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Abstract. A generalised Hopf bifurcation, corresponding to non-semisimple double imapi- 
nary eigenvalues (case of 1:l resonance), is analysed using a normal form approach. This 
bifurcation has linear codimension-3, and a centre subspace of dimension 4. The four- 
dimensional normal form is reduced to a three-dimensional system, which is normal to 
the group orbits of a phase-shift symmetry. There may exist 0, 1 or 2 small-amplitude 
periodic solutions. Invariant 2-ton of quasiperiodic solutions bifurcate from these periodic 
solutions. We locate one-dimensional varieties in the parameter space 1223 on which 
the system has four different codimension-2 singularities: a Bogdanov-Takens bifurcation, 
a 1322 symmetric cusp, a Hopf/Hopf mode interaction without strong resonance, and a 
steady-state/Hopf mode interaction with eigenvalues {0, i, 4 ) .  The unfolding of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0, i, -i} 
singularity gives rise to an invariant 3-toms in the original system. A time-reversal sym- 
metry in the reduced three-dimensional system leads to a degeneracy in the bifurcation of 
the 3-torus, and Abelian integral calculations imply the possibility of multiple 3-tori in the 
full equations. We indicate parameter regimes in which the system has the possibility of 
chaotic dynamics. 

AMS classification scheme numbers: 58F14, 34C20 

1. Introduction 

In the classical Hopf bifurcation theorem for ordinary differential equations, as a 
pair of complex-conjugate simple eigenvalues crosses the imaginary axis, there is 
born a unique branch of periodic orbits near an equilibrium point (see Marsden 
and McCracken WM761) or Golubitsky and Schaeffer [GS85], and further references 
therein). This paper investigates the 1:l resonant case, in which the purely imaginary 
eigenvalues at criticality are assumed to be double. Generically, such double eigenvalues 
are non-semisimple, as assumed here. To date there has been little research on the 1:l 
resonant Hopf bifurcation. This bifurcation has been presented as an open problem 
in Kopell and Howard [KH84] and in Guckenheimer and Holmes [GH83]. A known 
partial result (due to Caprin0 et a1 [CMN84] and Vanderbauwhede Pan861) is that, 
as a real parameter varies, generically there is either no branch or two branches of 
periodic solutions depending on the sign of a computable coefficient, in contrast to 
the unique branch found in the classical Hopf bifurcation; see also Ashkenazi and 
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Chow [AH80], Meyer Wey841, Atadan and Huseyin [AH851 and Krupa [Kru86]. 
Some of these authors considered eigenvalues of multiplicity higher than 2, but none 
determined the stabilities of the bifurcating solutions. We extend these one-parameter 
results to a three-parameter unfolding of the vector field singularity (which has linear 
codimension-3), indicate stabilities of the periodic solutions and explore the secondary 
bifurcations. The relationship of the results obtained here to previous existence results 
will be discussed in section 3. 

Frequently in applications double eigenvalues arise as a result of symmetries, see 
Golubitsky, Stewart and Schaeffer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[GSS88]. In this paper no symmetry is assumed; in- 
stead, we have the generic situation in which the double eigenvalues are non-semisimple. 
This means that they have one-dimensional eigenspaces and two-dimensional gener- 
alised eigenspaces (over the complex field). We choose complex coordinates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, 

corresponding to the complex eigenvector and generalised eigenvector respectively, and 
scale these coordinates so that they satisfy 

This scaling corresponds to solutions which have their principal component in the 
eigenspace, a choice which is consistent with the previous results on existence of 
periodic solutions cited above. In other words, our results relate to points zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(z1,z2) 
contained in a wedge of second order contact around the complex z1 axis. 

The situation in this paper is similar to that in the Hamiltonian Hopf bifurcation. 
In the class of Hamiltonian systems, if a complex eigenvalue crosses the imaginary 
axis, then the critical imaginary eigenvalue is forced to be double, and the classical 
Hopf bifurcation theorem does not apply. As here, the double eigenvalues generically 
are non-semisimple (and sometimes they are said to be in 1:-1 resonance because the 
Hamiltonian is indefinite). This case has been studied by Meyer and Schmidt WS711, 
Cushman [Cud21 and in more detail by van der Meer Wee851. In the present paper 
the system is not assumed to be Hamiltonian. 

Our analysis is based on the Poincari-Birkhoff normal form for the 1:l resonant 
case, which has been computed only recently. It can be expressed as a four-dimensional 
real system (Cushman and Sanders [CS86]) or as a two-dimensional complex system 
(Elphick zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet a1 [ETB87]). Here we use a complex version of the normal form of 
Cushman and Sanders [CS86]. The nonlinear terms of this normal form vector field 
commute with a non-compact symmetry group, generated by the transpose of the non- 
semisimple linearised vector field. One could derive a different normal form, symmetric 
only with respect to the semisimple part of the linear vector field; see [Bro81], [Bru89]. 

In the closely related case of non-resonant double Hopf bifurcation with critical 
eigenvalues +io, and fio,, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo1 and o2 are not rationally related, the truncated 
normal form has S' x S' symmetry, and it is possible to reduce the dimension by 2, to 
a pair of amplitude equations, as in Iooss and Langford [ILa80] or Guckenheimer and 
Holmes [GH83]. However, in the 1:l resonant case, the normal form has only one S' 
symmetry, and this permits us to reduce the dimension only by 1, to a three-dimensional 
system. One consequence of this is that we find richer dynamics than is possible in 
the two-dimensional amplitude equations of the non-resonant case. Equilibrium points 
of this three-dimensional system extend to periodic orbits which are relative equilibria 
of the four-dimensional normal form. The reduction to a three-dimensional system 
involves a singular change of coordinates, which restricts the applicability of the 
analysis to the domain (1.1). 
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In the analysis of this three-dimensional system, we find three different types of 
codimension- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 singularities and four different types of codimension-2 singularities. 
The codimension-1 singularities are pitchfork bifurcation, limit point (saddle-node) 
and Hopf bifurcation. The codimension-2 singularities are a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ, symmetric cusp, a 
Bogdanov-Takens bifurcation, non-resonant double Hopf bifurcation, and a singularity 
with three critical eigenvalues zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0, i, -i>. 

In the (0, i, -i> case, we compute the normal form for the system at the singularity, 
and it turns out to be degenerate: when we set the small parameters equal to zero, the 
system is time-reversible. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs a consequence the terms of order zero in the corresponding 
amplitude equation vanish identically. We use MAPLE to compute the dependence of 
normal form coefficients on the small parameters. Having computed the normal form, 
one obtains a reduction to a particular two-dimensional system which undergoes a Hopf 
bifurcation as described in [Lan79], [Bro81], [GH83]. This Hopf bifurcation leads one 
to expect existence of invariant 2-tori in the three-dimensional system, and of 3-tori and 
intersections of invariant manifolds of 2-tori in the original four-dimensional system. 
As a consequence of the above-mentioned time-reversibility, the stability coefficient 
of the Hopf bifurcation in the two dimensional system can pass through 0. This 
leads to occurrence of degenerate Hopf bifurcations as in [GL81]. We also show that 
the periodic orbits found in the two-dimensional system can be neutrally stable on a 
two-dimensional surface in the parameter space. This indicates even richer dynamics 
for the three-dimensional normal form system and the full four-dimensional system, as 
in the related cases studied by Chenciner [Che83], Flockerzi [Flo87], and Iooss and 
Los [ILo89]. 

