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REAL HYPERSURFACES IN COMPLEX TWO-PLANE
GRASSMANNIANS WITH LIE ¢-PARALLEL NORMAL
JACOBI OPERATOR

IMsooON JEONG AND YOUNG JIN SUH

ABSTRACT. In this paper we give some non-existence theorems for real
hypersurfaces in complex two-plane Grassmannians G2(C™*2) with Lie
&-parallel normal Jacobi operator Ry and another geometric conditions.

0. Introduction

In the geometry of real hypersurfaces in complex space forms M,(c) or in
quaternionic space forms Q, (¢) Kimura [7] (resp. Pérez [10]) has classified real
hypersurfaces in My (c) and (resp. in Q,(c)) with commuting Ricci tensor,
that is, S¢ = ¢S, (resp. S¢; = ¢S, ¢ = 1,2,3) where S and ¢ (resp. S
and ¢;, i = 1,2,3) denote the Ricci tensor and the structure tensor of a real
hypersurface M in M, (c) (resp. in Q,(c)).

In particular, Kimura and Maeda [8] have considered a real hypersurface
M in a complex projective space P,(C) with Lie &-parallel Ricci tensor and
classified that M is locally congruent to of type (A), a tube over a totally
geodesic P, (C), of type (B), a tube over a complex quadric Q,—1, cot?2r =
n — 2, of type (C), a tube over Pi(C)x P,_1)/2(C), cot?2r = L= and n is
odd, of type (D), a tube over a complex two-plane Grassmannian Go(C?),
cot? 2r = % and n = 9, of type (E), a tube over a Hermitian symmetric space
S50(10)/U(5), cot*2r = 2 and n = 15. Then it turns out that all of them
mentioned above are Hopf hypersurfaces and have commuting Ricci tensors.

If the structure vector £ = —JN of a real hypersurface M in P, (C) is
invariant by the shape operator, M is said to be a Hopf hypersurface, where .J
denotes a Kaehler structure of P,(C), N a unit normal vector of M in P, (C).

In a quaternionic projective space QP™ Pérez and the second author [11]
have classified real hypersurfaces in QP™ with D+-parallel curvature tensor
VR = 0,4 = 1,2,3, where R denotes the curvature tensor of M in QP™
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and D1 a distribution defined by D1 = Span {¢;,&,£3}. In such a case they
are congruent to a tube of radius 7 over a totally geodesic QP* in QP™,
2<k<m—2.

The almost contact structure vector fields {£;, &2, &3} mentioned above are
defined by & = ~J;N, i = 1,2,3, where {Ji,J2,J3} denote a quaternionic
Kabhler structure of QP™ and N a unit normal field of M in QP™.

In quaternionic space forms Berndt [2] has introduced the notion of normal
Jacobi operator Ry = R(X,N)N € End T, M, €M for real hypersurfaces M
in a quaternionic projective space QP™ or in a quaternionic hyperbolic space
QH™, where R denotes the curvature tensor of QP™ and QH™ respectively.
He [2] has also shown that the curvature adaptedness, that is, the normal Jacobi
operator Ry commutes with the shape operator A, is equivalent to the fact
that the distributions ® and D+ = Span{¢;, &, &)} are invariant by the shape
operator A of M, where T, M = D®&D+, zeM.

Now let us consider a complex two-plane Grassmannians Go(C™2) which
consists of all complex 2-dimensional linear subspaces in C™*2. Then the situ-
ation for real hypersurfaces in Go(C™%1) with parallel normal Jacobi operator
is not so simple and will be quite different from the cases mentioned above.

Now in this paper we consider a real hypersurface M in complex two-plane
Grassmannians G (C™*?) with Lie &-parallel normal Jacobi operator, L¢ Ry =
0, where R and N respectively denotes the curvature tensor of the ambient
space G2(C™*?) and a unit normal vector of M in G5 (C™%?) . The curvature
tensor R(X,Y)Z for any vector fields X,Y and Z on G2(C™*?) is explicitly
defined in section 1. Then the normal Jacobi operator Ry for the unit normal
vector N can be defined from the curvature tensor R(X, N)N by putting Y =
Z =N.

The ambient space G2 (C™?2) is known to be the unique compact irreducible
Riemannian symmetric space equipped with both a Kahler structure J and a
quaternionic Kéhler structure J not containing J (See Berndt [3]). So, in
G2(C™*?) we have the two natural geometric conditions for real hypersurfaces
that [¢] = Span {€} or ®1 = Span {&,&,&} is invariant under the shape
operator. By using such kinds of conditions Berndt and the second author [4]
have proved the following:

Theorem A. Let M be a connected real hypersurface in Go(C™*2), m > 3.
Then both [£] and D+ are invariant under the shape operator of M if and only
if
(A) M is an open part of a tube around a totally geodesic Go(C™t1) in
Go(C™2), or
(B) m is even, say m = 2n, and M is an open part of a tube around a
totally geodesic QP™ in Go(C™*2).

