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HOPF BIFURCATIONS IN COMPETITIVE
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Abstract. We study the space of Lotka-Volterra systems modelling three mutually competing species,
each of which, in isolation, would exhibit logistic growth. By a theorem of M. W. Ifirsch, the compact
limit sets of these systems are either fixed points or periodic orbits. We use a geometric analysis of the
surfaces z; = 0 of a system to define a combinatorial equivalence relation on the space, in terms of simple
inequalities on the parameters. We list the 33 stable equivalence classes, and show that in 25 of these
classes all the compact limit sets are fixed points, so we can fully describe the dynamics. We study the
remaining 8 equivalence classes by finding simple algebraic criteria on the parameters, with which we are
able to predict the occurence of Hopf bifurcations and, consequently, periodic orbits.

1. Introduction.

1.1 Introduction. The growth rate of a population is generally viewed as being in
some sense 'proportional’ to the size of the population; where the proportionality factor,
known as the per capita growth rate, may depend on the population size. Such growth is
modelled by the ordinary differential equation

& =aN(z), z denotes —,

where 2 > 0 is the population size at time t.

For example, when the per capita growth rate is N(z) = r(1— %), r, X > 0, then there
is a unique stable equilibrium at population size K. This is the familiar logistic growth,
modelling a healthy population subject to limited resources. The healthy growth of small
populations and the competition for the resources in large populations balance at the
carrying capacity IK.

A community of n interacting species is modelled similarly. The growth rate of the ith
species is still considered “proportional” to its population size z;, whilst the interaction of
the species is reflected by the per capita growth rate, which may depend on the population
sizes of any of the n species. Thus we have the system of ordinary differential equations

(1) z; = Fi(z) = z;Ni(z), 1=1,...,n

where the vector x = (z3,... ,2,) lies in the closed positive cone R%.
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For distinct ¢ and j, sign( aNj ) and sign(%—];]-‘f-) reflect the relationship between the ith
and jth species. If both quantities are positive, then the growth of each species promotes
the growth of the other. That is: they cooperate. If both quantities are negative, the
species compete. Finally, if the quantities are of opposite signs, then the two species have
a predator-prey relationship. The matrix DN = (@*) is known as the community matriz
of the system.

When the per capita growth rates N; are affine, equations 1 form the classical Lotka-
Volterra system

.’fi = F,(:II) = It,'(b,‘ - (A.’IJ),), 1=1... , 1

which was independently introduced by Lotka and Volterra in the 1920’s. Here, A is an
n X n matrix.

The two-dimensional Lotka-Volterra systems are well understood: If the two species
cooperate or compete there are no periodic orbits, and all bounded trajectories of the flow
converge to a fixed point. The same results hold when the species have a predator-prey
relationship, except for certain degenerate cases when there is a simply connected open set
in IntR? foliated by concentric periodic orbits surrounding a fixed point. These results
are discussed in most elementary texts on ecology. For example, see Lotka [25] (originally
published as [24]), Freedman [6], Hofbauer and Sigmund [19], May [29], [28] or Pielou [32].
For a complete dynamical classification of the two-dimensional Lotka-Volterra systems (via
the topologically equivalent three-dimensional replicator systems), see E.C. Zeeman [35].

Very little is known about the dynamics of the n-dimensional Lotka-Volterra systems
for n > 2. In 3 dimensions, isolated examples have been found of systems with periodic
orbits (Coste et al [4], Gilpin [7]) and others with non-periodic oscillations (May and
Leonard [27], Schuster et al [34], Phillipson et al [31]); but there is no classification theory
with which to predict the long term behaviour of a given system.

In this paper , we work some way towards a classification theory for the Lotka-Volterra
systems modelling three mutually competing species, each of which, in isolation, would
exhibit logistic growth. These are the three-dimensional systems for which the parameters
aij, b; are strictly positive, and we denote by CLV(3) the class of vector fields on R}
defining these systems. Ideally, the classification would give algebraic criteria in terms of
the parameters A and b for two such systems to have topologically equivalent flows, and
it would describe the dynamics in terms of algebraic invariants.

1.2 Notation. The following notation will be used repeatedly. Throughout the paper,
we use 1talics when defining terms in the text.

& = (1,...,2,) denotes a vector in R™. The closed positive cone in R™ is R} = {z €
R" : z; > 0, each 7}, and the open positive cone is IntR} = {z € R} : z; # 0, each ¢}.
A vector z is called positive if z € RY, and strictly positive if x € IntR%. Similarly z is
negative if —z is positive, and strictly negative if —z 1s strictly positive.
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X(M) denotes the space of continuously differentiable vector fields on a manifold M.
As a generalisation of CLV(3), defined in the introduction, we denote the space of n-
dimensional competitive Lotka-Volterra systems by

CLV(TL) = {F € X(R:) : F,(CE) =I; b,‘ — Zaijwj s a,'j,b,' > 0, i,j =1,... ,'ll}

i=1

F € CLV(n) is clearly analytic, and we occasionally take advantage of this by ambiguously
using smooth to mean “as smooth as necessary”.

A differentiable vector field F' € X(M) defines a system & = F(z) whose solution is
the local flow of F, ¢ : M x R — M. The solution with initial value y is denoted by ¢+(y),
and called the orbit or trajectory of y. a(y) and w(y) denote the alpha and omega limit
sets of y respectively.

F,G € X(M) are topologically equivalent if there is a homeomorphism of M throwing
the orbits of the flow of F' onto those of the flow of GG, in an orientation preserving way.
This defines an equivalence relation on X(M), and F is structurally stable if it has an open
neighbourhood in X(M) of topological equivalents. Rather than ask about the structural
stability of vector fields in CLV(n), which is a set of infinite codimension in X(R ), we
look at stability within our small subset of systems. That is, we restrict our attention
to vector fields in CLV(n), calling F topologically stable if it has an open neighbourhood
in CLV(n) of topological equivalents. The equivalence classes in CLV(n) are called the
topological classes, and those that are open in CLV (n) the stable topological classes. By a
classification theory for CLV(3), we mean precisely a description of the dynamic behaviour
in each of the stable topological classes in CLV(3).

We shall use generic to mean generic within the class of systems of the context.

1.3 Statement of Results. In §2, we describe and apply a theorem of M.W. Hirsch
(theorem 2.1) to show that if FF € CLV(n), then there is an invariant hypersurface, denoted
¥, such that every non-zero trajectory of &£ = F(z) is asymptotic (as t — +00) to one in Z.
We call this hypersurface the carrying simplez, thinking of it as the balance between the
growth of small populations and the competition of large populations, in analogy with the
carrying capacity of the logistic model. The dynamic significance of the two-dimensional
carrying simplex for F € CLV(3) is that, generically, the omega limit sets (representing
the long term behaviour of the system) in IntR% must be fixed points or periodic orbits.

§2 also contains some background material on the Hopf Bifurcation.

The aim of §§3 and 4 is to extract dynamic information from the way in which the
algebraic simplicity of a Lotka-Volterra system is geometrically captured by its nullclines
(the surfaces £; = 0, which are composed of affine spaces). In §3, we use a geometric
analysis of these nullclines to define a combinatorial equivalence relation on C'LV(3), in

terms of simple algebraic inequalities on the parameters. We call the equivalence classes
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under this relation the nullcline classes, to distinguish them from the topological classes
that we are really interested in. We list the 33 stable nullcline classes, and show that in
25 of these classes there are no periodic orbits, so we can fully describe their dynamics.

The remaining 8 stable nullcline classes are refined by the topological classes according
to periodic orbits. In §4 we subdivide the stable nullcline classes into three-parameter
families of systems corresponding to fixed nullclines, and use a yet finer geometric analysis
of those nullclines to predict whether a family admits Hopf bifurcations. One consequence
of these prediction results is that we have a simple means of exhibiting systems with an
attracting fixed point representing an eventually stable coexistence of all three species, and
others with an attracting periodic orbit, representing eventual coexistence of an oscillatory
nature.

2. Background Material.

2.1 The Carrying Simplex. Our analysis of CLV(3) has its foundations in the
theory of competitive and cooperative dynamical systems, developed in a series of papers
by M.W. Hirsch [12] - [18]. In particular, we shall apply the main theorem of part I of
this series, discussed below, to show that for F' € CLV(n), the omega limit sets of the
system & = F(z) are precisely those of a uniquely determined (n —1)-dimensional invariant
hypersurface. For n = 2, this implies that the omega limit sets must be fixed points; whilst
for n = 3, we have an invariant two-dimensional surface, on which (by Poincaré-Bendixson
theory, see [30], [11]) every limit set is either a fixed point, periodic orbit, or a chain of
fixed points {p;}, “joined” by regular orbits {v;}. (Le. a(v;),w(v;) € {pi}, for each j).

