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ABSTRACT

Maintaining accurate world knowledge in a complex and
changing environment is a perennial problem for robots and
other artificial intelligence systems. Our architecture for
addressing this problem, called Horde, consists of a large
number of independent reinforcement learning sub-agents,
or demons. Each demon is responsible for answering a sin-
gle predictive or goal-oriented question about the world,
thereby contributing in a factored, modular way to the sys-
tem’s overall knowledge. The questions are in the form of
a value function, but each demon has its own policy, re-
ward function, termination function, and terminal-reward
function unrelated to those of the base problem. Learning
proceeds in parallel by all demons simultaneously so as to
extract the maximal training information from whatever ac-
tions are taken by the system as a whole. Gradient-based
temporal-difference learning methods are used to learn ef-
ficiently and reliably with function approximation in this
off-policy setting. Horde runs in constant time and memory
per time step, and is thus suitable for learning online in real-
time applications such as robotics. We present results using
Horde on a multi-sensored mobile robot to successfully learn
goal-oriented behaviors and long-term predictions from off-
policy experience. Horde is a significant incremental step
towards a real-time architecture for efficient learning of gen-
eral knowledge from unsupervised sensorimotor interaction.
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1. THE PROBLEM OF EXPRESSIVE AND

LEARNABLE KNOWLEDGE
How to learn, represent, and use knowledge of the world in

a general sense remains a key open problem in artificial intel-
ligence (AI). There are high-level representation languages
based on first-order predicate logic and Bayes networks that
are very expressive, but in these languages knowledge is dif-
ficult to learn and computationally expensive to use. There
are also low-level languages such as differential equations
and state-transition matrices that can be learned from data
without supervision, but these are much less expressive.
Knowledge that is even slightly forward looking, such as
‘If I keep moving, I will bump into something within a few
seconds’ cannot be expressed directly with differential equa-
tions and may be expensive to compute from them. There
remains room for exploring alternate formats for knowledge
that are expressive yet learnable from unsupervised sensori-
motor data.

In this paper we pursue a novel approach to knowledge
representation based on the notion of value functions and
on other ideas and algorithms from reinforcement learning.
In our approach, knowledge is represented as a large number
of approximate value functions learned in parallel, each with
its own policy, pseudo-reward function, pseudo-termination
function, and pseudo-terminal-reward function. Learning
systems using multiple approximate value functions of this
type have previously been explored as temporal-difference
networks with options (Sutton, Rafols & Koop 2006; Sutton,
Precup & Singh 1999). Our architecture, called Horde, dif-
fers from temporal-difference networks in its more straight-
forward handling of state and function approximation (no
predictive state representations) and in its use of more effi-
cient algorithms for off-policy learning (Maei & Sutton 2010;
Sutton et al. 2009). The current paper also extends prior
work in that we demonstrate real-time learning on a physi-
cal robot.

Previous work on the problem of representing a general
sense of knowledge while being grounded in and learnable
from sensorimotor data goes back at least to Cunningham
(1972) and Becker (1973). Drescher (1991) considered a sim-
ulated robot baby learning conditional probability tables for
boolean events. Ring (1997) explored continual learning of a
hierarchical representation of sequences. Cohen et al. (1997)
explored the formation of symbolic fluents from simulated
experience. Kaelbling et al. (2001) and Pasula et al. (2007)
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explored the learning of relational rule representations in
stochastic domains. All these systems involved learning sig-
nificant knowledge but remained far from learning from sen-
sorimotor data. Previous researchers who did learn from
sensorimotor data include Pierce and Kuipers (1997), who
learned spatial models and control laws, Oates et al. (2000),
who learned clusters of robot trajectories, Yu and Ballard
(2004), who learned word meanings, and Natale (2005), who
learned goal-directed physical actions. All of these works
learned significant knowledge but specialized on knowledge
of a particular kind; the knowledge representation they used
is not as general as that of multiple approximate value func-
tions.

