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ABSTRACT - The increasing demand of new services in the 
field of radio-mobile communications is in contrast with the 
capacity constraints imposed by the present communications 
medias. For this reason the use of techniques capable of ensuring 
that the spectrum assigned to mobile communications will be 
better exploited, is gaining an ever increasing importance. The 
search for an effective channel allocation technique along with 
the attempt to lower the computational costs of the algorithm 
which perfo"x such a technique, was the aim to be achieved in 
our research. 

I - INTRODUCTION. 

The present challenge among communication researchers is to 
develop a worldwide Personal Communication Network 
(universal PCN) which, by enabling the reliable transfer of voice 
and data between two users traveling at any speed on land, sea, 
or in air, or located at any fixed position on earth, will be of 
great importance for the implementation of the new generation 
of PCSS. 
In order to simplify the performance analysis of cellular systems, 
the territory is ideally divided into hexagonal cells. Each cell is 
managed by a Base Station (BS) with an omni-directional 
antenna located at its center. 
The efficiency of a cellular system depends upon the possibility 
to use a given radio-channel in cells which are sufficiently far 
the one from the other, so that the co-channel interference is 
brought to ,acceptable levels (channel reuse). According to the 
multiple access technique employed by the cellular system, a 
channel is referred to as a fixed frequency bandwidth (FDMA), 
or a specific time-slot within a frame (TDMA) or a particular 
code (CDM.4). 
A channel cannot be used simultaneously in cells whose centers 
are closer than the reuse distance (D), which defines the 
interfering cells ring around each single cell of the cellular 
system. 
Two typical alternatives to perform the channel assignment to 
the cells are the Fixed Channel Allocation Technique (FCA) and 
the Dynamic Channel Allocation Technique (DCA) [l]. While 
in the FCA a set of channels is permanently assigned to each 
cell, in the I X A  the channels are assigned on a call-by-call basis 
in order to obtain a better performance and a narrower spectrum 
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utilization, in particular under non-uniform traffic load 
conditions. 

I1 - THE DCA TECHNIQUE. 

In  this paper a topological model is considered which is 
composed of a set of hexagonal cells forming a parallelogram 
whose sides have an equal number of cells. 
Let T be the interference order; a cell C interferes with the cells 
belonging to T rings centered in C. 
The same channel cannot be used in two interfering cells: as this 
condition is inviolable, we refer to it as hard condition. 
Whenever the channel selected according to a suitable 
assignment algorithm does not satisfy this constraint, the 
corresponding service request (new call) is blocked. Other 
conditions, named soft conditions have also been provided. Soft 
conditions differ from hard conditions since they can be violated 
at the expense of a slight decrease in the allocation performance. 
The technique proposed in this paper is thought to be 
implemented in real cellular systems, so the number of 
operations to be performed is limited when a new call arrives. In 
particular, we do not consider any rearranging task in cells 
different from the one involved in the arrival as stated in [ 2 ] .  
Rearranging the assignment in the whole structure every time a 
call is received from the user, could obviously achieve a lower 
blocking probability; unfortunately, the amount of time needed 
to perform such a task makes this impossible to be realized in a 
practical cellular network. 
The most important soft conditions proposed are the packing 
condition and the resonance condition. 
With the packing condition, assignment solutions are preferred 
which tend to use the minimum number of channels to satisfy 
the global channel demand. The impact of this condition on the 
assignment is to prefer channels already used in other cells, 
without violating any hard condition. If more choices are 
possible, channels used in the nearest cells are taken into 
account. It will be explained later how to translate this and 
subsequent conditions into terms of a quadratic energy function 
to be minimized. 
With the resonance condition, we tend to assign the same 
channels to cells that belong to the same reuse scheme which is 
obtained by jumping from one cell to another with steps of 
length exactly equal to the reuse distance, as shown in Fig. 1. 
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Fig. 1 - Reuse schemes 

This condition tends to give an optimum assignment in the 
presence of a uniform distribution of incoming calls among the 
cells. When a non-uniform traffic is present, this condition still 
seems to work well by arranging the assignment in an ordered 
way without interfering with the dynamic allocation concept. 
Others soft conditions are formulated in order to: 

assign, where possible, the same channels assigned before, 
i.e. limiting the infracell rearranging; 
try to assign the exact number of channels requested in the 
cell involved in a new arrival (or in  the termination of a 
call), A violation of this condition means the impossibility 
of serving an incoming call which is obviously blocked. 

All these conditions lead to the definition of a quadratic energy 
function discussed below. In performing our analysis the 
following definitions are assumed: 

CE ............. the total number of cells in the system. 
CH ............ the number of channels available to the system. 
Ai j  ............ an element of the allocation table whose value is 1 

if channel j is allocated to cell i (i=l,,CE and 
j=l,,CH), 0 otherwise. 

i* .............. the cell involved in a new arrival or a termination 
of a call. 