A system & = F(z) of differential equations on R™ is called competitive if %E— <0, for
J # 1, and cooperative if %‘} > 0, for j # 1; where F;, z; are the tth components of F' and
z respectively. These names are clearly suggestive. Since each z; > 0, the competition
and cooperation conditions are precisely those described in the introduction as reflecting
the type of interaction between species. There is a famous comparison principle of Kamke
[23] which states that the forward flow of a cooperative system is monotone, meaning
that it preserves the partial ordering on R™. Note that under time-reversal (changing the
independent variable from ¢ to —t) a cooperative system becomes competitive, and vice
versa, so that we have, equivalently, monotonicity of the backward flow of a competitive
system.

In his series of papers [12] — [18], Hirsch exploits these order preserving properties to
analyse the geometry and dynamics of compact limit sets of competitive and cooperative
systems on R", and subsequently to discuss the structural stability of these systems in

three dimensions. Part I of the series, entitled Competing Species, deals with competitive
systems of the form

(2) z; = Fy(z) = z;N;(z) i=1,...,n

on R%, under the added assumptions of dissipation and irreducibility, defined below.
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System 2 is dissipative if there is a compact invariant set which uniformly attracts each
compact set of initial values. If we permit the existence of a point co € R}, then dissipation
can be thought of as “a repellor at co”. The system is irreducible if the community
matrix DN is irreducible at every point in IntRZ}. This is a mild genericity condition,

meaning that for any p € IntR%, and distinct 2,7 € 1,...,n, there is a finite sequence
i = kyi,...,km = j such that %"—(p) # 0 forr =1,...,m — 1. The interpretation is

r+1
that each species influences every other species, either directly or indirectly. Both of these

conditions are satisfied by F' € CLV(n).

In part I of the series [13], Hirsch shows that in a cooperative system satisfying the
genericity condition that all fixed points are simple, almost every point (in the sense of
Lebesgue measure) whose forward orbit has compact closure converges to an attracting
fixed point. This can be restated, via time-reversal, to say that for a generic competitive
system, almost every point whose backward orbit has compact closure lies in the basin
of repulsion of a repelling fixed point. Now, if the generic competitive system 1s also
dissipative, we can think of co as being a repelling fixed point, and conclude that almost
every point of R% lies in the basin of repulsion of a repelling fixed point.

The main result of part I of the series [15] is that for each repelling fixed point
pi € IntR}, the boundary of the basin of repulsion of p; contains a forward invariant
subset M; of a particularly simple topological and geometric nature; these M; are disjoint,
and every omega limit set in IntR7 is an omega limit set of the system restricted to an
M;. To be more precise about the M;, each one is a Lipschitz submanifold, homeomorphic
to R®~1, and everywhere transverse to all positive rays in R™ (so that no two points in an
M; are ordered by the partial ordering on R™).

In the simple event that there are no finite repelling fixed points in IntR7 , the family of
submanifolds { M;} described above reduces solely to the boundary of the basin of repulsion
of co, whose closure we denote by X. This event is guaranteed when the origin (necessarily
a fixed point of system 2) repels , and the community matrix DN at all other fixed points
has strictly negative entries. We state the theorem in this weak version, and apply it to

FeCLV(n).

THEOREM 2.1 (Hirsc). Let &; = Fi(z) = z;Ni(z), ¢« = 1,... ,n be a competitive,
dissipative system on R%, for which the origin repels, and such that DN has strictly
negative entries at every other (finite) fixed point. Then every trajectory in R}\{0} is
asymptotic to one in ¥, and ¥ is homeomorphic to the unit simplex in R} by radial
projection.

Remark. So far we have only defined ¥ intuitively as the boundary of the basin of
repulsion of the fictitious fixed point at co. This can easily be made rigorous by defining
R(o00) = {z € R} : a(z) = oo}, and & = OR(00). The unit simplex in R} is defined to be
{reR}: Y0 jzi=1}



COROLLARY 2.2. Let & = F(z), where F € CLV(n). Then there is an invariant
hypersurface ¥, homeomorphic to the unit simplex in R} by radial projection, such that
every trajectory in R} \{0} is asymptotic to one in X.

Remark. This means that the omega limit sets of the system are precisely those of
the system restricted to the invariant hypersurface ¥, which we call the carrying simplez.
Recall that for z ¢ ¥, a(z) is either 0 or oo, so that all the finite limit sets in R} \{0}
lie on ¥. For n = 2, the carrying simplex is a curve, and the limit sets must therefore be
fixed points; whilst for n = 3, the carrying simplex is a two-dimensional surface, on which
we can use Poincaré-Bendixson theory. In §3, we shall show that for F' € CLV(n) there
is generically at most one fixed point in IntE (the interior of £), and this fixed point is
simple, so that a limit set in IntY is either a fixed point or a periodic orbit.

Proof of the corollary.. For F € CLV(n), the system is certainly competitive. Writing
Fi(z)=a; | bi — Zaijmj , for some a;;,b; >0

we see that for |z| sufficiently large, F'(z) is a negative vector. Thus by Kamke’s comparison
principle, |¢_;(2)| is monotone increasing with ¢, lim;— |¢_4(z)| = o0, and the system
is dissipative. Similarly, for |z| sufficiently small but non-zero, F(z) is a positive vector,
whilst F'(0) = 0, so that the origin is a repelling fixed point.

In the notation of theorem 2.1, N;(z) = b; — 27:1 a;x;. So g—gjﬁ = —a;; <0, Vi,
and the community matrix has strictly negative entries everywhere, and a fortior: at the
fixed points. Now we can apply theorem 2.1. [

2.2 The Hopf Bifurcation. As mentioned in the previous section, for generic F' €
CLV(3), any limit set in IntR% of the system ¢ = F(z) is either a fixed point or a
periodic orbit. The algebraic simplicity of Lotka-Volterra systems makes the location of
fixed points easy. We approach the more subtle question of periodic orbits by considering
one-parameter families of systems, and applying the Hopf Bifurcation Theorem, which
describes the development of periodic orbits from a fixed point, whose stability changes at
some critical value of the parameter.

This phenomenon was first described by Poincaré [33, pp. 131-33] in 1892. The two-
dimensional theorem was extensively discussed by Andronov and Witt [1] in 1930, and was
extended to higher dimensions by E. Hopf [20] in 1942.

We shall discuss the heuristic ideas and state the theorem, ready for later use. The
proof of the theorem is technically rather complicated, and for that we refer the reader
to the literature. See, for example, any of the following books: Arnold [2], Marsden and
McCracken [26], Hassard, Kazarinoff and Wan [10]; or the translation (in [26]) of Hopf’s
original paper [20] by Howard and Kopell [21].

6



Given a vector field Fy : R* — R™, and the associated system & = Fy(z) on R",
the fixed points are given by the zeros of Fy. Analysis of a generic fixed point z¢ is
straightforward: The Hartman-Grobman theorem (see Hartman [8], Irwin [22] or Palis
and De Melo [30]) says that in a neighbourhood of z, Fp is topologically equivalent to its
linear part DFy(zq) at z¢. Indeed, the topological type of the fixed point is determined by
the distribution of the eigenvalues of DFy(zo) in the complex plane, where the genericity
of zy ensures that all of these eigenvalues lie off the imaginary axis. If DFy(zy) has ny
eigenvalues with strictly positive real part, and n_ eigenvalues with strictly negative real
part, (eigenvalues are counted with multiplicity so that ny + n_ = n) then the fixed
point zo has an unstable manifold of dimension ny, and a stable manifold of dimension
n_, intersecting transversally at z¢. Moreover, this dynamic behaviour is preserved under
small perturbations of the system. Consider a smooth one-parameter family of systems
& = F,(z) through the original system & = Fy(z), where the parameter u is real. By the
Implicit Function Theorem, there is a curve of fixed points z, = z(u) through zo. The
eigenvalues of DF,(z,) depend continuously on the matrix entries, which in turn depend
continuously on the parameter p. Thus there is a neighbourhood M of 0 in R, such that
for p € M, the system & = F,(z) has a fixed point near z, of the same topological type
as zg.

However, for values of u far from 0, one or more of the eigenvalues of DF,(z,) may
cross the imaginary axis, so that their distribution in the complex plane changes. As this
happens, and an eigenvalue approaches the imaginary axis, the radius of the neighbour-
hood of z, on which F, is topologically equivalent to its linear part shrinks to 0, and a
metamorphosis of the phase portrait takes place. For example, as a simple real eigenvalue
passes through the origin, a new pair of fixed points may bifurcate out of (or amalgamate
into) our fixed point z,. We shall see later that within the class CLV(n), the limited
number of fixed points guarantees that this does not occur in IntR” , so we shall not delve
into the details. The other generic possibility 1s that a simple complex conjugate pair
of eigenvalues crosses the imaginary axis. (Recall that the non-real eigenvalues of a real
matrix occur in complex conjugate pairs.) This is the condition for a Hopf Bifurcation,
in which, analogously, a periodic orbit may bifurcate out of (or be amalgamated into) our
fixed point.

