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Abstract
Inverse multiplexing, or network striping, allows the con-
struction of a high-bandwidth virtual channel from a
collection of multiple low-bandwidth network channels.
Striping systems usually employ an immutable packet
scheduling policy and allow applications to be oblivious
of the way in which packets are routed to specific network
channels. Though this is appropriate for many applica-
tions, other applications can benefit from an approach
that explicitly involves the application in the dynamic de-
termination of the striping policy.

Horde is middleware that facilitates flexible striping
in wireless environments for a diverse range of applica-
tions. Horde separates the striping policy from routing
and scheduling. It allows applications to specify network
quality-of-service objectives that the striping mechanism
attempts to satisfy. Horde can be used by a set of appli-
cation data streams, each with its own quality-of-service
policy, to flexibly stripe data over a highly heterogeneous
set of dynamically varying wireless network channels.

We present the Horde architecture, describe an early
implementation, and examine how different policies can
be used to modulate the quality-of-service observed
across different independent data streams.

1 Introduction

Horde is networking middleware that provides a simple
and robust way for multi-stream applications to commu-
nicate over multiple channels with widely varying la-
tency and bandwidth. The key problems it addresses are:

• providing applications with a way to influence the
scheduling of packets over channels, without build-
ing into the applications knowledge about channel
availability or characteristics, and

• providing a mechanism that uses this information
to derive appropriate packet transmission schedules
for these time-varying channels.

Our work on Horde was motivated by our inabil-
ity to find an existing solution to support the develop-
ment of a system on which we were working. As part
of a telemedicine project, we wanted to transmit real-
time uni-directional video (on the order of 300kbps), bi-
directional audio, and uni-directional physiological data
streams (EKG, blood pressure, etc) from a moving am-
bulance. By relaying real-time telemetry and video from
ambulances, we hope to provide EMS teams with expert
opinions on complex trauma injuries, and to aid the in-
hospital teams in better preparing themselves for incom-
ing patients. Our telemedicine system must be econom-
ically viable to build, deploy, and operate. We therefore
will leverage existing communications infrastructure, in-
stead of building our own network infrastructure.

In most urban areas, there are a large number of public
carrier wireless channels providing mobile connectivity
to the Internet (e.g., GPRS and CDMA). The upstream
bandwidth offered by these Wireless Wide Area Network
(WWAN) channels is typically rather limited and each
channel provides little in the way of network Quality-of-
Service (QoS) guarantees.

These issues led us to consider using inverse multi-
plexing, or network striping, to aggregate several of these
WWAN channels to construct a virtual channel. Network
striping takes data from the larger source channel and
sends it in some order over the smaller channels, possi-
bly reassembling the data in the correct order at the other
end before passing it to the application. By taking advan-
tage of service provider diversity, overlapping coverage,
and network technology diversity, we can use striping to
provide an application with the illusion of a reliable sta-
ble high-bandwidth channel.
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Mean (µ) Sdev (σ)
GPRS upload bandwidth (stationary) 25kbps 1

(moving) 19kbps 5
CDMA upload bandwidth (stationary) 130kbps 5

(moving) 120kbps 22

GPRS small packet RTT (stationary) 560ms 100
(moving) 760ms 460

CDMA small packet RTT (stationary) 460ms 90
(moving) 470ms 120

768-byte packet RTT (CDMA) 810ms
(GPRS) 920ms

Figure 1: Summary of WWAN QoS characteristics.

1.1 WWAN Striping Challenges

A great deal of work has been done on network strip-
ing [1, 8, 9, 12, 15, 18]. Most of this work is aimed at
providing improved scheduling algorithms under the as-
sumption that the underlying links are relatively stable
and homogeneous, and that application streams are sim-
ilar (e.g., TCP). If these assumptions hold, there is little
reason to give applications control over how the striping
is done, and allowing applications to be oblivious to the
fact that striping is taking place is advantageous.

However, these assumptions of homogeneity and sta-
bility are unrealistic for the WWAN channels we are us-
ing [6, 14, 15]. The bandwidth/latency characteristics
of the available WWAN channels can vary by as much
as an order of magnitude. In addition to heterogeneity
among channels, we also expect there to be a high degree
of temporal variation in QoS on each WWAN channel.
QoS varies in time, partly because of vehicular motion
and partly because of competition with other users on
the WWAN. Spatial variation of the QoS depends on the
carrier’s placement of cell-towers relative to the terminal.

Our experiments with existing WWANs (GSM/GPRS
and CDMA2000 1xRTT) in the Boston area provide ev-
idence of heterogeneity and high QoS variability [14].
Figure 1 summarizes our experimental observations.

Since the WWANs are neither stable nor homoge-
neous, the manner in which the middleware decides
to schedule the transmission of application packets can
have a large influence on data stream latencies, band-
width, and loss rates. Furthermore, the data streams in
our telemedicine system are heterogeneous with respect
to which aspects of the network service they are sen-
sitive to: some streams care about latency (e.g., video
streams), some not (e.g., bulk-data transfers); some care
about loss more than others (e.g., audio); and some care
more about jitter than they do about latency (e.g., non-
interactive video). Therefore we want to give the appli-
cation some control over how striping is done.

1.2 Horde’s Approach

Horde separates the striping mechanism from the strip-
ing policy, the latter being specified by the application
in an abstract manner. The key technical challenge in
Horde is giving the application control over certain as-
pects of the data striping operation (e.g., an application
may want urgent data to be sent over low latency chan-
nels or critical data over high reliability channels) while
at the same time shielding the application from low-level
details. Horde does this by exporting a set of flexible
abstractions to the application, in effect replacing the ap-
plication’s network stack.

In addition to aggregating bandwidth, Horde allows
an application to modulate network QoS for its streams.
Horde allows an application to express its policy goals
as succinct network QoS objectives. Each objective says
something, relatively simple, about the utility an applica-
tion gains from some aspect of network QoS on a stream.
Objectives can take into account such things as expected
latencies, observed loss-rates, and expected loss correla-
tions. Using the set of expressed application objectives,
Horde attempts to schedule packets at the sender so as to
maximize the expected utility derived by the application
from the resulting sequence of packet receptions.

