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Abstract. Elliptic curves based algorithms are nowadays widely spread
among embedded systems. They indeed have the double advantage of
providing efficient implementations with short certificates and of being
relatively easy to secure against side-channel attacks. As a matter of fact,
when an algorithm with constant execution flow is implemented together
with randomization techniques, the obtained design usually thwarts clas-
sical side-channel attacks while keeping good performances. Recently, a
new technique that makes randomization ineffective, has been success-
fully applied in the context of RSA implementations. This method, re-
lated to a so-called horizontal modus operandi, introduced by Walter in
2001, turns out to be very powerful since it only requires leakages on
a single algorithm execution. In this paper, we combine such kind of
techniques together with the collision correlation analysis, introduced at
CHES 2010 by Moradi et al., to propose a new attack on elliptic curves
atomic implementations (or unified formulas) with input randomization.
We show how it may be applied against several state-of-the art imple-
mentations, including those of Chevallier-Mames et al., of Longa and
of Giraud-Verneuil and also Bernstein and Lange for unified Edward’s
formulas. Finally, we provide simulation results for several sizes of el-
liptic curves on different hardware architectures. These results, which
turn out to be the very first horizontal attacks on elliptic curves, open
new perspectives in securing such implementations. Indeed, this paper
shows that two of the main existing countermeasures for elliptic curve
implementations become irrelevant when going from vertical to horizon-
tal analysis.

Keywords: side-channel analysis, elliptic curves implementations, ECDSA,
horizontal attacks, collision attacks.

1 Introduction

Elliptic Curves Cryptosystems (ECC) that have been introduced by N. Koblitz
[37] and V. Miller [47], are based on the notable discrete logarithm problem,

? The short version of this paper has been published in [8].



which has been thoroughly studied in the literature and is supposed to be a hard
mathematical problem. The main benefit in elliptic curves based algorithms is
the size of the keys. Indeed, for the same level of security, the schemes require keys
that are far smaller than those involved in classical public-key cryptosystems.
The success of ECC led to a wide variety of applications in our daily life and they
are now implemented on lots of embedded devices: smart-cards, micro-controller,
and so on. Such devices are small, widespread and in the hands of end-users.
Thus the range of threats they are confronted to is considerably wider than
in the classical situation. In particular, physical attacks are taken into account
when assessing the security of the application implementation (e.g. the PACE

protocol in e-passports [33]) and countermeasures are implemented alongside
the algorithms.

A physical attack may belong to one of the two following families: pertur-
bation analysis or observation analysis. The first one tends to modify the cryp-
tosystem processing with laser beams, clock jitter or voltage perturbation. Such
attacks can be thwarted by monitoring the device environment with captors and
by verifying the computations before returning the output. The second kind of
attacks consists in measuring a physical information, such as the power consump-
tion or the electro-magnetic emanation, during sensitive computations. Inside
this latter area we can distinguish, what we call simple attacks, that directly
deduces the value of the secret from one or a small number of observation(s)
(e.g. Simple Power Analysis [40]) and advanced attacks involving a large number
of observations and exploiting them through statistics (e.g. Differential Power
Analysis [41] or Correlation Power Analysis [15]). Such attacks require the use
of a statistical tool, also known as a distinguisher, together with a leakage model
to compare hypotheses with real traces (each one related to known or chosen
inputs). The latter constraint may however be relaxed thanks to the so-called
collision attacks [54] which aim at detecting the occurrences of colliding values
during a computation, that can be linked to the secret [12, 21, 50, 51]. In order
to counteract all those attacks, randomization techniques can be implemented
(e.g. scalar/message blinding for ECC [25]). The recent introduction of the so-
called horizontal side-channel technique by Clavier et al. in [20] seems to have
set up a new deal. This method, which is inspired by Walter’s work [58], takes
its advantage in requiring a unique power trace, thus making classical random-
ization techniques ineffective. Up to now, it has been applied successfully on RSA

implementations and we show in this paper that it can be combined with colli-
sion correlation analysis to provide efficient attack on elliptic curves protected
implementations.

Core idea. In the context of embedded security, most ECC protocols (e.g. ECDSA
[2] or ECDH [3]) use a short term secret that changes at each protocol iteration. In
this particular setting, advanced side-channel attacks, which require several exe-
cutions of the algorithm with the same secret, are ineffective. As a consequence,
only protection against S-PA is usually needed, that can be done thanks to the
popular atomicity principle [17, 29, 44]. Up to now, this technique is considered



as achieving the best security/efficiency trade-off to protect against side-channel
analysis. In this paper, we provide a new side-channel attack, called horizontal
collision correlation analysis that defeats such protected ECC implementations.
In particular, implementations using point/scalar randomization combined with
atomicity are not secure, contrary to what was thought up to now. Moreover in
order to complete our study, we also investigate the case of unified formulas1.
Indeed, we show that our horizontal collision correlation attack allows to distin-
guish, with a single leakage trace, a doubling operation from an addition one.
This technique, which allows to eventually recover the secret scalar, is applied
to three different atomic formulae on elliptic curves, namely those proposed by
Chevallier-Mames et al. in [17], by Longa in [44], by Giraud and Verneuil in [29].

Paper Organisation. The paper is organized as follows. First, Section 2 intro-
duces a framework enabling to formally study the resistance of an implementa-
tion against side-channel attacks in both Horizontal and Vertical modes. Section
3 recalls some basics about ECC in a side-channel attacks context. Then, under
the assumption that one can distinguish common operands in modular mul-
tiplications, the outlines of our new horizontal collision correlation attack are
presented in Section 4. After a theoretical analysis explaining how to practically
deal with the distinguishability assumption, we provide in Section 5 experimen-
tal results for 160, 256 and 384-bit-size curves working with 8 or 32-bit registers.
These results show that the attack success rate stays high even when significant
noise is added to the leakage.

2 A Comprehensive Study of Side-Channel Analyses

In the following, a general framework is introduced which enables to describe
most of the existing attacks in a similar way and to identify their core differences
(actually the leakage pre-treatment, the leakage model and the statistical test).

2.1 A General Framework for Simple and Advanced Side-Channel
Analyses

Theoretically modelling a side-channel analysis obviously requires some prior
statistical notions.

Notations. A realization of a random variable X is referred to as the corre-
sponding lower-case letter x. A sample of observations of X is denoted by (x) or
by (xi)i when an indexation is needed. In this case, the global event is sum up
as (x)←↩ X. The ith coordinate of a variable X (resp. x), viewed as a vector, is
denoted by X[i] (resp. x[i]). As usual, the notation E[X] refers to the mean of X.

1 Among the unified formulas, we especially focus on the Edward’s ones in [9] intro-
duced by Bernstein and Lange since they lead to efficient doubling and addition
computations compared to the Weierstrass case [16].



For clarity reasons we sometimes use the notation EX [·] to enlighten the variable
over which the mean is computed. The variance of X is denoted by var(X).