The analysis of the 1:l resonant Hopf bifurcation given in this paper is still 
not complete. More results could be obtained by extending the analysis developed 
here; some suggestions for further research are given in the paper. Very often the 
complexity of the computations stands in the way of obtaining more complete results. 
Even here the analysis would not have been completed without the help of symbolic 
computation; the more complicated normal form expressions have been computed with 
MAPLE. Codimension 1 and 2 bifurcation varieties and some representative bifurcation 
diagrams have also been computed, using AUTO. 

2. Reduction to a three-dimensional system 

Let us consider the system 

where x E R", zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA E IR3, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf n  : R" + R", and 3e > 0 such that V l  with 1A1 < e we 
have fn(0) = 0. We assume that F : Rnf3 + IR", defined by F ( 1 , x )  = f n ( x ) ,  is Cm. 
Suppose that the matrix A = D,f,,(O) has two equal non-zero imaginary eigenvalues 
along with their conjugates, +iw, and no other eigenvalues with zero real part. Then, 
by the centre manifold theorem, the interesting dynamics of (2.1) occurs on a smooth 
four-dimensional centre manifold, and we may assume without loss of generality that 
the reduction to this centre manifold has been carried out, so that n = 4 in (2.1). With 
the further assumption that the double eigenvalues are non-semisimple (the generic 
case), and with a linear change of coordinates and a rescaling of the time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt to make 
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It is often more convenient to work in the complex setting. Let 

z1 = x1 + ix, 2, = x3 + ix, (2.3) 

and work with {zl, z,, Z,, Z2} instead of (xl, x,, x3, x4}. After substitution in (2.1), 
assuming (2.2), we have at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA = 0 

There is a second pair of equations, for the derivatives of the conjugates Z, and Z,, 
which we suppress since they are obtained simply by conjugation of (2.4). 

Next, we replace equation (2.4) by its normal form. The normal form may be 
computed by a sequence of nonlinear transformations, which eliminate or greatly 
simplify successively higher order terms in the Taylor expansion of (2.4), up to an 
arbitrarily high order 'tail' or remainder. Because this procedure does not converge in 
general, the limit is sometimes called a 'formal normal form'. Convergence is not an 
issue in the initial analysis, however, since we may stop at any finite order, and by 
Taylor's theorem we may bound the error in a finite truncation. Then, by standard 
arguments, we may prove local results, such as for example, that to any hyperbolic 
periodic solution of the truncated normal form equations there corresponds a nearby 
periodic solution of the original system. Of course, non-hyperbolic solutions are not 
necessarily preserved, and smoothness of invariant ,manifolds may be lost. The general 
question of what dynamical behaviour is preserved in the normal form, or its finite 
truncation, remains open at this time. 

In fact, in this paper we may avoid the arduous calculation of the normal form 
coefficients, because our goal is a general classification of the possible solutions. Instead, 
we employ a formal characterisation by equivariance of the normal form to infinite 
order, due to Cushman and Sanders [CS86] and Elphick et a1 [ETB87]. Briefly, the 
above transformation may be carried out in such a way that the only terms remaining 
in the normal form commute with the elements of the Lie group 

G = {esA'l s E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIR} (2.5) 

where A' is the conjugate transpose of A (here taken in the complex form of equa- 
tion (2.4)). From this fact, it is relatively easy to show that (2.4) has the formal normal 
form 

(:;) = ( 6  :) (:;) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ h  ( 5 : )  +49 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(19) 
where 

+k = &(zlZ1, Im [Z1z2]) k = 1,2. (2.7) 
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Note that the $kS are G-invariant functions. A real normal form equivalent to (2.6) was 
first computed by Cushman and Sanders [CS86]. A slightly different representation of 
this normal form was presented in Elphick et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 [ETB87]. 

Let us now consider unfoldings of (2.6). A universal unfolding of the linear vector 

( b  field A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= is given by 

where A = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(c1,p1,p2), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlR and p = pl + ip2 E C. This is obtained from a four- 
parameter versa1 deformation of the corresponding matrix given by Arnold [Arn71], 
using a time-rescaling to keep the mean imaginary part equal to i .  Note that the same 
result is obtained if we take the constants 4k(O)  in (2.6) as unfolding parameters for 
the linear part. The expression for the four eigenvalues is 

b k  = i + a  _+ f i  = i + c x  _+ (pl 2 + p 2 )  2 1/4ei($/2+kn) k = 1,2 

(2.9) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 E tan-’ ( P 2 l P l )  

together with the two complex conjugates. Thus we have the natural interpretation of 
a as a real ‘crossing parameter’, and p as a complex ‘splitting parameter’ for the given 
eigenvalues { + i ,  + i } .  Introducing these parameters into (2.6) and defining A = (a, pl, p2)  
in (2.1), we arrive at the following G-equivariant parametrised family of formal normal 
forms 

(‘1) = ( i + a  p i + a  ) (r:) +4’  (::) +42 ( 2 9 )  
2 2  

(2.10) 

where now 

4 k  E $k(A;zlzl,Im [zlzz]) = o(1z112 f 1Z2l2) (2.1 1) 

uniformly in A, k = 1,2. In this paper, we study the dynamics associated with the 
G-symmetric vector field (2.10). We do not claim that (2.10) is a ‘universal unfolding’ 
of (2.6), in the sense that all the possible dynamics of all the systems neighbouring (2.6) 
can be obtained by variations of the three parameters (a, pl, p2) ,  up to some equivalence 
relation (as is true for the linear case). However, we are able to determine the possible 
steady-state and periodic solutions (locally), and we can indicate where certain 2-tori, 
3-tori and chaotic dynamics may be found. 

We make two observations concerning (2.10). First, note in (2.10) that z1 = 0 
implies z2 = 0, which is consistent with the ordering (1.1). This suggests that we seek 
solutions for which zI is a factor of z2,  that is, 

z2 = z,w z, (u + iu) (2.12) 

where w = U + io is a new coordinate. The transformation of coordinates (z1,z2) + 
(zl, w )  

The second observation is that, in addition to the G-equivariance, the normal form 
has a simpler SI-equivariance, with respect to the semisimple part of A [Bru89]. Write 

is singular at the origin. 