2. VALUE FUNCTIONS AS SEMANTICS
A distinctive, appealing feature of approximate value func-

tions as a knowledge representation language is that they
have an explicit semantics, a clear notion of truth grounded
in sensorimotor interaction. A bit of knowledge expressed
as an approximate value function is said to be true, or more
precisely, accurate, to the extent that its numerical values
match those of the mathematically defined value function
that it is approximating. A value function asks a question—
what will the cumulative future reward be?—and an approx-
imate value function provides an answer to that question.
The approximate value function is the knowledge, and its
match to the value function—to the actual future reward—
defines what it means for the knowledge to be accurate. The
idea of the present work is that the value-function approach
to grounding semantics can be extended beyond reward to
a theory of all world knowledge. In this section we define
these ideas formally for the case of reward and conventional
value functions (and thereby introduce our notation), and in
the next section we extend them to knowledge and general
value functions.

In the standard reinforcement learning framework (Sutton
& Barto 1998), the interaction between the AI agent and
its world is divided into a sequence of discrete time steps,
t = 1, 2, 3, . . ., each corresponding perhaps to a fraction of a
second. The state of the world at each step, denoted St ∈ S,
is sensed by the agent, perhaps incompletely, and used to
select an action At ∈ A in response. One time step later
the agent receives a real-valued reward Rt+1 ∈ R and a
next state St+1 ∈ S, and the cycle repeats. Without loss
of significant generality, we can consider the rewards to be
generated according to a deterministic reward function r :
S → R, with Rt = r(St).

The focus in conventional reinforcement learning is on
learning a stochastic action-selection policy π : S×A → [0, 1]
that gives the probability of selecting each action in each
state, π(s, a) = P(At = a|St = s). Informally, a good pol-
icy is one that results in the agent receiving a lot of reward
summed over time steps. For example, in game playing the
reward might correspond to points won or lost on each turn,
and in a race the reward might be −1 on each time step.
In episodic problems, the agent–world interaction consists
of multiple finite trajectories (episodes) that can terminate
in better or worse ways. For example, playing a game may
generate a sequence of moves that eventually ends with a
win, loss, or draw, with each outcome having a different
numerical value, perhaps +1, −1 and 0. A race may be
completed successfully or end in disqualification, two very
different outcomes even if the number of seconds elapsed is

the same. Another example is optimal control, in which it is
common to have costs for each step (e.g., related to energy
expenditure) plus a terminal cost (e.g., relating to how far
the final state is from a goal state). In general, a problem
may have both a reward function as already formulated and
also a terminal-reward function, z : S → R, where z(s) is the
terminal reward received if termination occurs upon arrival
in state s.

We turn now to formalizing the process of termination.
In many reinforcement learning problems, particularly non-
episodic ones, it is common to give less weight to delayed
rewards, in particular, to discount them by a factor of γ ∈
[0, 1) for each step of delay. One way to think about dis-
counting is as a constant probability of termination, of 1−γ,
together with a terminal reward that is always zero. More
generally, we can consider there to be an arbitrary termina-
tion function, γ : S → [0, 1], with 1 − γ(s) representing the
probability of terminating upon arrival in state s, at which
time a corresponding terminal reward of z(s) would be reg-
istered. The overall return, a random variable denoted Gt

for the trajectory starting at time t, is then the sum of the
per-step rewards received up until termination occurs, say
at time T , plus the final terminal reward received in ST :

Gt =

T
∑

k=t+1

r(Sk) + z(ST ). (1)

The conventional action-value function Qπ : S × A → R is
then defined as the expected return for a trajectory start-
ing from the given state and action and selecting actions
according to policy π until terminating according to γ (thus
determining the time of termination, T ):

Qπ(s, a) = E[Gt | St =s, At =a, At+1:T−1∼π, T ∼γ] .

