2))
+ Y∗3 (%1 (2a(2)11 (−1) Y2-−��0�0)

+ %2 (a(2)11 (−1) Y3-−��0�0 + 12a(2)20 (−1) Y3-��0�0+a(3)11 (−1) Y2-−��0�0 + 12a(3)20 (−1) Y2-��0�0)+ 3%3Y2-−2��0�0 + %4 (Y2-−��0�0Y3
+ 2Y2Y2Y3-−��0�0))] ,

(35)

witha20 (�) = 5H20Y (0)�060 -��0�0	 + 5H02Y (0)3�060 -−��0�0	
+ �1-2��0�0	,

a11 (�) = − 5H11Y (0)�060 -��0�0	 + 5H11Y (0)�060 -−��0�0	 + �2,
(36)

where�1 and�2 can be determined by the following two equa-
tions:

(2560 − 11 −12 −13−21 2560 − 22 −230 −�32-−2��0�0 2560 − 33 − �33-−2��0�0)�1
= 2(�11�12�13),

(11 12 1321 22 230 �32 33 + �33)�2 = −(�21�22�23),
(37)

and �11 = H1 + H2Y2 + H3Y3 + H4Y2Y3 + H5Y22 + H6Y23 ,�12 = ℎ1 + ℎ2Y2 + ℎ3Y3 + ℎ4Y2Y3 + ℎ5Y22 + ℎ6Y23 ,�13 = %1Y22-−2��0�0 + %2Y2Y3-−2��0�0 ,�21 = 2H1 + H2 (Y2 + Y2) + H3 (Y3 + Y3)+ H4 (Y2Y3 + Y2) + 2H5Y2Y2 + 2H6Y3Y3,�22 = 2ℎ1 + ℎ2 (Y2 | Y2) + ℎ3 (Y3 + Y3)+ ℎ4 (Y2Y3 + Y2) + 2ℎ5Y2Y2 + 2ℎ6Y3Y3,�23 = 2%1Y2Y2 + %2 (Y2Y3 + Y2Y3) .

(38)

�en, we can get the following coe
cients which deter-
mine the properties of the Hopf bifurcation:

�1 (0) = 52�060 (H11H20 − 2 ffffH11ffff2 − ffffH02ffff23 ) + H212 ,
@2 = − Re {�1 (0)}

Re {�� (�0)} ,
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�2 = 2Re {�1 (0)} ,
j2 = − Im {�1 (0)} + @2Im {�� (�0)}�060 .

(39)

In conclusion, we have the following results.

�eorem 2. For system (2), If @2 > 0 (@2 < 0), then the Hopf
bifurcation is supercritical (subcritical). If�2 < 0 (�2 > 0), then
the bifurcating periodic solutions are stable (unstable). If j2 >0 (j2 < 00), then the bifurcating periodic solutions increase
(decrease).

4. Numerical Simulation

We choose the same parameters of system (2) as those in [21]:� = 3, 	 = 5, �0 = 1.5,  = 1, � = 1, � = 0.5, �1 = 1,�2 = 1, � = 1, and � = 0.5, while setting � as the bifurcation
parameter. �en, we get the speci�c case of system (2) as
follows:

�� (�)�� = � (�) [3 (1 − � (�) + � (�)5 )
− (1.5 + � (�)1 + � (�)) � (�)� (�) + � (�)] ,�� (�)�� = (1.5 + � (�)1 + � (�)) � (�) � (�)� (�) + � (�) − 0.5� (�)
− � (�) � (�)1 + � (�) ,�� (�)�� = � (� − �) � (� − �)1 + � (� − �) − 0.5� (�) ,

(40)

from which we can obtain the unique positive equilibrium�∗(3.107, 1, 2.328). Numerically for � = 0 we have drawn the
�gure of Lyapunov exponents (Figure 1). Since all the LEs are
negative, the system is stable for � = 0. Further, we can obtain60 = 0.0042 and the critical value �0 = 0.3408 at which a
Hopf bifurcation occurs. As is shown in Figure 2,�∗ is locally
asymptotically stable when � = 0.265 < �0. In this case,
the three species in system (40) can coexist in an ideal stable
state. However, �∗ loses its stability and a family of periodic
solutions bifurcate from �∗ when � = 0.405 > �0, which can
be illustrated by Figure 3.

On the other hand, by some complex calculations, we
can obtain ��(�0) = 0.002582 + 0.1021445 and � − 1(0) =−0.005236+0.0000945. And further we have @2 = 2.0279 > 0,�2 = −0.0105 < 0 and j2 = −144.7797 < 0. �us, based
on the�eorem 2, we can conclude that the Hopf bifurcation
is supercritical and the bifurcating periodic solutions are
stable and decrease. Since the bifurcating periodic solutions
are stable, the three species in system (40) can coexist in
an oscillatory mode under some given conditions. �is is
valuable from the viewpoint of biology.
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Figure 1: Lyapunov exponents for � = 0, depicting a stable system.

5. Conclusions

In the present paper, we propose a delayed ecoepidemic
model by incorporating the time delay due to the gestation
of the predator in the model studied in [31]. Compared
with the work in [31], we mainly consider the e	ect of
the time delay on the stability of system (2). �e model
investigated in our paper is more general since the time
required for the gestation of the predator and the results we
obtained are suitable complements to the literature [31]. By
regarding the time delay due to the gestation of the predator
as the bifurcation parameter, su
cient conditions for the
local stability of the model and the critical value �0 at which
a Hopf bifurcation occurs are derived. It is found that when
the value of the time delay is suitablely small, system (2) is
locally asymptotically stable. In this case, the densities of the
healthy prey, the infected prey, and the predator population
will tend to stabilization. Namely, the densities of the three
species will be in ideal stable state and the disease spreading
among the prey can be controlled. Once the value of the time
delay passes through the critical value �0, system (2) loses
stability and a family of periodic solutions bifurcate from the
positive equilibrium �∗, which shows that the delay due to
the gestation of the predator plays a very complicated role in
destabilizing the stability of system (2). In this case, the den-
sities of the three species may coexist in an oscillatory and
the disease spreading among the prey will be out of control.
In addition, the explicit formulae determining stability and
direction of the Hopf bifurcation are derived by using the
normal form theory and then center manifold theorem for
the further investigation.

It should be pointed out that predator-prey models in-
volving delays and also spatial di	usion are increasingly ap-
plied to the study of a variety of situations. Based on this
consideration, we will investigate the dynamics of the eco-
epidemic model with di	usion based on the delayed model
in our present paper in the near future.

Data Availability

All the data can be accessed in ourmanuscript in the Numeri-
cal Simulation.
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Figure 2: �∗ is locally asymptotically stable when � = 0.265 < �0.
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Figure 3: �∗ loses its stability when � = 0.405 > �0.
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