Note that we use genericity to mean that any nearby one-parameter family of systems
exhibits the same phenomenon of a curve of fixed points on which a simple complex con-
jugate pair of eigenvalues crosses the imaginary axis. The bifurcation is thus referred to
as a codimension-one bifurcation. In the space of vector fields under investigation, we can
imagine the hypersurface of systems exhibiting a fixed point with a complex conjugate
pair of eigenvalues on the imaginary axis, and our generic one-parameter family joining
one stable topological class to another, crossing the hypersurface transversally on its way.



For simplicity, we state an analytic version of the Hopf Bifurcation Theorem on R™.
This is by no means the most general version of the theorem, but it is sufficient for our
needs.

THEOREM 2.3 (HOPF BIFURCATION THEOREM). Let F, : R* — R" be an ana-
lytic one-parameter family of vector fields with a corresponding one-parameter family z,
of isolated fixed points, so that F,(z,) = 0, where the real parameter y ranges over a
neighbourhood of 0 in R. Assume that DF,(z,) has a simple pair of complex conjugate
eigenvalues A, >‘_u that cross the imaginary axis with strictly positive speed as j1 passes
through 0. Writing A\, = a, + iw,, these conditions translate to ay = 0, wy > 0 and
agy > 0. Assume also that the remaining n — 2 eigenvalues of DFy(z¢) have strictly nega-
tive real parts. Then the one-parameter family of systems & = F,(x) has a one-parameter
family of periodic orbits. That is, for some €; > 0 sufficiently small, there is an analytic
function p : (0,€¢;) — R such that for each € € (0,€;), there is a periodic orbit p. of the
system = = F,)(z). The function p, if not identically zero, is either strictly positive or
strictly negative on (0,¢€;). Moreover, there is a neighbourhood U of 0 € R™ and p; > 0
such that for |p| < pq, any periodic orbit of F, in U is one of the p. described above.

Remark. The theorem tells us that we have a single one-parameter family of periodic
orbits existing in conjunction with our one-parameter family of fixed points, and that with
respect to the original parameter u, this family exists in exactly one of the cases (1)u > 0,
(it)p = 0 or (222)p0 < 0. These three possibilities are illustrated in figure 1 for systems on
R2. The general n-dimensional case can be thought of similarly by restricting attention
to certain two-dimensional hyperbolic and pseudo-hyperbolic manifolds of the fixed point.
(To be precise: the two-dimensional weakly stable manifold whilst ¢ < 0, a centre manifold
whilst ¢ = 0 and the unstable manifold whilst g > 0.)

In case (i), the fixed point is stable for 4 < 0, but at the bifurcation value p = 0, sac-
rifices its stability to the newly developed periodic orbit. This is known as a Supercritical
Bifurcation, and is of most interest experimentally, for the simple reason of observability.
Case (iii) is the Subcritical Bifurcation, in which the unstable periodic orbit and stable
fixed point coexist for 4 < 0, amalgamating at g = 0 to result in an unstable fixed point.
Case (ii) is the degenerate situation of the whole family of periodic orbits existing together
at the bifurcation value p = 0, foliating a neighbourhood of the fixed point.

We should note that at its full strength, the Hopf Bifurcation Theorem states far more
than this: It gives estimates for the period and radii of the periodic orbits in terms of
wo and p(e) respectively, as well as determining the stability properties of these periodic
orbits. In our situation, the geometric simplicity of the three-dimensional Lotka-Volterra
systems renders these technicalities unnecessary.
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Figure 1: The Hopf bifurcation



3. Classification by Nullcline Equivalence.

3.1 The Two-Dimensional Case. To pave the way for the three-dimensional analy-
sis, we now present the familiar results of the two-dimensional competitive Lotka-Volterra
systems, described in the introduction, in a manner that generalises to higher dimensions.

We saw in §2.1 that for F € CLV(2), the non-zero finite limit sets of the system
¢ = F(z) are all fixed points, and that they lie on an invariant curve ¥, homeomorphic to
the unit simplex in Ri by radial projection.

The location of these fixed points is easy. They lie at the intersections of the surfaces
z; = 0 of the system, which we call the nullclines. In what follows, we use a geometric
analysis of the configuration of the nullclines to define a combinatorial equivalence relation
on CLV(2), called nullcline equivalence, whose equivalence classes reflect not only the
location but also the dynamic behaviour at the fixed points. Thus we show that, in
the two-dimensional case, the stable nullcline classes coincide precisely with the stable
topological classes. In §4, we shall see in contrast that, when we follow the same program
of investigation for CLV(3), defining the analogous nullcline equivalence relation, the stable
nullcline classes do not always coincide with the stable topological classes, but instead are
refined by them according to periodic orbits.

Location of the Fixed Points.

The nullclines are given by

il‘,':O

2;=0 & z;(b; —(Az);) =0 & .
v :E( ( 37)) { or (A.’I})i:bi

So the ith nullcline is the union of the ith coordinate axis, and another line N; = {(x1, 22) :
a;1x1 + ajppx2 = b;}, with positive normal vector (a;1,a;2), and positive axial intercepts
(?1%1_’0) and (0, a—b:) Generically, there are four intersections of these nullclines in R?, and
they can be classified into three types depending on their position relative to the coordinate
axes, as follows:

(1) The origin 0.

(2) The two azial fixed points R} = (ail’T,O) and Ry = (0, ;bf;), where the line N; meets
the z; axis.

(3) The interior fixed point P = (p;,p2) at the intersection of the lines N; and N,. Note
that AP =b

Recall that we are only interested in those fixed points that lie in R%. This includes
the origin, and each R;, but not necessarily P.

PROPOSITION 3.1. The configuration of the lines N; determines the dynamic behaviour
of the flow at the fixed points R;.

Proof. Each coordinate axis z; is invariant, and is an eigenspace of D Fg,, along which
R; attracts with associated eigenvalue —b;. To fix our ideas, consider R;, and make the
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genericity assumption that DFpg, has distinct eigenvalues. It would be easy to calculate
the second eigenvalue and associated eigenvector directly from the matrix DFg,; but to
generalise that method to higher dimensions would present difficult algebraic problems.
Instead, we use geometric methods, and determine the qualitative behaviour at R; by
considering the way that R?‘_ is partitioned by the line N;, and where R; sits in this par-
tition. Recall that N; is part of the nullcline on which 23 = 0. There are two components
in RZ \ N,: one bounded component, on which &, > 0 and one unbounded component,
on which £, < 0. Thus if R; lies in the bounded component of Rﬁ_ \ Ny, then 2, > 0
in a neighbourhood of R; in Ri, and in particular, R, is a saddle point, repelling along
the second eigendirection. If, on the other hand, R; lies in the unbounded component of
R3 \ Nz, then R, is an attractor, attracting along that eigendirection. In a similar fashion,
we can determine the qualitative behaviour at R,. See figure 2. [J

\

QeEo @9

Figure 2: The behaviour at the fixed points of F.

COROLLARY 3.2. The configuration of the lines N; determines the dynamic behaviour
of the flow in Ri.

Proof. This is immediate, since the carrying simplex T is globally attracting for R? ,
and the behaviour on ¥ (since one-dimensional) is determined by the behaviour at the

axial fixed points R;. []
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Example. Consider the case a—bL < 22 and o > P2 pictured in figure 2. Each R; is
11 a2y a2 az2

in the bounded component of Ri \ N; (¢ # j), and is thus a saddle point of F'. Moreover,
the lines N; necessarily cross in IntR? so that P € IntR%, and the carrying simplex
is composed of the fixed points R; and P, joined by the unstable manifolds of the R;.
Therefore P attracts along £, and since £ is globally attracting on IntR%, so is P.

The proof of proposition 3.1 has given precision to our notion of nullcline configuration.
Geometrically, we characterised this configuration by the relative positions of the axial
intercepts of the nullclines. This translates into an algebraic characterisation by the values

. b; . .
of sgn(;b:'j - 7{:7)’ 1 # 7.

Note that since ;b‘— is just the zth coordinate of the axial fixed point R;, we have

te

b; b; b;
sgn (;—1 - a—i) = sgn (ajia_ii — b]) =sgn((AR;); — b;)
where (AR;); is the jth component of AR;.

Although this seems a rather cumbersome way of writing a simple inequality, we shall
see that it generalises well to higher dimensions. For that reason we adopt it here, to
give a precise definition of nullcline configuration, with which we can define the nullcline
equivalence relation on CLV(2).