This expectation is well defined given a particular state-
transition structure for the world (say as a Markov deci-
sion process). If an AI agent were to possess an approx-

imate value function, Q̂ : S × A → R, then it could be
assessed for accuracy according to its closeness to Qπ, for
example, according to the expectation of its squared error,
(Qπ(s, a)− Q̂(s, a))2, over some distribution of state–action
pairs. In practice it is rarely possible to measure this er-
ror exactly, but the value function Qπ still provides a useful
theoretical semantics and ground truth for the knowledge
Q̂. The value function is the exact numerical answer to the
precise, grounded question ‘What would the return be from
each state–action pair if policy π were followed?’, and the
approximate value function offers an approximate numerical
answer. In this precise sense the value function provides a
semantics for the knowledge represented by the AI agent’s
approximate value function.

Finally, we note that the value function for a policy is of-
ten estimated solely for the purpose of improving the policy.
Given a policy π and its value function Qπ, we can con-
struct a new deterministic greedy policy π′ = greedy(Qπ)
such that π′(s, arg maxa Qπ(s, a)) = 1, and the new pol-
icy is guaranteed to be an improvement in the sense that

Qπ′

(s, a) ≥ Qπ(s, a) for all s ∈ S and a ∈ A, with equality
only if both policies are optimal. Through successive steps of
estimation and improvement, a policy that optimizes the ex-
pected return can be found. In this way the theory of value
functions provides a semantics for goal-oriented knowledge
(control) as well as for predictive knowledge.
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3. FROM VALUES TO KNOWLEDGE

(GENERAL VALUE FUNCTIONS)
Having made clear how a conventional value function pro-

vides a grounded semantics for knowledge about upcoming
reward, in this section we show how general value functions
(GVFs) provide a grounded semantics for a more general
kind of world knowledge. Using the ideas and notation de-
veloped in the previous section, this is almost immediate.

First note that although the action-value function Qπ is
conventionally superscripted only by the policy, it is equally
dependent on the reward and terminal-reward functions, r
and z. These functions could equally well have been consid-
ered inputs to the value function in the same way that π is.
That is, we might have defined a more general value func-
tion, which might be denoted Qπ,r,z, that would use returns
(1) defined with arbitrary functions r and z acting as pseudo-
reward function and pseudo-terminal-reward function. For
example, suppose we are playing a game, for which the base
terminal rewards are z = +1 for winning and z = −1 for los-
ing (with a per-step reward of r = 0). In addition to this, we
might pose an independent question about how many more
moves the game will last. This could be posed as a gen-
eral value function with pseudo-reward function r = 1 and
pseudo-terminal-reward function z = 0. Later in this paper
we consider several more examples from a robot domain.

The second step from value functions to GVFs is to con-
vert the termination function γ to a pseudo form as well.
This is slightly more substantive because, unlike the rewards
and terminal rewards, which do not pertain to the state evo-
lution in any way, termination conventionally refers to an
interruption in the normal flow of state transitions and a
reset to a starting state or starting-state distribution. For
pseudo termination we simply omit this additional implica-
tion of conventional termination. The real, base problem
may still have real terminations or it may have no termina-
tions at all. Yet we may consider pseudo terminations to
have occurred at any time. For example, in a race, we can
consider a pseudo-termination function that terminates at
the half way point. This is a perfectly well defined problem
with a value function in the general sense. Or, if we are
the racer’s spouse, then we may not care about when the
race ends but rather about when the racer comes home for
dinner, and that may be our pseudo termination. For the
same world—the same actions and state transitions—there
are many predictive questions that can be defined in the
form of general value functions.

Formally, we define a general value function, or GVF, as
a function q : S × A → R with four auxiliary functional
inputs π, γ, r, and z, defined over the same domains and
ranges as specified earlier, but now taken to be arbitrary
and with no necessary relationship to the base problem’s
reward, terminal-reward, and termination functions:

q(s, a; π, γ, r, z) = E[Gt | St =s, At =a, At+1:T−1∼π, T ∼γ] ,

where Gt is still defined by (1) but now with respect to the
given functions. The four functions, π, γ, r, and z, are re-
ferred to collectively as the GVF’s question functions; they
define the question or semantics of the GVF. Note that con-
ventional value functions remain a special case of GVFs.
Thus, we can consider all value functions to be GVFs. In
the rest of the paper, for simplicity, we sometimes use the
expression “value function” to mean the general case, using

“conventional value function” when needed to disambiguate.
We also drop the ‘pseudo-’ prefix from the question func-
tions when it can be done without ambiguity. In the robot
experiments that we present later there are no privileged
base problems, so there should be no confusion.