Attacks presented in this paper involve the linear correlation coefficient which
measures the linear interdependence between two variables X and Y . It is de-

fined as ρ(X,Y ) = cov(X,Y )
σXσY

, where cov(X,Y ), called covariance between X and
Y , equals E[(X − E[X]).(Y − E[Y ])] = E[XY ] − E[X]E[Y ] and where σX and
σY respectively denotes the standard deviation of X and Y . The linear corre-
lation coefficient can be approximated from realizations samples (xi)1≤i≤n and
(yi)1≤i≤n ofX and Y respectively. For this approximation, the following so-called
Pearson’s coefficient is usually involved:

ρ̂(X,Y ) =
n
∑
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∑
j yj√
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n
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2
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(∑
j yj
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Attack Context. In the subsequent descriptions of side-channel analyses, an
algorithm A is modelled by a sequence of elementary calculations (Ci)i that are
Turing machines augmented with a common random access memory (see [46] for
more details about this model). Each elementary calculation Ci reads its input
Xi in this memory and updates it with its output Oi = Ci(Xi). All the attacks
below target a variable O(s, X) defined as the output of a specific computation
(e.g. a multiplication) performed by the device and parametrized by a secret
sub-part s and a public variable2 X. In the following, we shall use O instead of
O(s, X) if there is no ambiguity on s and X.

To recover information on s, the attacks are performed on a sample of obser-
vations related to the processing of O by the device. Each of those observations,
such as power consumption, electromagnetic emanations, and so on, is usually
composed of several physical measurements corresponding to leakages at differ-
ent times ti. It can hence be viewed as a realization of a multivariate random
variable L whose coordinates L[i] satisfy:

L[i] = ϕi
(
O
)

+Bi , (2)

where ϕi only depends on the device behaviour at time ti during the processing
of O and Bi is an independent Gaussian noise with zero mean and standard
deviation σi. The function ϕi is a priori unknown. The index i will be sometimes
omitted. In this case, it is assumed that the same function is associated to all
the time indices. See Figure 1 to illustrate the notations and Appendix A for an
extension of the definitions and notations to higher-order contexts.

An SCA is based on the Hypothesis Testing principle [38]. To make this test, a
set of prediction values hj are deduced from each hypothesis ŝ on s and from the
sample of implementation inputs (xj) corresponding to the observations. This
step involves a leakage model function m that must have been priorly chosen

2 We shall sometimes need to consider the known value as a pair of variables: in this
case we will use the notation (X,Y ) instead of X.
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Fig. 1. Power consumption of the processing of O

by the attacker (for instance based on its knowledge on the attacked device
architecture). With this model function, the prediction values hj are built s.t.
hj = m(O(ŝ, xj)). Eventually, the adversary uses a distinguisher ρ to compare
the hj with the observations lj ←↩ L|X = xj . This results in a so-called score
value, ∆[ŝ] for the hypothesis ŝ. The tuple of scores (∆[ŝ])ŝ is called scores vector.

The overall set of SCA is usually split in two subclasses. The first one, called
simple Side-Channel Analysis, contains all attacks where observations only need
to be done on a single value of the public input parameter (this implies that all
the xj are equal to a same value, say x). This set contains S-PA [40], S-EMA [27,
53] or S-TA (Timing Analysis) [40]. The second subclass, called advanced Side-
Channel Analysis, includes attacks where observations of the targeted internal
processing must be done for several public input parameters. In particular, it
contains univariate SCA attacks such as D-PA [42], C-PA [15] or MI-PA [28] and
multivariate SCA attacks such as HO-D-PA [42, 52] or HO-MI-PA [6]. We give
hereafter a more formal description of those two subclasses.

Simple SCA. The class of simple SCA includes all Vertical or Horizontal SCA
where the adversary makes observations on a single input. Table 1 provides a
description of a simple Side-Channel Analysis3.

1. Choose a value x for X.
2. Measure a sample (lj)j ←↩ (L|X = x) of N leakages.
3. Select a distinguisher ∆ and choose a model function m.
4. For each hypothesis ŝ on s, compute h = m(O(ŝ, x)).
5. For each ŝ, compute ∆[ŝ] = ∆

[
(lj)j ,h

]
.

6. Deduce from ∆[·] information on s.

Table 1. Simple Side-Channel Analysis

3 In contexts where the adversary is not allowed to choose the algorithm input but
knows it, the first step just aims at fixing the input value for the rest of the attack.



Remark 1. In theory, simple SCA may be conducted with a single observation.
In practice however, it is often necessary to use several observations of the pro-
cessing for the same variable x in order to reduce the noise impact. In this
case, the statistical distinguisher ρ may for instance involve a preliminary step
consisting in the averaging of the observations sample.

Example 1 (S-PA against an RSA implementation based on the left-to-right Square
and Multiply algorithm). In this case, the target processing is the entire compu-
tation O = Xs mod n. For a constant message x ←↩ X, the adversary starts by
getting a sample of observations (lj)←↩ L|X = x. Then, ranging i from the index
of the key most significant bit to 0, he makes an hypothesis ŝ[i]. From the model,
he hence gets, for each index i, a pattern pŝ[i] that is assumed to correspond to
the power consumption profile of either a squaring plus a multiplication if ŝ[i]
equals 1 or a squaring alone if ŝ[i] equals 0. Eventually, the adversary chooses
the Euclidean distance as distinguisher ∆ and computes it between h = pŝ[i]
and the part of the mean vector 1

N

∑
j lj corresponding to the ith step of the

exponentiation. The hypothesis ŝ[i] minimizing the distance is assumed to be
the most likely one.

Advanced SCA. All the attacks where observations must involve several inputs
belong to the advanced SCA category. This kind of attacks follows the outlines
given in Table 2.

1. Get N measurements (lj , xj)j ←↩ (L, X).
2. Select a distinguisher ∆ and choose a model function m.
3. For each hypothesis ŝ on s build a set of predictions hj

such that hj = m(o(ŝ, xj)).
4. For each ŝ, compute ∆[ŝ] = ∆

[
(hj)j , (lj)j

]
5. Deduce from ∆[·] information on s.

Table 2. Advanced Side-Channel Analysis (A-SCA)

Remark 2. Depending on the statistical treatment processed by the distinguisher,
the latter one may include a particular leakage post-processing E . This post-
treatment may be used to select some particular points in the leakage traces and,
possibly, to combine them. For instance, in a second-order advanced SCA involv-
ing the mutual information as distinguisher, the function E can be defined such
that E

(
L
)

=
(
L[p],L[q]

)
for some constant indices (a.k.a. leakage times) p and

q. In a second-order advanced SCA involving the correlation coefficient as distin-
guisher, E may be defined such that E

(
L
)

= (L[p]− E(L[p])) · (L[q]− E(L[q])).
Moreover, the choice of the model function must be done in accordance with the
distinguisher (see e.g. [52] and [28]).



Example 2. In template A-SCA, the probability density function fŝ,xj
of the

random variable (L|S = ŝ, X = xj) is estimated for all pairs (ŝ, xj). The model
function m and the predictions (hj(·))j are hence defined such that hj(·) =
m(o(ŝ, xj)) = fŝ,xj

(·). The estimation may for instance be done on a copy of the
attacked device on which an open access is allowed. Eventually, the distinguisher
corresponds to a Maximum Likelihood Test: ∆[ŝ] =

∏
j fŝ,xj

(lj).

2.2 Leakage Measurements and Observations

In the literature, two main approaches have been defined to get the observations
lj (which corresponds to the first step of the attacks in Tables 1 and 2). The first
method simply consists in executing the implementation several times (with the
same input in simple SCA or with several ones in advanced SCA) and in defining
lj as the observation related to the jth algorithm execution. Those attacks are
called Vertical. The second method refers to attacks where a single execution
is needed and where each lj corresponds to the observation of a processing at
a different time period during the latter. In this case, the index j refers to the
time period. The underlying assumption is that all the observations rely on the
same internal calculus O(s, X), parametrized by a same secret s and different
known values xj in advanced SCA, or a constant one x in simple SCA. Attacks
corresponding to this modus operandi are called Horizontal. Figure 2 illustrates
the notations and the differences between the two modus operandi.