Allowing an application to actively influence the strip-
ing operation can be beneficial. By allowing the appli-
cation to express its desired goals, Horde can arrive at
efficient transmission schedules that provide high utility.

Consider, for example, a simplified version of our
telemedicine application. There are four data streams:
EKG physiological data (stream 1), video (stream 2),
additional physiological data (stream 3), and audio
(stream 4). Figure 2a shows how packet latencies were
distributed on these streams when striping over three
WWAN channels, using a packet scheduler that did not
distinguish between the data streams. All streams re-
ceived roughly the same QoS. However, two of these
streams (video and audio) are latency sensitive. An ob-
jective can be used that expresses that smaller packet la-
tencies on the video and audio streams give the applica-
tion more utility than larger latencies. Figure 2b shows
that, with this single objective, Horde was able to provide
lower-latency for the latency sensitive streams.

The telemedicine system contains more complex ex-
amples where QoS modulation is advantageous. An en-
coded video stream may contain both reference frames
(I-frames) and delta frames (P-frames). In order for
P-frames to be decoded properly at the receiver, the
I-frames they depend on must have been successfully
transmitted across the network. An application therefore
derives more utility from an I-frame than it does from
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Figure 2: Packet round-trip-time distributions with different schedulers, striping over three channels. The two sched-
ulers were run over the same packet traces, collected from three existing WWAN channels (one CDMA and two GPRS
channels). The graphs show the median and the upper and lower quartile packet latencies for the streams.

a P-frame. This suggests that I-frames should be sent
over more reliable channels. If two I-frames from differ-
ent video layers contain similar information, it may make
sense to ensure that they are sent so that I-frame losses
are uncorrelated. Additionally, during playback the au-
dio must be kept synchronized with the video. In this
case, an application may value receiving an audio packet
at roughly the same time as the related video packets.

The Horde middleware is designed to ease the devel-
opment of applications that care about network QoS and
need to use WWAN striping. Application-specific strip-
ing code has been used in the past. Many multi-path
video streaming applications [3, 5, 16] exemplify this ap-
proach. In these systems, striping code is intertwined
with the application logic. In contrast, Horde allows one
to build a multi-channel video streaming application that
cleanly separates the network striping and network chan-
nel management operations from the application logic.

Horde is not meant to be general networking middle-
ware. Existing applications would have to be rewritten
to take advantage of Horde’s QoS modulation frame-
work. Further, as long as most application data can be
sent down a single, stable link, using Horde is overkill.
More generally, in situations where one is dealing with a
fixed set of relatively homogeneous and stable channels,
other techniques [1, 10, 18] may be more appropriate.

Horde is most useful when dealing with:

Heterogeneous Data Streams When different streams
gain value from different aspects of network per-
formance, trade-offs can be made when allocating
network resources among those streams.

Heterogeneous/Time-varying Network Channels
With such channels, the scheduler has an opportu-
nity to significantly modulate QoS. Modulation can

be more accurate when channel characteristics are
predictable in (at least) the short term.

Bandwidth-Limited Application Applications that
want to send more data than individual physical
channels can support justify both the network
striping operation and the additional processing
cost of Horde’s QoS modulation framework.

Single Application Our model is that of a single appli-
cation with multiple streams. While the application
may be split across multiple processes, we assume
a consistent system-wide policy in this paper. We
therefore ignore the effects of adversarial behaviour.

1.3 Paper Organization

We have introduced the problem domain and outlined our
approach and motivations above. Section 2 presents an
overview of the Horde architecture. Section 3 discusses
our approach to separating application policy from the
striping mechanism. Section 4 presents some experimen-
tal results. Section 5 describes related research. Finally,
section 6 presents a summary and conclusion.

2 Horde Architecture

Horde provides to an application the ability to:

• Stripe data streams over a dynamically varying set
of heterogeneous network channels;

• Abstractly define striping policy;

• Per-network-channel congestion control;

• Explicit flow control feedback for each stream.
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This section presents a high-level overview of Horde’s
application interface and internal structure. We also dis-
cuss selected aspects of Horde. We defer discussion of
the scheduler and policy interface to section 3.

2.1 Overview

Application Interface

Horde uses a connection-based model. The applications
on the source and destination nodes must negotiate a con-
nection, or stream, before they start sending data to each
other. An application can register event callbacks for
each data stream it creates. When sending/receiving data
on a stream, applications communicate with Horde at the
granularity of ADU’s. Our design draws from previous
arguments for application level framing [7, 2].

Horde manages stream flow-control. Streams request
and receive bandwidth allocations. Additionally, for
each stream, Horde sends throttle events to the applica-
tion to notify it about changes in allocated bandwidth.

If the application is sensitive to some QoS aspects on
any stream, it can inject objectives into the middleware
to modulate the network QoS for those streams.

Internal Structure

Internally, Horde is divided into three layers (figure 3).
The lowest layer presents an abstract view of the network
channels to the higher layers of the middleware. This
layer deals directly with the network channels, handling
packet transmissions, congestion control, and probes.
The middle layer, is composed of the inverse multiplexer
and the bandwidth allocator. The highest layer interfaces
with application code.

Applications use the interface provided by the highest
layer to inject and remove ADU’s and policies. Horde
also delivers ADU’s and invokes stream event handler
callbacks using this interface. Our implementation of
Horde is in user-space. In our implementation, the high-
est layer provides a simple IPC interface to Horde1.

In the middle layer, the outgoing packet scheduler de-
cides how to schedule ADU’s from the unsent ADU pool
over the available channels. Incoming packets are de-
livered to the relevant data streams by the pReceiver
module. The bandwidth allocator, bwAllocator, di-
vides up the bandwidth, provided by the channel man-
agers, among the data streams.

In the lowest layer, the channel managers deal directly
with the network channels. The channel pool manager
monitors network connectivity, making sure there is an
appropriate manager for each active channel.