Traf(i*) ..... the number of requested channels at cell i*. 
Vi*j .......... the assignment of the cell of interest; i.e. the 

variables of the assignment problem. 
Interf(i,i*) . the function giving a value of 1 if cells i and i* are 

interfering according to the previous definitions, 0 
otherwise. 

Dist(i,i*) ... this function gives the distance between cells i and 
i* normalized to the inter-center distance between 
two adjacent cells. 

Res(i,i*) .... gives a value of 1 if cells i and i* belong to the 
same reuse scheme defined before, 0 otherwise. 

We define an energy function associated with the modeled 
cellular network as follows: 

+z. ZV,.,, - Traf(i*) "i"" j=1 

The first term adds a positive constant to the energy function if 
there are some interfering cells using the same channels; the 
second term is positive if the requested number of channels has 
not been assigned to cell i*; with the third term the packing 
condition is fulfilled as stated before; the fourth term lowers the 
value of the energy function if the actual assignment is equal to 
the previous one and the fifth term accomplishes the resonance 
condition. 
Constants A, B, C, D, and F are determined in order to decide 
which are the conditions that can be violated and in what order, 
as is shown later. 
Every time a new call arrives ( or ends ) in a cell i*, the 
algorithm searches for a pattern of 1's and Os that, substituted to 
Vi*j , minimizes the energy function E. The best pattern found 
represents the solution to the DCA problem only if it satisfies 
the channel demand condition. On the contrary, if the pattern 
violates it, the arriving call is blocked. 
With this formulation the problem complexity grows 
exponentially with the number of channels; hence we have 
proposed an approach based on Hopfield neural networks as 
described in the next section. 

III - HOPFIELD NEURAL NETWORKS. 

The  combinatorial optimization problem, i.e. finding a solution 
that minimizes a cost function and whose variables assume only 
two possible values, falls in the more general class of NP- 
complete (non-deterministic polynomial time complete) 
problems [31. A neural network approach formulated by 
Hopfield and Tank 141 claimed to be a method that could be 
realized by hardware circuits with response times much shorter 
than those of other algorithmic methods. 
Nevertheless, the original formulation suffered from a tendency 
to produce non-feasible solutions called "spurious states". 
The variation proposed by Shigeo Abe [5]  uses a particular 
formulation of Hopfield networks that eliminates all the spurious 
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states from the solution space. This type of neural networks has 
been used in our simulations. 
Giving an energy function : 

dx 
dt 
_- --Tx-b 0 S x i  5 1  i = l  ...n (6) 

1 
2 

E = -x’Tx +b’x 

where T is ;a symmetric nxn matrix; x is an n-elements vector 
representing our variable and b is a constant n-elements vector 
of inputs. The problem is equal to finding x that minimizes E for 
every single component of x with values 0 or 1. 
We extend the range of xi - i-th component of x - to [0,1]. 
Considering xi as the output of the i-th neuron of the network, 
the internal state ui is introduced for which: 

x, = f ( U i )  ;i = l...n (3) 

where f(ui) is a monotone non linear function; for instance 
Hopfield suggests a hyperbolic tangent function 
flui)=1/2(l t tunh(ui)). 
If we consider the quantity: 

1 0.5 
the temporal evolution of such an energy function is: 

Its equilibrium points are all in the vertex of the hypercube and 
we can make all the feasible solutions be the only stable points 
[51. 
It is not difficult to show that energy function E in (1) can be 
expressed as a quadratic form of variables Vi.*,j and if we call x 
the vector whose components are Vi*,j withj=l..CH for a fixed 
i*, expression (2) represents (1) with : 

Tj,,it = B 
A 

b, = , . C A , , ,  .Interf(i,i*) 
L i  

- B .  Traf( i*) 

(7) 

(1 - Interf(i, i*) ) (8) 
C (1-&i,i*) 

--. C A , , ,  
2 Dist(i,i*) 

+--. F A,,, . (1 -&i , i* ) .  (1- Res(i,i*)) 
2 ,  

where 6ij is the Kronecker delta. 
dE d x. d xi d xi In order to make system (6) stable for every possible T, we make 
- = z q , j x j  $+ C b i  --Cui - the following substitutions without changing the values of E at 

the vertexes of the hypercubic domain. dt i,j dt dt 

I = T $ T T , ,  x j  +bi - ui 

thus building a system for which: 

we have: 

dx, dui 

- 
for the monotonicity of x=f(u). So E is a Lyapunov function for 
(4). Than we have: 