A = S + N =  ( a  P)+(: :) (2.13) 
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and define the Lie group 

(2.14) sl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= iesS' - -is - e  I l s ~ l R } .  

Then it is easily verified that the normal form (2.10) commutes with S' .  Therefore, given 
any solution z = (z1,z2) of (2.10), we obtain a group orbit S'z = {(e-iszl,e-isz2)} of 
solutions, all with the 'same' dynamics (i.e. S1-conjugate). We are mainly interested in 
the dynamics normal to these group orbits; hence we choose new coordinates tangent 
and transverse to these group orbits. Introduce coordinates (r,  8) satisfying r > 0 and 

z1 = reie z2 = reie,. (2.15) 

It is clear that the invariant functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4k in (2.10) are even functions in r ,  and that the 
formal normal form is odd in r ,  i.e. has zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ, symmetry. Therefore we can make a further 
reduction, defining zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

p = r  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(P ' 0) (2.16) 

and we have arrived at our final choice of coordinates: (p ,u ,u ) ,  normal to the S' 
group orbits, and the phase variable 8, tangent to the group orbits. The normal 
form (2.10) must now be reexpressed in terms of these new coordinates. The result of 
this substitution is a set of three real equations, independent of the phase variable 8 

P = 2 P [ a + u + F , ( ~ ; p , p u ) l  

ti = p1 -U' + u2 + F3(A ;p ,pu )  (2.17) 

ir = p2 - 2 ~ v  + F q ( A ; p , p ~ )  

together with the phase equation 

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 + U + F2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A; p, pu)  (2.18) 

where 

4' E F,  + iF2 

4, F3 + iF4. 
(2.19) 

We note again that the unfolding parameters in (2.17) can be considered to be the 
values of Fk(0), and similarly for (2.18). 

Together, equations (2.17), (2.18) determine the full four-dimensional dynamics of 
the formal normal form (2.10), for p > 0. In general, for a dynamical system with 
symmetry group G, a point xo in the phase space is called a relative equilibrium of G 
if the dynamic orbit { x o ( t ) }  through xo lies in the group orbit Gxo; see [Kru90]. In the 
present case, it is clear that any equilibrium point with p > 0 of the three-dimensional 
system (2.17) yields a relative equilibrium of the four-dimensional system (2.17), (2.18); 
and of the formal normal form (2.10). Since locally e x 1 in (2.18), these relative 
equilibria are periodic orbits of (2.10). The three-dimensional system (2.17) is the main 
object of study in the remainder of this paper. 
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3. Existence of periodic orbits 

In this section we find equilibrium solutions of (2.17), corresponding to periodic 
solutions of (2.10), for small values of both IwI and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA>O. The principal contribution 
of the Fk in (2.17) and (2.18) will be from the terms with Taylor coefficients 

a = apF3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb = dpF4 

d l  = a,Fl d2 = a,F2 

d3 = apvF3 d4 = apVF4 

evaluated at (A;  p, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU, U) = (0; O,O, 0) In the following analysis we assume a # 0 # b. 
First we rescale the variables in (2.17) to make the ordering (1.1) explicit, with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

z1 = CO(€) 22 = O ( 2 )  e + 0 (3.2) 

where e is a small scaling parameter to be made precise later. This will ‘blow up’ the 
dominant terms in (2.17). We define the rescaled variables by 

(3.3) 

Remark. The parameter a is scaled to a different order in e from the scaling of pl and 
p2 in (3.3). This is necessary to prevent a from disappearing from the rescaled problem 
as e + 0. Another reason for such scaling is given by the form of the eigenvalues (2.9), 
from which it is clear that both the real part a + (p; + cos(4/2) and the detuning 
parameter +(pf + sin(4/2) are rescaled to U ( € )  by (3.3). 

2 p = e 3, U = eii, U = ea, et = ?, a = ep, p1 = e2v l ,  p2 = e2v2. 

After substituting (3.3) and (3.1) into (2.17) and dropping the hats, we have 

P = 2p(p + U + e d l p  + S(e2))  

U = v1 -U’ + U’ + ap + ed3pu + O(e2) 

ir = v2 - 2uu + b p  + ed4pu + CO(€’) . 
(3.4) 

It is clear from these equations that we can rescale a to +1 (having assumed a # 0), 
by rescaling p with a positive factor. Furthermore, when E = 0, we can assume b > 0; 
since otherwise we could reverse the signs of b, v2,  U. Hyperbolic solutions with b < 0 
obtained this way at e = 0 will persist locally for e # 0, by standard arguments. So 
without loss of generality we assume a = +1, and b>O. 

We proceed to find equilibrium solutions of (3.4). Initially we let e -+ 0 in (3.4), 
and obtain 

P = 2P(B + 4 
U = v , - u  + U  + u p  

ir = ~2 - ~ U U  + bp. 

2 2  

The equilibria of (3.5) with p >O are the roots of the quadratic equations 

o = p + u  

0 = v1 + up - u2 + u2 

0 = ~2 + bp - ~ U U  . 

(3.5) 
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a=+l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa=-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 1. Multiplicities of periodic solutions for /3 # zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. 

Equations (3.6) have the solutions 

U = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v + 2 p v  p = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-2 

D E b(av2 - bv,) + p2(1 + b2). 

b 
where 

(3.8) 

The solutions (3.7) are admissible only if v is real and p > 0. The reality condition is 
clearly 

D 2 0  (3.9) 

and the condition that p be positive is examined more carefully below. By the implicit 
function theorem, the solutions (3.7) extend smoothly to equilibrium solutions of (3.4) 
for small E > 0, provided the relevant Jacobian is non-singular. This Jacobian matrix, 
evaluated at the solution (3.7) with E = 0, is given by 

b -20 28 

The determinant and trace of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJo are 

(3.10) 

det J, = k4p& tr Jo = 48. (3.11) 

Since we have already required p > 0 and D 2 0, all the solutions (3.7), except possibly 
on D = 0, are guaranteed to extend locally in E, to equilibria of (3.4), by the implicit 
function theorem. We have the following theorem. 

Theorem 1 .  For every value of the parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,pl,p2 in a neighbourhood of 0, the 
equation (2.10) has 0, 1 or 2 periodic orbits which lie inside a wedge of second-order 
contact about the z1 plane in the (z1,z2) coordinates. For each fixed small a # 0, 
the corresponding (v l ,v2)  plane has three open connected components, as iri figure 1, 
labeled by the number of periodic orbits in each component. If a = 0 then there are 
two open connected components, containing 0 or 2 periodic solutions, as in figure 2. 
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v2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt v2 t 

a = +1 a=-1 

Figure 2. Multiplicities of periodic solutions for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The proof of theorem 1 will follow from the implicit function theorem, hyperbolicity, 

and standard persistence arguments presented in the next section, after the following 
two technical lemmas which demonstrate that the roots of the quadratic equations (3.6) 
have the properties described in theorem 1. 