DEFINITION 3.3. Let FF € CLV(2). The nullcline configuration of F is given by the
values of

sgn((AR;); —b;), fores#j, 1,7=1,2
modulo permutation of the indices.

Remark. Permitting permutation of the indices ensures that our definition is indepen-
dent of the labelling of the coordinate axes.

DEFINITION 3.4. Let F,G € CLV(2). We say that ' and G are nullcline equivalent
if and only if they have the same nullcline configurations.

This clearly defines an equivalence relation on C LV (2). We call the equivalence classes
under this relation the nullcline classes, and, as usual, say that F' is nullcline stable iff F
has a neighbourhood of equivalents. The stable nullcline classes are those nullcline classes
whose elements are nullcline stable.

The following proposition and its corollaries are immediate.

ProproOSITION 3.5. Let F € CLV(2). F is nullcline stable if and only if sgn((AR;); —
b]) 740, fOI‘Z#]

COROLLARY 3.6. The stable nullcline classes have open dense union in CLV(2).

COROLLARY 3.7. There are 3 stable nullcline classes in CLV (2).
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Figure 3: The two-dimensional stable nullcline classes. A fixed point
is represented by a closed dot e if it attracts, by an open dot o if it
repels, and by the intersection of its hyperbolic manifolds if it is a

saddle.

Corollary 3.2 enables us to describe these 3 stable nullcline classes by their dynamics.
We do this in figure 3, listing a representative from each class by its phase portrait on R2 .
A fixed point is represented by a closed dot e if it attracts; by an open dot o if it repels,
and by the intersection of its hyperbolic manifolds if it is a saddle.

Note that in the cases when the lines N; meet at P € IntRi, then the nullcline
configuration is determined by the relative slopes of the lines N;. But the equation for N;
is simply (Az); = b;, so that N; has normal vector n;, composed of the elements of the ith
row of A. The relative sizes of the slopes of these n;, and hence of the N;, are determined
by sgn(detA). Indeed, P is attracting when detA > 0, and repelling when detA < 0. This
is a convenient relationship between the dynamics and the algebra, which we shall use
repeatedly in §4. When detA = 0 there is a linear dependence between the rows of A, so
that if the lines N; meet at all they coincide. Thus F has a whole line of fixed points, and
1s neither topologically nor nullcline stable.

It is clear that if I € CLV(2) is topologically stable, it is also nullcline stable. Thus the

stable topological classes refine the stable nullcline classes. The following theorem shows
that this refinement is in fact trivial, so that nullcline stability characterises topological

stability for CLV(2).

THEOREM 3.8. In CLV(2), the stable nullcline classes coincide precisely with the
stable topological classes.

Proof. We first show that every vector field F' € CLV(2) has a global Liapunov func-
tion Vg on Rﬁ_, varying continuously with the parameters of F. We then use the method
of fundamental domains together with the added structure given by the level sets of V¢ to
construct a topological equivalence between stable nullcline equivalent vector fields.
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Let F € CLV(2) be given as usual by

2

Fi(z) =z; bi—Zaija:j 1 =1,2

i=1
and consider the quadratic function Vr : R? — R defined by

2 2
Vr(z) = a2y Zaljwj —2by | + a1o22 EGZij — 2by

When detA > 0, the graph of Vp is a paraboloid with minimum at P; and when detA4 < 0,
VFr has a saddle point at P. For = € Rﬁ_

2 2
2

2
VVp.F(z) = —2anz;: | by — Zalj-’L‘j — 2ay9xq | by — Zazjxj <0

j=1 j=1

since agy,a12 > 0; and VVp. F(z) = 0 iff z is a fixed point of F. Thus Vg is a global
Liapunov function for F, meaning that the value of Vp decreases with time along non-
constant orbits of F', and these orbits are everywhere transverse to the level sets of V.

Now choose two stable nullcline equivalent vector fields F, F € CLV(2). To fix our
ideas, assume F, F are in stable nullcline class 3. Then F has carrying simplex ¥ with
attracting fixed points R;, Ry and a saddle at P, whilst F has carrying simplex ¥ with
attracting fixed points R;, R; and a saddle at P. The following type of construction works
equally well for nullcline classes 1 and 2.

Let V and V be the Liapunov functions for F and F respectively. That is, V = Vg
and V = Vi as defined above. We shall use V' and V to construct a homeomorphism of

R?% throwing orbits of F' onto those of F in an orientation preserving manner.

Since V is a Liapunov function for F', we know that
0= V(0)> V(P) > V(Ry), V(Ry)

and similarly

0=V(0)>V(P)>V(Ry),V(R,)

14



Figure 4: Construction of the homeomorphism H.

After any necessary permutation of the axes, or perturbation of V or V to nearby
Liapunov functions, we may assume that V(Ry) > V(R,) and V(R;) > V(R;). So we can
choose a homeomorphism h : R — R such that

h0)=0, h(V(P))=V(P), and h(V(R;)) =V(R:), i=1,2.

Now choose r € R such that V(P) < r < 0, and consider the level set V~(r) of V.
The choice of r ensures that V1(r) is a hyperbola, with centre at P, and is a fundamental
domain for F on R} \ £ U {0}, meaning that it uniquely intersects every orbit of F in
R2 \ T U {0}. In particular, let Sy, S, (| 1 |<| Sz |, say) be the two points where the
stable manifold of P (W?*(P)) meets V~!(r). See figure 4.

Similarly, V(P) < h(r) < 0, so V"1(h(r)) is a fundamental domain for F on RZ\ SU
{0}, and meets the stable manifold of P at Sy, S,, where ] S |<] S, |, say.

Let b, : V=1(r) = V~1(h(r)) be a homeomorphism between the fundamental domains,

preserving the axes, and such that h.(S;) = Si, ¢t = 1,2. We can now use h and h, to
define the required homeomorphism H of R% as follows: On R% \ £ U {0}, define

H(z) = O(h(0(z) NV (r)) NV (R(V(2)))

where O(z) and O(z) denote the orbits of ¢ under F and F respectively. Then H :
R2 \ ZU {0} - RZ \ £ U {0} throws orbits of F onto orbits of F', and level sets of V onto
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level sets of V. By the transversality of these structures, H is everywhere continuous, and
hence extends to a homeomorphism of R%. []

3.2 The Three-Dimensional Case. From the theorem of Hirsch (theorem 2.1, §2.1),
we know that for F € CLV(3), every non-zero trajectory of the system & = F(z) is
asymptotic to one in the carrying simplex X, and that ¥ is homeomorphic to the unit
simplex in R by radial projection.

We now pursue the program of investigation described in the previous section to define
a nullcline equivalence relation on CLV(3). We list the stable nullcline classes, of which
there are 33, and conjecture that 25 of these are in fact stable topological classes, since
all the limit sets are fixed points. We shall investigate the way in which the 8 remaining
stable nullcline classes are refined by the topological classes in §4.

Location of the Fixed Points.

As before, the nullclines are given by

.’D,’ZO

;=0 & zi(b; — (Az);) =0 & { or (Az); = b;

So now the :th nulleline is the union of the th coordinate plane, and another plane N;
with positive normal vector and positive axial intercepts. Any fixed point of the system
lies at an intersection of all three nullclines. Generically there are 8 such intersections in
R, and they can be classified into 4 types relative to the coordinate axes.

(1) The origin 0.

(2) The three azial fixed points R;, where the plane N; meets the z; axis.

(3) The three planar fixed points Q;;, where the planes N; and N; meet on the coordinate
plane zy = 0. (Here 1, j, k are distinct.)

(4) The interior fixed point P at the intersection of the planes N;, ¢ = 1,2,3. Note that
AP =b.

Again, we are interested only in those fixed points that lie in R3. This includes each R;,
but not necessarily the @Q;; or P. Note that, apart from P and 0, each of the fixed points
lies on the boundary 0% of ¥. Moreover, each coordinate plane is invariant under F, and
the restriction of F' to the ith coordinate plane x; = 0 is a two-dimensional competitive
Lotka-Volterra system, whose nullclines are precisely the intersections of the jth and kth
nullclines of F' with that coordinate plane (¢, j, k distinct here). So 9% is composed of the

one-dimensional carrying simplices of the restricted systems in each coordinate plane. See

figure 5.

PROPOSITION 3.9. The configuration of the planes N; determines the dynamic be-
haviour of the flow at the fixed points R; and Q;; (whenever Q;; € R3.).
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This is the three-dimensional version of proposition 3.1 of §3.1. The proof is analogous
to that of proposition 3.1, relying on a geometric analysis of the partitioning of Ri by the
planes NV;, and the relative positions of the fixed points.