If the structure vector field £ of a real hypersurface M in Go(C™*2) is
invariant by the shape operator, M is said to be a Hopf hypersurface. In such
a case the integral curves of the structure vector field £ are geodesics (See
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Berndt and Suh [5]). Moreover, the flow generated by the integral curves of
the structure vector field ¢ for Hopf hypersurfaces in Go(C™*2) is said to be
geodesic Reeb flow. Moreover, we say that the Reeb vector field is Killing, that
is, L¢g = 0 for the Lie derivative along the direction of the structure vector
field ¢, where g denotes the Riemannian metric induced from Go(C™*2). Then
this is equivalent to the fact that the structure tensor ¢ commutes with the
shape operator A of M in Go(C™*?). This condition also has the geometric
meaning that the low of Reeb vector field is isometric. Moreover, Berndt and
the second author [5] have proved that real hypersurfaces in Go(C™*2) with
isometric flow is of a tube over a totally geodesic Go(C™+!) in Go(C™+2).

Now by putting a unit normal vector N into the curvature tensor R of the
ambient space G2(C™*2), we calculate the normal Jacobi operator By in such
a way that

R(X,N)N = X + 3p(X)t + 323: (X
- Z A (16X +n(X)N) = 1, (6X)($€ +mu(EN)}
= X +3n(X)€ + 3ZV:1WV(X)£V

— {©(6.9X ~n(X)6) - n(6X) )

for any tangent vector field X on M in Go(C™12).
On the other hand, we introduce the following theorem due to Pérez and
the present authors [6] as follows:

Theorem B. Let M be a connected real hypersurface in G2(C™*t2), m > 3.
If the normal Jacobi and the structure operators both commute with the shape
operator, then M is congruent to one of the following:
(A) an open part of a tube around a totally geodesic G (C™+1) in Go(C™+2),
or
(B) an open part of a tube around a totally geodesic and totally real QP™,
m = 2n, in Go(C™*2),

But related to the normal Jacobi operator Ry, in this paper we want to give
some non-existence theorems for real hypersurfaces M in G (C™+2) with Lie
&-parallel normal Jacobi operator, that is, LRy = 0 as follows:

Theorem 1. There do not ezist any real hypersurfaces in G2 (C™+2) satisfying
LeRn =0 and fE@L.

Theorem 2. There do not exist any real hypersurfaces in G2 (C™+2) satisfying
LeRy =0 and £€9.

On the other hand, we say that a real hypersurface M in G2(C™*2) has
commuting shape operator on the distribution ®+ if the shape operator A
of M commutes with the structure tensor ¢ on D1, that is, A¢f, = ¢AE,,
v=123.
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Now in the final section, as an application of Theorems 1 and 2 we consider
a real hypersurface M in G2(C™2) with Lie £-parallel and commuting shape
operator on the distribution ®+. Then by virtue of Theorems 1 and 2 we assert
the following:

Theorem 3. There do not exist any Hopf real hypersurfaces in G2 (C™+2) with
Le¢Ry =0 and commuting shape operator on the distribution D+,

1. Riemannian geometry of G (C™t2)

In this section we summarize basic material about G2(C™*2), for details we
refer to [3], [4], and [5]. By G2(C™"?) we denote the set of all complex two-
dimensional linear subspaces in C™*2. The special unitary group G = SU(m+
2) acts transitively on G2(C™*2) with stabilizer isomorphic to K = S(U(2) x
U(m)) C G. Then Go(C™*?) can be identified with the homogeneous space
G/K, which we equip with the unique analytic structure for which the natural
action of G on G5(C™*?) becomes analytic. Denote by g and € the Lie algebra
of G and K, respectively, and by m the orthogonal complement of ¢ in g with
respect to the Cartan-Killing form B of g. Then g = ¢dm is an Ad(K)-invariant
reductive decomposition of g. We put o = eK and identify T,G2(C™*?) with
m in the usual manner. Since B is negative definite on g, its negative restricted
to m x m yields a positive definite inner product on m. By Ad(K)-invariance of
B this inner product can be extended to a G-invariant Riemannian metric g on
G2(C™*2). In this way G2(C™*?) becomes a Riemannian homogeneous space,
even a Riemannian symmetric space. For computational reasons we normalize
g such that the maximal sectional curvature of (G5(C™*2),g) is eight. Since
G2(C?) is isometric to the two-dimensional complex projective space CP? with
constant holomorphic sectional curvature eight we will assume m > 2 from now
on. Note that the isomorphism Spin(6) ~ SU(4) yields an isometry between
G2(C*) and the real Grassmann manifold G§ (R®) of oriented two-dimensional
linear subspaces of RS.

The Lie algebra € has the direct sum decomposition € = su(m) & su(2) & R,
where R is the center of £. Viewing £ as the holonomy algebra of G»(C™*?),
the center R induces a Kahler structure J and the su(2)-part a quaternionic
Kéhler structure J on Go(C™12). If J; is any almost Hermitian structure in J,
then JJ; = JiJ, and JJ; is a symmetric endomorphism with (JJ;)? = I and
tr(JJ1) = 0. This fact will be used frequently throughout this paper.