Figure 3: Modular breakdown of Horde. Solid arrows
show data flow; dashed arrows represent control signals.

2.2 Network Channel Managers

Horde uses a set of Network Channel Manager mod-
ules (the ncManagers) to manage the available net-
work channels. Each ncManager handles network I/O,
maintains a predictive model for the QoS on the channel,
and also performs congestion control on the channel.

The generic ncManager interface allows different
channel models and congestion control schemes to co-
exist without complicating the packet scheduler. The be-
haviour of the last hop wireless link can often dominate
in determining how QoS varies and how well a conges-
tion control scheme works [4, 14, 17]. Therefore, there
may be multiple implementations of the ncManager in-
terface, each optimized for a different type of network
(e.g., 802.11, CDMA2000, GPRS).

2.3 Network Congestion Control

Congestion control in a striping system should be imple-
mented below the striping layer, independently for each
channel. When data is being striped to a single destina-
tion, since there are multiple independent channels, there
are multiple independent congestion domains. Thus each
channel manager in Horde runs an independent conges-
tion control session2.

We do not believe that having a single congestion
control session straddling channels—as previous striping
systems have often done—is the right approach. An ap-
plication, above the striping layer, does not have enough
information to implement efficient congestion control,
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unless the application can perfectly simulate the schedul-
ing algorithm. For instance, approaches based on loss as
an indicator for network congestion may either be ineffi-
cient (e.g., if some of the underlying channels provide
explicit congestion notification ECN feedback) or just
plain wrong (e.g., a loss on one channel may only indi-
cate that the application should send less data down that
particular channel, not that it should decrease it’s overall
sending rate, since other channels may have spare band-
width). Older systems [1, 18] realized the need for some
form of minimal per-channel congestion control below
the striping layer, even though TCP congestion control
was active above the striping layer.

2.4 Stream Flow Control

Bandwidth allocation is separated from QoS modulation
in Horde. Different scheduling strategies with a band-
width allocation can modulate QoS in different ways.
For example, n bytes of a stream’s data can be sent on
a fast channel or spread over fast and slow channels.

Conceptually, Horde’s interface separates the quantity
of service a stream receives (the number of slots) from
the quality of that service (the latency/loss/etc of those
slots). Of course, this is not always a clean separation: a
QoS with high loss can lead to low goodput.

In Horde, the QoS modulation mechanism is con-
strained by the bandwidth allocation mechanism. When
producing transmission schedules, the amount of data
sent is restricted based on the stream allocations.

Every active Horde stream is allocated some fraction
of the available bandwidth. For each stream, an applica-
tion either specifies the maximum rate at which it wants
to send data, or marks that stream as being driven by an
elastic traffic source. Horde in return informs the appli-
cation the rate at which it can send on that stream. The
present implementation of Horde uses a simple adaptive
min-max fairness policy to allocate available bandwidth
among streams. If a stream sends more than its allocated
rate, ADU’s are dropped in an unspecified order inside
the middleware, because of sender-side buffer overruns.

As available bandwidth changes, throttle
events—reflecting the new bandwidth allocations—are
generated by Horde and delivered to each stream man-
ager callback. Simple streams can ignore these events,
always sending at their maximum rates, letting the
middleware decide which ADU’s to drop. Conversely,
adaptive streams can use the information conveyed
by the events to guide changes to their behaviour.
Some streams may respond to these events by ramping
their sending rates up or down. Others may change

their behaviour in more complex ways, for example:
down-sampling the stream; changing stream encodings;
omitting less important ADU’s, etc.

Enforced bandwidth allocations and explicit flow-
control feedback are important in providing graceful
degradation when independent data streams exist. Avail-
able bandwidth will often be outstripped by total de-
mand. Since callbacks managing different streams can
be independent of each other, a mediator is needed inside
the middleware to divide the bandwidth fairly. This me-
diator transforms changes in total bandwidth into some
set of changes in the bandwidth of each stream.

2.5 Transmission Slots

Horde uses the notion of transmission slots, in the form
of txSlot objects, to provide an abstract interface
between the channel manager modules and the packet
scheduler. A txSlot is an abstract representation for
the capability to transmit some data on a specific net-
work channel at a given time, along with the expected
QoS for that transmission. The fields of the txSlot ab-
straction are shown in figure 4. As we discuss later in
section 3, the scheduler makes its decisions based solely
on the information in the txSlot objects. This signifi-
cantly simplifies the scheduling problem.

Transmission Capabilities Each txSlot object rep-
resents a capability that the ncManager grants to the
scheduler, allowing the transmission of data on that chan-
nel. The generation of txSlot’s is governed by the
ncManager’s congestion control logic. In a scheduling
cycle, the scheduler acquires slots from all active chan-
nel managers, maps ADU fragments to those txSlot’s,
and passes that mapping back to the managers, resulting
in data being transmitted.

Latency/Loss Expectations For every txSlot, the
parent ncManager uses a dynamically updated prob-
abilistic model of the channel’s behaviour to derive the
expectations for that slot. A simple ncManager imple-
mentation could use a weighted moving average of pre-
viously seen round-trip-times to determine the expected
latency and an average ( total delivered

total lost ) for loss3.

Correlated Loss When two slots suffer losses, we say
that the losses in those slots are correlated. There are
two important types of correlated losses: burst losses on
a single channel and correlated losses on different chan-
nels. We have observed that individual WWAN channels
exhibited bursty losses. Correlated losses on different
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Field Description Range
channelID Parent network channel for this slot.
sequence The sequence number for this slot on its parent channel.

lossProbability The estimated loss probability for a packet transmitted in this slot. loss ∈ [0, 1]
expectedRTT Expected time between the transmission of data in this slot and the reception of

an acknowledgment.
milliseconds ≥ 0

lossCorrelation(other) Compares two transmission slots to see if packet losses in the two slots are
expected to correlate. This is an estimate for P (both lost | either one lost).

correl ∈ [0, 1]

cost(x) Cost of transmitting x bytes in this slot. cost(x) ≥ 0
maximumSize The maximum number of bytes that can be transmitted in this slot. size > 0

Figure 4: The main components of Horde’s transmission slot (txSlot) abstraction.

channels also occur, because of signal fading or external
factors that cause cross-channel correlation (e.g., when
two channels have antennas on a tower that is occluded).