Figure 5: The behaviour at the fixed points on .
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Proof. First consider the axial fixed point R;. The z; coordinate axis is an eigenspace
of DFR,, along which R; attracts with associated eigenvalue —b,. The invariance of the
coordinate planes guarantees that the other two eigenvectors of DFp, lie one in each of the
coordinate planes o = 0 and z3 = 0. Just as in the two-dimensional case, we determine
whether R; attracts or repels along these eigendirections by considering where R sits in
the partition of R% by each plane N; (i # 1). For example, if R, lies in the bounded
component of Hi \ Ny, then @, > 0 in a neighbourhood of R; in R3, and in particular, R,
repels along the eigendirection in the 3 = 0 coordinate plane. If, on the other hand, R,
lies in the unbounded component of R} \ N, then R; attracts along that eigendirection.

In a similar fashion, we can determine all the behaviour at each R;.

Now consider a planar fixed point (;; € R3.. Let’s say Q3. Again, the invariance of the
coordinate plane z; = 0 guarantees two eigenvectors of DFg, . in that plane. Indeed, the
behaviour of the restricted system in the coordinate plane is determined by the behaviour
at the axial fixed points Ry and Rj3, as shown in the previous section. The behaviour along
the third eigendirection of DFg,,, (which is not in the plane z; = 0), is determined in the
usual way, by seeing whether ()93 sits in the bounded or unbounded component of Ri \ M.
See figure 5. [J

As in §3.1 the proof of the proposition has given a geometric characterisation of the
nullcline configuration, which easily translates into an algebraic characterisation as follows.
Firstly, the position of the fixed point R; relative to the plane N; is given, as in §3.1, by

sgn (ﬁ — ﬂ) = sgn((AR;); — b)), i#7J

ai; Ay

where (AR;); is the jth component of AR;. Secondly, generalising this, note that if the
fixed point Q;; lay on the plane N we would have (AQ;;)r = bk, so the position of Q;;
relative to the plane Ny is given by

sgn((AQij)k —br), 1,7,k distinct

where (AQ;;)x is the kth component of AQ;;, as usual.
We can now define the nullcline configuration in terms of these values, ensuring again
that it is independent of the labelling of the coordinate axes.

Note that this geometric nullcline analysis, together with its algebraic characterisa-

tion of the nullcline configuration, generalises in a straightforward manner to arbitrary
dimension.

DEFINITION 3.10. Let F € CLV(3). The nullcline configuration of F' is given by the
values of sgn((AR;); — b;) and sgn((AQ;;)x — bx), for distinct ¢, j, k; modulo permutation
of the indices.
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DEFINITION 3.11. Let F,G € CLV(3). We say that F and G are nullcline equivalent
if and only if they have the same nullcline configurations.

This definition is clearly analogous to definition 3.4 of §3.1. Just as before, we call
the equivalence classes under this relation the nullcline classes; we say that F is nullcline
stable if and only if F' has a neighbourhood of equivalents, and we call the open nullcline
classes the stable nullcline classes.

ProprosITION 3.12. Let F' € CLV(3). Then F is nullcline stable if and only if
sgn((ARi); — bj), sgn((AQij )k — bi) # 0.

COROLLARY 3.13. The stable nullcline classes have open dense union in CLV (3).
COROLLARY 3.14. There are 33 stable nullcline classes in CLV (3).

Proposition 3.12 and corollary 3.13 are immediate. Corollary 3.14 is not so obvi-
ous. It 1s proved by counting all the combinatorial possibilities for the non-zero values of
sgn((AR;); —b;j) and sgn((AQ;:;)r — bx), modulo permutation of the indices. This requires
care, as these values are not independent.

It is interesting to note that this classification of CLV(3) by nullcline equivalence is
isomorphic to the topological classification of all two-dimensional Lotka-Volterra systems
(see E. C. Zeeman [35]). However, as we shall see in §4, the added richness of structure
afforded to us by the hyperbolic periodic orbits is in sharp contrast to the two dimensional
situation where all periodic orbits are degenerate.

ProprosiTION 3.15. If F € CLV(3) is nullcline stable and has an interior fixed point
P, then P is a simple fixed point.

The dynamical significance of this is that any limit set in IntY is either P or a periodic
orbit.

Proof. P is simple if and only if DFp has no zero eigenvalues, that is det(DFp) # 0.
Now F is given by
Fi(z) = z;(b; — (Ax);)

so DFp = ~PP A (since AP = b), where PP = (p;;) is the diagonal matrix with p;; = P;.
Assume (for contradiction) that det(DFp) = 0. Then detA = 0 so that there is a
linear dependence between the rows of A4, and the planes N;, which meet at P, have at

least a line in common. But this means that F has a line of fixed points, contradicting
nullcline stability. ]

We now use proposition 3.9 to describe - as far as possible - the dynamic behaviour of
systems from each of the stable nullcline classes.

Let FF € CLV(3) be nullcline stable. Recall that F' has a two-dimensional invariant
carrying simplex ¥, homeomorphic by radial projection to the unit simplex in R3, and
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globally attracting on R3 \ {0}. The non-zero fixed points of F' all lie on ¥. Indeed, there
is at most one fixed point P in IntY, the rest of them lie on the boundary 0% C GR?’{_ of %.

To describe the dynamic behaviour of F', it is therefore enough to describe the behaviour
of F restricted to 3.

By proposition 3.9, the nullcline configuration determines the behaviour at each axial
fixed point R;, and this in turn determines the behaviour on dX. Moreover, if there are
any planar fixed points Q;; € 9%, then by proposition 3.9 again the nullcline configuration
determines the dynamic behaviour on a neighbourhood of Q);; in .

Depending on the particular stable nullcline class in question, this may be enough
information to fully describe the dynamics of F. For example, if F' has no fixed point
in IntY, then (by an application of Poincaré-Bendixson theory to ¥) F' has no periodic
orbits, and the behaviour on ¥ is determined by that at the fixed points on 9Z. Le. by
the nullcline configuration.

On the other hand, if F' has, say, an attracting fixed point P € Int3, the question of
periodic orbits of F remains open. We address this question in §4.

Figures 6 - 8 list representatives from each of the stable nullcline classes by the phase
portraits - as far as they are yet determined - on ¥. More precisely, these are viewed as
flows on the unit simplex in R3, topologically equivalent via radial projection. A fixed
point is represented by a closed dot e if it attracts on ¥; by an open dot o if it repels on %,
and by the intersection of its hyperbolic manifolds if it is a saddle on ¥. The symbol ® in
figure 8 represents an area of unknown dynamics. That is: it represents the interior fixed
point P, which may be attracting, neutral or repelling on ¥ (see proposition 4.2), and a
neighbourhood of P in which there may be any number of concentric periodic orbits.

PROPOSITION 3.16. There are no periodic orbits in stable nullcline classes 1-25.

Proof. The nullcline configurations 1-18 depicted in figure 6 are those in which the
planes N; do not meet in R3, so that there is no interior fixed point. Thus we can apply
Poincaré-Bendixson theory to the flow on ¥ to conclude that there are no periodic orbits.

Now let £ = F(z) be any system from classes 19-25, (depicted in figure 7) and consider
its restriction to ¥. There is an interior fixed point P, together with two attracting and
two repelling fixed points on 0X. At each repellor, there must be a trajectory separating
the basins of attraction of the two attractors. The omega limit set of this trajectory is
either P, or a periodic orbit v, attracting from one side. Similarly, at each attractor there
1s a trajectory separating the basins of repulsion of the repellors, whose alpha limit set
cannot be y. Thus there are no periodic orbits, and P is a saddle. [J
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Figure 6: The phase portraits on ¥ of the three-dimensional stable
nullcline classes without interior fixed point. A fixed point is repre-
sented by a closed dot e if it attracts on ¥; by an open dot o if it
repels on ¥, and by the intersection of its hyperbolic manifolds if it
is a saddle on X.
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Figure 7: The phase portraits on ¥ of the three-dimensional stable

nullcline classes with interior saddle point. A fixed point is represented
by a closed dot e if it attracts on &; by an open dot o if it repels on
¥, and by the intersection of its hyperbolic manifolds if it is a saddle
on %.

Figure 8: The phase portraits on ¥ of the three-dimensional stable
nullcline classes with interior fixed point of undetermined type. Fixed
point notation as in figure 7, whilst the symbol @ represents a region
of unknown dynamics.
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Conjecture 3.17. The stable nullcline classes 1-25 are stable topological classes.

In §4.3, we shall see in contrast that the stable nullcline classes 26-33 are refined by
the stable topological classes according to periodic orbits.

Remark. The ecological significance of proposition 3.16 is that systems from nullcline
classes 1-25 model three species interactions leading to the eventual extinction of one or
even two of the species. There can be no stable coexistence, even of an oscillatory nature,
of all three species.