The condition that p be positive is more transparent if we first eliminate U and U 

from (3.6) and obtain the single equation 

(3.12) 

provided that 
in (3.3) to make B = +1, with e = [al. 

# 0. Under this assumption, we can fix the scaling parameter E > 0 

Lemma 1 .  Assume /3 # 0. For given v , ,  v2, equation (3.6) has 0, 1, or 2 real roots 
(p, U ,  U) with p positive, as follows. 

Case A. Suppose the point ( v l ,  v2) lies strictly inside the parabola in figure 1, i.e. 
f(0) = 1 - v1 - ( ~ ~ / 2 ) ~  >O. Then there is a unique root with p positive. This root has 
Jacobian J ,  # 0. 

Case B. Suppose ( v l ,  v2) lies outside the parabola, i.e. f(0) = 1 - v1 - ( ~ ~ / 2 ) ~  <O. Then 
there are two regions with 0 or 2 real roots p > 0 respectively, as indicated in figure 1. 
For each root, J ,  # 0. 

Case C .  Suppose ( v l ,  v2) lies on the parabola, i.e. f(0) = 1 - v1 - ( ~ ~ / 2 ) ~  = 0. Then 
there are 0 or 1 real roots p > 0 respectively, depending on whether bv, + 2aB2 2 0 or 
< 0. 

ProoJ In case A, f(0) >O. Note that f is a quadratic function. Hence its graph will 
be as in either (a) or (b)  of figure 3, and it is clear that f has two real roots, precisely 
one of which is positive. 

For case B, we note that the discriminant o f f  is precisely D of (3.8), and the line 
D = 0 is tangent to the parabola in figure 1 at the cusp point %, where f(0) = f(0) = 0, 
with coordinates 

(3.13) 

v1 = #?2( 1 - S) 
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(C) 

Figure 3. Graph of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ( p ) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The discriminant D is negative on the side of D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 away from the parabola, so there 
are 0 real roots in this half-plane. In the remaining cusp regions, D > 0 and f(0) < 0 
imply that the graph of f(p) is as in (c) or (d) of figure 3. An easy calculation shows 
that the two roots are both positive only for (v, ,  v,) in the cusp with bv, + 2aB2 < 0, (or 
v2 <-2a/b after scaling), as shown in figure 1. 

Case C follows similarly. 

The codimension-2 point where the parabola touches the line D = 0 is the Z, 
symmetric cusp bifurcation (with vanishing cubic bifurcation coefficient), which is 
discussed in more detail in the next section. 

We now describe the degenerate case with /3 = 0 for which lemma 1 fails. When 
/3 = 0, obviously we cannot define the scaling parameter e to make /3 = f l ,  as in 
figure 1. (We may instead choose the scaling such that v,  = f 1  in figure 2; however, 
we defer fixing v,  for now). 

Lemma 2. Assume that /3 = 0. Then, except on the ray { (v1 ,y2)  I D = 0, bv, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<O>, the 
quadratic equations (3.6) have either 0 or 2 equilibrium solutions with p positive. The 
two solutions exist only in the cone 

b(av, - bv,)  > 0 and bv2 < 0 (3.14) 

as shown in figure 2. 

ProoJ Lemma 2 follows directly from the form of (3.7) with p = 0. 

The connection between figures 1 and 2 becomes more clear if we plot the 3- 
parameter surface defined by f(0) = 0 in equation (3.12), see figure 4. (Figure 4 shows 
only half of the surface, for B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIO ;  the half for 2 0 is symmetric.) Level curves of 
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Figure 4. Primary bifurcation surface for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< 0. 

the surface in figure 4 are the parabolas in figure 1. As /3 + 0, the surface becomes 
vertical, and the parabolas degenerate into the ray along the negative vl-axis, seen in 
figure 2. 

We end this section with a few remarks on the ‘distinguished parameter’ approach 
to this bifurcation problem. The idea is that experimentally one usually varies only 
one parameter at a time, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAit is often enlightening to plot bifurcation diagrams 
which graph the solution branches as this distinguished parameter varies. However 
if the singularity has codimension greater than one, as here, then there can be many 
different bifurcation diagrams corresponding to different paths through the singularity. 
For further discussion of the general situation, see [GS85]. In the present problem 
we can easily recover the distinguished parameter results as foilows. Normally one 
assumes that the path is smooth, and can be taken locally in parameter space to be a 
straight line (non-degeneracy assumption). Therefore we consider a general straight line 
through the origin in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a, pl, p,)-space. For a fixed small value of E > 0, this corresponds 
to a line through the origin in (/3, vl, v2) space, see figure 4. Recall that this surface 
forms a cusp with vertical tangent along the ray f l  = 0, v2 = 0, v1 <O. Therefore, a 
line through the origin locally enters a region ‘interior’ to the surface only if it lies in 
a vertical plane (v2 = 0) in figure 4. In other words, a generic path through the origin 
encounters (locally) only regions with 0 or 2 solutions, according to lemmas 1 and 2. 
This conclusion is in accord with the one-parameter results [CMN84], [Van86], cited 
in the introduction. 

However, one-parameter results still leave much to be desired. One should consider 
also ‘imperfect bifurcation’, that is, allow unfolding parameters which displace the path 
from passing through the singularity, rather than just changing the direction as it passes 
through. Some of these paths would include bifurcations of single periodic solutions 
from p = 0, as in case A of lemma 1, instead of only pairs as in case B. A few examples 
of such bifurcation diagrams are presented in the numerical results of section 5, where 
either v1 or v2 has been chosen as the distinguished bifurcation parameter, and /3 has 
been assigned fixed values. Completely different bifurcation diagrams result from other 
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choices of distinguished parameter. A complete analysis of such bifurcation diagrams, 
at least insofar as periodic solutions are concerned, is possible using singularity theory 
methods as in [GL81], [GS85], and will be presented elsewhere. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4. Bifurcation varieties 

Among the unfoldings of a codimension-3 singularity, one may expect to find an 
assortment of codimension-1 and codimension-2 singularities. This is indeed the 
case in the present problem. The existence and location of these lower codimension 
singularities is essential to the understanding of the original singularity. In this section, 
we locate and analyse varieties of dimension 2 and dimension 1, in the parameter space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
IR3, corresponding to singularities (bifurcations) of codimension- 1 and -2 respectively, 
in the systems ( 3 3 ,  (2.17) and (2.10). All of these codimension-1 and -2 bifurcations 
have been studied previously and are now well understood. Therefore, we need only 
sketch their properties, and the proofs of their persistence. The first four cases were 
already seen in the previous section. 