A canonical local basis Jy, Jo, J3 of J consists of three local almost Hermit-
ian structures J, in J such that J,J, 11 = J,42 = —J,41.J,, where the index
is taken modulo three. Since J is parallel with respect to the Riemannian con-
nection V of (Go(C™*2), g), there exist for any canonical local basis J;, J2, J3
of J three local one-forms ¢, g2, g3 such that

(1.1) Vxdy = qui2(X) i1 — @1 (X)Juge
for all vector fields X on G2(C™1?).
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Let p € G2(C™*?) and W a subspace of T,G2(C™*2). We say that W
is a quaternionic subspace of T,Go(C™*?) if JW C W for all J € J,. And
we say that W is a totally complex subspace of T,G2(C™+?) if there exists
a one-dimensional subspace U of J, such that JW C W for all J € G and
JW LW for all J € U+ C Jp. Here, the orthogonal complement of % in J,
is taken with respect to the bundle metric and orientation on J for which any
local oriented orthonormal frame field of J is a canonical local basis of J. A
quaternionic (resp. totally complex) submanifold of G2(C™*?) is a submanifold
all of whose tangent spaces are quaternionic (resp. totally complex) subspaces
of the corresponding tangent spaces of Go(C™+?).

The Riemannian curvature tensor R of G2(C™*2) is locally given by

R(X,Y)Z
=g(Y,2)X — g(X,Z)Y + g(JY,2)JX
- g(JX,2)JY —29(JX,Y)JZ
3
+ S 9(LY, 2)1,X - g(JX, 2)LY —29(J,X,Y)J, 2}
p=1
3
+ > {g(LJIY, Z2)J,IX — g(J,JX, 2)J, Y},

v=1

where J1, Js, J3 is any canonical local basis of J.

2. Some fundamental formulas for real hypersurfaces in G2 (C™1?)

Now in this section we want to derive the normal Jacobi operator from the
curvature tensor of complex two-plane Grassmannian G (C™*?) given in (1.2)
and the equation of Gauss. Moreover, in this section we derive some basic
formulae from the Codazzi equation for a real hypersurface in Go(C™*2) (See
4], [5], [13], [14], and [15)).

Let M be a real hypersurface of Go(C™1?), that is, a hypersurface of
G2(C™*?) with real codimension one. The induced Riemannian metric on
M will also be denoted by g, and V denotes the Riemannian connection of
(M,g). Let N be a local unit normal field of M and A the shape operator
of M with respect to N. The Kahler structure J of G2(C™*2) induces on M
an almost contact metric structure (¢,£,7,g). Furthermore, let Jy, Js, Js be
a canonical local basis of J. Then each J, induces an almost contact metric
structure (¢,,£&,,m,,9) on M. Using the above expression for R, the Codazzi
equation becomes

(VxA)Y — (VyA)X
=n(X)oY —n(Y)pX — 29(¢X,Y)¢
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+Z{nu )6, Y — 0, (V) X — 29(6,X,Y)E, }

+ Z (1, (6X)pu Y — 1, (Y ), $X }

v=1

+Z{n o (BY) — n(V)m (6X) Y,

The following identities can be proved in a straightforward method and will
be used frequently in subsequent calculations:

¢V+1£V = —£V+2a ¢V§V+1 = €V+2a
96 = ¢u&, Mm(¢X) =n(d X),
by pp1 X = ¢u2 X + Mur1(X),
v+190 X = 2 X + 1 (X)E11.

(2.1)

Now let us put
(2.2) JX =¢X +n(X)N, J,X=¢X+n(X)N

for any tangent vector X of a real hypersurface M in G2(C™*?), where N
denotes a normal vector of M in G2(C™*2). Then from this and the formulas
(1.1) and (2.1) we have that

(2.3) (Vxo)Y =n(Y)AX - g(AX,Y)E, Vx{=¢AX,

(2.4) Vx& = @ur2(X)6t1 — 1 (X)&s2 + 9. AX,

(Vxd)Y = — qui1(X)bu2Y + quia(X)Pu1Y + 1 (V)AX

25) — g(AX, V)G

Summing up these formulas, we find the following

Vx(¢s€) = Vx(6,)
= (Vx9)é + ¢(Vx&)
= qu2(X)Pv+1€ — @1(X)Pv428 + P PpAX
~9(AX,8)&, +n(&)AX.

Moreover, from JJ, = J,J, v = 1,2, 3, it follows that

(2.7) ¢py X = v X + 1, (X)€ - 1(X)&,.

(2.6)
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3. Lie &-parallel normal Jacobi operator

Let M be a real hypersurface in Go(C™*?) with Lie &-parallel normal Jacobi
operator, that is, £¢Ry = 0. Then first of all, we write the normal Jacobi
operator Ry, which is given by
(3.1)

Ry(X) = R(X,N)N

= X +3n(X £+323 _nlX)E

-3 @1 6X +9(XON) — m(6X) (06 + M EN)
= X + 3n(X) §+3}:V=1n (X)¢

- n©@sX ~n(X)8) - n(6X)bue},

where we have used the following
9(JuJN,N) = —g(JN,J,N) = —g(§, &) = —nu(§),
9(J.JX,N) = g(X,JJ.N) = —g(X, JE,)
=—g(X,¢& +n(&)N) = —g(X, ¢6,),
and
JyJN = =J,§ = =¢,& —m (N

Of course, by (2.7) we know that the normal Jacobi operator Ry could be
symmetric endomorphism of T, M, zeM.