4. Hopf Bifurcations in CLV(3).

4.1 Algebraic Observations. In this section, we are concerned with the nullcline
classes 26-33, and the question of whether or not they have periodic orbits.

In the last section, we extracted dynamic information from those geometric properties
of the nullclines that are captured by the nullcline class. In order to exploit the finer geom-
etry of the nullclines, we subdivide classes 26-33 into families of systems corresponding to
fixed nullclines. Proposition 4.4 of this section states that generically, such a family con-
tains a system with no periodic orbits (propositions 4.1 and 4.2 pave the way by simplifying
the algebra), showing that the occurrence of periodic orbits in a given system cannot be
predicted by the nullclines of that system alone. However, we shall show in §§4.2 and 4.3
that the nullclines can be used to predict the occurrence of Hopf bifurcations, and hence
periodic orbits, in the family of systems corresponding to those fixed nullclines.

PROPOSITION 4.1. For a system from any of the nullcline classes 26-33, we may assume
that the interior fixed point P is at (1,1,1).

Proof. F is given by
Fi(z) = z;(b; — (Az);) = z;(A(P — z));, since AP =b.

Malke the linear change of coordinates z + PPz, where PP = (p;;) is the diagonal matrix

with p;; = P;. We shall ambiguously use 1 to denote the vector (1,1,1) and the real
number 1.

((PPY'FPP)(w) = 5 (Pai( A(PP1 - PP2)))
= z;(A(1 — z));, where A = APP
= Fi(z), say.

Thus we have a topological equivalence between F' and a new competitive Lotka-Volterra
system F with fixed point at (1,1,1). It is clear (because PP is diagonal) that F and F
are also nullcline equivalent. [J
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Thus we have reduced our parameter space from 12 to 9 dimensions. We exploit this
by dispensing with the parameters b;, and writing

Fi(z) = z:;(A(1 — 2));

Under this simplification F is completely determined by A, and we have DFp = (—Pja;;) =
—A. Henceforth, we shall abuse notation by using F' and A interchangeably, as befits the
context.

PROPOSITION 4.2. For a system from any of the nullcline classes 26-33, det(DFp) < 0

Proof. Det(DFp) is given by the product of the eigenvalues of DFp, which we shall
show is negative. Recall that DFp = —A and hence has strictly negative entries. By
the Perron-Frobenius theorem, DFp has a strictly negative simple eigenvalue A, whose
associated eigenvector is strictly positive. Now, ¥ is invariant and is transverse to all
strictly positive vectors, so the other two eigenvalues of D F'p are reflected by the behaviour
of the flow on . We consider the flow restricted to ¥, and show below that P is not a
saddle. If, instead, P attracts, then both eigenvalues have negative real part. If P repels,
they both have positive real parts. If P is neutral, they form a purely imaginary complex
conjugate pair. In any case, the product det( DFp|TpE) of the two eigenvalues is positive
and consequently det(DFp) = Adet(DFp|TpE) < 0.

Assume now that P is a saddle for the restricted flow on ¥. Since there are no other
fixed points in IntX, we know by Poincaré-Bendixson theory that P has no homoclinic
orbits, and there are no periodic orbits. Thus the omega limit set of the unstable manifold
of P and the alpha limit set of the stable manifold of P both lie on 9%. But in classes
27-33, we have an immediate contradiction, since the nullcline configuration ensures that
0% is either uniformly attracting, uniformly repelling, or has a neighbourhood in ¥ foliated
by periodic orbits. In class 26, the omega limit set of the unstable manifold could consist
either of the attracting fixed point alone, or of the union of that fixed point with a saddle
on 0%. (The unique saddle with stable manifold in Int¥). In either case, one trajectory of
the stable manifold of P is then trapped inside an invariant region, the boundary of which

is uniformly attracting. By repeating the previous argument, we reach a contradiction. [J

Remark. Recall that a system from nullcline classes 1-18 has no interior fixed point;
whilst a system from classes 19-25 always has a saddle (on ¥) at P. This accounts for one
positive and one negative eigenvalue of DFEFp, and the Perron-Frobenius theorem implies
that the third eigenvalue is negative; therefore det(DFp) > 0. Thus propositions 4.1 and
4.2 together tell us that to study the dynamic behaviour in classes 26-33, it is enough to
consider those systems that can be written

z; = Fi(z) = z;(A(1 — z));, where detA = —det(DFp) > 0.
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So we shall henceforth assume that F' is of this form. With this notation, it is easy to see
that the systems with exactly the same nullclines as ¢ = F(z) are those of the form

II'Z,' = IIZ,(TA(]. - IL‘)),

where T = (t;;) is a diagonal matrix with strictly positive diagonal entries.

We can now define families of systems corresponding to fixed nullclines.

DEFINITION 4.3. If 2; = Fi(z) = z;(A(1 — z));, and T = (¢;;) is a 3 x 3 diagonal
matrix, define FT by FT(z) = z;(TA(1 — z));. Define the family J(F) through F by
F(F) = {FT:t,',' >0,:=1,2,3}.

F(F) forms, in fact, a three-parameter family of systems, but by varying the diagonal
entries of T one by one we can study it as a one-parameter family.

PROPOSITION 4.4. For every F, there is a positive diagonal matrix T such that FT|Z
is topologically equivalent to a two dimensional Lotka-Volterra system.

Proof. Choose t;; = (Z?:l a;j)7!, then T4 is a matrix with all row-sums equal to 1.
We show that if A has row-sums equal to 1, then F' | ¥ projects to a two dimensional
Lotka-Volterra system.

Parametrise £ by z; and x4, and consider the radial projection of F'| ¥ into the plane
r3 = 1, given (for z3 > 0) by z; — y; = 2o, t=1,2. Recall from §2.1 that this projection
is a homeomorphism, so that on ¥ we can write 3 = z3(z;,z2) = z3(y1,¥2). Thus we

have:;

d T;
= 5
1 ) .
= m—g(afsl'i — T3x;)

= yi((A(1 — 2))i — (A(1 — z))s)

= yi(1 — (Az); — 1 + (Az)3), since (Al); is the ith row sum of A, and equals 1.

= z3(y1, y2)yi(b; — (A~y)z~), bringing out z3, and regrouping the terms to define
b; and the 2 x 2 matrix A.

yi

Identifying the plane z3 = 1 with R?, this system is clearly topologically equivalent
to the two dimensional Lotka-Volterra system y; = yi(l;i — (Ay);) via the identity home-
omorphism. Note that these new coefficients aZj,l;,- are not necessarily positive, so the
two-dimensional system is not necessarily competitive. [J
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COROLLARY 4.5. For generic F, there is a system in CLV(3) having the same nullclines
as F', without periodic orbits.

The corollary follows from the familiar two-dimensional result (mentioned in the intro-
duction), that the generic two-dimensional Lotka-Volterra system has no periodic orbits.
In figure 9, we list representatives from stable nullcline classes 26-33 again, but this time
using proposition 4.4 to choose representatives with no periodic orbits, in which case we
can fill in the regions of previously unknown dynamics. In classes 26 and 27 there are two
possible phase portraits. In the others the dynamics are fully determined.

ba. b, 2o 27b

o °
QXE i ;ﬁ; j :50.; ; 5\.2 :
32.% ; 35.% ’;E

Figure 9: The phase portraits on ¥ of representatives without periodic
orbits from the three-dimensional stable nulicline classes 26-33.

The results of §4.3 show, in contrast, that there are also systems in CLV(3) with

periodic orbits. This means that we cannot tell whether a system has periodic orbits from
its nullclines alone.
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4.2 Families Without Hopf Bifurcations. In the preceding section, we defined
families of systems within nullcline classes 26-33 corresponding to fixed nullclines. The
results of this and the next section establish means of predicting from those nullclines
whether a given family admits a Hopf bifurcation, and consequently, periodic orbits. In
particular, we show that Hopf bifurcations occur in each of stable nullcline classes 26-31
(see §4.3), but not in stable nullcline class 32 (this section).

The prediction depends on the signs of the determinants of the principal two by two
minors of any matrix A in the family. (Recall from proposition 4.1 that dynamically, F' is
completely determined by A, and for convenience we use F' and A interchangeably). It is
easy to see that these signs are independent of the choice of representative matrix A, and,
in fact, can be determined from the nullcline positions as follows: The principal minor,

Ajy, defined by
ai; @i _
A = 12 J ), k
I (akj akk ks

represents the behaviour of the system restricted to the j-kth coordinate plane, where
the two-dimensional analysis (§3.1) reveals that the determinant of the minor reflects the
relative slopes of the jth and kth nullclines in this plane. In particular, recall that if these
nullclines intersect at ;i on 9%, then det(A;;) > 0 if and only if @i attracts on the
plane, and hence on 9%; whilst det(A;x) < 0 if and only if @, is a saddle on the plane,

and hence repels on 9%. We shall make repeated use of this relationship in the proofs that
follow.