Striping presents multiple opportunities to reduce cor-
related losses. ADU’s can be sent down different chan-
nels, provided these channels exhibit uncorrelated losses.
ADU’s can also be spaced out temporally on the same
channel, interleaving multiple data streams to maximize
throughput and reduce correlated losses on the streams.

The txSlot interface provides a loss correlation met-
ric to help the scheduler make judgments about corre-
lated losses. Reasoning about loss correlations can be
important in some application domains (e.g., streaming
multiple description video). As figure 4 indicates, two
txSlot objects can be compared to see if a loss in one
slot is expected to correlate with a loss in the other slot.
The result of this comparison is a conditional probabil-
ity for the event that both slots will experience losses if
either of them experiences a loss.

Transmission Costs There are often monetary costs
associated with the transmission of data on a channel.
A ncManager can maintain its own cost model, con-
figured with provider-specific information. For instance,
for a WWAN account with a data transmission quota, the
cost for each slot above the quota is higher than for ear-
lier slots. Since the cost model for each parent channel is
accessible from the appropriate txSlot’s, cost models
can be used in policy decisions by the scheduler.

Phantom Transmission Slots A channel manager can
also be asked to look-ahead into the near future (e.g. the
next second) to estimate how many more slots are likely
to become available on that channel. Managers can pro-
vide phantom txSlot objects, each tagged with a confi-
dence level, a measure of how sure the channel manager
is of its prediction. Phantom slots are discussed more
fully in section 3.3.

3 Policy and Scheduling

At the core of any striping system lies a packet scheduler
that decides how to transmit packets from data streams
on the multiple network channels. The packet scheduler
does not determine the data-rate for a stream. In Horde,
the bandwidth allocator’s policy, in conjunction with the
congestion control algorithms running within the chan-
nel managers, ultimately limit stream data-rates. The
scheduler must then decide which transmission slot car-
ries which ADU.

The scheduler implements a policy. The scheduler
transforms its policy into transmission schedules based
on the offered load and using information from the
txSlot’s, about the present and near-future behaviour
of those channels. For example, a scheduler could have
the policy of minimizing receiver-side ADU reordering
in a stream. Such a scheduler may try to minimize re-
ordering as it stripes the data, but—with imperfect pre-
dictions about the future—it may not be able to do so.

Most contemporary striping systems use a static
scheduler policy [1, 10, 18] that cannot be modulated by
applications. Often, the policy in these systems is insep-
arable from the scheduling mechanism itself.

With a heterogeneous and/or dynamically unstable set
of channels, the transmission slots can vary considerably
in terms of expected loss and latency characteristics, and
so the manner in which the scheduler decides to trans-
mit application packets can be crucial in determining the
network QoS for a data stream. For example, a scheduler
could consistently assign slots with low expected laten-
cies to stream x, following a policy of minimizing the
average latency on that stream.

In Horde, the striping policy is separated from the
striping mechanism. Horde allows an application to de-
fine a time-varying striping policy at run-time, providing
a generalized mechanism within the scheduler to facili-
tate many different policies. An Application expresses
its policy goals as modular network QoS objectives, and
these objectives drive the scheduler towards transmission
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schedules valued highly by that application.

3.1 Application Utility

During a period of network service in which an applica-
tion actively sends ADU’s, it obtains some utility from
the consumption of its ADU’s at another host. We refer
to this abstract utility as the application’s utility function
and represent it as a numerical function—in the same
way microeconomics textbooks choose to model the util-
ity consumers assign to goods they consume [13].

The application’s utility function represents net utility.
Gross utility refers to the total value derived by the ap-
plication. Net utility is the difference between the gross
utility and the cost of the network service. Expected net
utility can be obtained by using latency and loss expec-
tations as inputs to the utility function.

Utility is directly related to the number, identity and
delivery time of the delivered ADU fragments. How-
ever, since the sender doesn’t know the delivery times,
we work with network round-trip-times, derived from
the ack arrival sequence. Factors such as local queuing
time, parent stream identity and ADU type (e.g. I-frame)
can also impact utility. The ADU header fields provide
this information.

The idealized utility function can be written as:

utilityapp(τ) ∼ fapp

(
history{tx}(τ), history{rx}(τ)

)

Where, over a period τ : packet transmission his-
tory (historytx) is a set of triples of the form
(adu, fragment, txslot); the ack reception history
(historyrx) is a set of (adu, fragment, time) triples;
and fapp is an arbitrary application defined function.

utilityapp defines a partial order on possible transmis-
sion schedules, which can be used by the scheduler to
rank its scheduling choices. utilitystream (used below)
is an analogous utility function for a stream.

Of course, the scheduler does not have perfect infor-
mation about the future. Therefore, we work with the
expected utility, using expectations from txSlot’s.

3.2 ‘Optimal’ Scheduling

We define an optimal scheduler as one that picks the
transmission schedules most valued by the application,
over some time period, given the state of the network dur-
ing that period and expectations about the future. These
expectations are provided by Horde’s channel managers.

For a period τ , such a scheduler has complete infor-
mation about some things (which ADU’s have been sent;
which ack’s have been received) and expectations about

others (latency and loss expectations for ADU’s that have
been sent but not yet ack’d; expectations from unused
txSlot’s; and expectations from phantom txSlot’s).

Over τ , an optimal scheduler would find a schedule
that maximizes the sum of all streams’ utility functions,
using the provided expectations and constrained by the
stream bandwidth allocations4:

maximize

[ ∑

∀stream

(
utilitystream(τ)

)]

As posed above, the optimal scheduling problem is a
computationally impractical, since scheduling decisions
typically need to be made frequently. Consequently, our
schedulers only attempt to find high utility transmission
schedules instead of optimal schedules.