All the attacks discussed in Section 2.1 can be either Vertical or Horizontal4.
Even if the Horizontal or Vertical characteristic of an SCA has no impact on
the attack steps themselves (as described in Tables 1 and 2), it does impact
the implementation security analysis. Indeed, we will see in Section 5 that a
countermeasure may become ineffective when going from one category of attacks
to another one. We illustrate this in the context of secure RSA implementations.

2.3 Security Evaluation

To analyse the resistance of an implementation against any of the attacks pre-
sented in previous sections, we can evaluate the following quantity:∣∣∣Pr[S = s]− Pr

[
S = s | (∆[ŝ])ŝ

]∣∣∣ .
Indeed, if this value turns out to be negligible, it means that the adversary

does not gain any advantage in recovering the secret key s by processing the SCA
than just guessing it at random from uniformly distributed values among the set
of all possibilities. In this case, we consider the implementation to be resistant
to the corresponding SCA attack (represented by the scores vector ∆[·]). This
way of analyzing the security is very close to the approach based on guessing

4 Possibly, the observations acquisition phase may mix horizontal and vertical tech-
niques. In this case, the attack will be termed Rectangle.
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Fig. 2. Vertical and Horizontal SCA

entropy introduced in [55]. Also, after considering ∆[·] as an Oracle with which
the adversary interacts, the approach exactly corresponds to that followed in
classical security proofs in modern cryptography.

2.4 Taxonomy

Based on the discussions conducted in previous sections, we propose here a
general taxonomy for simple and advanced side-channel attacks. To name an
attack we propose to use the convention [XXX]-[YYY]-[ZZZ] where:

– XXX equals either S for simple SCA or is a reference to the statistical tool for
advanced SCA (e.g. C for Correlation, MI for Mutual Information, ML for
Maximum Likelihood, LR for Linear Regression, etc.). In case of multivariate
SCA, we propose to pad the order/dimension followed by O at the left of
the distinguisher letter.

– YYY is an acronym referring to the leakage type; PA for Power Analysis,
EMA for Electromagnetic Analysis, TA for Timing Attacks, etc.

– ZZZ is optional and may be used to specify if the attack is profiled or not.
In this case, ZZZ is replaced by P (for Profiling) or UnP (for UnProfiling).
For instance, Template attack is a ML-PA-P attack.

Of course, all those attacks can be applied either on a Vertical or Horizontal
mode. Figure 3 illustrates the taxonomy for some existing attacks.
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3 Side-Channel Attacks against Elliptic Curves

In this section, we study the resistance of several implementations of ECC algo-
rithms with respect to horizontal SCA.

3.1 Background on Elliptic Curves

As this paper focuses on side-channel attacks on ECC, let us recall now some basics
on elliptic curves and especially on the various ways of representing points on
such objects (the reader could refer to [23,32] for more details).

Throughout this paper, we are interested in elliptic curve implementations
running on platforms (ASIC, FPGA, micro-controller) embedding a hardware
modular multiplier (e.g. a 16-bit, 32-bit or 64-bit multiplier). On such imple-
mentations, the considered elliptic curves are usually defined over a prime finite
field Fp. In the rest of this paper, we will assume that all curves are defined over
Fp with p 6= {2, 3}. The algorithm used for the hardware modular multiplica-
tion is assumed to be known to the attacker. Moreover, to simplify the attack
descriptions, we assume hereafter that the latter multiplication is performed in
a very simple way: a schoolbook long integer multiplication followed by a reduc-
tion. Most of current devices do not implement the modular multiplications that
way, but the attacks described hereafter can always be adapted by changing the
definition of the elementary operations of Section 4.3 (see Appendix B).

Definition. An elliptic curve E over a prime finite field Fp with p 6= {2, 3} can
be defined as an algebraic curve of affine reduced Weierstrass equation:

(E) : y2 = x3 + ax+ b , (3)

with (a, b) ∈ (Fp)2 and 4a3 + 27b2 6= 0. Let P = (x1, y1) and Q = (x2, y2) be
two points on (E), the sum R = (x3, y3) of P and Q belongs to the curve under
a well-known addition rule [37]. The set of pairs (x, y) ∈ (Fp)2 belonging to
(E), taken with an extra point O, called point at infinity, form an abelian group
named E(Fp).



In the rest of the paper, the points will be represented using their projective
coordinates. Namely, a point P = (x, y) is expressed as a triplet (X : Y : Z)
such that X = xZ and Y = yZ. This choice is discussed in Appendix C.

3.2 Points Operations in Presence of SCA

This paper focusses on elliptic curves cryptosystems which involve the scalar
multiplication [s]P , implemented with the well-known double and add algorithm.

In a non-protected implementation, the sequence of point doublings and point
additions can reveal the value of s with a single leakage trace. Thus to protect the
scheme against S-PA, the sequence of point operations must be independent from
the secret value. This can be achieved in several ways. The double and add always
algorithm [25] is the simplest solution. It consists in inserting dummy point
additions each time the considered bit value of s is equal to 0. In average, this

solution adds an overhead of log2(s)
2 point additions. Another technique consists

in using unified formulae for both addition and doubling [10,11,43]. Finally, the
strategy which is usually adopted in constrained devices such as smart cards
is atomicity since it achieves the best time/memory trade-off [17, 29, 44]. This
principle is a refinement of the double and add always technique. It consists in
writing addition and doubling operations as a sequence of a unique pattern. This
pattern is itself a sequence of operations over Fp. Since the pattern is unique, the
same sequence of field operations is repeated for the addition and the doubling,
the only difference being the number of times the pattern is applied for each
operation. It thus becomes impossible to distinguish one operation from the
other or even to identify the starting and ending of these operations.

To defeat an atomic implementation, the adversary needs to use advanced
side-channel attacks (see Section 2.1), such as D-PA, C-PA and so on. These
attacks focus on the operations operands instead of only focusing on the kind
of operations. They usually require more observations than for S-PA since they
rely on statistical analyses. In the ECC literature, such attacks have only been
investigated in the vertical setting, where they can be efficiently prevented by
input randomization.

4 Horizontal Collision Correlation Attack on ECC

We show hereafter that implementations combining atomicity and randomization
techniques are in fact vulnerable to collision attacks in the horizontal setting.
This raises the need for new dedicated countermeasures.

This section starts by recalling some basics on collision attacks. Then, as-
suming that the adversary is able to distinguish when two field multiplications
have a common (possibly unknown) operand, we show how to exhibit flaws in
the atomic algorithms proposed in [17,29,44] and also in implementations using
the unified formulae for Edward’s curves [9]. Eventually, we apply the collision
attack presented in the first subsection to show how to efficiently deal with the
previous assumption.



4.1 Collision Power Analysis in the Horizontal Setting

To recover information on a subpart s of the secret s, collision side-channel
analyses are usually performed on a sample of observations related to the pro-
cessing, by the device, of two variables O1 and O2 that jointly depend on s.
The advantage of those attacks, compared to the classical ones, is that the al-
gorithm inputs can be unknown since the adversary does not need to compute
predictions on the manipulated data. When performed in the horizontal setting,
the observations on O1 and O2 are extracted from the same algorithm execution
(see Section 2.1). Then, the correlation between the two samples of observations
is estimated thanks to the Pearson’s coefficient (see Equation (1)) in order to
recover information on s. We sum up hereafter the outlines of this attack, that
will be applied in the following.