The main result of this section generalises easily to arbitrary dimension n. We state
and prove 1t in this generalised form, for which we shall need the following notation. Let A
be a non-singular n X n matrix with strictly positive entries. An n-dimensional competitive
Lotka-Volterra system F;(z) = z;(A(1—=2));), t =1,... ,n on the closed non-negative cone
R? will have an (n—1)-dimensional carrying simplex £, homeomorphic via radial projection
to the unit simplex in R}. The carrying simplex will have an (m — 1)-dimensional face
in each m-dimensional coordinate plane, and the system restricted to that plane will be
an m-dimensional competitive Lotka-Volterra system represented by an m x m principal
minor of A. There will be an axial fixed point R; at each vertex of X, at most one fixed
point in the interior of each face, and one at P = (1,...,1). The n x n matrix A has
strictly positive entries, and we denote by A;x the principal 2 X 2 minor defined as above.

THEOREM 4.6. Let @; = Fi(z) = z;(A(1 — 2))i, 1 = 1,... ,n, with detA > 0. If
det(A;;) < 0 whenever j # k, then P has an unstable manifold of dimension at least 2.

We prove theorem 4.6 using the following result about matrices.

PROPOSITION 4.7. If A = [a;j] is an n X n matrix with det(A;;) < 0 for each principal
2 x 2 minor A;j (1 # j) of A, then A has an eigenvalue with negative real part.
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Proof. We prove this by contradiction. Assume that all the eigenvalues of A have
non-negative real part. The characteristic polynomial of A is given by

det(A — zI) = (=1)"2" +(=1)" ez — ...~z + ¢

where the coeflicients ¢; can be written either in terms of the entries a;; of A, or in terms
of the eigenvalues Aq,..., A, of A. In particular,

Cn_o = Z det(A,'j) <0

1<j,j=2

by hypothesis (see Cullis [5, p. 307]), and

Cpn_9 = zn: )\,‘/\]‘ Z 0

1<j,j=2
by assumption. But these contradict! [

Proof of theorem 4.6. The dynamic behaviour at P = (1,...,1) is given by the eigen-
values of DFp = —A. By proposition 4.7, A has an eigenvalue with negative real part. But
we have the added hypothesis that detA > 0, so that A must have two eigenvalues with
negative real part. Therefore — A has two eigenvalues with positive real part, corresponding
to an unstable manifold of P. [J

COROLLARY 4.8. If each of the axial fixed points R; is an attractor for F, then F has
no other attracting fixed points.

Proof. By first restricting our attention to the two dimensional coordinate planes, we
see that the attraction of the R; forces there to be a fixed point @ ;) on each of the one
dimensional faces of ¥, and that Q ;i repels in that face. From the two-dimensional theory,
we know that this means det(A;i) < 0 for each j # k. Now apply theorem 4.6 to each
m-dimensional face of ¥, to see that F' has no more attracting fixed points. [J

Reducing to three dimensions, we have:

COROLLARY 4.9. Let 2; = Fi(z) = z;(A(1 — z));, ¢ = 1,2,3, with detA > 0. If
det(Ajr) < 0 whenever j # k, then P repels on 3.

Proof. For F' € CLV(3), we know that ¥ is a two-dimensional globally attracting
invariant surface, and hence contains the unstable manifold of P. By theorem 4.6 this
unstable manifold has dimension at least 2, and therefore must coincide (locally) with .

Thus P repels on . [J
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COROLLARY 4.10. Within nullcline class 32, there are no Hopf bifurcations.

Proof. Recall that every system in nullcline class 32 has three planar fixed points, each
repelling on d%. Thus corollary 4.10 follows directly from corollary 4.9 in the light of the
comment that Qi repels on 0% if and only if det(A4;x) < 0. 0

This means that in nullcline class 32, periodic orbits are not produced at the interior
fixed point, nor at 9% (the saddles prevent that), so that any periodic orbit that does occur
must be the result of some peculiar “blue sky” bifurcation. Moreover, hyperbolic periodic
orbits must occur in even numbers. This leads me to make the following conjecture, which
I hope to prove by Liapunov type methods.

Conjecture 4.11. Systems in nullcline class 32 have no periodic orbits.

Remark. The ecological interpretation of corollary 4.8 is that if each of the n competing
species, at carrying capacity, can resist invasion by small numbers of the others, then there
can be no stable coexistence of more than one species, so that any coexistence must be
oscillatory in nature. The conjecture, if true, would have the stronger meaning that when
three such species interact, one of them must always dominate, leading to the extinction
of the other two.

Note that there are also families of systems in classes 27-31 satisfying the hypotheses
of theorem 4.6, but none in classes 26 or 33.

4.3 Families With Hopf Bifurcations. The following theorem is specific to three
dimensions. Recall that A ;i denotes the principal minor

aam (), i

arj QAkk
of A.

THEOREM. Let2; = Fi(z) = 2;(A(1—1));, ¢ = 1,2,3, with detA > 0. If det(Ajx), J #
k are not all of the same sign, then the family of systems F(F') admits a Hopf bifurcation.

Moreover, we can exhibit a particularly simple one-parameter subfamily of 3(F) which
admits a Hopf-bifurcation.

Coste et al [4] have proved that such bifurcations are, generically, non-degenerate, and
thus give rise to hyperbolic periodic orbits. We prove theorem 4.12 below.

COROLLARY 4.13. Within stable nullcline class 26, the family of systems correspond-
ing to every set of null-clines admits a Hopf bifurcation, and consequently, periodic orbits.

Proof. The corollary is immediate since any system in class 26 has a planar fixed

point repelling on 9%, and another attracting on 9%, and thus has principal minors with
determinants of opposite signs. []
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Note again that there are also families of systems in classes 27-31 satisfying the hy-
potheses of theorem 4.12, but none, of course, in classes 32 or 33.

Following the pattern of these theorems, we might naturally hope for a third result
saying that (with F' as above), if det(A4;x) > 0 whenever j # k, then the family J(F)
admits no Hopf bifurcations, thereby ruling out Hopf bifurcations in nullcline class 33.
However there is no such result. I have found examples of families in that class which do
admit Hopf bifurcations, and others which don’t.

Proof of theorem 4.12. This proof is more subtle. As above, the behaviour at P is
given by the eigenvalues of DFp = —A, or equivalently, by those of A. From our family
JF(F) we choose a particular one-parameter family F(t), with corresponding matrices A(t).
We then study the locus of the eigenvalues of A(t) as we vary the parameter t. We show
that for ¢y sufficiently small, the eigenvalues of A(t) all have positive real part; whilst for
t; sufficiently large A(¢;) has a pair of eigenvalues with negative real part (or vice versa).
Consequently, these eigenvalues must cross the imaginary axis as we perturb from F(ty)
to F(t;). We show this crossing occurs with non-zero speed, and hence there is a Hopf
bifurcation.

For simplicity, we change our notation slightly, and for a 3 x 3 matrix A, we let A¥
denote the 2 x 2 minor that remains after removing the ith row and jth column of A.
With this notation, our hypothesis becomes det(A*), i = 1,2,3 are not all of the same
sign. To fix our ideas, consider the case det(A!') > 0 and det(A??), det(A4%®) < 0. The
other cases will follow similarly. Recall that F(F') is the family determined by the matrices
{TA | T = (ti;) a diagonal matrix with positive diagonal entries.}. We shall consider
the one-parameter subfamily given by fixing t;, = t33 = 1, and allowing #;; = ¢ to vary

through all positive reals. So F(¢)i(z) = z:(A(t)(1 — z)),,

t 00 ta;y  taiz tags
where T = 0 1 0 5 and A(t) =TA= a9gq a99 o3
0 0 1

asi as? ass

LEMMA 4.14. Att =0, the eigenvalues of A(t) are \o, jo, 0; where \g, puo are strictly
positive reals.

The proofs of lemmas 4.14 - 4.16 follow shortly.

The eigenvalues of a matrix depend continuously on its entries, and thus for positive
to sufficiently close to 0, A(ty) has at least two eigenvalues with positive real part. But
detA > 0 by hypothesis, and detA(t) =t detA > 0 for ¢t > 0, so that the product of the
eigenvalues of A(ty) is positive, and hence all three eigenvalues of A(#;) must have positive
real part. Thus P is attracting for F(%y).