Now let us consider a Lie derivative of the normal Jacobi operator along the
direction £. Then it is given by

(LeRN)X = Le(BnX) — Rnv(LeX)
(3.2) = [¢, RnX] — Rn[€, X]
= (VeRN)X — pARNX + RypAX,

where the terms in the right side can be given respectively as follows:
(VeRn)X = 3(Ven)(X)E + 3n(X)VeE +3%_ (Ven)(X)6,

+3_ n(OVeE -3 [é(nu(é))(qﬁuqﬁX —(X)&)
- m(&){wgm) ~ (Vem ()&, —n(X) Vet }
~ (Ven)(@X) 806 = 1 (Ve X) g€ — 1 ($X)Ve(9,8)|,

PARNX = $AX + 3n(X)pAL + 32 X)pAE,
=3 [1O@48,0X — n(X)pAL) — 0, (6X)pA,E]
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and
RNoAX = ¢pAX + 32 n (PAX)E,

—Z A9 ¢V¢ZAX—UV(¢2AX)¢VE}.

Then by the formulas given in section 2, a real hypersurface M in Go(C™*?)
with Lie £-parallel of Ry along the direction of £ and satisfies the following
(8.3) B . ~

(ﬁgRN)X = (VeRn)X — pARNX + Ry9pAX

= 3g(AE, X §+3Z ¢VA§X§V+3Z o (X)du A€

- e @) @ox - n(x)e)

+ Tlu(f){ - ‘Iu+1(§)¢u+2¢X + @u+2(§) v 416X

+ 7 (9X) AL — g(AL, 9 X)E, + n(X) ¢y AE

— g(A¢, X) 9. € — g(9AE, X)E,

— (XN @42(E)é11 — qur1(E)Evra + 9, AL) }

— 9(¢, AL, 6 X) & — (XN, (A)u € + g(AE, X, ()80 €

= 1, (6X) {1, ()A€ — 9(AE, )6, + B9 AL} |

~33 ()04 + 3 {m(€)($AS,6X — n(X)$AE,)
-0 ($X)pAp,E }+32 o ($AX)E,

3 (8 AX — 1, (AX)4,8} = 0,

where in the second equality we have used the following formulas

3
3Y. _ 0(@42(©)&s1 ~ g1 (Obur2, XD
3
£33 m(0{042(Os1 — Gr1(brsa} =0

and

zi:l {71:/+1(¢X)‘1u+2 (§)¢V§ - 77V+2(¢X)qu+1(f)¢v§
— (X)) u+1(E)Pv+2€ + 10 (6 X )qu 12 (€)¢V+l§} =0.

From this, by putting X = £ and using the formulas in Section 2 we have
the following

(LeRn)E = 62 9(év AL, )& + 42 &), AE
(34) + Zj 1 [5( v(€)& +mu (€ {qV+2 &1 — qu+1(§)§u+2}]
- 42 (£)¢Ag, =0.
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4. Lie £-parallel normal Jacobi operator for £€D+

In this section we want to give a complete proof of Theorem 1. In order to
do this, we consider the case that £€DL. Accordingly, we may put £ = &.
Then (3.1) implies the following for any X on M

0 = 3g(PAE, X)E + 32 (8,48, X)6, + 32 X)¢, A€
+ @2(€) P39 X — 43(f)¢2¢X +n(X){gz(€)é2 — QQ(£)§3}
— 9(92 AL, 0 X)E&s — n(X)m2(A)E&s + g(d3 AL, 0 X )62
+ (X )n3(A€)& + af{n2(X)& — n3(X)éa}
+ n3(X) 2 p AL — n2(X)P3p AL
- 32 X)PAL, + pA¢1 X — n(X)PA&
+n3(X )¢A53 + 1m2(X)pAL + 3{ns(AX)& — m2(AX)Es}
+ 314X +n2(AX)Es — s (AX)&e,

where a denotes g(A¢E, ).
On the other hand, from Vx & = Vx¢ we know that

(4.1)

(42) q2(€) = 29(‘4& §2)7 %(f) = 29(A57£3)
By putting X = &; in (4.1), we have
0= ('C&RN)§2

= 39(AE, &)&s + 392 AL + q3 ()€1 — D39 AL — PAL
+ 2{n3(A&)& — n2(AL)&s ) + 1AL,

From this, taking an inner product with &, we have

0= 39(AE, &) + g3(§) + 9(4E, &)
Then from this, together with (4.2), it follows that

g35(§) =0 and g(A£, &) =0.
Similarly, by putting X = £3 in (4.1) we have
0= (LsRN)&
= —3g(A, )& + 33AE — ()&
+ 20 AL — AL + 41 AL
+ 29(A&3,€3)8 — 29(A3, &2)&s-

From this, by taking an inner product with & and using (4.2) we have
32(§) =0 and g(4¢ &) =0.