1. Identify two elementary calculations C1(·) and C2(·) which are processed sev-
eral times, say N , with input(s) drawn from the same distribution(s). The
correlation between the random variables O1 and O2 corresponding to the
outputs of C1 and C2 must depend on the same secret sub-part s.

2. For each of the N processings of C1 (resp. C2) get an observation `1j (resp. `2j )
with j ∈ [1;N ].

3. Compute the quantity:
ρ̂ = ρ̂

(
(`1j )j , (`

2
j )j
)

4. Deduce information on s from ρ̂.

Table 3. Collision Power Analysis

Remark 3. In Table 3, we use Pearson’s coefficient to compare the two samples
of observations but other choices are possible (e.g. mutual information).

Remark 4. In order to deduce information on s from the knowledge of ρ̂, one
may use for instance a Maximum Likelihood distinguisher (see a discussion on
that point in Section 5).

In the next section, the attack in Table 3 is invoked as an Oracle enabling to
detect whether two field multiplications share a common operand.

Assumption 1 The adversary can detect when two field multiplications have at
least one operand in common.

In Section 4.3, we will come back to the latter hypothesis and will detail how
it can indeed be satisfied in the particular context of ECC implementations on
constrained systems.



4.2 Attacks on ECC Implementations: Core Idea.

We start by presenting the principle of the attack on atomic implementations,
and then on an implementation based on unified (addition and doubling) formu-
lae over Edward’s curves.

Attack on Chevallier-Mames et al.’s Scheme. In Chevallier-Mames et
al.’s atomic scheme, historically the first one, the authors propose the three first
patterns5 given in Figure 4 for the doubling of a point Q = (X1 : Y1 : Z1) and
the addition of Q with a second point P = (X2 : Y2 : Z2).

Doubling

R0 ← a, R1 ← X1, R2 ← Y1, R3 ← Z1

1.


R4← R1 ·R1 (= X1 ·X1)
R5 ← R4 +R4

?
R4 ← R4 +R5

2.


R5 ← R3 ·R3

R1 ← R1 +R1

?
?

3.


R5← R5 ·R5 (= Z2

1 ·Z2
1 )

?
?
?

Addition

R1 ← X1, R2 ← Y1, R3 ← Z1,
R7 ← X2, R8 ← Y2, R9 ← Z2

1.


R4← R9 ·R9 (= Z2 ·Z2)
?
?
?

2.


R1 ← R1 ·R4

?
?
?

3.


R4← R4 ·R9 (= Z2

2 ·Z2)
?
?
?

Fig. 4. Three first atomic patterns of point doubling and addition.

As expected, and as a straightforward implication of the atomicity principle,
the doubling and addition schemes perform exactly the same sequence of field
operations if the star (dummy) operations are well chosen6. This implies that
it is impossible to distinguish a doubling from an addition by just looking at
the sequence of calculations (i.e. by S-PA). Let us now focus on the operations’
operands. In the addition scheme, the field multiplications in Patterns 1 and 3
both involve the coordinate Z2. On the contrary, the corresponding multiplica-
tions in the doubling scheme have a priori independent operands (indeed the
first one corresponds to the multiplication X1 ·X1, whereas the other one corre-
sponds to Z2

1 ·Z2
1 ). If an adversary has a mean to detect this difference (which is

actually the case under Assumption 1), then he is able to distinguish a doubling
from an addition and thus to fully recover the secret scalar s. Indeed, let us

5 For readability reasons we do not recall the full patterns but the interested reader
can find them in [17].

6 Guidelines are given in [17] to define the dummy operations in a pertinent way.



focus on the processing of the second step of the double and add left-to-right
algorithm, and let us denote by s the most significant bit of s. Depending on s,
this sequence either corresponds to the processing of the doubling of Q = [2]P
(case s = 0) or to the addition of Q = [2]P with P (case s = 1). Eventually,
the results T1 and T2 of the field multiplications in respectively Patterns 1 and
3 satisfy: {

T1 =
(
X1 ·X1

)1−s · (Z2 · Z2

)s
T2 =

(
Z2
1 · Z2

1

)1−s · (Z2
2 · Z2

)s , (4)

where we recall that we have P = (X2 : Y2 : Z2) and Q = (X1 : Y1 : Z1).
Equation (4) and Assumption 1 enables to deduce whether s equals 0 or 1.
Applying this attack log2(s) times, all the bits of s can be recovered one after
the other.

We now show that the same idea can successfully be applied to attack the
other atomic implementations proposed in the literature, namely those of Longa
[44] and Giraud and Verneuil [29].

Attack on Longa’s Scheme. The atomic pattern introduced by Longa in [44]
is more efficient than that of Chevallier-Mames et al. ’s scheme. This improve-
ment is got by combining affine and Jacobian coordinates in the points addition,
see Figure 5.

It can be seen that the first and third patterns of Longa’s scheme contain
two field multiplications that either have no operand in common (doubling case)
or share the operand Z1 (addition case). Similarly to Chevallier-Mames et al. ’s
scheme, we can hence define the two following random variables:{

T1 =
(
Z1 · Z1

)1−s · (Z1 · Z1

)s
T2 =

(
X1 · 4Y 2

1

)1−s · (Z2
1 · Z1

)s , (5)

Under Assumption 1, it leads to the recovery of s.

Attack on Giraud and Verneuil’s Scheme. Giraud and Verneuil introduced
in [29] a new atomic pattern which reduces the number of field additions, nega-
tions and dummy operations (?) compared to the above proposals. The patterns
are recalled in Figure 6.

Once again, depending on the secret s, we observe a repetition of two mul-
tiplications with a common operand in the first pattern of the addition scheme
(ADD 1.), leading to the following equations:{

T1 =
(
X1 ·X1

)1−s · (Z2 · Z2

)s
T2 =

(
2Y1 · Y1

)1−s · (Z2
2 · Z2

)s , (6)

which, under Assumption 1, leads to the recovery of s.

Remark 5. A second version of the patterns in Figure 6 has been proposed in [29]
which allows to save more field additions and negations without addition of
dummy operations. This proposal share the same weakness as the previous ones
and our attack still applies.



DOUBLING

R1 ← X1, R2 ← Y1, R3 ← Z1

1.



R3← R2
3 (= Z1 ·Z1)

?
R5 ← R1 +R4

R6 ← R2
2

R4 ← −R4

R2 ← R2 +R2

R4 ← R1 +R4

3.



R5 ← R2
4

?
R6 ← R2 +R2

R6← R1 ·R6 (= X1 · 4Y 2
1 )

R1 ← −R6

R1 ← R1 +R1

R1 ← R1 +R5

ADDITION
(mixed coordinates)

Input: P = (X1 : Y1 : Z1) and Q = (X2, Y2)
Output: P +Q = (X3 : Y3 : Z3 : X ′1 : Y ′1 )

R1 ← X1, R2 ← Y1, R3 ← Z1, Rx ← X2, Ry ← Y2

1.



R4← R2
3 (= Z1 ·Z1)

?
?
R5 ← Rx ·R4

R6 ← −R1

R5 ← R5 +R6

?

3.



R9 ← R5 ·R6

?
R8 ← R8 +R9

R4← R3 ·R4 (= Z2
1 ·Z1)

?
?
?

Fig. 5. The first and third patterns used in atomicity of Longa

ADDITION DOUBLING

ADD 1.