4.1. Primary bijiurcation variety 

The primary bijiircation variety zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW is the surface depicted in figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, generated by the 
parabolas in figure 1. Along a generic path transverse to a, a solution with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 0 
bifurcates from the trivial solution p = 0. This must be thought of as a pitchfork 
bifurcation, even though, for the system (2.17), it appears to be what is often called 
a ‘transcritical bifurcation’ corresponding to the normal form 0 = Ax & x2 = x ( A  & x), 
which is not stable; see [GS85]. The explanation is that p, defined by p = zlZl = r2,  is 
an amplitude of an orbit with S’ symmetry; elimination of the phase variable reduces 
a Hopf bifurcation in the original system to a pitchfork bifurcation in r (with Z, 
symmetry from the half-period phase shift) and the substitution p = r2 reduces this to 
the p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0 half of a transcritical bifurcation with the trivial solution preserved. Thus we 
do have a codimension-1 pitchfork bifurcation on W, and by the well known stability 
of the symmetric case, the bifurcation variety W is preserved for the full system, (except 
perhaps where additional degeneracies increase the codimension). 

4.2. Limit point variety 

The limit point variety Y is the surface in parameter space generated by the ray D = 0 
in figures 1 and 2, as B varies. On 9, a limit point or ‘saddle-node bifurcation’ occurs 
in (3.9, and this is well known to be a codimension-1 bifurcation. Therefore, 9 
persists for E # 0 in (2.17), and when the phase equation (2.18) is restored, we obtain a 
saddle-node bifurcation of periodic orbits. This in turn persists as a two-dimensional 
variety for the original system, because the saddle-node bifurcation of periodic orbits 
also has codimension-1. 

4.3. Symmetric cusp variety 

The two surfaces W and Y meet in the one-dimensional variety given by (3.13), which 
intersects the planes = 1 at the point V seen in figure 1. This corresponds to the 
familiar case of a degenerate pitchfork bifurcation with its cubic coefficient equal to 
0, as in [GLSl], [GSSS]. It is the Z, symmetric version of the standard cusp, and has 
codimension-2, with respect to symmetric perturbations. Here we will refer to it as the 
symmetric cusp variety V. That the variety V persists for the full system follows from 
the preservation of S’ symmetry on the periodic orbits, as in [GL81]. 
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4.4. Double Hopf  bijiircation variety 

In the 8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 plane, on the ray v2 = 0, v1 < 0, two Hopf bifurcations occur simultaneously 
in the original system, with the corresponding pure imaginary eigenvalues from (2.9) 
given by f i ( 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf )p111/2). Since )plI is small, this double Hopf bifurcation is determined 
by the classical non-resonant normal form, see [ILa80], [GH83]. This case has linear 
codimension-2, and occurs on the one-dimensional double Hopf  bijiircation variety zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9' 
in figure 2. As this situation is well known, we do not describe it further here, except 
to mention that typically it gives rise to mixed-mode secondary Hopf bifurcations (of 
24013, and there is a possibility of a 3-torus arising from the interaction of these two 
Hopf bifurcations, as indicated in [ILa80] and proved in [Flo87]. 

4.5. Secondary Hopf  bijiircation variety 

Additional bifurcation varieties arising from (3.5) are revealed on investigation of the 
stability of the equilibria of (3.5) with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp > 0, as determined by the eigenvalues of the 
Jacobian zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJo in (3.10). The eigenvalues zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo of Jo are roots of the characteristic polynomial zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

o3 + c 2 2  + C l b  + C O  = 0 (4.1) 

with coefficients given by 

c2 = -tr[Jo] = -48 

c1 = 482 + 4v2 - 2ap 

CO = T 4 p A  

For local bifurcation to occur from a solution with p > 0, Jo must have zero or 
imaginary eigenvalues. From (4.2) we see that J, cannot have a zero eigenvalue other 
than on D = 0; but this is the limit point variety zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 already considered. Necessary and 
sufficient conditions for Jo to have non-zero imaginary eigenvalues are c1 > 0 and 

0 = CO - ~ 1 ~ 2  = (4/b2)(4(b2 + 2)P3 k 14a&B2 + 2(3D + abv2)/3 f bv2 f i ) .  (4.3) 

These conditions define a secondary Hopf  bijiircation variety % in the parameter space. 
Note that the condition c1 > 0 always holds when a = -1, but when a = +1, the 
magnitude of p becomes important. When these conditions hold, the pure imaginary 
eigenvalues associated with the secondary Hopf bifurcation are given by fiw = +i&. 
It is rather difficult to solve (4.3) explicitly for (8, v l ,  p2). Instead, we consider asymptotic 
limits in which (4.3) is easy to solve analytically, and also we present numerical solutions 
in section 5. 

Let us fix v l  <O, a = f l ,  b >O, and calculate an asymptotic approximation to v2(B) 
as /I + 0. We obtain, to first order 

4 
p = -b  + - G p  + 

(4.4) 
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Note that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc1 >O for small zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIBI, regardless of the sign of a. The choice of upper or lower 
sign in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk and T terms is the same as that of the solution v in (3.7). We must choose 
the sign which yields zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp>O in (4.4). It then follows that 

We conclude that for v1 negative and bounded away from 0, the Hopf variety .8 is 
close to the lower branch of a parabola in the (vl ,  v2) plane, which lies between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA93 and 
Y,  asymptotically for /3 0. 

A similar analysis is possible for v1 positive and bounded away from 0, except that 
here 2 can exist only in the case a = -1. The asymptotic approximations, as /? + 0, 
are 

b 2 - 3  
b 

v2 = -bvl + -B2 + O(B3) 

B v = - + @(p) 
b 

1 - b 2  
p = v1 + -;-P + O(B3) 

B2 + @(B2) .  c1 = 2v1 + - 3b2 + 5 
b2 

Thus, for v1 > 0, the Hopf variety .8 lies just below, and O(B2) away from, the limit 
point variety zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9, as B --+ 0 in (v l ,  v2) coordinates. 

The behaviour of .8 for v1 near 0, and the question of whether the two branches 
for a = -1 are connected, are best left to the numerical investigations of the next 
section; see figures 5 and 6. 

Finally, we remark that although our analysis has been for the truncated quadratic 
system (3 .9 ,  these Hopf bifurcations extend to the full three-dimensional system (3.4), 
provided the standard non-degeneracy conditions hold, see zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[GL81]. On restoring the 
phase equation (2.18), these periodic orbits trivially become 2-tori of the formal normal 
form (2.10). The scalings (3.3) ensure that this second frequency is very small compared 
to the original frequency o = 1 in (2.4). Therefore there can be no strong resonance. 
Normal hyperbolicity of the periodic orbit of (3.5), the generic case (and verified 
by numerical computation of the Floquet multipliers using AUTO), implies normal 
hyperbolicity of the 2-torus in (2.10). Together, these imply persistence of the 2-torus in 
the original system. The flow on the 2-torus will be either quasiperiodic, or so weakly 
resonant as to be practically indistinguishable from quasiperiodic. We conjecture that 
the flow on the torus will be quasiperiodic for a set in parameter space with measure 
tending to 1 as epsilon goes to 0, as in [SM84]. 