Then we may summarize such a fact as follows:
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Lemma 4.1. Let M be a real hypersurface in Go(C™T2) satisfying Lie &-
parallel normal Jacobi operator and £€D+. Then A¢ = af + BU, where U is a
unit vector field orthogonal to £ and belongs to D.

From Lemma 4.1 we can prove the following

Lemma 4.2. Let M be a real hypersurface in Go(C™t2) satisfying Lie &-
parallel normal Jacobi operator and £€D+. Then f identically vanishes, that
18, the structure vector & is principal.

Proof. By Lemma 4.1 we may put
(4.3) Al =a +pU

for some unit normal U orthogonal to the structure vector £. Now let us
construct an open set ¥ in such a way that ¥ = {peM|3(p)#0}. Then on
such an open 2 we proceed our assertion. Now substituting (4.3) into (4.1),
we have the following

0 =38¢U — BosgU — 9 A&
+29(A&, &)6 — 29(A&, &)6 + d1 AL,
From this, by taking an inner product with ¢2U we have
0= —38g(¢2U, ¢2U) — Bg(¢39U, $2U) — g(¢p A&y, $2U)
+ 9(¢1 A&, $2U)

=3B+ Bg(oU, ¢3¢2U)

=38+ Bg(¢U, —61U +n2(U)&3)

=38 - By(eU, ¢:U)

= 28,
where in the second equality we have used V¢, & = Vg,& and in the final
equality we have used the formula V £ = V¢£. But this is impossible on the

open subset B. Accordingly, such an open U can not exit on M. So we have
our assertion. O

Lemma 4.3. Let M be a real hypersurface in Go(C™1?) satisfying Lie &-
parallel normal Jacobi operator and £€D*. Then g(AD,D+) = 0.

Proof. Now we consider (4.1) when the structure vector £ is principal. Then it
follows that

0= —2n2(X)pA& — 2n3(X)PALs + pAd:1 X
+ 2n3(AX)E — 22 (AX)Es + 41 AX.
Now let us take an inner product (4.4) with &. Then it follows that
0= —2m(X)g(A&, &) — 2n3(X)g(ALs, &3)
(4.5) +9(0AG10X, &) + 2m3(AX) + g(¢1 AX, &)
= — 2np(X)g(A&, &) — 203(X)g(ALs, &3),

(4.4)
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where in the first equality we have used the following formula
9(PA$10X, &) = — g(Ad19X, ¢&2)
= g(A416X, &)
= g(A¢d X, &3)
= —g(¢1 X, Vg, §)
9(Ve, (6X),6)
= g(n(X) A& — g(A&s, X)E,€)
- 9(A&, X).
From this, by putting X = & and X = £ we have

9(A&, &) = g(A&, &) = 0.
On the other hand, by taking an inner product (4.4) with £ we have

22(X)g( ALz, &2) + 23 (X )g(ALz, §2) = 0.
Then from this, by putting X = &, and X = & we have respectively

9(A&, &) = 9(A4&,62) = 0.
Summing up these formulas, we conclude that g(A¢&;,&;) = 0 for any ¢ and j
except ¢ = 7 = 1. Then we may put A& = X and A& = X3 for some Xo,
X3€D,
Now substituting these one into (4.4), we get the following
0= g(¢Ag1 X, &) + 2m3(AX) + g(01 AX, &)
= g(¢1X, X3) + g(X3, X)

for any tangent vector field X on M. Then from this, by replacing X by ¢; X
we have

il

0= g(gle‘X', X3) -+ g(Xsa (fle)
= - g(X, Xg) + g(X3, ¢1X)

Then (4.6) and (4.7) gives X, and X3 identically vanishing. That is, A =0
and A& = 0. Accordingly, we have our assertion in Lemma 4.2. 0

4.7)

Before going to give the proof of Theorem 1 in the introduction let us check
that “What kind of model hypersurfaces given in Theorem A satisfy Lie £-
parallel normal Jacobi operator.” In other words, it will be an interesting prob-
lem to know whether there exist any real hypersurfaces in Go(C™*?) satisfying
the condition £¢ Ry = 0 for £€D.

Then by virtue of Lemmas 4.1 and 4.2, we are able to recall a proposition
given by Berndt and the second author [4] as follows:

For a tube of type A in Theorem A we have the following
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Proposition A. Let M be a connected real hypersurface of G2(C™*2). Sup-
pose that AD C D, Af = o, and ¢ is tangent to DL. Let J,€J be the almost
Hermitian structure such that JN = JyN. Then M has three (if r = 7/2/8)
or four (otherwise) distinct constant principal curvatures

=V8cot(V8r), B =v2cot(v2r), A= —v2tan(v2r), p=0
with some r € (0,7/4). The corresponding multiplicities are
m(a) =1, m(B) =2, m(A) = 2m — 2 = m(u),
and the corresponding eigenspaces we have
T, =R =RIN =R,
Ts = C-¢ = CtN = R&: @Rg,
T\ = {X|X1H,, JX = J1 X},
T, ={X|X1H{, JX = —-J1 X},

where RE, C£ and Q€ respectively denotes real, complex and quaternionic span
of the structure vector & and CL¢ denotes the orthogonal complement of C¢ in

HE.