4. THE HORDE ARCHITECTURE
The Horde architecture consists of an overall agent com-

posed of many sub-agents, called demons. Each demon is
a independent reinforcement-learning agent responsible for
learning one small piece of knowledge about the base agent’s
interaction with its environment. Each demon learns an ap-
proximation, q̂, to the GVF, q, that corresponds to the de-
mon’s setting of the four question functions, π, γ, r, and z.

We turn now to describing Horde’s mechanisms for ap-
proximating GVFs with a finite number of weights, and for
learning those weights. In this paper we adopt the standard
linear approach to function approximation. We assume that
the world’s state and action at each time step, St and At, are
translated, presumably incompletely via sensory readings,
into a fixed-size feature vector φt = φ(St, At) ∈ R

n where
n ≪ |S|. We refer to the set of all features, for all state–
action pairs, as Φ. In our experiments, the feature vector is
constructed via tile coding and thus is binary, φt ∈ {0, 1}n,
with a constant number of 1 features (see Sutton & Barto
1998). We also focus on the case where |S| is large, possibly
infinite, but |A| is finite and relatively small, as is common
in reinforcement learning problems. These are convenient
special cases, but none of them is essential to our approach.
Our approximate GVFs, denoted q̂ : S × A × R

n → R, are
linear in the feature vector:

q̂(s, a, θ) = θ⊤φ(s, a),

where θ ∈ R
n is the vector of weights to be learned, and

v⊤w =
∑

i
viwi denotes the inner product of two vectors v

and w.
For learning the weights we use recently developed gradient-

descent temporal-difference algorithms (Sutton et al. 2009,
2008; Maei et al. 2009, 2010). These algorithms are unique
in their ability to learn stably and efficiently with function
approximation from off-policy experience. Off-policy expe-
rience means experience generated by a policy, called the be-
havior policy, that is different from that being learned about,
called the target policy. To learn knowledge efficiently from
unsupervised interaction one seems inherently to face such a
situation because one wants to learn in parallel about many
policies—the different target policies π of each GVF—but
of course one can only be behaving according to one policy
at a time.

For a typical GVF, the actions taken by the behavior
policy will match its target policy only on occasion, and
rarely for more than a few steps in a row. For efficient
learning, we need to be able to learn from these snippets
of relevant experience, and this requires off-policy learning.
The alternative—on-policy learning—would require learn-
ing only from snippets that are complete in that the ac-
tions match those of the GVF’s target policy all the way
to pseudo-termination, a much less common occurrence. If
learning can be done off-policy from incomplete snippets of
experience then it can be massively parallel and potentially
much faster than on-policy learning.

Only in the last few years have off-policy learning algo-
rithms become available that work reliably with function ap-
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proximation and that scale appropriately for real-time learn-
ing and prediction (Sutton et al. 2008, 2009). Specifically,
in this work we use the GQ(λ) algorithm (Maei & Sutton
2010). This algorithm maintains, for each GVF, a second
set of weights w ∈ R

n in addition to θ and an eligibility-
trace vector e ∈ R

n. All three vectors are initialized to
zero. Then, on each step, GQ(λ) computes two temporary
quantities, φ̄t ∈ R

n and δt ∈ R:

φ̄t =
∑

a

π(St+1, a)φ(St+1, a),

δt = r(St+1)+(1−γ(St+1))z(St+1)+γ(St+1)θ
⊤φ̄t−θ⊤φ(St, At),

and updates the three vectors:

θt+1 = θt + αθ

(

δtet − γ(St+1)(1 − λ(St+1))(w
⊤

t et)φ̄t

)

,

wt+1 = wt + αw

(

δtet − (w⊤

t φ(St, At))φ(St, At)
)

,

et = φ(St, At) + γ(St)λ(St)
π(St, At)

b(St, At)
et−1,

where b : S × A → [0, 1] is the behavior policy and λ :
S → [0, 1] in an eligibility-trace function which determines
the rate of decay of the eligibility traces as in the TD(λ)
algorithm (Sutton 1988). Note that the per-time-step com-
putation of this algorithm scales linearly with the number of
features, n. Moreover, if the features are binary, then with a
little care the per-time-step complexity can be kept a small
multiple of the number of 1 features.