4.6. Bogdanov-Takens variety 

Let us investigate the possibility of intersections of the Hopf bifurcation variety .8 and 
the limit point variety 9, each of codimension-1, as described above. This requires the 
conditions (4.3) and D = 0 to hold simultaneously, and then (4.3) reduces to 

88 0 = CO - C ~ C Z  = p (2(b2 + 2)b2 + abvz). (4.7) 
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This equation holds if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, which we consider later, or if f l  # 0 and 

v 2  = -2( -&)fl2. b2 + 2 
(4.8) 

Since v 2  < O  on X ,  the last equation restricts us to the case a = +l. 
It is easy to verify that the characteristic polynomial (4.1) has a double zero root at 

the point (4.8), and that J ,  in (3.10) has rank 2, so the zero is non-semisimple. In fact, 
now c1 = 0, so there are no longer any purely imaginary roots. The third eigenvalue of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Jo is clearly trJ, = 48 # zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. Therefore we can transform J, to the Jordan form 

0 1  0 
J B T = ( O  0 0 ) .  

0 0 48 
(4.9) 

In this situation, the well known Bogdanov-Takens bifurcation occurs, provided that 
the usual non-degeneracy conditions hold. (We have not verified them here, but it is 
the generic case). The equations (4.8) define a path in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlR3 which we call the Bogdanou- 
Takens variety F. Note that for a given f l ,  the Bogdanov-Takens variety (4.8) always 
lies to the left of the cusp variety (3.13), in the (vl, v2) plane. The intersection of X 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9, in a codimension-2 variety .T with a double zero eigenvalue, has been observed 
also numerically; see section 5. The numerical computations also reveal homoclinic 
behaviour typically associated with Bogdanov-Takens bifurcations. 

Assuming non-degeneracy of the Bogdanov-Takens bifurcation, it will certainly 
persist in the full three-dimensional system (2.17). However, in the four-dimensional 
normal form, we obtain a Bogdanov-Takens bifurcation of periodic orbits, which is 
much more complex than for equilibria. In particular, the homoclinic orbit can become 
a self-intersecting manifold, creating horseshoe chaos in the original system. This may 
be investigated further using Melnikov’s method. 

4.7. The { O , i , - i }  variety 

Now consider the second possible solution of the equation (4.7), for simultaneous limit 
point and Hopf bifurcations, namely f l  = 0. When f l  = 0, it is clear that equation (4.3) 
holds only on the lines v 2  = 0 or D = 0. When v 2  = 0, the condition D 2 0 implies that 
v1 I 0. This is the codimension-2 double Hopf bifurcation variety B* already discussed. 
On the line with D = 0 and f l  = 0, the condition c I  > 0 for imaginary eigenvalues 
implies a = -1 and v1 > 0. We conclude that zero and pure imaginary eigenvalues 
occur simultaneously along the ray { f l  = 0, D = 0, v1 > O }  of codimension-2, which we 
call the (0, i, -i} bifurcation oariety dR*, shown in figure 2. 

This codimension-2 bifurcation is studied in detail in section 6. 

5. Numerical solutions using AUTO 

Numerical computations of some representative bifurcation varieties and bifurcation 
diagrams have been carried out using AUTO, which is a general purpose software 
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package for the bifurcation analysis of differential equations, developed by E J Doedel 
[Doe86]. These computations confirm the analytical results of the previous section 
and complete the calculation of the secondary Hopf bifurcation variety &'. They 
also suggest some new phenomena, such as period doubling, which may have been 
missed in the normal form analysis. AUTO is capable of following paths of equilibrium 
or periodic solutions in a bifurcation parameter, determining stability in terms of 
eigenvalues or Floquet multipliers, detecting steady-state bifurcations, limit points, 
Hopf bifurcations, period doubling bifurcations, and torus bifurcations, and switching 
branches at bifurcation points. It can also follow paths of codimension-1 bifurcations 
in a two-parameter plane. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 5. AUTO bifurcation diagrams 

Here we present a few representative diagrams from the application of AUTO to 
the system (3.5). In the bifurcation diagrams, full curves represent stable equilibrium 
solutions, broken curves represent unstable equilibrium solutions, full circles represent 
stable periodic solutions, and open circles represent unstable periodic solutions. Hopf 
bifurcation points are represented by full squares. 

In figure 5, we have chosen a = +1, b = +1, and B = -0.2. The analysis in the 
previous section showed that, for a = +1, the limit point variety 9 and secondary 
Hopf variety J$' extend only to negative values of v1 from a neighbourhood of the 
origin, and that they meet in a Bogdanov-Takens bifurcation F. These features are 
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Figure 6. AUTO bifurcation diagrams for a = -1. See text for details. 

confirmed numerically in these figures. Computations with other values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB, not shown 
here, gave qualitatively similar results, except that positive values of B yield different 
stabilities. 

Figure 5(a) shows the codimension-1 bifurcation varieties g, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9, #, as curves in the 
(vl, v2) plane. The codimension-2 cusp variety V, and Bogdanov-Takens variety 9, can 
be seen as the two points where the codimension-1 curves meet. 

Figure 5(b) is a bifurcation diagram, with parameter v1 fixed, and v 2  varying to pass 
through the Bogdanov-Takens point (v l ,  v2) = (-0.16, -0.24) on F. Numerical output 
from AUTO shows that two eigenvalues pass through 0 at this point, and change from 
real to complex at 0 as the parameter passes through 9. 

Figure 5(c) shows a bifurcation diagram with parameter v 2  varying and v1 = -1.0 
fixed, where all three codimension-1 varieties W, #, 9 exist, and it is clear that all three 
are crossed in this diagram. The loss of stability on the periodic branch is associated 
with a period-doubling bifurcation; AUTO detects a Floquet multiplier passing through 
-1 at this point. (It is possible to compute also the period doubled branch, but we 
have not done so in this diagram). The periodic branch ends with the period becoming 
‘infinite’ (too large to continue computing) while the amplitude stays finite and close to 
the magnitude of the limit point. This is strong evidence of a homoclinic bifurcation, 
as can be expected, coming from the Bogdanov-Takens bifurcation. 

Figure 5(4 is similar to 5(c), except that we have fixed v 2  = -0.5031, and let v1 
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be the bifurcation parameter. This gives a different view of the loss of stability of the 
periodic branch to a period-doubling bifurcation. Again the periodic branch ends with 
the period tending toward infinity, near the limit point of the equilibrium branch. 

In figure 6, we have taken a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -1, b = 1, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = -0.05. The asymptotic analysis 
of the previous section showed that when a = -1, the secondary Hopf variety zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX exists 
for both positive and negative values of vl, but we did not determine whether X is 
connected. Furthermore, we found that there is a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0, i, -i} mode-interaction as /? + 0, 
when v1 >O. 