Then in the proof of Lemma 4.3 we have asserted that Af> = 0 and A¢3 = 0.
But the principal curvature 8 = /2 cot(v/2r) given in Proposition A is never
vanishing for any r€(0, 7). So this makes a contradiction. Accordingly, we
completed the proof of our Theorem 1.

5. Lie £-parallel normal Jacobi operator for £€D

In this section, in order to prove our Theorem 2 in the introduction we will
give several lemmas. Now we consider for the case that £€9. Then using £€D
in (3.3) we have the following

(LeRN)X = (VeRN)X ~ 9ARNX + RNpAX
= 3g(pAE, X)€ + 32 9($v AL, X)E,
+ 32 X)p, A€
(5.1) Y [ (60 AE, 6X) b€ + (X ), (AE) b €
+ (6] — 9(4€, 6, + b oA} ]
- 323 M (XPAE 3 n(6X)dAgt
+3Y m(BAX)E ~ Y n,(AX)g,E=0.

Then we assert the following
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Lemma 5.1. Let M be a real hypersurface in Go(C™+2) satisfying Lie &-
parallel normal Jacobi operator and £€D. Then the structure vector & is prin-

cipal.

Proof. Now let us put X = ¢ in (5.1) and use £€D, we have

0=3%" _ 0(6, 4606 + 3 n(ADBE+3Y._ m(dA0)e,
-3 A8
=63, 0(0uAE, )6,

From this we assert the following for any v =1,2,3

(5.2) 9(4¢, 9,€) = 0.

On the other hand, let us take an inner product (5.1) with the structure
vector £ and use the fact £€D and (5.2). Then it follows

0 = 3g(pAE, X) + 32 X)g(6,AE,€)
(5.3) 3 9($udAE,€)
= 39(p A&, X) - ijlny(cbX)nu(A&).
Now by putting X = ¢¢, into (5.3) we have

(5.4) 9(Ag, &) =0

for any g = 1,2,3. Then by virtue of (5.2) and (5.4) we may put
(5.5) AL =aé+ Xo

for some Xo€D orthogonal to &, $1 &, ¢2f, p3€. Then by putting X = ¢Xp in
(5.3) we have g(AL, Xo) = 0. From this, together with (5.5), we have our
assertion. |

Then by using Lemma 5.1 we want to verify g(AD,D+) = 0. In order to do
this, first of all, we should verify the following

Lemma 5.2. Let M be a real hypersurface in Go(C™*?) satisfying Lie -
parallel normal Jacobi operator and £€D. Then g(AD, D) =0.
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Proof. From the results of Lemma 5.1, we have the following

(CBN)X = 40 g(6,6,X)6 +30Y_ m(X)gu6

-3 @) @ex - nxe)
+ M (5){ = Qu+1(E) Pv120X + qur2(E) 19X
= (XN @u+2(E&+1 — Gr1{E)€vre + a¢u§)}

(55) - ag(4u, ¢X)¢,,§]

- 32 X)pA¢,

+ Z A (6)(940,6X — n(X)gA¢,)

— m(8X)6AEL +33_ m(SAX)E,

+ }j A ()8 AX =, (AX)$,€} = 0.
Since ¢ is principal and £€D, we have
(5.7) g(Ag,D*) =
From the formula (5.6) and £€D, we have the following

(LeRn)X = 4a2 9(6.& X)6 + 4az X)¢u€
(5.8) ~8Y m(X)pAL, ~ Zizlnu (6X)pAd€
+3Y m(0AX)E ~ 3 n(AX)g.E =0.

Now let us put Do(z) = {Xe€D|X L&}. From this, for X €Dy, we have
59) 0=40Y _ (96 X6 - Z;lm(rﬁX)Mqﬁu&
+ 32 W(9AX)E =Y m(AX)4uE.

Let us take an inner product the above equation with ¢;£. Then we have

(5.10) 0= Z 1. (0 X)g(@Ad €, :€) + g(AX, &).
By the formula (5.10), for X€D;, we have

(5.11) g(AX, &) =0, i=1,23,
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where the distribution ©; is given by ©, = {X€Do|XL¢:€, i = 1,2,3}. On
the other hand, by (2.3) and (2.4), we have the following

9(Adi€, &) = 9(ALy, 6i6)

= g(A&y, 9&)
= —g(pAE,, &)
= —9(Ve. 8, &)
= 9(&, Ve, &)
= g(&, $:A&,)
= —g(Adi&, &u)-
From the above equation, we have
(5.12) 9(Agi&, &) =0
for any i, 4 = 1,2, 3. Hence, by (5.7), (5.11) and (5.12), we know that
g(4D,9%) = 0.