The approximation that will be found asymptotically by
the GQ(λ) algorithm depends on the feature vectors Φ, the
behavior policy b, and the eligibility-trace function λ. These
three are collectively referred to as the answer functions. In
this paper’s experiments we always used constant λ, and all
demons shared the same Φ and b. Finally, we note that
Maei and Sutton defined a termination function, β, that is
of the opposite sense as our γ; that is, β(s) = 1 − γ(s).
This is purely a notational difference and does not affect the
algorithm in any way.

We can think of the demons as being of two kinds. A
demon with a given target policy, π, is called a predic-
tion demon, whereas a demon whose target policy is the
greedy policy with respect to its own approximate GVF
(i.e., π = greedy(q̂), or π(s, arg maxa q̂(s, a, θ)) = 1) is called
a control demon. Control demons can learn and represent
how to achieve goals, whereas the knowledge in prediction
demons is better thought of as declarative facts. One way
in which the demons are not completely independent is that
a prediction demon can reference the target policy of a con-
trol demon. For example, in this way one could ask ques-
tions such as ‘If I follow this wall as long as I can, will my
light sensor then have a high reading?’. Demons can also
use each others’ answers in their questions (as in temporal-
difference networks). This allows one demon to learn a
concept such as ‘near an obstacle,’ say as the probabil-
ity of a high bump-sensor reading within a few seconds of
random actions, and then a second demon to learn some-
thing based on this, such as ‘If I follow this wall to its
end, will I then be near an obstacle?’ by using the first
demon’s approximate GVF in its terminal-reward function
(e.g., z(s) = maxa q̂(s, a, θfirst demon)).

Figure 1. The Critterbot robotic platform.

5. RESULTS WITH HORDE

ON THE CRITTERBOT
To evaluate the effectiveness of the Horde architecture, we

deployed it on the Critterbot, a custom-built mobile robot
(Figure 1). The Critterbot has a comma-shaped frame with
a ‘tail’ that facilitates object interaction and is driven by
three omni-directional wheels separated by 120 degrees. A
diverse set of sensors are deployed on the top of the robot,
including sensors for ambient light, heat, infrared light, mag-
netic fields, and sound. Another batch of sensors captures
proprioceptive information including battery voltages, ac-
celeration, rotational velocity, motor velocities, motor cur-
rents, motor temperatures, and motor voltages. The robot
can detect nearby obstacles with ten infrared proximity sen-
sors distributed along its sides and tail. The robot has been
designed to withstand the rigors of reinforcement learning
experiments; it can drive into walls for hours without dam-
age or burning out its motors, it can dock autonomously
with its charging station, and it can run continuously for
twelve hours without recharging.

The Critterbot’s sensors provide useful information about
its interaction with the world, but this information can be
challenging to model explicitly. For example, the sensor
readings from the magnetometer may be influenced by the
operation of data servers in the next room, and the ambient
light sensors are affected by natural daylight, indoor flores-
cent lights, shadows from looming humans, and reflections
from walls. Manually modeling these interactions is difficult
and potentially futile. The Horde architecture presents an
alternative wherein each demon autonomously learns a little
bit about the relationships among the sensors and actuators
from unsupervised experience.

We performed a series of experiments to examine how well
the architecture supports learning. In each experiment, the
observations and actions were tiled to form a state–action
feature representation Φ. A discrete set of actions were se-
lected, matching the formulation of the GQ(λ) algorithm.
With these choices, the entire architecture operates in con-
stant time per step. We have run the Horde architecture in
real-time with thousands of demons using billions of binary
features of which a few thousand were active at a time, using
laptop computers.
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Figure 2. Accurately predicting time-to-obstacle.
The robot was repeatedly driven toward a wall at a con-
stant wheel speed. For each of three regions of the sensor
space, for each time step spent in that region , we plot the
demon prediction q̂ on that step (bold line) and the actual
return from that step (thin line).