dE - 5 0  
dt 

1 . ., b, +bj  +- J.J 

2 

For the system under consideration it has been proven in [6] that 
no stable points exist within the variability domain. On the 
border of the hypercube there are vertexes and non vertexes 
points. The former are characterized by the fact that their 
components have only a value of 0 or 1. The latter have at least 
one component in the interval (0,l). Among vertexes, feasible 
solutions can be found which are compatible with the reuse and 
the channel demand constraints, and also unfeasible solutions. 
The next step is to make all the feasible solutions be stable 
points of system (6). 
Be c a vertex; c(i) is an adjacent vertex obtained by substituting 
the j-th component of c with its complement to 1. 
If c represents a feasible solution and E(c) is its energy value, in 
order to make c a strongly stable point we have to find values for 
constants A,B,C,D and F for which E(c(j))>E(c) for every j. 
We decide whether a vertex represents a feasible solution on the 
basis of five rules: 

confirming that the set of equations (4) leads E towards lower 
values; thus. for an arbitrary initial internal state uo, a local 
minimum solution is achieved. 
Under the hypothesis of using a piecewise-linear function as flu), 
system (4) becomes a linear system operating on a closed 
hypercube : 
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xti for O <  xli < 1 

where 

R 
We start from a generic solution c; then, we change one (or 
more) of its components from 0 to 1 or vice versa. Due to the 
priorities of our rules, we are interested in four types of 
transitions : 

transitions that violate rule R1, but lower energy for rules 
R2,R3,R4, and R5; 

0 transitions that increase energy for R2, but lower energy for 
R3,R4, and R5 leaving the term associated with R1 
unchanged; 
transitions that increase energy for R5, but lower energy for 
R3,R4 leaving the terms associated with R1 and R2 
unchanged; 
transitions that increase energy for R3, but lower energy for 
R4 leaving the terms associated with R1, R2, and R5 
unchanged. 

0 

Since system (6) tends to lower energy during its evolution we 
have to find some relations among the constants of (1) so that 
each of the above named transitions coincides with an energy 
increment. These relations make all our feasible solutions be the 
only stable points in the system. 
The relations are: 

I 7\ 

For the initial value of x we chose xi (0) = 0.5+ q; where rj is 
a uniformly distributed pseudo-random value in the range [ - d 2 ,  
d21. 
In our simulation, we chose a value of R=O.3 and a = 

IV - SIMULATIONS RESULTS. 

All the simulations have been carried out over a 7x7 portion of a 
hexagonal cell layout. We have considered two rings of 
interfering cells and 70 channels available to the whole system. 
In order to evaluate the performance of our technique, the 
blocking probability was used as a performance index. 
The calls follow the Poisson arrival process with mean arrival 
rate equal to h (calls/min.). The call duration is an exponentially 
distributed statistical process with mean 2 (min.). The quantity 
X = p expresses the load offered to the cellular network. 
We computed the probability of refusing an incoming call for 
the 9 central cells only and for a uniform traffic distribution 
among all the cells. Under these simulation hypotheses, we can 
compare our results with those obtained by Zhang and Yum [7] 
with the "Locally Optimized Dynamic Assignment" (LODA), 
"Borrowing with Channel Ordering" (BCO) and "Borrowing 
with Directional Channel Locking" (BDCL) allocation 
algorithms. 
Curves for theoretical FCA (ERLANG-B) are added to the 
numerical results obtained from the simulations. 
In Fig.2, the behavior of our technique is shown with respect to 
others DCA techniques for a uniform traffic distribution. 

where dreuse and kreuSe are the distance and reuse factors 
related to the reuse pattern of the cellular network. 
In order to simulate the behavior of our neural network, we have 
built a software model of the Hopfield neural network using the 
Euler's method to solve the set of differential equations of (6). 
After one time step At we have: 

XIi = xi - At{T * X + b, } 
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Fig. 2 - Performance with uniform traffic. 

For a non-uniform traffic distribution the traffic pattern 
proposed by Zhang and Yum [7] shown in F i e w a s  considered. 

I 

Fig. 3 - Non-uniform traffic distribution (calls per hour). 

The traffic load for each cell increased by a percent factor 
ranging from 0 to 140. The simulations results are summarized 
in Fig. 4. 

V - CONCLUSIONS. 

The structure of a cellular communication system suggests that a 
spread para1 lelized elaborative process for channel allocation is 
a natural choice. Another valuable feature of the abovenamed 
allocation technique is its insensitiveness to local faults; as a 
matter of fact, the loss of elaborative capacity of some neurons of 
the neural aJlocative network does not imply that the whole 
communication system will be blocked. 

A neural approach like the one proposed in this paper seems to 
achieve a good level of performance with short processing times 
due to a massively parallel computational structure. 
A further analysis of the Hopfield DCA allocator's behavior 
under different runtime conditions will be able to confirm the 
positive results derived by the simulations described in this 
paper. 
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Fig. 4 - Performance with non uniform traffic load. 
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