3.3 Objective Driven Scheduling

By providing a specialized scheduler and a sufficiently
abstract policy expression interface, Horde allows ap-
plications to drive the striping operation. An important
design issue was deciding how an application expresses
its policy goals and how the Horde scheduler translates
these goals into transmission schedules. Horde provides
a specification language that allows the expression of ap-
plication goals as succinct network-QoS objectives.

The modularity provided by the use of objectives is
intended to simplify application development. For those
applications at which we have looked, the objectives tend
to be relatively simple, e.g., favour lower loss txSlot’s
for certain types of ADU’s (e.g., video I-frames), favour
lower latency slots for some streams, and avoid corre-
lated losses for certain sets of ADU’s.

Objectives

Objectives represent the modular decomposition of an
application’s utility function. The set of expressed objec-
tives drives the packet scheduler towards schedules that
provide high utility to applications. Objectives can be
injected and removed dynamically, supporting the speci-
fication of time-varying utility functions.

An objective defines a QoS goal and describes how
the achievement of that goal adds to, or subtracts from,
overall application utility.

A goal may be expressed in terms of a set of ADU’s
(e.g., a stream) or, more generally, in terms of a set of
ADU sets (e.g., the sets of I-frame ADU’s and P-frame
ADU’s). Objectives will usually be concerned with the
policy of a single data stream but it is sometimes useful
to define objectives that straddle multiple streams. For
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instance, an objective for multi-description video stream-
ing could express the application goal of minimizing cor-
related frame losses on the different video data streams.

In Horde, objectives describe value relationships be-
tween ADU’s and txSlot’s. Objectives are indepen-
dent of the number of channels being used to stripe the
data. To simplify this discussion, we assume ADU’s are
never fragmented. A transmission schedule is then just
a mapping of ADU’s to txSlot’s. Each objective says
something about how much an application values the as-
signment of a particular kind of txSlot to a particular
kind of ADU.

In determining the value of an assignment, two things
are important: the nature of the ADU and the nature of
the txSlot. ADU’s can be differentiated based on their
header fields. Some of these are managed by Horde (e.g.,
stream_id) while others are application-specific an-
notations (e.g., frame_type). Slots can be differenti-
ated based on the fields shown in figure 4.

More abstractly, the characteristics of a transmission
slot can be seen as a collection of three random variables:
latency (real), loss (0 or 1) and cost (real). The expec-
tations (µ) and variances (σ2) of these variables can be
used in evaluating slot assignments.

Goals can be expressed over sets of ADU’s and
so may refer to the expectation or variance of the
loss/latency/cost of the slots assigned to that set. With
this view, correlated loss is not a special QoS metric, it
can be viewed as the expected loss over a set of ADU’s.

When an application does not specify an objective for
some QoS aspect of a stream, it is implicitly assumed
that the application does not care about that aspect of
QoS on that stream. A stream with no associated objec-
tives is likely to be assigned the transmission slots left
over after existing objectives have claimed the good slots
for their own streams. However, bandwidth allocations
are enforced before schedules are constructed, so every
stream always receives its fair share of slots5.

3.4 Objective Specification Language

This section outlines a language whose purpose is to pro-
vide a flexible interface in which application objectives
can be expressed and evaluated. This language repre-
sents a fairly straightforward formalization of the ab-
stract notion of objectives we presented earlier.

We have experimented with other possible interfaces.
Our initial interface allowed applications to simply flag
streams as being low-latency, low-loss, etc. This inter-
face represents a short-hand, using a small number of ob-
jective idioms. It proved insufficiently flexible. We also

objective {
context {

adu:foo { (stream_id == "video1") &&
(frame_type == "I") }

adu:bar { (stream_id == "video1") &&
(frame_type != "I") }

}
goal { prob(foo::lost?)

< prob(bar::lost?) }
utility { foo { 100 } }

}

Figure 5: An objective expressing the policy that, for
stream video1, txSlot’s carrying I-frames should
have lower loss probabilities than slots for other frames.

objective {
context {

stream:foo { stream_id == "audio1" }
}
goal { foo::latency_ave < 1000 }
utility { foo { 100 } }

}

Figure 6: An objective expressing the policy that the av-
erage latency on a stream should be less than one second.

tried allowing applications to export black-box callback
functions that perform the utilitystream calculation. In
our experience, the callback approach made it harder to
build an accurate scheduler, because the scheduler had
very limited information about the objectives.

The language discussed here seems to provide an ade-
quate level of abstraction, flexibility and programmabil-
ity. Using literals, ADU’s, streams, header fields, and la-
tency and loss probability distributions as basic units, the
language allows the construction of complex constraints.

The language is type-safe. Each expression has a well-
defined type and there are specific rules governing how
expressions can be composed and what the type of the
composition will be. The numeric type in the language
definition only supports integers. Probabilities are repre-
sented as percentage values ranging from 0 to 100.

An objective definition consists of three sections:
a context (variable bindings); a goal (a predicate);
and a utility. Figures 5, 6 and 7 show examples.
When the goal predicate is true, the interpreter uses
the utility section to determine how that goal’s ful-
fillment has affected the utility derived from the associ-
ated schedule. Active objectives are evaluated by
the scheduler in an unspecified order.
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objective {
context {

adu:x { (stream_id == "video1") ||
(stream_id == "audio1") }

}
goal { true }
utility {
x { 5 * (1000 - expected(x::latency)) }
}

}

Figure 7: An objective expressing that the utility derived
by an application from certain ADU’s depends linearly
on how close the round-trip-time is to one second.

Context An objective’s context section speci-
fies a mapping between the goal and a set of ADU’s
that can be used to achieve that goal. Each context
defines a set of filters on all possible ADU’s. For every
ADU or stream variable used in the goal or utility
sections, the objective’s context contains a filter
predicate, expressed in terms of ADU header fields or
stream identifiers. Fields like stream_id are prede-
fined. Applications can arbitrarily define other fields to
selectively activate objectives for marked ADU’s.