Figure 6(a) shows the codimension-1 bifurcation varieties a,9, X as curves in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(vl, v 2 )  plane, and the codimension-2 cusp variety W, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 meet, as a point. 
The computations show that X is in fact connected and single-valued in vl, in an open 
neighbourhood of 0, and they confirm that X is very close to 9 for v1 sufficiently 
positive. 

Figure 6(b) is a bifurcation diagram with parameter v1 = -0.5 fixed, and v2 varying. 
It shows the two primary bifurcations a, and the secondary Hopf bifurcation X .  Unlike 
the case a = +1 in figure 5, all three branches extend far from 0, without joining or 
terminating. 

Figure 6(c) shows the bifurcation diagram with parameter v1 = +OS fixed, and v2 
varying. As in 6(b), it shows a secondary Hopf bifurcation X,  but the two primary 
bifurcations a have disappeared. Another difference from 6(b) is the appearance of 
a period-doubling bifurcation. Diagram 6(c) shows also the period-doubled branch, 
which in turn loses stability to a second period doubling. 

Figure 6(d) is similar to 6(c), except with v1 chosen as bifurcation parameter, and 
with v2 = -0.15 fixed. It shows the limit point 9, and two Hopf bifurcation points, 
joined by a ‘loop’ of periodic solutions. We should expect there to be two Hopf 
bifurcation points in this diagram because, as can be seen from figure 6(a), the line 
v2 = -0.15 intersects the variety X in two points. Similar computations with values of 
v2 tending toward 0 show that these two Hopf bifurcations then coalesce and disappear, 
as one would expect from figure 6(a). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6. The (0, i, -i}-eigenvalue bifurcation 

In this section we investigate a codimension-2 bifurcation, at which system (3.4) has a 
non-hyperbolic equilibrium with both zero and purely imaginary eigenvalues. After a 
time-rescaling, we may assume that these eigenvalues are (0, i, -i}. Such a bifurcation 
is well understood, see for instance [Lan79], [GH83], [CCHSS], [Gi185]. The most 
important feature of this bifurcation is that in a generic two-parameter family a global 
Hopf bifurcation in R2 (corresponding to a 2-torus in R3) occurs in a reduced vector 
field, and the limit cycle is unique. Here we have three parameters. We will prove 
in this section that two of them unfold the singularity, i.e. with these two parameters 
the standard results apply. Moreover, we also show that the third parameter can be 
exploited to make the bifurcation degenerate. This degeneracy has, as far as we know, 
not been studied in general. Nevertheless, we can draw some interesting conclusions. In 
this three parameter space there is a line where a degenerate Hopf bifurcation occurs, 
i.e. the first focal value, or stability coefficient, vanishes. This line is the boundary 
of a codimension-1 submanifold of saddle-node bifurcations of periodic orbits in the 
parameter space. We conjecture that these saddle-node bifurcations are non-degenerate 
and that consequently at most two periodic orbits can occur. The non-degeneracy of 



Hopf bifurcation with non-semisimple 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA:I resonance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA843 

the saddle-node bifurcation in this three parameter family has not yet been shown in 
general. 

It turns out, as we will show below, that for restricted values of the parameters the 
system (3.4) is time-reversible, up to the lowest order in E, and hence is not in the generic 
class of systems discussed in [GH83], [CCH85], [Gi185], [Zo184]. This complicates the 
analysis substantially. We have used MAPLE to do the so-called 'straightforward but 
lengthy computations'. 

Recall system (3.4) 

p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2p(s  + U + edlp + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS(e2)) 

U = v1 -U' + v 2  + a p + e d 3 p v  +O(e2) (6.1) 

D = v2 - 2uv + bp + ed,pv + @(e2).  

Recall from subsection 4.7 that the {O,i,-i} bifurcation occurs only if a = -1 and 
v1 >O,  which we assume throughout this section. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAus fix v1 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, thereby defining 
the scaling of e in (3.3). Our parameters are now (E, B, v2}. The rescaling (3.3) implies 
that any real values (not necessarily small) of /.? and v2 will be relevant to the original 
system. Recall that when e = 0 the derivative of the right hand side of (6.1) at the 
non-trivial equilibrium is 

b -20 28 

with the determinant given by (3.8) and (3.1 1). The (0, i, -i} bifurcation occurs on the 
ray zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2" = ( B  = 0, D = 0, v1 >O}, shown in figure 2. If v ,  = 1, then the (O,i,-i}-point 
occurs for (8, vl ,  v2)  = (0,1, -b) (recall that D = /I = 0 implies that v2 = (b /a )  vl) and 
the relevant equilibrium is (p ,  U, U) = (1,0,0). We replace p E 1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp and v2 = -b + v3.  
Now consider (e, B, v3) as small parameters. With these choices, the origin in parameter 
space is a (0, i, -i} bifurcation point, and the origin in state space is the non-hyperbolic 
equilibrium. Here the matrix J ,  becomes 

The matrix A has eigenvalues (0, k i a }  for all values of b. 

transformation with the matrix 
We first concentrate on the linear part of the vector field. We apply the linear 

(i !b i )*  
We rescale U by 1/& and we set 

P2 = Jis 
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This gives the following system of equations: 

P = u + p u + p l ( d l &  + 2 d 1 & p + d l & p 2 ) + p 2 ( 1  + p ) + O ( p ; )  

bd3ut//Z bd3pu& 
2 

b2u2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu2 

2 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - + b U ---p-b2uv& + p1 d3bu + d 3 b p v - 7 -  

+ bd3v& + bd3pv& + d4v& + d4pv& -d,bu) + p3 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO(p:), 

From this equation it is evident that the unperturbed equation, i.e. pi = 0, is time- 
reversible. The symmetry is given by 

U + - U  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs + -s x + x  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt + -t. (6.7) 

If we put this unperturbed vector field into Birkhoff normal form, with z = x - iu and 
y = v  

where f (complex) and g (real) vanish at the origin, then time-reversibility implies that, 
as functions of y, g is even, the even part o f f  is purely imaginary and the odd part of 
f is real. This symmetry complicates the computations substantially. We would like to 
apply the standard results on the unfolding of the linear vector field with eigenvalues 
{O,i,-i}, see [GH83], [CCH85], [Gi185], [Zo184]. To do so we need to consider an 
equation in the plane of IzI = q and y. Due to the above time-reversal symmetry, 
cubic coefficients in the equations in q and y that would have to satisfy a certain 
non-degeneracy condition, instead vanish identically. The system is degenerate, in fact 
to any order. It would not help to include higher-order terms. We therefore conclude 
that it is necessary to compute the dependence of (6.8) on the small parameters. 

We cannot simply follow the singularity in the small parameters (pl, p2, p3), because 
of the presence of a zero eigenvalue. Instead we rename the x3 component of the 
equilibrium, say x3 = a and choose parameters (pl, p2, a). Now p3 and x1,x2 depend 
on (pl, p2, a). Instead of a we will write p3 again, thus changing the meaning of this 
parameter. 