R1 ← Z2 · Z2

?
?
?
R2 ← X1 · R1

?
?
?
R1 ← R1 · Z2 (= Z2

2 · Z2)
?
?
?

.

.

.

ADD 2.



R6 ← R2
4

?
?
?
R5 ← Z1 · Z2

?
?
?
Z3 ← R5 · R4

?
?
?

.

.

.

DOUB



R1 ← X1 ·X1

R2 ← Y1 + Y1

?
?
Z2 ← R2 · Z1

R4 ← R1 + R1

?
?
R3 ← R2 · Y1 (= 2Y1 · Y1)
R6 ← R3 + R3

?
?

.

.

.

Fig. 6. The beginning of Giraud and Verneuil’s patterns

Attack on Edward’s Curves. Edward’s representation of elliptic curves has
been introduced in [26]. In a subsequent paper [10], Bernstein and Lange homog-



enized the curve equation in order to avoid field inversions in Edward’s addition
and doubling formulae. For this homogenized representation, points addition and
doubling are both computed thanks to the same formula. Let P = (X1 : Y1 : Z1)
and Q = (X2 : Y2 : Z2) be two points on the curve, the sum R = (X3 : Y3 : Z3)
of P and Q is given by the following system:X3 = Z1Z2(X1Y2 − Y1X2)(X1Y1Z

2
2 + Z2

1X2Y2)
Y3 = Z1Z2(X1X2 + Y1Y2)(X1Y1Z

2
2 − Z2

1X2Y2)
Z3 = dZ2

1Z
2
2 (X1X2 + Y1Y2)(X1Y2 − Y1X2)

, (7)

where d is some constant related to the Edward curve equation. Formulae (7)
works whether P equals Q or not, meaning that it applies similarly for addition
and doubling. This is one of the main advantage of Edward’s representation
compared to the other ones (e.g. Projectives) where such unified formulae do
not exist. For attack illustration purpose, we give in Figure 7 a sequence of
operations which could appear when evaluating the formulae in (7) either to
compute P + P or P +Q.

Addition
1. R1 ← X1Z2

2. R2 ← Y1Z2

3. R3 ← Z1X2

4. R4 ← Z1Y2

...

Fig. 7. First steps of algorithm for addition.

Here, we can exploit the fact that the multiplication X1Z1 is performed twice
if P = Q (i.e. when the formula processed a doubling), which is not the case
otherwise (see Figure 7). We can hence define the two following random variables:{

T1 =
(
X1 · Z1

)1−s · (X1 · Z2

)s
T2 =

(
X1 · Z1

)1−s · (X2 · Z1

)s , (8)

which, under Assumption 1, leads to the recovery of s.

Remark 6. This technique still applies in the case of other unified formulae
(e.g. those introduced in [16]). Indeed, the sequence of operations in [16] present
the same weaknesses as illustrated in Figure 7. The multiplication X1Z1 is per-
formed twice if the current operation is a doubling (see the first and third mul-
tiplications in [16, Sec. 3, Fig. 1]).

In [10], Bernstein and Lange propose a sequence of operations to evaluate (7)
while minimizing the total number of multiplications and squarings. We recall
it in Figure 8.



Addition or Doubling

1. R1 ← Z1Z2

2. R2 ← R2
1

3. R3 ← X1X2

4. R4 ← Y1Y2

5. R5 ← dR3R4

6. R6 ← R1 −R5

7. R7 ← R1 +R5

6. X3 ← R1R6((X1 + Y1)(X2 + Y2)−R3 −R4)
7. Y3 ← R1R7(R4 −R3)
6. Z3 ← R6R7

Fig. 8. First steps of algorithm for addition.

For P = Q or P 6= Q, it may be checked that the sequence in Figure 8
does not contain two terms which share the same operand. This implies that the
attack strategy developed against previous atomic schemes does no longer apply
here. It is however possible to follow another attack strategy relying on some
defect of the double-and-add algorithm relatively to collision attacks. Indeed,
with the double-and-add algorithm, every addition operation leads to perform
an addition by a same point : the base point of the scalar multiplication. If we
assume that the position in the operations flow of such an addition is known,
for example if the most or least significant bit of the exponent is 1, then it is
trivial to identify all the positions of the point additions using Assumption 1.
Remark that this is quite general : this attack does not rely on some property of
the unified sequence of operations described by Bernstein and Lange to compute
point additions on Edward curves. It shows that the double-and-add algorithm
is vulnerable to the attacks we present even when used with unified formulae.

4.3 Distinguishing Common Operands in Multiplications

In this section we apply the collision attack principle presented in Section 4.1
to show how an adversary may deal with Assumption 1. This will conclude our
attack description. As mentioned before, we assume that the field multiplications
are implemented in an arithmetic co-processor with a Long Integer Multiplication
(LIM) followed by a reduction. Many other multiplication methods exist but our
attack can always be slightly adapted to also efficiently apply to those methods
(see Appendix B).

Let ω denote an architecture size (e.g. ω equals 8, 16 or 32) and let us de-
note by (X[t], · · · , X[1])2ω the base-2ω representation of an integer. We recall
hereafter the main steps of the LIM when applied between two integers X and Y .



Algorithm 1: Long Integer Multiplication (LIM)

Input: X = (X[t], X[t− 1], . . . , X[1])2ω , Y = (Y [t], Y [t− 1], . . . , Y [1])2ω .
Output: LIM(X,Y ).
for a from 1 to 2t do

R[a]← 0

for a from 1 to t do
C ← 0
for b from 1 to t do

(U, V )2ω ← X[a] · Y [b] // Operation C1 (resp. C2)
(U, V )2ω ← (U, V )2ω + C
(U, V )2ω ← (U, V )2ω +R[a+ b− 1]
R[a+ b− 1]← V
C ← U

R[a+ t]← C

return R

Let W , X, Y and Z be four independent values of size tω bits. We show hereafter
how to distinguish by side-channel analysis the following three cases:

– Case (0) where the device processes LIM(X,W ) and LIM(Y, Z) (all the operands
are independent),

– Case (1) where LIM(X,Z) and LIM(Y, Z) are processed (the two LIM process-
ings share an operand).

– Case (2) where LIM(X,Z) is processed two times (the two LIM processings
operate on the same inputs).

To summarize, case (i) corresponds to two integer multiplications sharing i
input factor(s).

For such a purpose, and by analogy with our side-channel model in Section
2.1 and Table 3, we denote by C1 (resp. C2) the multiplication in the loop during
the first LIM processing (resp. the second LIM processing) and by O1 (resp. O2)
its result. The output of each ω-bit word multiplication during the loop may
be viewed as a realization of the random variable O1

a,b (resp. O2
a,b). To each of

those realizations we associate a leakage `1a,b (resp. `2a,b). To distinguish between
cases (1), (2), and (3), we directly apply the attack described in Table 3 and we
compute the Pearson’s correlation coefficient:

ρ
(

(`1a,b)a,b, (`
2
a,b)a,b

)
. (9)

In the specific case of the LIM, where all the word products X[a]Y [b] are
processed, on can also average the observations of computations sharing a same
input word Y [b]. This post-processing on the observations leads to evaluate the
following Pearson coefficient in the attack:

ρmean
(

(`1a,b)a,b, (`
2
a,b)a,b

)
= ρ

((1

t

∑
a

`1a,b

)
b
,
(1

t

∑
a

`2a,b

)
b

)
. (10)



In the following section, we actually argue that this second correlation coefficient
gives better results, which is confirmed by our attacks simulations reported in
Section 5.