The example objectives in figures 5 and 6 show differ-
ent types of contexts. Figure 6’s objective applies to
stream 7. Figure 5 binds two variables: foo is always
bound to an I-frame ADU from stream 17; and bar to
a non-I-frame ADU from stream 17. frame_type is
an example of a field being used to integrate application-
specific ADU annotations into Horde’s scheduler.

Goal The goal section specifies a predicate that can
be evaluated on some schedule. goal predicates can
be reasonably involved: simple probability, boolean and
numerical expressions can be progressively composed
to produce a boolean function. For example, figure 5’s
goal is true whenever an I-frame ADU can be sent
in a slot that has a lower loss probability than a slot used
to send a non-I-frame ADU.

Utility The utility section specifies how applica-
tion utility is affected when a goal has been met.
The utility section contains a numeric valued ex-
pression for each ADU or stream variable whose util-
ity is affected. Negative utilities bias the scheduler
against schedules with the property specified in the re-
lated goal; positive utilities promote such schedules.
The base utility of transmitting an ADU is zero.

Complex numeric utility expressions are possible.
Figures 5 and 6 show examples that add a constant utility

tx_schedule random_walk_scheduler() {
// collect all slots w/ look-ahead
slots = collect_slots(LOOKAHEAD_MSECS);
// collect as many adus as slots
adus = collect_adus(slots.size());

// do a random walk
int max_util = MIN_INTEGER;
tx_schedule best_schedule = NULL;
for (int i = 0; i < WALK_LENGTH; i++) {

// get a random schedule
tx_schedule sched =
create_random_schedule(slots, adus);

// evaluate all objectives over
// this schedule and get utility
int util = evaluate_objectives(sched);

// is this best schedule?
if (util > max_util) {

max_util = util;
best_schedule = sched;

}
}
return best_schedule;

}

Figure 8: Pseudo-C++ for random-walk scheduler.

when their goal is met, but figure 7 uses a more involved
utility section in which the utility gained from trans-
mitting an ADU varies linearly with expected latency.

The language does not assign semantic meaning to nu-
meric utility, other than the notion that higher utility is
better than lower utility. Consequently, the impact of the
constants 100 (figures 5 and 6) and 5 (figure 7) can only
be gauged by looking at the constants in other active ob-
jectives. This represents a weakness in the language.

3.5 Scheduler Implementation

In constructing the scheduler described here, we have
consciously attempted to make it as simple as we could.
Our goal for this implementation was to show that even
very simple scheduling algorithms can provide enough
benefits to justify the Horde QoS modulation framework.

In each scheduling cycle, the random-walk sched-
uler uses a random bounded-search of the transmission
schedule space to find what looks like a good schedule,
given the set of active objectives. The scheduler creates k
random transmission schedules, evaluates all objectives
over each of these k schedules and picks the schedule
with the highest aggregate utility. In the absence of any
objectives, the random-walk scheduler works like a
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tx_schedule
create_random_schedule(slots, adus) {
tx_schedule random;

// randomly reorder
random_shuffle(slots);
random_shuffle(adus);

// produce schedule:
for (int i = 0; i < adus.size(); i++)
random.assign_slot(slots[i], adus[i]);

return random;
}

Figure 9: Pseudo-C++ for random schedule constructor.

randomized-round-robin scheduler: any valid mapping
of slots to ADU’s is equally likely.

A scheduling cycle runs every T milliseconds. Dur-
ing each cycle, the scheduler acquires from each channel
manager the currently available txSlot’s and the phan-
tom txSlot’s for N milliseconds into the future. Based
on the number of slots, ADU’s are collected from the
data streams. The constraints imposed by the bandwidth-
allocator govern how ADU’s can be collected from each
stream. Streams are treated as a FIFO queues.

Figures 8 and 9 describe the scheduler in pseudo-code.
In practice, the scheduler is slightly more complex, since
it must deal with the constraints imposed by the band-
width allocator. Our implementation never fragments
ADU’s for delivery.

The random-walk scheduler is not tied to the spec-
ification language. The language imposes restrictions on
what types of objectives can be expressed. The sched-
uler itself assumes nothing about the properties of indi-
vidual objectives. The random-walk scheduler only
requires a set of functions that map schedules to numeric
values. To differentiate good schedules from bad ones,
evaluate_objectives should define a partial or-
der on the set of possible schedules.

The random-walk scheduler has parameters that
can be adjusted to make trade-offs between scheduler
accuracy and processing cost. With a WALK_LENGTH
of 1, it becomes the randomized-round-robin scheduler.
Whether accuracy is more important than cost is is likely
to vary depending on the overall system.

Scheduling with Phantom Slots

A good scheduler needs look-ahead logic. In some
scheduling cycles the available txSlot’s can be too
few—or may lack critical information, that can be ef-

ficiently predicted by a channel model—to make good
scheduling decisions. Imagine, for example, that at some
point in time only high latency txSlot’s are available.
If a low latency slot will be available shortly, it may
be better to defer scheduling an urgent packet. Experi-
ments demonstrate that even relatively trivial look-ahead
logic boosts the accuracy of our policy driven scheduler.
The alternative to predictive logic is to use infrequent
scheduling cycles, increasing average queuing delays for
ADU’s.

Phantom transmission tokens provide a way to factor
expected future channel behavior into scheduling deci-
sions. Each channel manager can be asked to indicate, by
creating phantom txSlot’s, how many slots it expects
to have available in the near future (e.g., the next sec-
ond). Predicted slots can be examined and compared in
the same ways as actually available slots. With phantom
slots, incorporating channel predictions into scheduling
decisions does not require special-cases in the sched-
uler6. In any cycle, Horde schedulers use both normal
and phantom slots to find good schedules, only trans-
mitting as much data as can be sent using the normal
txSlot’s. In the next cycle, the process of finding a
good schedule starts afresh; the scheduler does not try to
remember assignments made to phantom slots.

