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The recent detection of gravitational wave GW170817 has placed a severe bound on the deviation of the
speed of gravitational waves from the speed of light. We explore the consequences of this detection for
Hořava gravity.
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I. INTRODUCTION

Hořava gravity [1] has been proposed as an ultraviolet
(UV) complete theory for the gravitational interaction. The
improved behavior at high energies is due to the presence of
higher-order terms in spatial derivatives and this requires
violations of local Lorentz invariance. The action of Hořava
gravity is [1,2]

S ¼ M2
p

2

Z
Ndt

ffiffiffi
h

p
d3x

�
KijKij − λK2 þ ξð3ÞRþ ηaiai

þ 1

M2⋆
L4 þ

1

M4⋆
L6

�
: ð1Þ

N,Ni, and gij are the lapse function, the shift and the induced
metric on a given spacetime foliation by spacelike hyper-
surfaces, while Kij is their extrinsic curvature. L4 and L6

contain terms that are fourth-order and sixth-order in spatial
derivatives, respectively. Hence, they contribute fourth and
sixth powers of momenta in the dispersion relations. These
contributions are suppressed at momenta below some scale
M�, where the theory becomes effectively an infrared (IR)
modification of general relativity (GR), but dominate in the
UV and are expected to render interactions renormalizable.
The action is not invariant under the full group of diffeo-
morphisms, but only under diffeomorphisms that respect the
foliation. This underscores that the foliation is preferred.
The first line of Eq. (1) can be thought of as the IR limit

of Hořava gravity. Elevating the space-time symmetry to
full diffeomorphisms by introducing a Stückelberg field ϕ,
one can write the IR action as [3]

SIR ¼ M2
Æ

2

Z ffiffiffiffiffiffi
−g

p
d4x½ð4ÞRþ αuμuν∇μuα∇νuα

− β∇μuν∇νuμ − γð∇μuμÞ2�; ð2Þ

where we defined uμ ≡ −∇μϕ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇νϕ∇νϕ

p
. This action

coincides with the first line of action (1) after the partial
gauge fixing ϕ ¼ t and with the following correspondence
of parameters through

λ ¼ 1þ γ

1 − β
; η ¼ α

1 − β
;

ξ ¼ 1

1 − β
; M2

p ¼ ð1 − βÞM2
Æ: ð3Þ

Moreover, the covariant formulation is equivalent to a
restricted version of the Einstein-Æther theory [4], in which
the æther is forced to be hypersurface-orthogonal at the
level of the action (i.e., before the variation) [5]. The
correspondence of parameters is given in Appendix A.
Hořava gravity propagates two tensor and one scalar

polarization. All three polarizations satisfy higher-order
dispersion relations, as mentioned earlier. Their speeds in
the infrared limit are

c2T ¼ 1

1 − β
; c2S ¼

ð2 − αÞðγ þ βÞ
αð1 − βÞð2þ 3γ þ βÞ : ð4Þ

The recent detection of a binary neutron star merger with
coincident gamma ray emission has introduced remarkably
strong constraints on cT [6]. The purpose of this brief note
is to discuss the implications of this constraint for Hořava
gravity and to clarify how this constraint can be effectively
combined with existing ones. It has recently been pointed
out in Ref. [7] that the speed of the scalar polarization is
almost unconstrained and our results highlight that this
feature persists even after GW170817.
It is worth pointing out that our focus is on infrared

viability. Hence, the higher order terms contained in L4 and
L6 in action (1) will not be relevant and we will not attempt
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to give them explicitly. We will, however, discuss con-
straints on M⋆ and mention how theoretical considerations
related to the UV properties of the theory can restrict M⋆.
We will also not consider any version of Hořava gravity
where additional restrictions of the action are considered in
order to reduce the numbers of independent couplings, e.g.,
[8–12]. Even though some of these restricted models have
been shown to have interesting properties—the so-called
“projectable” theory [8], for instance, has been shown to be
renormalizable beyond power-counting [13]1—they also
tend to suffer from infrared viability issues [16–22].