4.4 Study of the Attack Soundness

This section aims at arguing on the soundness of the approach described previ-
ously to distinguish common operands in multiplications. For such a purpose, we
explicit formulae for the linear correlation coefficients corresponding to Pearson’s
coefficients given in (9) and (10). Indeed, Pearson’s coefficient can be viewed as
an estimator of the linear correlation coefficient: when the number of samples
tends toward infinity, it tends toward the linear correlation coefficient.

For simplicity, the development is made under the assumption that the
device leaks the Hamming weight of the processed data but similar develop-
ments could be done for other models and would lead to other expressions.
Under the Hamming weight assumption, we have `1a,b ←↩ HW(O1

a,b) + B1
a,b and

`2a,b ←↩ HW(O2
a,b)+B2

a,b where the Bia,b random variables are independent Gaus-
sian random variables with zero mean and same standard deviation σ. The three
cases presented in last section, 0-, 1- or 2-shared factors in two t-word integers
multiplications, can be expressed in the following manner :

– O1
a,b = X[a].W [b], O2

a,b = Y [a].Z[b]

– O1
a,b = X[a].Z[b], O2

a,b = Y [a].Z[b]

– O1
a,b = X[a].Z[b], O2

a,b = X[a].Z[b]

We model the integers X,Y, Z,W as vectors of independent, uniformly dis-
tributed, ω-bit word random variables. Furthermore, as seen in the previous
subsection, we can either apply the Pearson coefficient directly using (9), or
take advantage of the properties of the LIM to aggregate all observations per-
taining to a same word of the second factor of the multiplication using (10). In
the former case, the pairs (`1a,b, `

2
a,b) can be seen as t2 samples of a pair of noisy

random variables following distributions which depend on the number of shared
factors between O1 and O2. In the latter case, the pairs of aggregated values
can be seen as t samples of pairs of noisy averaged random variables of the form
1
t

∑t
a=1 HW(U [a]V [b]), with distributions depending on the number of shared

factors.

For everyone of the 6 cases (3 attack cases times 2 types of correlation pro-
cessing – normal or with averaging –), the correlation between the two noisy
random variables can be expressed as a function of statistical parameters of the
Hamming weights of word products (variance and covariance), and the standard
deviation σ of the noise random variables. To get the expressions, the bilinear-
ity of the covariance, the independence of the noise random variables and the
word random variables may be used, which eventually results in the following
formulae:



ρ0 = ρmean
0 = 0;

ρ1 =
cov(HW(X.Z),HW(Y.Z))

var(HW(X.Z)) + σ2
; ρ2 =

var(HW(X.Z))

var(HW(X.Z)) + σ2
;

ρmean
1 =

t2cov(HW(X.Z),HW(Y.Z))

tvar(HW(X.Z)) + t(t− 1)cov(HW(X.Z),HW(Y.Z)) + tσ2
;

ρmean
2 =

tvar(HW(X.Z)) + t(t− 1)cov(HW(X.Z),HW(Y.Z))

tvar(HW(X.Z)) + t(t− 1)cov(HW(X.Z),HW(Y.Z)) + tσ2
,

where the index of the correlation coefficient refers to the attack case (a.k.a. the
number of shared operands between the two word products).

Establishing explicit expressions of the variance and covariance of the Ham-
ming weight of products of uniformly distributed random variables in the general
case remains an open question. There are two favourable cases where we are able
to obtain such expressions.

The parameter ω is small. The distribution considered can be computed and
thus their variance and covariance can be derived. For example for ω = 8, we
have

var(HW(X.Z)) =
1136522959

228

cov(HW(X.Z),HW(Y.Z)) =
279558159

228

Hamming weight of least significant bits. The elementary word multiplication
takes as input two ω-bit words and outputs a 2ω-bit word. This output is stored
in 2 words. If the leakage associated to the multiplication can be decomposed
in two parts, associated to the most significant bits and least significant bits of
the results, then word multiplication mod 2ω can be considered instead of word
multiplication in the ring of the integers. Due to the ring structure of Z/2ωZ,
explicit formulae giving the variances and covariances of interest as function of
ω can be derived.

We have

var(HW(X.Z)) = 1
22ω+2

(
(ω + 1)22ω − 2ω2ω − 1

)
,

cov(HW(X.Z),HW(Y.Z)) = 1
22ω+2

(
2.22ω − (2ω + 1)2ω − 1

)
,

ρ1 =
1

1 + 22ω+2σ2+(ω−1)22ω+2ω

2.22ω−(2ω+1)2ω−1

, ρmean
1 =

1

1 + 1
t
22ω+2σ2+(ω−1)22ω+2ω

2.22ω−(2ω+1)2ω−1

,

ρ2 =
1

1 + 22ω+2σ2

(ω+1)22ω−2ω2ω−1
, ρmean

2 =
1

1 + 22ω+2σ2

t(2.22ω−(2ω+1)2ω−1)+2ω[(ω−1)2ω+1]

.

Note that when t tends towards infinity, the correlation coefficient of averaged
variables tends towards 1 (which is optimal), whereas the correlation coefficient
when considering directly the random variables has some value strictly lower
than 1 independently of the size of the sample.



5 Experiments

In order to validate the approach presented in Section 4.3 and thus to illustrate
the practical feasibility of our attack, we performed several simulation cam-
paigns for various sizes of elliptic curves, namely dlog2(p)e ∈ {160, 256, 384},
implemented on different kinds of architectures, namely ω ∈ {8, 32} using the
Chevallier-Mames et al. ’s scheme. Each experiment has been performed in the
same way. For each (p, ω), we computed Pearson’s correlation coefficients (9) and
(10) between the sample of observations coming from the leakages on operations
C1 and C2 in the two following cases:

– when the secret bit s is equal to 1, that is when an addition is performed
(which implies correlated random variables, see (4)),

– when the secret bit s is equal to 0, that is when a doubling operation is
performed (which implies independent random variables, see (4)).

From the configuration (p, ω), the size t of the observations’ samples used in the

attack can be directly deduced: it equals d log2(p)
ω e. The quality of the estima-

tions of the correlation coefficient by Pearson’s coefficient depends on both the
observations signal to noise ratio (SNR) and t. When the SNR tends towards 0,
the sample size t must tend towards infinity to deal with the noise. Since, in
our attack the samples size cannot be increased (it indeed only depends on the
implementation parameters p and ω), our correlation estimations tend towards
zero when the SNR decreases. As a consequence, distinguishing the two Pearson
coefficients coming from s = 0 and s = 1 becomes harder when the SNR de-
creases. This observation raises the need for a powerful (and robust to noise)
test to distinguish the two coefficients. To take this into account for each setting
(p, ω) and several SNR, we computed an histogram approximation of the distri-
bution of Pearson’s coefficients defined in (9) and (10) over samples of size t. To
build those kinds of templates, leakages have been generated in the Hamming
weight model with additive Gaussian noise of mean 0 and standard deviation7

σ. When there is no noise at all, namely when σ = 0 (i.e. SNR = +∞), one can
observe that the mean of Pearson’s coefficient is coherent with the predictions
evaluated in Section 4.4.