4 Experimental Evaluation

We have implemented a very preliminary version of the
Horde middleware, and are working on building a mobile
video streaming system using this implementation. In
this section we report on some experimental results.

WWAN Channels

Experimental Setup Our experiments over real
WWAN channels were conducted using a laptop con-
nected to a single CDMA2000 1xRTT interface and
multiple GSM/GPRS interfaces. All GPRS interfaces
used the same service provider; the CDMA interface
used a different provider. The GPRS interfaces were
standard cell-phones connected to the laptop over a blue-
tooth link. The CDMA interface was a PCMCIA-based
modem. The devices were in close proximity to one
another and did not use specialized antennas.

The experiments reported here used three stationary
WWAN interfaces. They consisted of sending as many
768 byte packets7 as Horde’s flow control layer allowed,
from the laptop to a host on the MIT ethernet. We used
a generic ncManager implementation for all channels.
This implementation used AIMD for congestion control,
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Figure 10: Throughput provided by Horde in a stationary
experiment, using three colocated interfaces.

weighted-moving-averages to predict expected round-
trip-times and loss rates in txSlot’s, and averages of
past sending rates to generate phantoms.

Throughput Figure 10 shows the throughput provided
in an experiment. The throughputs were calculated us-
ing a 10-second sliding window. The GPRS bandwidths
are relatively stable in this experiment. This is consistent
with older experiments measuring raw UDP throughput
[14], which did not use Horde. However, the experiments
in [14] also indicate that vehicular motion leads to signif-
icant variability in throughput. The variability in CDMA
throughput may be caused by contention with other
users, or due to the AIMD congestion control. Exper-
iments in [14], when the network was—presumably—
lightly loaded, have shown the CDMA interface provid-
ing upload bandwidth of up to 120 kbits/sec, close to its
theoretical maximum. Generally, bandwidths on these
WWAN interfaces varied greatly, both over short time
scales (seen in the figure) and over longer time scales.

Packet Latency Figure 11 shows the ADU latency dis-
tributions for each channel. The Horde congestion con-
trol layer was configured to always send acknowledg-
ments back over the lowest latency channel (the CDMA
channel in this case). Consequently, the GPRS distribu-
tions do not represent GPRS packet round-trip-time dis-
tributions. Typically, those are longer and more variable.

Scheduling The existence of marked QoS differences
among co-located WWAN interfaces highlights the po-
tential impact of scheduling decisions on stream QoS.
Figure 11a and 11c exemplify the very large differences
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Figure 11: Observed WWAN packet RTT distributions.

that exist between two colocated WWAN channels us-
ing different technologies and providers. Figures 11b
and 11c show that even WWAN channels from the same
provider using the same technology can provide very dif-
ferent QoS.

In order to examine the impact of different schedul-
ing policies on QoS, we simulated the Horde scheduler
on the packet traces, using simple channel models in the
simulated channel managers8. In this way, we could
compare the effects of using different schedulers and
policies under identical network conditions.

Figure 12 compares a randomized round robin sched-
uler to Horde’s random-walk scheduler with objec-
tives that imply that low latency is more important for
some streams. We set up four data streams, each of
which demanded and received the same bandwidth.

Figure 12a shows the distribution of the latencies ob-
served by each stream when a randomized round robin
scheduler was used. As expected, there were only small
variations in the latency distributions across the streams.

Figure 2b shows the distribution of observed latencies
when an objective driven scheduler was used. No objec-
tive was specified for streams 1 and 3. Streams 2 and
4 were given the objective in figure 7. This objective
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Figure 12: Measured round-trip-time distributions with different schedulers, striping over three existing WWANs (one
CDMA and two GPRS). The graphs show the median and the upper and lower quartile packet latencies for the streams.

states that added value is derived in proportion to the dif-
ference of the expected RTT and one second. Based on
this single objective, the scheduler was able to infer that
it should preferentially assign transmission slots with an
expected low latency to ADU’s from streams 2 and 4.
Figure 12b clearly shows that the scheduler recognized
that QoS unfairness can be beneficial to the application.

Simulated Channels

We felt it was necessary to use simulation to fully evalu-
ate the performance of the Horde scheduler. Our use of
simulated channels was motivated by the fact that the set
of real channels available to us did not provide enough
QoS modulation options to the scheduler. For instance,
any sort of loss or latency QoS sensitivity would drive
a stream to the CDMA channel. A more diverse set of
simulated channels allowed us to better investigate the
performance of the scheduler.

For our simulations, we replaced the standard
ncManager implementation with one that used pseudo-
random variables to generate slots. Our simulated chan-
nels are based on measurements from real WWANs.
We simulated two pairs of high-latency GPRS channels
(each pair had a different mean latency); one medium-
latency low-loss CDMA channel; and one low-latency
medium-loss channel based on CDMA statistics.

We injected objectives for streams 1 and 4. Two objec-
tives were defined for stream 4: one valuing low-latency
and one valuing low-loss. A single low-latency objective
was defined for stream 1. Figure 13 shows the resulting
latency distributions for the streams. Streams 2 and 3
are spread over all channels, indicated by their large la-
tency ranges; stream 4 mostly uses the medium-latency
low-loss channel; and stream 1 is mostly spread over the
medium-latency and low-latency channels.
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Figure 13: RTT distributions in a simulated experiment.
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Figure 14: Impact of look-ahead on accuracy. The
graphs show how the average latency on a latency sensi-
tive stream varied with different look-ahead and schedul-
ing cycle periods, on simulated channels.
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Effects of Look-ahead on Accuracy

We were interested in how important look-ahead was
for an accurate objective driven scheduler. To investi-
gate this, we injected a single objective valuing a low
network-latency for ADU’s on a specific stream. We ran
the scheduler with a number of different cycle periods
(T ) and different look-ahead periods (L), on simulated
channels. In these experiments, a lower average network
latency for the latency-sensitive stream implied a more
accurate scheduler. Figure 14 shows how latency varied
for some different values of T and L.