II. DIRECT CONSTRAINTS AND BOUNDS

In this section we list all of the available constraints in
terms of the parameters ðα; β; γÞ of action (2).
(1) Unitarity. The kinetic term for the scalar mode

should have the same sign as the kinetic term of
the tensor modes in order for the Hamiltonian to be
bounded for linearized perturbations around flat
space. This yields [2]:

2þ 3γ þ β

γ þ β
> 0: ð5Þ

(2) Perturbative stability. The coefficients of the gradient
terms should have the right sign for stability [2]:

0 < α < 2; β < 1: ð6Þ

This condition, along with the previous one ensures
that c2T and c2S are always positive.

(3) BBN. Cosmology provides further constraints.
On a cosmological background, the effective gravi-
tational constant that appears in the Friedmann
equation is [2]

GC ¼ 1

4πM2
Æð2þ 3γ þ βÞ ; ð7Þ

while from the Newtonian limit, one can infer [23]

GN ¼ 1

8πM2
Æð1 − α=2Þ : ð8Þ

This effective gravitational constant affects the
expansion rate during big bang nucleosynthesis
(BBN) with respect to the standard one. As a result
the primordial helium abundance is modified by
[24,25]

ΔYp ¼ 0.08

�
GC

GN
− 1

�
: ð9Þ

Using the current bound jΔYpj < 0.01 (99.7% C.L.)
[26–28] we obtain the following constraint���� αþ 3γ þ β

2þ 3γ þ β

���� < 1

8
: ð10Þ

(4) Vacuum Cherenkov bounds. Photons could decay
into spin-2 or spin-0 modes in vacuum when Lorentz
symmetry is violated. Cosmic rays provide a lower
bound on the speed of gravitational polarizations
[29]. Specific constraints for Einstein-Æther theory
have been derived in Ref. [30] and they exclude
subluminal propagation to very high precision.2

There is no detailed calculation for Hořava gravity,
or a quantitative translation of the Einstein-Æther
results (given the similarity of the theories). How-
ever, the conservative expectation is that subluminal
propagation is excluded to very high accuracy for
both tensor and scalar polarizations.
The absence of gravitational Cherenkov radiation

can, in principle, give a bound on M�, the scale that
suppressed the higher-order corrections to the
dispersion relation of gravitational waves [31,32].
However, to obtain a noteworthy bound one needs to
assume that the coefficient of p4 term (where p is
momentum) in the dispersion relation is negative.
Moreover, such a constraint would only be trust-
worthy if M� is much bigger than the cosmic ray
energies (∼1011 GeV). Otherwise, one would need
to include the p6 term in the analysis as well, which
is expected to have a positive sign. We will not
consider this type of bound below.

(5) ppN constraints. The two parametrized post-
Newtonian (ppN) parameters which quantify pre-
ferred-frame effects are constrained by [33]

jα1j < 10−4;

jα2j < 4 × 10−7: ð11Þ

Using the weak field expressions for Hořava gravity
[3,34], these constraints translate into���� 4ðα − 2βÞ

1 − β

����≲ 10−4;����
�
α − 2β

2 − α

��
1 −

ðα − 2βÞð1þ β þ 2γÞ
ð1 − βÞðβ þ γÞ

�����≲ 10−7:

ð12Þ

(6) Binary pulsars. The presence of a scalar polariza-
tion can lead to dipolar emission and this would

1Projectable theory in 2þ 1 dimensions [14] has actually been
shown to be asymptotically free [15].

2There is no compelling reason to a priori exclude super-
luminal propagation, unlike what seems to be suggested in
Ref. [30]. Hence, vacuum Cherenkov constraints are one-sided.
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affect the dynamics of binary pulsars. The corre-
sponding bounds are discussed in details in Ref. [35].
Figures 1(b) and 8 of Ref. [35] present the con-
straints on the α ¼ 2β plane. We will not reproduce
these figures here. On this plane the ppN parameters
α1 and α2 vanish but, as will be discussed below,
considering this plane is no longer well motivated.

(7) Black holes. The structure of isolated black holes
can, in principle, provide constraints [36–39]. How-
ever, such constraints are significantly weaker than
the binary pulsar constraints (at least on the α ¼
2β plane).

(8) Gravitational waves. The observation of the binary
neutron star merger GW170817 with coincident
gamma ray emission [6] yields

−3 × 10−15 ≤ cT − 1 ≤ 7 × 10−16; ð13Þ

which implies that

jβj≲ 10−15: ð14Þ

Gravitational wave observations also provide a very
mild lower bound on M⋆ of the order of eV [7,40].
This bound comes from considering the effect of the
p4 term in the dispersion relation (where p is
momentum) that is suppressed by M2⋆.