Figures (9-12) illustrate the spreading of the obtained Pearson’s coefficients.
The curves indicate the evolution of the maxima of the distributions, and the
colored cone around the maximum indicates the smallest interval containing
more than half of the probability weight of the Pearson’s coefficient distribution.
This gives us information about the amount of trust we can put into the values
obtained during the attacks. It also shows whether a distinction between the
right hypothesis and the wrong one can easily be highlighted. For each SNR value
(denoted by τ) and each sample size t, let us denote by ρ̂0,t(τ) (resp. ρ̂1,t(τ))
the random variable associated to the processing of (9) for s = 0 (resp. for
s = 1). Clearly, the efficiency of the attack described in Section 4 depends on
the ability of the adversary to distinguish, for a fixed pair (t, τ), the distribution

7 In this context, the SNR simply equals ω/4σ2.



of ρ̂0,t(τ) from that of ρ̂1,t(τ). In other terms, once the adversary has computed
a Pearson coefficient ρ̂ he must decide between the two following hypotheses;
H0 : ρ̂ ←↩ ρ̂0,t(τ) or H1 : ρ̂ ←↩ ρ̂1,t(τ). For such a purpose, we propose here
to apply a maximum likelihood strategy and to choose the hypothesis having
the highest probability to occur. Based on the approximation of the Pearson’s
coefficient we obtained, we computed the value ρlimit

t (τ) for which the values
of the density probability function in both hypotheses are equal. During the
attack, if ρ̂ is smaller than ρlimit

t (τ), the distinguisher chooses H0, otherwise it
chooses H1. Attacks reported in Figures 13 and 14 apply this strategy. They aim
at recovering one bit of the secret scalar.

Correlation for 160-bit curves Correlation for 256-bit curves

Fig. 9. Pre-computations on w =8-bit registers

Correlation for 384-bit curves

Fig. 10. Pre-computations on w =8-bit registers

Remark 7. Since the adversary is not assumed to know the exact leakage SNR,
the maximum likelihood can be computed for several SNR values τ starting from
∞ to some pre-defined threshold. This problematic occurs each time that the
principle of collision attacks is applied.

Remark 8. For a curve of size n = dlog2(p)e and a ω-bit architecture, the adver-
sary can have a sample of t = dnω e observations if he averages over the columns
and t = d(nω )2e without averaging. All experiments provided in this section have
been performed using the “average” strategy.



Correlation for 160-bit curves Correlation for 256-bit curves

Fig. 11. Pre-computations on w =32-bit registers

Correlation for 384-bit curves

Fig. 12. Pre-computations on w =32-bit registers

ω = 8

Fig. 13. Success rate of the attack on 8-bit registers

ω = 32

Fig. 14. Success rate of the attack on 32-bit registers



This attack works for any kind of architecture, even for a 32-bit one (see
Fig. 14), which is the most common case in nowadays implementations. In the
presence of noise, the attack success decreases highly but stays quite successful
for curves of size 160, 256 and 384 bits. In all experiments (Fig. 13-14), we also
observe that the success rate of our attack increases when the size of the curve
becomes larger. This behaviour can be explained by the increasing number of
observations available in this case. Paradoxically, it means that when the the-
oretical level of security becomes stronger (i.e. p is large), resistance against
side-channel attacks becomes weaker. This fact stands in general for horizon-
tal attacks and has already been noticed in [19,58].

6 Discussion About Possible Countermeasures

In this section we first recall classical countermeasures that are usually involved
to defeat simple SCA and vertical advanced SCA, and we discuss about their
(in)efficiency in the horizontal setting. In particular, following the same reason-
ing as in [20], we alert on the fact that a countermeasure effectiveness can be
annihilated when going from the vertical context to the horizontal one. Then,
in Section 6.2, we particularly focus on several countermeasures dedicated to
Horizontal advanced SCA, trying to identify those that are the most effective
against the collisions attack proposed in this paper.

6.1 Overview of Classical Countermeasures on Elliptic Curves

Careful choice of the elliptic curve scalar multiplication. A first natural idea is
to look for a scalar multiplication scheme inherently resistant against our hori-
zontal collisions attack. The choice of a regular scheme (always performing the
same sequence of additions and doublings whatever the secret scalar) seems a
priori pertinent as distinguishing the two operations brings no sensitive infor-
mation. From this point of view, the schemes Double & Add Always [25] or the
Montgomery Ladder [49] look interesting. We recall them hereafter:

Algorithm 2: Double & Add Always Scalar Multiplication

Input: the public point P and a secret scalar s = (s0, s1, · · · , s`−1)2.
Output: sP .

R0 ← O
for i = `− 1 to 0 do

R0 ← 2R0

R1−si ← R0 + P

return R0



Algorithm 3: Montgomery Ladder

Input: the public point P and a secret scalar s = (s0, s1, · · · , s`−1)2.
Output: sP .

R0 ← O
R1 ← P
for i = `− 1 to 0 do

R1−si ← R0 +R1

Rsi ← 2Rsi

return R0

Unfortunately, even if the above algorithms withstand straightforward appli-
cations of our attack, they stay vulnerable to a slight adaptation of it. Let us

respectively denote by R
(i)
0 and R

(i)
1 the values of the registers R0 and R1 after

the ith iteration of the loop.

– For Algorithm 2, we have R
(i+1)
0 = 2R

(i)
0 . This doubling and the addition

performed to compute R
(i)
1 have the first operand R

(i)
0 in common iff si = 0

(otherwise one can assume that they operate on independent operands). It is
therefore possible to recover the value of each bit si by applying the idea of
our horizontal collisions attack8 to the sequences of field operations involved

in both R
(i+1)
0 ← 2R

(i)
0 and R

(i)
1 ← R

(i)
0 + P .

– For Algorithm 3, we have R
(i+1)
1−si+1

= R
(i)
0 +R

(i)
1 . This addition and the subse-

quent doubling performed to compute R
(i+1)
si have the operand R

(i)
0 in com-

mon iff si+1 = 0. It is therefore possible to recover the value of each bit si+1

by applying the idea of our horizontal collisions attack to the manipulations

of the field coordinates of the first operand in both R
(i+1)
1−si+1

← R
(i)
0 +R

(i)
1 and

R
(i+1)
si+1 ← 2R

(i)
si+1 . The same kind of flaw can also be found in the left-to-right

version of the Montgomery Ladder proposed in [35].

This attack is defeated if the step R1−si ← R0 + R1 in Algorithm 3 is replaced
by R1−si ← R1−si + Rsi (which is actually the way Montgomery Ladder is
classically described in the SCA literature – e.g. [31] –).

Randomizing the scalar. This countermeasure was proposed by Coron in [25]. It
consists in changing the value of the secret scalar in the point multiplication for
each computation. For most schemes based on elliptic curves this countermea-
sure may be viewed as part of the protocol since the secret used in the point
multiplication changes at each execution of the protocol. This is for instance the
case with ECDH and ECDSA. This explains why, usually, specific countermeasures

8 Contrary to the attacks described in Section 4, the attack against Algorithms 2 and
3 does not try to detect two similar operations with a common operand but tries to
detect when a same operand is manipulated two times. Even if this scenario is not
exactly the one analyzed in this paper, we think that the corresponding attack stays
efficient as it is based on the same principles.



against advanced (vertical) attacks are not implemented in the elliptic curve set-
ting. When such a countermeasure is added on purpose or part of the protocol,
it does not provide any protection against our attack since it only requires one
power curve.

Blinding the base point. This is the second countermeasure proposed by Coron
in [25]. It consists in modifying the point P by adding a random point R. This
countermeasure does not have any impact against our attack since the adversary
recovers the value of the secret exponent independently from the base point
value.