Next, we introduce complex coordinates 

z qe'e = p - iu y = v  

and put the linear part with respect to the parameters in Jordan normal form. The 
linear part of the vector field becomes 
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where 

(6.10) 

It is remarkable that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp1 is real up to second order in p. Next we use near-identity 
transformations to put the nonlinear vector field into normal form. To arbitrarily high 
order we can divide out an additional zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS’ symmetry. Thus, to this order we reduce to a 
two-dimensional equation in q and y, which has the following form: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= z(p)q - B(p)qy + c1(p)q3 + c2(p)qy2 + d1(p)qy3 + d2(p)q3y 

Y = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2J(p)q + q2 + Y2 + C 3 ( P k 2 Y  + C4(P)Y3 + d3(p)q2y2 + d4(p)y4 

+ w i q i  + iYii5 + ipi5) 

+ w i q i  + I Y I ) ~  + ipi5). 

(6.11) 

It turns out that 

B ( p )  = 1 + O(p2) .  (6.12) 

We introduce the following notation: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Z ( P )  = (ZlIP) + O h 2 )  

(6.13) 

We perform the transformation y = y” + r ( p )  and choose r (p )  such that the linear term 
in y in the second equation vanishes 

A rescaling of y and q of the form y = (1 + O(p2))g and q = (1 + O(p2)) i j  can be chosen 
such that the coefficients of y2 and q2 in the second equation of (6.11) become 1 again. 
System (6.11) is transformed to 

(6.14) 

(6.15) 
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It turns out that 

(6.16) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd? (2b2d1 + b2d4-2bd3 + 2d1-d4) - 
4 

Provided that this expression is non-zero we can take as our new parameters (IC, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs", p3) .  
We drop the * and apply the rescalings 

Dropping the and writing 

gives the system of equations 

We repeat some of the standard facts about this specific codimension-2 problem that 
we need here (see [GH83], [Zo184], [CCH85], [Gi185]). Consider the truncation at order 
two. If IC = 0 then the system 

4 = -qY 

j J  = -1 + q 2 + y 2  

is integrable with integral 

H ( q , y )  = - - l + y  +-  
- q 2 (  2 "'> 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 Y 

Figure 7. Level sets of H .  

(6.20) 

(6.21) 
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The condition for (6.19) to have a periodic solution close to the compact level set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
y h  of (6.21) (see figure 7) becomes 

Y(h,6) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 

If we let 

Zj = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZj(h) = gh qj+'ydq 

then integration by parts simplifies this expression to 

(6.22) 

(6.23) 

where 

As we expect, the formulae for K, and K ,  are complicated; however, if K ,  # 0 then 
the bifurcation is non-degenerate. So the most interesting fact is that K ,  depends in a 
generic way on the third parameter p3. 

Theorem 2. Assume that 6d, + d, # 0 and 2b2d, + b2d, - 2bd3 + 2d1 - d, # 0. Then 

dK2/dP3 # O* 

Proof: This fact follows from the identity 

16(6d1 + d4) ( (b2 + 1 ) f i  (2b2d1 + b2d,-2bd3 + 2d,-d4) 
K ,  = P3 

1 

+ (18b2 + 18)(2b2d, + b2d4-2bd3 + 2dl-d4)b2 

x -(740b4d1 + 50b6d,-50b5d3 + 1 122b2d,-273b2d, 

-690b3d3 + 320b4d4 + 25b6d4 + 1296d1 + 216d4). 

Corollary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Z2(h)/Zo(h), then (6.19) has a unique periodic 
orbit close to yh .  The level set K , / K ,  = -1 is the locus in parameter space of Hopf 
bifurcation. The level set K , / K ,  = -4/5 is the locus of saddle connections. This 
follows from (6.23), evaluating the integrals at the centre and the saddle connection. 

If K 1 / K ,  = -Q(h) 
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Corollary 2. There is the possibility of a degenerate Hopf bifurcation. If we set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, 
then we determine a codimension-1 submanifold on which the fifth-order terms in the 
normal form equation will determine the bifurcation. For instance, for the points of 
Hopf bifurcation this corresponds to points in parameter space where the first stability 
coefficient is zero. This will (in the simplest possible scenario) lead to a codimension-1 
submanifold of saddle-node bifurcations of periodic orbits in the parameter space. This 
follows from the fact that in this degenerate case we must solve an equation of the 

type 

9 ( h , v , 6 )  = I ,  L o + v h + L , -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 0 ( 6 )  =o. ( 10 ) 
For nearby parameter values there will be multiple periodic orbits, see figure 8. To 
locate these one would have to calculate the fifth-order terms, which we have not yet 
done. 

(b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 8. Degenerate Hopf bifurcation. 

The analysis of this section captures the existence of phenomena of at least the same 
complexity as found in previous studies of the non-resonant double Hopf bifurcation. 
Moreover, it shows the existence of neutrally stable periodic orbits in (6.19), although 
we have not yet located where this happens in parameter space and what the order of 
degeneracy will be. From the work of [CSG87], [Zo187] we know that generically this 
does not happen in the non-resonant case. In the region of normal hyperbolicity the 
existence of a periodic solution to (6.19) implies the existence of a normally hyperbolic 
threefrequency solution to (6.1) even if the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS' symmetry in this equation is broken (at 
sufficiently high order). 

We would like to know what happens at the points where (in the original system) 
a 2-torus bifurcates to a 3-torus. This has been investigated, for the general case, 
in [ILo88]. However, there are two additional complications here. The three frequencies 
are of different orders of magnitude, due to the two essential rescalings we have 
made in (3.3),(6.17). Also, the occurrence of the degeneracy suggests that there will 
be a saddle-node bifurcation of 3-tori. Chenciner [Che83] studied a degenerate Hopf 
bifurcation for maps of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIR'; that is, for 2-tori. His results imply that a three-dimensional 
system such as (3.4) could have the following dynamics. 
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0 For values of parameters in a Cantor set tangent to the hyperplane of Hopf 

bifurcation there would exist a neutrally stable 2-torus. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e Each point in the Cantor set would be the centre of a two-sided cone such that 

for parameter values in the interior of the cone, there would exist a normally 
hyperbolic 2-torus. In one component of the cone, the tori would be stable and in 
the other they would be unstable. 

0 At a point of intersection of the two cones, there would exist multiple 2-tori. The 
regions of stability of the 2-tori would be very small and other kinds of complex 
dynamics would occur. In particular the system would have an infinite number 
of periodic orbits with arbitrarily long period, transversal homoclinic orbits and 
orbits with homoclinic tangency. 

It has yet to be verified that the results on degenerate bifurcations of tori, such as 
in [Che83], [BBH90], [ILo88], do apply to our original four-dimensional system. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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