5.1 Subjective prediction experiments

Our first two experiments dealt with Horde’s ability to
answer subjectively posed predictive questions. Figures 2
and 3 show results on the Critterbot with instances of the
Horde architecture each with a single prediction demon. The
specific questions posed are ones that might be useful in en-
suring safety: ‘How much time do I have before hitting an
obstacle?’ and ‘How much time do I need to stop?’. In
both cases accurate predictions were made, and in the lat-
ter case they were adapted so as to remain accurate as the
experiment was changed from stopping on carpet, to stop-
ping when suspended in the air, to stopping on a wood floor.
The time step used in these experiment was approximately
30ms in length.

Figure 2 shows a comparison between predicted and ob-
served time steps needed to reach obstacles when driving
forward. Shown are the demon predictions q̂ on each step
(bold line) for each time step spent in a region of the sensor
space (a visit), and the actual return from that step (thin
line). The prediction was learned from a behaviour policy
that cycled between three actions: driving forward, reverse,
and resting. This is plotted for each of three regions of the
sensor space: IR=190–199, IR=210–219, and IR=230–239.
These represent three different value ranges of the Critter-
bot’s front IR proximity sensor.

The question functions for this demon were: π(s, forward)
= 1, r(s) = 1, z(s) = 0, ∀s ∈ S, and γ(s) = 0 if the value
of the Critterbot’s front-pointing IR proximity sensor was
over a fixed threshold, else γ(s) = 1. The remaining answer

Figure 3. Accurately tracking time-to-stop. The
robot was repeatedly rotated up to a standard wheel speed,
then switched to a policy that always took the stop action,
on three different floor surfaces. Shown is the prediction q̂
made on visits to a region of high velocity while stopping
(bold line) together with the actual return from that visit
(thin line). The floor surface was changed after visits 338
and 534.

functions were λ(s) = 0.4, ∀s ∈ S, and Φ = a single tiling
into twenty-six regions of the front IR sensor. The GQ(λ)
step sizes were αθ = 0.3 and αw = 0.00001. As shown in
Figure 2, this demon learned to accurately predict the return
(time steps to impact) for each range of its sensors.

Figure 3 demonstrates a demon’s ability to accurately pre-
dict stopping times on different surfaces. Shown is the pre-
diction q̂ made on visits to a region of high velocity while
stopping (bold line) together with the actual return from
that visit (thin line). For this predictive question, we de-
fined a single demon that predicts the number of timesteps
until one of the robot’s wheels approaches zero velocity (i.e.,
comes to a complete stop) under current environmental con-
ditions. The robot’s behaviour policy was to alternate at
fixed intervals between spinning at full speed and resting.
The floor surface, and thus the nature of the stopping prob-
lem, was changed after visits 338 and 534.

The question functions for this demon were: π(s, stop) =
1, r(s) = 1, z(s) = 0, ∀s ∈ S, and γ(s) = 0 if the wheel’s
velocity sensor was below a fixed threshold, else γ(s) = 1.
The remaining answer functions were λ(s) = 0.1, ∀s ∈ S,
and Φ = a single tiling into eight regions of the wheel’s
velocity sensor. The GQ(λ) step sizes were αθ = 0.1 and
αw = 0.001. As illustrated in Figure 3, this demon learned
to correctly predict the return (time steps to stopping) on
carpet, then adapted its prediction when the environment
changed to air and then to wood flooring.
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Figure 4. Illustration of policies learned by four control demons in the spinning experiment. The first panel
shows the standard starting position, and the other four panels show the motions from that position produced when control
was given to one of the eight learned demon policies each tasked to maximize a different sensor. By maximized sensor: IR9)
Robot quickly rotates clockwise and stops in the position that maximizes the IR proximity sensor on the side of the robot’s
tail; IRO) Robot quickly rotates counterclockwise, overshoots a bit, then settles in a position that maximizes the proximity
sensor between the robot’s ‘eyes’; MAGX) Robot rotates clockwise and stops at a position that maximizes the magnetic x-axis
sensor; VEL) Robot spins continuously, maximizing the wheel velocity sensor.