LEMMA 4.15. Ast — oo, the eigenvalues of A(t) tend to Ay, pq,00; where A1, 1 both
have strictly negative real part.
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As before, the eigenvalues of A(t) depend continuously on the entries of A(t), and hence
on t. So for sufficiently large t;, A(t;) has two eigenvalues with negative real part, and P
is repelling on ¥ for F(t;). Consequently, as t varies from ¢, to ¢;, two of the eigenvalues of
A(t) vary continuously from having positive real part to negative real part, and necessarily
cross the imaginary axis on their way. Moreover, they do not cross the axis at zero, since
detA(t) # 0 for t # 0, and thus must cross as a non-zero complex conjugate pair.

LEMMA 4.16. There is a unique parameter value at which the eigenvalues of the family
{A(t)} cross the imaginary axis. Moreover, this crossing occurs with non-zero speed.

This corresponds to a Hopf bifurcation in the family of systems { F(¢)}, and the theorem
is proved. (]

Proof of lemma 4.14. A(0) is the continuous limit of positive matrices A(t), and thus
has a non-negative eigenvalue, dominating the moduli of the other eigenvalues, which is
the continuous limit of the Perron-Frobenius eigenvalue of the matrices A(¢). Now,

0 0 0

azy dazz 4ass
and so the characteristic polynomial of A(0) is given by det(A(0) — 2I) = —zdet( A — 21)
Therefore the eigenvalues of A(0Q) are Ag, fo, 0; where Ag, po are the eigenvalues of the
2 x 2 minor A", and one of \g, o must be the non-negative Perron-Frobenius eigenvalue

mentioned above. By hypothesis, Agpg = det(4!) > 0, and thus both of \g, po must be
positive. []

Proof of lemma 4.15. We first show that the Perron-Frobenius eigenvalue v, of A(t)
grows with ¢. There are many ways of seeing this, but the neatest uses Gerschgorin’s
theorem [3], which, although a beautiful and basic tool of numerical analysis, seems to be
less well known in the world of pure mathematics. For this reason we state it here.

THEOREM 4.17 (GERSCHGORIN). Given an n X n matrix A = (a;;), define the ith
Gerschgorin disc D; in the complex plane to be the closed disc of radius i laij| centered
at the point a;;. Each Gerschgorin disc contains an eigenvalue of A, and moreover, for
any distinct ty,... ,t,, there are at least r eigenvalues of A in U2=1 D;,. (Eigenvalues are
counted with multiplicity.)

Note that we used the rows of A to define the Gerschgorin discs. By applying the

theorem to the transpose of A, we see that we could equally well have defined them using
the columns of A.

We now apply Gerschgorin’s theorem to A(t), concentrating in particular on the disc

defined by the first column of A(t). Recall that
ta;r tayz tas
At)=| a1 a2 ap

asy ass ass
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so that A(t) has an eigenvalue v, in the disc of radius ap; + a3y, centre ta;;. That is:
| tay; — vy |< ao1 + az;. Thus vy grows with ¢, and as t — oo, vy — 0.

Now consider the Gerschgorin discs D, and D3 defined by the second and third rows
of A(t) respectively. These are independent of ¢, and whilst v, grows unboundedly, the
other two eigenvalues A4, y; are trapped in the compact union D, (] Ds.

Now, A, p¢ are either a complex conjugate pair, in which case they correspond to an
invariant plane; or they are distinct reals, in which case their eigenspaces span an invariant
plane. In either case, we restrict our attention to that invariant plane, N(t), to discover
more about A; and p;. To determine the plane, note that N(¢) depends continuously on t,
and consider the matrices 1 A(t). For each ¢, T A(t) clearly has the same invariant planes
as A(t), and as t — oo,

1 aiy Gz 413
—t-A(t) —-B=1] 0 0 0
0 0 0

B has eigenvalue 0 with corresponding eigenspace N = {z | (Bz); = 0}, which we recall
is parallel to the first nullcline N; of the systems F(t¢). Thus the invariant planes N(¢) of
A(t) tend to N as t — oo.

Let n(t) : R> — N(¢), and n : R?> — N be the parametrisations by (x4, 3) of N(¢)
and N respectively; and let 7 : R®* — R? be projection onto the (z2,23) coordinate plane,
so that 7 | N(t) = (n(t))™!, for all . Then 7 o A(t) o n(t) is a linear vector field on
z; = 0, topologically conjugate to the restriction A(t) | N(t). But for sufficiently large ¢;,
we can approximate N (%) arbitrarily closely by N, and we can approximate the vector
field 7 o A(ty) o n(t;) accordingly by m o A(t;) on. Now

moA(t1)on (x2 ) — ( _a(il (a12z2 + a1323) + azez2 + a23:v3>

—a
T3 e (a1222 + a1323) + azaz2 + azszs

1 det(A33) det(A3?) T2

N ay det(A”) det(A22) T3
so that the sum of the eigenvalues of m 0 A(t;) o n is given by trace(m o A(t;) o n) =
alT(det(An) +det(A3%)) < 0, by hypothesis. Thus mo A(#;)on has at least one eigenvalue
with strictly negative real part bounded away from 0, and consequently so do 7 o A(¢1) o

n(t1), A(t1) | N(t1), and A(2,) itself. But detA(¢;) > 0, so A(¢;) must have two eigenvalues
with strictly negative real part. (]

Proof of lemma 4.16. We know from lemmas 4.14 and 4.15 that the eigenvalues of the
family {A(¢)} must cross the imaginary axis at least once. Let s be a parameter value
at which such a crossing occurs. That is, for t in a sufficiently small neighbourhood U
of s, A(t) will have a complex conjugate pair of eigenvalues, and we denote by A(t) the
eigenvalue with positive imaginary part. Then A is a continuous complex valued function
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on U such that for t < s, Re(A(t)) > 0; Re(A(s)) = 0; and for ¢ > s, Re(A(t)) < 0. The
crossing occurs with non-zero speed iff £ (Re(A(t)))]s # 0.

We show below that the non-real eigenvalues of the family {A(¢)} lie on a quartic curve
in the complex plane, disjoint from the imaginary axis except for transverse intersections
at A(s) and A(s). Thus s is unique, and 4 (Re(A(t)))]s = 0 iff £(A(t))]s = 0, which leads
to a contradiction.

The characteristic polynomial of A(t) can be written
det(A(t) — zI) = —zg1(2) + tg2(2)

where each g¢; : C — C is a quadratic function, independent of ¢t. With this notation, z is
an eigenvalue of A(t) iff

zg1(z)
g92(#)

—zg1(2) +tg2(2) =0 & t =

We use this to define a new (meromorphic) function G on C by

_ zg1(2)
¢ =20

so that the eigenvalues of A(¢) are given precisely by G~!(¢). The locus of the eigenvalues
of our family {A(t):t > 0} is given by G™!(IntRy ), and this lies inside G7!(R). But

G(z) ER & G(z) = G(2)
 261(2)92(Z) — 201(2)92(2) = 0

Writing z = ¢ + iy (z,y € R) and regrouping terms, it is easy to show that
G(z)eR & yH(z,y)=0

where H : R? — R is a quartic function, symmetric in y. Thus the locus of the eigenvalues
of the family {A(t)} lies on the union of the real axis with the quartic curve 3 given by
H(x,y) = 0. The fact that non-real eigenvalues occur in conjugate pairs is reflected by the
symmetry of H with respect to the real axis.

In particular, J intersects the imaginary axis J at A(s), and is parametrised in a
neighbourhood of A(s) by A: U — C. Assume (for contradiction) that this intersection is
not transverse. Then J{ crosses J tangentially at A(s), so the intersection has multiplicity
m > 2. By symmetry, there is another intersection of multiplicity m at A(s), so the
line J intersects the quartic H at least 2m times. But then Bézout’s theorem [9] implies
2m < 4 = m < 2. Contradiction! Thus H is transverse to J at A(s).
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Now assume that H intersects J again. By lemmas 4.14 and 4.15, together with sym-
metry, this means that JH intersects J at least 6 times, contradicting Bézout’s theorem.
Thus s is unique.

Finally, assume (for contradiction) that 4 (Re(A(t))|s = 0. By transversality at A(s)
and A(s), this implies that A'(s), A'(s) = 0, where X’ denotes 42 Moreover, A(s)+A(s) =0
since A(s) is purely imaginary. Recall that we can write the coefficients of the characteristic
polynimial of A(¢) in terms of either the eigenvalues or the entries of A(t). For t € U this
gives

det( A1) + t(det(A??) + det( A3%)) = A#)A(t) + A(t)v(t) + v()A(E)

where v(t) is the Perron-Frobenius eigenvalue of A(t). Differentiating this expression at s,
we have

det(A™) + det(A%) = X'(s)(A(s) + v(s)) + N ()(A(s) + v(s)) + (A(s) + A(s))v'(s)

= 0 by assumption.

But det(A?2)+ det(A3?) < 0 by hypothesis, and hence we have a contradiction. [J
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