Scheduler accuracy improves by increasing L (up to
some L). With a larger look-ahead period the scheduler
can see, in each cycle, the future slots from both the low-
latency high-rate channels (CDMA) and the high-latency
low-rate channels (GPRS). Thus with a large enough L
(around 200ms) the scheduler works well.

Scheduler accuracy also improves with T (up to some
value of T ). Again the scheduler is able to see both types
of slots in each cycle, improving its accuracy. However,
with a higher T , ADU’s are queued longer locally, so
the overall ADU delay becomes quite large, even as the
scheduler becomes more accurate.

5 Related Work

Schemes that provide link layer striping have been
around for a while [9, 8, 1]. Most such schemes were pi-
oneered on hosts connected to static sets of ISDN links.
These schemes mostly assume stable underlying chan-
nels. Instabilities and packet losses can cause some pro-
tocols to behave badly [1]. Usually IP packets are frag-
mented and distributed over the active channels, if one
fragment is lost, the entire IP packet becomes useless.
This results in a magnified loss rate for the virtual chan-
nel. Horde avoids this magnification by exposing ADU
fragment losses to the application, consistent with the
ALF principle.

Most link-layer striping systems are, quite reasonably,
optimized for TCP. Mechanisms are chosen to minimize
reordering, and packets may be buffered at the receiver
to prevent the TCP layer from generating DUPACKS [1].
partial IP losses can be exposed to the higher layer by
rewriting TCP headers within the striping code.

Implementing congestion control under the striping
scheduler is not a new idea. The LQB scheme [18] ex-
tends the deficit-round-robin approach to reduce the load
on channels with higher losses. The use of TCP-v [10],
a transport layer protocol that provides network strip-
ing with the goal of achieving reliable in-order delivery,
also results in per-channel congestion control. However,

whereas Horde allows channel-specificity, others use the
same mechanism on every type of channel.

Some recent proposals for network striping over wire-
less links have proposed mechanisms to adjust striping
policy. Both MAR [15] and MMTP [11] allow the core
packet scheduler to be replaced with a different scheduler
implementing a different policy. This is the hard-coded
policy case mentioned earlier.

We were motivated by the need to develop a multi-path
video streaming application. Setton et al [16] provide
an example of such an application that uses multiple-
descriptions of the source video, spreading them out over
the available paths, based on a binary-metric quality of
the paths. Begen et al [5] describe a similar scheme.
Horde allows more flexible scheduling of video packets
over the available paths.

6 Summary and Conclusion

Horde is a library that facilitates flexible network striping
in WWAN environments for a diverse range of applica-
tions. Horde separates the striping policy from routing
and scheduling. It allows applications to describe QoS
objectives for each stream that the striping mechanism
attempts to satisfy. Horde can be used by a set of appli-
cation data streams, each with its own policy, to flexibly
stripe data over a highly heterogeneous set of dynami-
cally varying network channels.

Horde is most useful when different streams gain value
from different aspects of network performance and when
the available network channels have dissimilar and/or
time-varying characteristics.

Horde tackles many complex problems. We have pre-
sented techniques to separate striping policy from the
mechanism used, and evaluated how well a generic strip-
ing mechanism is able to interpret simple expressed poli-
cies. Furthermore, Horde has been designed from the
ground-up with the assumption that the set of channels
being striped over are not well-behaved and can have sig-
nificantly different channel characteristics

In this paper, we described the basic abstractions upon
which Horde is built. The two key abstractions are trans-
mission slots (txSlot’s) and policy objective’s. The
txSlot’s are generated by Horde to abstractly cap-
ture the expected short-term performance of the network
channels. The objectives are written by application pro-
grammers to abstractly specify network-QoS related ob-
jectives for individual data streams. The Horde sched-
uler uses txSlot’s and objectives to derive transmis-
sion schedules that provide better value to applications
than do conventional scheduling algorithms.
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Experiments with our initial Horde implementation
confirm our belief that the kind of QoS modulation
Horde aims to achieve is both realistic and advantageous
to actual applications.

In conclusion, more work is needed on the specifica-
tion language and schedulers. Presently, the language
allows too much complexity, making objective program-
ming harder than it should be. Furthermore, some ab-
stractions could be generalized more (e.g., streams, and
correlated loss) as operations over sets of ADUs. We are
working on addressing these issues. Finally, we are ex-
perimenting with more complex schedulers that use lan-
guage semantics to derive better schedules.
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Notes

1The IPC overhead is acceptable in our system, since the aggregate
data rates are low (300 kbits/sec). The IPC stubs can be easily replaced
with more efficient mechanisms if needed, for a single-process Horde.

2With multiple destination hosts, a ncManagermay need to main-
tain a unique congestion control session for every destination.

3Moving-averages seemed to work reasonably well in our experi-
ments, though they were often wrong by over 100ms. We found better
estimators could be constructed using a priori knowledge about the
WWAN technology [14]. Furthermore, more elaborate estimators plug
easily into our modular framework: a ncManager that uses signal
strength readings to estimate a loss probability, or one that uses an ac-
celerometer input to predict when a motion sensitive channel will have
more losses, could be incorporated without complications.

4If fairness is of concern, this definition can be modified to take that
into account. In this paper, we restrict our consideration of fairness to
bandwidth allocations.

5Nonetheless, since a stream may receive slots more likely to result
in losses, that stream may not receive its fair share of goodput. Fair
shares of slots do not imply that all streams are allocated equal goodput.

6Depending on the scheduler design, the constraints imposed by
the bwAllocator can introduce wrinkles in how the scheduler uses
phantom slots. In summary: the scheduler must ensure that, in the long
run, the allocations are met even though phantoms may cause short-
term deviations.

7Our UDP experiments on WWAN channels [14] show that packet
size affects both available throughput and packet latency. Generally:
smaller packets experience lower latency; larger packets yield higher
raw UDP throughput. 768 byte packets seem to be a good compromise

8In the txSlot expectations, expected packet latency was calcu-
lated using a weighted moving average of known packet latencies. Loss
probabilities were, similarly, averages.
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