5.2 Off-policy learning of multiple
spinning control policies

Our third experiment examined whether control demons
can learn policies in parallel while following a random be-
havior policy, in other words, whether the demons can learn
off-policy, a crucial ability for the scalability of the architec-
ture. The action set in this experiment was {rotate-right,

rotate-left, stop}. The behavior policy was to randomly
select one of the three actions, with a bias (50% probability)
toward repeating the action taken on the previous time step.
The result of this behavior policy was that the robot would
spin in place in both directions with a variety of speeds and
durations over time. The state space was represented with
four overlapping joint tilings across three sensors: the mag-
netometer, one of the IR sensors, and the velocity of one
of the wheels. Each sensor was divided into eight regions
for the tilings, resulting in a total of 3 × 4 × 83 = 6144
binary features. One additional feature was provided as a
bias unit (always =1), and three additional binary features
were used to encode the previous action. The time step cor-
responded to approximately 100ms. The other parameters
were αθ = 0.1, αw = 0.001, and λ(s) = 0.4, ∀s ∈ S. Learn-
ing was done online, but the data was also saved so that the
whole learning process could be repeated without using the
robot if desired (this is one of the advantages of an off-policy
learning ability).

In this experiment we ran eight control demons in par-
allel for 100,000 time steps of off-policy learning with ac-
tions selected according to the behavior policy. Each demon
was tasked with learning how to maximize a different sensor
value. That is, their question functions were π = greedy(q̂)
and, for all s ∈ S, γ(s) = 0.98, z(s) = 0, and r(s) = the
value of one of eight sensors approximately normalized to a
0 to 1 range. The eight sensors used as rewards were four
of the IR proximity sensors, the magnetometer, the veloc-
ity sensor for one of the wheels, one of the thermal sensors,
and an IR beacon sensor for the charging station. To ob-
jectively measure the quality of the policies learned by the
eight demons, we occasionally interrupted learning to eval-
uate them on-policy. That is, with learning turned off, the
robot followed one of the eight learned demon policies for
250 time steps and we measured the demon’s return. We
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Figure 5. Learning curves for eight control demons learn-
ing off-policy in the spinning experiment. From extensive
experience spinning, eight control demons learned different poli-
cies each maximizing a different sensor. The graph shows the
performance of the policies, gathered in special on-policy evalu-
ation sessions during which learning was turned off. All demons
learned to perform near optimally. Rewards were scaled to the
range [0, 1], but because the beacon light flashes on and off, its
maximal average was 0.5.

repeated this for each demon ten times from each of three
initial starting positions (angles) to produce 30 measures of
the effectiveness of each demon’s policy at that point in the
training. These numbers were averaged together to produce
the learning curves shown in Figure 5.

Examples of the final learned behavior from four of the
demons are shown in Figure 4. These photos show typical
behavior, which in the case of all eight demons appeared to
successfully maximize the targeted sensor. In separate runs
we found that it would take approximately 25,000 steps each
to learn similarly competent control policies for a single de-
mon while behaving according to its policy as it was learned
(on-policy training). In only four times longer, we learned
eight demons in parallel, and could potentially have learned
thousands or millions more using off-policy learning.
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Figure 6. Learning light-seeking behavior from random behavior. Shown are superimposed images of robot positions:
Left) In testing, the robot under control of the demon policy turns and drives straight to the light source at the bottom of
the image; Middle) Under control of the random behavior policy for the same amount of time, the robot instead wanders all
over the pen; Right) Light sensor readings averaged over seven such pairs of runs, showing much higher values for the learned
target policy.