III. THEORETICAL CONSIDERATIONS AND
INDIRECT CONSTRAINTS

The direct observational bounds obtained in the previous
section affect mainly the parameters of the IR effective
theory. The parameters that become relevant in the UV are
very weakly affected. In particular, gravitational waves
provide only a very weak bound of M⋆, as mentioned
above. In principle, laboratory test of gravity at small length
scales can place a direct lower bound on M⋆ (as an energy
scale), but current precision would place this bound in the
meV range [41], so it would be also particularly weak.
Lorentz violations in the standard model are much more

tightly constrained than in gravity. Indeed, if one were to
assume that M⋆ is a universal Lorentz violation scale for
gravity and matter alike, then observations of the synchro-
tron radiation from the Crab nebula would require M⋆ >
2 × 1016 GeV [42]. However, if there is a mechanism to
suppress the percolation of Lorentz symmetry breaking
from gravity to matter, then there is no reason to believe
that M⋆ is a universal Lorentz violation scale. Moreover,
such a mechanism seems to be necessary to keep Lorentz
violation at bay already for lower mass dimension operators
in the standard model [43]. It has been suggested that the
weak coupling between gravity and matter might suffice to
suppress the percolation [44] but it is not clear how well this
works in practice for Hořava gravity [45–47].

Irrespective of the details, it is intuitive that experiments
will impose a lower bound onM⋆. Interestingly, theoretical
considerations can yield an upper bound. This is because
the IR part of Hořava gravity, or equivalently action (2)
exhibits strong coupling at a certain scale MSC [20]. In
particular, derivative self-interactions of the scalar mode
compromise perturbativity. Provided that MSC is suffi-
ciently high, strong coupling is not an issue for infrared
viability. However, power-counting renormalizability for
Hořava gravity has been argued on the basis of perturba-
tivity and hence, strong coupling is a threat to the original
motivation of the theory [20]. It turns out that having
M� < MSC—i.e., having the new physics coming from the
UV completion kick in at low enough energies—can
resolve the strong coupling problem [3]. However, as we
will review in a bit more detail below,MSC is controlled by
the couplings of the infrared part of the action, ðλ; ξ; ηÞ
or ðα; β; γÞ, which satisfy the bounds given in the
previous section. Hence, M⋆ ends up having to satisfy
an upper bound.
The MSC can been calculated in the decoupling limit,

which for action (2) corresponds to M2
Æ → ∞ while

keeping αM2
Æ, βM2

Æ, γM2
Æ fixed. This requires α, β,

γ → 0. A detailed calculation was presented in Ref. [21].
It is worth pointing out that β has been set to zero there.
This can indeed be done without loss of generality by a
suitable time rescaling in action (1) or field redefinitions in
action (2). We have avoided it here because the rescaling
affects the various speeds. We discuss in more details how
what we report corresponds to the results of Ref. [21] in
Appendix B.
In the limit where ðα; β; γÞ ≪ 1 (consistent with the

decoupling approximation), MSC can have one of two
different values depending on the magnitude of c2S, namely

MSC ≈

( ffiffiffi
α

p
MÆc

3=2
S ; c2S < 1ffiffiffi

α
p

MÆc
−1=2
S ; c2S > 1

: ð15Þ

It is worth stressing that when ðα; β; γÞ ≪ 1, and hence in
the decoupling limit as well, MÆ ∼Mp and both scales
could be taken to be equal to the gravitational coupling
scale as measured by experiments.

IV. ALLOWED REGION OF THE
PARAMETER SPACE

Prior to GW170817, ppN constraints were considered
particularly restrictive because, assuming that β ≪ 1, they
require jα − 2βj≲ 10−4. Hence, they restrict the 3-dimen-
sional parameter space to a 2-dimensional surface with a
width of 10−4. All other constraints were either one-sided
or weaker, so it was common practice to impose α ¼ 2β in
order to satisfy both ppN bounds to infinite accuracy
(modulo tunings) and present graphically existing and
new constraints on the α ¼ 2β plane, see for example
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Refs. [35,36,39]. The double-sided constraint on cT or β
from GW170817 changes the picture drastically. The
allowed region of the α ¼ 2β plane shrinks to a line
segment with width less than 10−15, as one can always
think of this plane as parametrized by β itself and some
other combination of the couplings (cf., with the figures in
Refs. [35,36,39]).
Indeed it is now much more informative to focus on the