a

Now by virtue of these Lemmas 5.1 and 5.2 we are able to use Theorem A due
to Berndt and the second author [4]. That is, M is locally a tube over a totally
geodesic and totally real quaternionic projective space QP™, m = 2n. So for
the geometrical structure for such a tube we recall the following proposition

Proposition B. Let M be a connected real hypersurface of Go(C™2). Sup-
pose that AD C D, A¢ = of, and & is tangent to ©. Then the quaternionic
dimension m of G2(C™?) is even, say m = 2n, and M has five distinct con-
stant principal curvatures

a = —2tan(2r), = 2cot(2r), vy =0, A =cot(r), p = —tan(r)

with some r € (0,7/4). The corresponding multiplicities are

m(a) = 1, m(8) =3 = m(y), m() = 4n — 4 = m(p)
and the corresponding eigenspaces are

To =RE, Tg=3JJE Ty =3, T, Ty,

where

Ty & T, = (HCO)*, 3Tn =Tx, 3Tu =Ty, JTr =T,

Now let us construct a subdistribution g in such a way that
[leDo =D,

where [£] denotes a one-dimensional vector subspace spanned by the structure
vector £&. Then Dy becomes Dy = {X€D|X LE}. Now we substitute any X €D
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in (5.17) and use £€D we have
(LRW)X =40y (X, 6,06 — 3 _ m(dX)sAu¢

+35 GANE -3 m(AX)gE.

From this, putting X = ¢,.& and using A¢,é =0, p =1,2,3 in Proposition B,
we have

(LeRN)@E, = 4ak,.
But we have assumed that £¢Ry = 0. Then this gives @ = 0. But the
constant principal curvature a = —2tan(2r) in Proposition B never vanishing
for r€(0, 7). This makes a contradiction for this case { € D. So we complete
the proof of Theorem 2 in the introduction.

6. Hopf hypersurfaces with £-parallel normal Jacobi operator

A real hypersurface M in G2(C™%?) is said to be a Hopf if the structure vec-
tor £ of M is principal. This means that A& = af, a = g(AE, &), for the shape
operator A of M in G2(C™*2). Of course, all of hypersurfaces in G»(C™*+?)
mentioned in Theorem A are Hopf hypersurfaces. Moreover, by Propositions
A and B we have known that the structure vector £ for real hypersurfaces of
type (4) and of type (B) in Theorem A belongs to the distribution D+ and
the distribution ® respectively.

In this section we consider a Hopf hypersurface in Go(C™*2) with Lie &-
parallel normal Jacobi operator Ry. Then it will be an interesting fact to check
whether Hopf hypersurfaces in Go(C™*+?) with Lie ¢-parallel normal Jacobi
operator can exist or not.

In order to do this, we prove the following lemma which will be useful in the
proof of our Theorem 3 given in the introduction.

Lemma 6.1. Let M be a Hopf real hypersurface in Go(C™+2) with Lie parallel
normal Jacobi operator along the direction of £. Then the directional derivative
of the principal curvature o is given by

Ya=-43""_ n(@m(eY)
for any vector fieldY on M.

Proof. Now we assume that M is Hopf. So we may put A = a€. Then the
formula (3.4) implies that

(6.1) aZ M(E)E = Z €)PAL,.
Now let us consider a vector U defined in such a way that
3
(6.2) U=> _m(¢

If we put £ = X; + X, for some vector X; in the distribution D+ and some
vector X2 in @, then we know that X; becomes the vector U. Now hereafter,
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unless otherwise stated, let us decompose the structure vector € by £ = U + X.
Then (6.1) can be written as follows

(6.3) GAU = adU.

Now differentiating (6.2) covariantly and using the formulas given in Sec-
tion 2, we have

VxU = Z 9(Vx&, 68 + 96, Vx &, + 1, (O VxE)
_22 9(&,, pAX) §V+Z O, AX.

On the other hand, by applying the structure tensor ¢ to (6.1) we know the
following

(6.4) AU =aU and AX3=aXs.

Now differentiating the first formula of (6.4) and using the above formula,
we have the following

(Vx AU + AVxU = (Xa)U + aVxU.

Then it follows that
= g((VxAU,Y)
= (Xa)g(U,Y) + ag(VxU,Y) — g(AVxU,Y)

65) = (Xa)z3 +a{2z 96, SAX ), (V)
+ Z 9(¢, AX,Y)}
- g( 22 (&, 9AX) AL, + 2 (640, AX,Y).