5.3 Off-policy learning of light-seeking
A final experiment examined whether a control demon

could learn a goal-directed policy when given a much greater
breadth of experience. In particular, we chose question func-
tions corresponding to the goal of maximizing the near-term
value of one of the light sensors: π = greedy(q̂), γ(s) = 0.9,
z(s) = 0, r(s) = a scaled reading from the front light sen-
sor. The behavior policy was to pick randomly from the set
{+10,−10, 0}3 interpreted as velocities for the robot’s three
wheels, for a total of 27 possible actions. The state space
was represented with 32 individual tilings over each of the
four directional light sensors, where each tile covered about
1/8th of the range. With the addition of a bias unit, this
made for a total of 27 × (32 × 4 × 8 + 1) = 27, 675 binary
features, of which 32× 4+1 = 129 were active on each time
step. The time step corresponded to approximately 500ms.

Using the random behavior policy, we collected a training
set of 61,200 time steps (approximately 8.5 hours) with a
bright light at nearly floor level on one side of the pen. Dur-
ing this time the robot wandered all over the pen in many
orientations. We trained the control demon off-line and off-
policy in two passes over the training set. To assess what
had been learned, we then placed the robot in the middle of
the pen facing away from the light and gave control to the
demon’s learned policy. The robot would typically turn im-
mediately and drive toward the light, as shown in the first
panel of Figure 6. This result demonstrates that demons
can learn effective goal-directed behavior from substantially
different training behavior.

Together, our results show that the Horde architecture can
be applied to robot systems to learn potentially useful bits of
knowledge in real-time from unsupervised experience. The
approach works across a range of feature representations,
parameters, questions, and goals. The robot is able to learn
bits of knowledge that could serve as useful components for
solving more complex tasks.

6. CONCLUSION
The Horde architecture is an experiment in knowledge rep-

resentation and learning built upon ideas and algorithms
from reinforcement learning. The approach is to express
knowledge in the form of generalized value functions (GVFs)
and thereby ground its semantics in sensorimotor data. This
approach is promising because 1) value functions make it
possible to capture temporally extended predictive and goal-
oriented knowledge, 2) a large amount of important knowl-
edge is of this form, 3) conventional knowledge representa-
tions of the grounded type (such as differential equations)
have difficulty representing knowledge of this form, and 4)
conventional methods that can capture this kind of knowl-
edge (high-level, symbolic methods such as rules, operators,
and production systems) are not as grounded and therefore
not as learnable as value functions. Although value func-
tions have always been potentially learnable, only recently
have scalable learning methods become available that make
it practical to explore the idea of GVFs with off-policy learn-
ing and function approximation. This work presents a first
look at the application and interpretation of GVFs in an
architecture with parallel off-policy learners.

In this paper we have focused on representing and learn-
ing knowledge as GVFs, and as such we have made only
suggestive comments about how such knowledge could be
used. Although this is an important limitation of our work,
we believe that it is an appropriate way to break down the
problem. The issues in learning and representation with
GVFs that we address here are non-trivial and have not been
adequately addressed before—certainly not in an embodied,
robotic form. In addition, reinforcement-learning ideas such
as value functions are already closely connected to known
action-selection and planning methods; it is not a great leap
to imagine several ways in which GVFs could be used to gen-
erate and improve behavior. We have briefly demonstrated
some of these, such as passing control to the learned pol-
icy of single demons (e.g., the sensor-maximization demons
in Section 5.2 and the light-seeking demon in Section 5.3),
and indicated how several demons could be combined to
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modulate an existing policy (e.g., varying behavior based
on impact and stopping time predictions as suggested by
Section 5.1). A rich and varied collection of demons and
questions, as made possible by the Horde architecture, al-
lows for a broad set of fusions of this kind. We have not
developed here the natural possibility of using GVFs to rep-
resent multi-scale policy-contingent models of the world’s
dynamics (option models; Sutton, Precup & Singh 1999),
and then using the models for planning as in dynamic pro-
gramming, Monte Carlo tree search (see Chaslot 2010), or
Dyna architectures (Sutton 1990). This is another natural
direction for future work.
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