β ¼ 0 plane of the parameter space or, more generally, jβj ∼
10−15 sections, as in Figs. 1–3. The top panel of each figure
shows the whole parameter space. The blue curve corre-
sponds to MSC ¼ 1 meV. Given that M� < MSC, the
constraint M� > 1 meV, which is derived from binary
black hole mergers [32], excludes the region of parameter
space corresponding to MSC < 1 meV. The red and brown
curves correspond toMSC ¼ 1 TeV andMSC ¼ 1010 GeV,

respectively. These curves demonstrate how stricter bounds
on M� would constraint the parameter space. The lower
panels zoom on the region α, γ > 10−20. The dotted, dashed
and solid lines correspond to choice of α and γ that lead to
cS ¼ 1, cS ¼ 10 and cS ¼ 1000, respectively. They have
been included to highlight that the cS remains virtually
unconstrained. It should be stressed that we have not
imposed the vacuum Cherenkov constraints. Imposing
them in a conservative fashion corresponds to excluding
the part of the shaded region above the c2S ¼ 1 dotted line in
each plot.

V. DISCUSSION

The detection of gravitational waves with an electro-
magnetic counterpart (GW170817), emitted by a binary
neutron star merger, has put a stringent constraint on the
speed of tensor modes. This translates to the tightest
constraint so far in one of the parameters of Hořava gravity
and it motivates revisiting the allowed region of the
3-dimensional parameter space. Instead of focusing on

FIG. 1. The grey area shows the region of parameter space
which is compatible with the constraints [Sec. II] for β ¼ 0. The
dotted, dashed, and solid lines correspond to cS ¼ 1, cS ¼ 10,
and cS ¼ 1000, respectively. The blue, red, and brown lines show
MSC ¼ 1 meV,MSC ¼ 1 TeV, andMSC ¼ 1010 GeV. The lower
panel focuses on the region α, γ > 10−20.

FIG. 2. Same as Fig. 1 but for β ¼ 10−15.
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the 2-d plane that leads to exact agreement with general
relativity in the weak field limit, as had been done in the
literature so far, we focussed on 2-dimensional sections that
satisfy the gravitational wave speed constraint and consid-
ered all other known constraints. The graphic representa-
tion of these constraints turns out to be quite illuminating in
at least two respects:
(1) The strong coupling scale MSC is bounded from

below by the Lorentz breaking scale M⋆, as dis-
cussed extensively in the text.M⋆ is in turn bounded
from below by observations that probe the higher
order terms in the dispersion relation. Improving
bounds onM⋆ can hence reduce the parameter space
significantly or rule out Hořava gravity entirely as a
perturbatively renormalizable theory of gravity.

(2) Even though the constraints on the parameters α, β,
and γ are very tight, the speed of the scalar
polarization remains virtually unconstrained. This
stems from the type of dependence cS has on these
parameters and, more fundamentally, from the fact
that the limit to general relativity is not smooth.

Remarkably, even a very mild constraint on cS
would rule out a vast portion of the parameter space.

The above motivate finding novel ways to improve con-
straints on M⋆ and cS.
The prospects of measuring or constraining cS and its

importance in the context of Lorentz violations in gravity
have been recently discussed in Ref. [7]. In the context of
Hořava gravity, one could hope to obtain stricter bounds on
M⋆ and cS by precise gravitational waveform modeling. In
principle, trustworthy bounds onM⋆ could also be obtained
from nongravitational experiments (along the lines of
Ref. [42]), if percolations of Lorentz symmetry from
gravity to matter were well understood. Both prospects
are quite challenging but would significantly enhance our
understanding of the role of Lorentz symmetry in
gravitation.
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APPENDIX A: CORRESPONDENCE WITH
HYPERSURFACE ORTHOGONAL

EINSTEIN-ÆTHER THEORY

The action for Einstein-Æther theory [4] is given by

S ¼ M2
Æ

2

Z ffiffiffiffiffiffi
−g

p
d4x½ð4ÞR − c1∇μuν∇μuν

− c2ð∇μuμÞ2 − c3∇μuν∇νuμ

þ c4uαuβ∇αuμ∇βuμ�; ðA1Þ

where the norm of the æther field is constrained by
uμuμ ¼ −1. If the æther field is hypersurface orthogonal
it can simply be written as the (normalized) gradient of a
single scalar:

uμ ¼ −
∇μϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−∇νϕ∇νϕ
p : ðA2Þ

When this form of the vector field is imposed at the level of
the action, i.e., before the variation, the c1 term is no longer