From this, let us take a skew-symmetric part of (6.5), then by virtue of the
equation of Codazzi the left side becomes

g((VxA)YY — (VyA)X,U)
=3 An(X)g(8Y, &)m, (€) — n(¥)g(¢X, &, )m (€)}
- 22 9($X, V), (€)° — 22 9($, X, Y ), (6)

+ 22 [ (X = M2 (V)41 (€) + 001 (V)m12(6) }
+ 1 (9X ){ — N 2(OY 41 (6) + g1 (BY )70 42(€) }]
+Z An(X)m(8Y) = n(Y ) (6X) 1, (8),
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where we have used the following

9(.,0Y,U) = —g(¢Y,¢,U)
— 9(BY, 041 (E) P bor1 + Nos2(§) P it2)
— t2(Y )41(E) + M1 (Y )M12(€)

and
(.Y, U) = g2 Y)Mu41(8) + Mot 1 (Y)M12(E).
Moreover, the skew-symmetric part in the right side of (6.5) becomes

E)Y_ n @) - VY mEmX)
+2a2 9(&, $AX N (Y) — g(&v, AY ), (X)}
+aZ 9((ppA+ Ad)X,Y) —22 {9(&, 9AX)g(AL,,Y)

(51/7 ¢AY Agl’a - 22 A(ZS,,AX Y)

Then by putting X = £ into the both 51des of the above formulas and using
A€ = o€, we have
(6.7)

3 3

42 WSV (6) = (€D _ m(Em(Y >—(Ya)2, (&)’
+a Z 5)9(¢u§,Y)+aZ 9(&, DAY ), (6).

On the other hand, if we dlfferentlate A¢ = o€ and take an inner product
with &, then the Codazzi equation gives the following

—29(¢X,Y) + 22 A O ($Y) = 1 (V)0 (6X) — 9(60 X, Y ) ()}
=g((VxA)Y (VYA)X 3,
= g9((VxA),,Y) — g((Vy A)§, X)
= (Xa)n(Y) = Ya)n(X) + ag((4¢ + ¢A) X, Y) — 2g(APAX,Y).
From this, if we put X = &, then

(6.8) Ya = (éa)n 42 E)n, (dY).

Then by putting ¥ = X, in (6.8) we have

(6.9) Xaa = || Xa|* (€a),

where we have used

(6.10) M(9X2) = —9(¢.& X2) = —g(&U + ¢ X3, X2) = 0.

Now we put Y = X5 in (6.7), and use (6.8), (6.10) and AX, = aX, in the
obtained equation. Then it follows that

(6.11) (X20)(1 = 3 mu(6)?) = (€a)n(Xo).
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Then from (6.9) and (6.11) we have

1P =Y (€)= (Ea)n(Xe) = (€| Xell,
which gives that

(6.12) O @DXalP(Ea) = 0.

From this, together with the decomposition of the structure vector £ in the
assumption, we have £ = 0. Then (6.8) completes the proof of Lemma 6.1. O

Now let us show that the structure vector £ belongs to either the distribu-
tion D or the distribution D+ when a Hopf hypersurface M in Go(C™*2) has
commuting shape operator, that is A¢ = ¢A on the distribution D*. In order
to do this we also assumed that the structure vector ¢ is decomposed into two
distributions © and D~+. That is, ¢ is decomposed into ¢ = U + X»

Now, by using £a = 0 in (6.7) and (6.8), we have

613) (Yo} _ (0 ~1) = a®g($U.Y) - ag(4U, AY).
Moreover, from (6.8) together with £a = 0 we have
(6.14) Ya = 4g(¢U,Y)

for any tangent vector field ¥ on M. So (6.14) gives Ya = 0 for any YV
orthogonal to ¢U. Then from this together with (6.13) we have

(6.15) ag{AeU,Y) =0

for any Y orthogonal to ¢U.

For the case where a = 0, by (6.14) we can make a contradiction, because
oU = —$ X5 never vanishing under the decomposition. So we assume that the
function a#0. Then (6.15) gives that g(A4¢U,Y) = 0 for any Y orthogonal to
oU. So we may put
(6.16) ApU = BoU.

Now by putting ¥ = ¢U in (6.13) and (6.14), and using (6.16), we have

—4||U |1 X2]l* = — (U a)]| X2

= (a® — af)||eU|I?
= a(a - f)||l¢U]1>.
This gives
(6.17) ala - B) = —4|| X:|*.

But we have asserted that M has commuting shape operator on the distribution
D+. This means that AU = A¢U = agU for U = Zizlnu(ﬁ)&,EDJ‘. From
this together with (6.17), we can make a contradiction. Then summing up
these process and Lemma 6.1 we can assert the following
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Lemma 6.2. Let M be o Hopf real hypersurface in Go(C™+?) with Lie parallel
normal Jacobi operator along the direction of £&. If M has commauting shape
operator on the distribution D+, then the structure vector & belongs to either
the distribution © or the distribution D+,

Accordingly, by Lemma 6.2 and together with Theorem 1 and Theorem 2
for each case £€D+ and £€D respectively, we give the complete proof of our
Theorem 3 mentioned in the introduction.

Remark 6.1. A tube over a totally geodesic Go(C™*!) in G2(C™*?) in Theorem
A has commuting shape operator on the distribution D+. Of course, it is Hopf.
But, in section 4 we have asserted that such a hypersurface can not satisfy
LeRy =0.

Remark 6.2. A tube over a totally real totally geodesic QP" in G5(C™*?) has
not commuting shape operator on the distribution D+. In section 5 we have
also proved that such a hypersurface is Hopf but can not satisfy L¢Rn = 0.
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