FIG. 3. Same as Fig. 1 but for β ¼ −10−15.
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independent, and can be written as a combination of the c3
and c4. The resulting action matches the one in Eq. (2), and
the correspondence of parameters is

α ¼ c1 þ c4; β ¼ c1 þ c3; γ ¼ c2: ðA3Þ

APPENDIX B: TIME RESCALING AND THE
VALUE OF β PARAMETER

In action (1) one can set ξ ¼ 1 by performing the time
rescaling

d~t ¼
ffiffiffi
ξ

p
dt: ðB1Þ

Given the correspondence of couplings in Eq. (3), in the
covariant picture of action (2) this maps to β ¼ 0. Note that
ξ > 0 (or β < 1) is required for stability, see Sec. II. Time
rescalings do not leave speeds invariant clearly and the
specific one corresponds to choosing the time coordinate
such that the speed of tensor gravitational waves is set to 1.
This becomes clearer if one tries to set β ¼ 0 directly in the
covariant setup of action (2), as it requires a particular
metric redefinition and a uμ rescaling of the type discussed
in Ref. [48]. Such redefinitions leave the action formally
invariant and for the specific ones that leads to β ¼ 0 the
new metric defines the null propagation cones of spin-2
gravitons. It should be emphasized that the speed of light
also changes and, assuming it was 1 initially, it becomesffiffiffiffiffiffiffiffiffiffiffi
1 − β

p
after either of the two equivalent procedures

discussed above. The complete mapping of couplings is

~α ¼ α; ~γ ¼ γ þ β

1 − β

~β ¼ 0; ~M2
Æ ¼

ffiffiffiffiffiffiffiffiffiffiffi
1 − β

p
M2

AE; ðB2Þ

where an overtilde denotes the new couplings.
Reference [21] performs calculations in the decoupling

limit but it resorts to this limit after having set ~β to zero as

described above. Hence, the limit is taken to be ~M2
Æ → ∞

while keeping ~α ~M2
Æ, ~γ ~M2

Æ fixed. This implies that ~α,
~γ → 0. while there is no further explicit reference to β.
The speed of the scalar polarization in this limit is
~c2dec ¼ ~γ= ~α. In the process of determining the smallest
suppression scale for cubic interactions, and therefore
identifying the strong coupling scale, the authors of
Ref. [21] impose ~cdec ≤ 1, with the justification that it is
preferable to avoid superluminality. Under this assumption
the strong coupling scale turns out to be

~MSC ¼
ffiffiffi
~α

p
~MÆ ~c3=2dec ; ðB3Þ

as this scale has the largest positive exponent for ~cdec. A
minor points of caution is that, after the time rescaling (B1)
the speed of light is no longer unity but

ffiffiffiffiffiffiffiffiffiffiffi
1 − β

p
. Hence,

superluminal propagation in the decoupling limit corre-
sponds to ~c2dec > 1 − β. More importantly, in a Lorentz
violating theory with a preferred foliation there is no
pertinent reason to exclude superluminal propagation.
On the contrary, the vacuum Cherenkov bounds disfavor
subluminal modes.
The decoupling limit as defined in Sec. III is M2

Æ → ∞
while keeping αM2

Æ, βM2
Æ, γM2

Æ fixed. This requires
α; β; γ → 0, so it does not correspond exactly to the limit
taken in Ref. [21]. However, when β → 0 there is perfect
agreement. Moreover, ~c2dec ∼ c2S and the first point of
caution above becomes moot. Indeed, following the line
of Ref. [21] but relaxing the assumption ~cdec ≤ 1, the strong
coupling scale is

MSC ¼
( ffiffiffi

α
p

MÆc
3=2
S ð1 − βÞ3=4; c2Sð1 − βÞ < 1ffiffiffi

α
p

MÆc
−1=2
S ð1 − βÞ−1=4; c2Sð1 − βÞ > 1

where we have purposefully not taken the limit β → 0.
These expressions agree with that of Eq. (15) when α,
β, γ ≪ 1.
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