Randomizing the coordinates. This third countermeasure of Coron [25], which
modifies the coordinates of the point P , has no effect on our attack exactly for
the same reasons as for the second countermeasure. Indeed, the secret scalar is
recovered independently from the base point value.

Splitting the scalar. It is considered in [18,22]. It consists in splitting the scalar
in two parts i.e. in computing [s]P = [s1]P + [s2]P . This countermeasure de-
creases the vertical attacks efficiency by a quadratic factor since the two point
multiplications need to be combined in a so-called second-order attack setting.
Against our attack, this countermeasure is much less efficient. Indeed, its effi-
ciency is only decreased by a factor 2 since we are able to recover the bits of s1
first, then those of s2 in an independent way.

Randomizing the curve or the field. This idea is described in [4, 34, 56] with
different techniques. All these techniques modify the input of the point multipli-
cation but they do not hide the property exploited in most of our attacks, that
is the reuse of the point coordinate Z in the addition operation, and thus turn
out to be inefficient in our setting.

6.2 Investigating Countermeasures inside Modular Multiplication

The previous section has raised the need for new techniques to thwart side-
channel analysis in the horizontal setting. In this section, we deal with this
issue by investigating whether the solutions proposed in [19, 20] and developed
in [57, Sec. 2.7] in the context of RSA can be applied to ECC.

As discussed in Section 4.3 and Appendix B, the multiplication of two in-
tegers U = (U [t], · · ·U [1])2ω and V = (V [t], · · ·V [1])2ω frequently leads to the
processing of the following ω-bit word multiplications:

U [1]V [1] U [1]V [2] · · · U [1]V [t]
U [2]V [1] · · · · · · U [2]V [t]

...
...

. . .
...

U [t]V [1] · · · · · · U [t]V [t]

 .



Essentially, our attack consists in detecting when the same value V is used
for two different modular multiplications. For such a purpose we correlate the
elements of the previous matrix with those of the following one:

U ′[1]V ′[1] U ′[1]V ′[2] · · · U ′[1]V ′[t]
U ′[2]V ′[1] · · · · · · U ′[2]V ′[t]

...
...

. . .
...

U ′[t]V ′[1] · · · · · · U ′[t]V ′[t]

 ,

where V = V ′ for s = 1 and V 6= V ′ for s = 0.

Countermeasures proposed in [19, 20, 57] consist in protecting the U [i]V [j]
(resp. (U ′[i]V ′[j])) products by blinding some of the operands with different
random values and/or by randomizing the order in which they are processed. We
study hereafter the soundness of those techniques when applied in ECC context.

Operands blinding. This countermeasure blinds each U [i] and V [j] with two
random values R1 and R2 such that U [i]V [j] = (U [i]−R1)(V [j]−R2)+R1V [j]+
R2U [i] − R1R2. Then, each of the four terms is computed independently. First
of all, it must be noticed that the multiplicative masking of V [j] (by R1) and
U [i] (by R2) is not effective when U [i] or V [j] is null, which introduces a flaw
that may be exploited by C-PA [30]. Moreover, the values 1

t (
∑
i U [i])(V [j]−R2)

are still correlated with the values 1
t (
∑
i U
′[i])(V ′[j]−R′2) when V = V ′. Thus,

although this countermeasure decreases the attack efficiency, it does not totally
remove the leakage.

Shuffling rows and columns. In this countermeasure, rows and columns of the
matrix are permuted independently. This means that one permutation applies on
the rows and a second one on the columns. However one can notice that the rows
permutation is the same for each column and reciprocally. Shuffling rows has no
impact since U is unknown in the attack. When averaging over each column

of the matrix, we observe that
(

1
t (
∑
j U [j])V [i]

)
i

and
(

1
t (
∑
j U
′[j])V ′[i]

)
i

stay

correlated when V [i] = V ′[i]. However, due to the column permutation, the
adversary needs to guess the value of the permutation in order to observe this
correlation. As a consequence, this countermeasure adds a t! search factor to the
computational time of the attack.

Shuffling and blinding. In this countermeasure, only the V [j] are blinded
using t independent random values associated with each row, while the rows
of the matrix are randomly permuted. Namely, the U [i] are blinded while the
columns of the matrix are permuted. This countermeasure prevents our attack,
but opens new issues such as the manipulation of the correcting factor related
to the blinding part. This value could be exploited in a zero-value attack [30].



Global shuffling. This countermeasure, proposed in [7], starts from the shuf-
fling and blinding countermeasure, but performs the shuffling of rows and columns
simultaneously. This essentially replaces two permutations of size t by a single
one of size t2, hence increasing the security against brute force attack from 2(t!)
to (t2!). Of course, care should also be taken when propagating the carry during
the reconstruction of UV from the U [i]V [j]. This point is successfully addressed
in [7]. Eventually, among shuffling methods, this countermeasure seems to be the
most interesting one to defeat our attack. It is however still an open problem to
formally quantify its effectiveness.

Conclusion

In this paper, we investigated the horizontal correlation attacks, introduced by
Clavier et al. , in the context of ECC implementations. We showed that these
attacks, although fundamentally belonging to the well-known advanced side-
channel attacks, are not covered by traditional countermeasures such as ran-
domization techniques. Indeed, we have shown that we are able to apply such
horizontal attacks on state-of-the-art SCA-protected ECC implementations. We
showed how to defeat all the atomic point addition and doubling schemes pro-
posed in the literature and also the one using the unified formulas, even when
combined with randomization. Our simulations confirmed the validity of our at-
tack for classical sizes of curves. It stays applicable even in a moderate noise
setting.

We feel that this topic opens many areas for further research. Namely, the
formal study and proofs of countermeasures against horizontal attacks is neces-
sary in order to effectively protect implementations against this kind of attacks.
It would also be of interest to investigate the applicability of such attacks to
other domains of cryptography, such as pairings, code-based cryptography or
keyed hash functions.
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17. Benôıt Chevallier-Mames, Mathieu Ciet, and Marc Joye. Low-cost Solutions for
Preventing Simple Side-Channel Analysis: Side-Channel Atomicity. IEEE Trans-
actions on Computers, 53(6):760–768, 2004.

18. M. Ciet and M. Joye. Elliptic Curve Cryptosystems in the Presence of Permanent
and Transient Faults. Cryptology ePrint Archive, Report 2003/028, 2003.
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A Extension to Higher Orders

The leakage definition given in (2) stands for contexts where instantaneous leak-
age about the implementation secret parameter exists. When the latter condition
is not verified, the adversary must consider several intermediate values simulta-
neously to reveal sensitive information. In this context, side-channels are usually
called multivariate by opposition with the first class of attacks that are called
univariate. Except (2), the framework introduced in Section 2.1 and the formal-
ism given in Section 2.2 continue to be valid. For completeness, we generalize the
definition of the leakage coordinates in (2) to encompass contexts where several
intermediate results must be observed to reveal information about a sensitive
internal processing O(k,X):

L[i] = ϕi
(
Vi
)

+ βi (11)

where ϕi and βi are similar as in (2) and where Vi refers to the value manipulated
at time ti.

9

When the general definition (11) is used in place of (2) to model the instanta-
neous leakage, a prerequisite for a multivariate SCA to be possible is that there
exists at least one tuple of coordinates of L that statistically depends on O(s, X).
Actually for Horizontal SCA the number of tuples must be high enough for the
involved statistical tools to be effective.

B Implementations of Modular Multiplications

In Section 4.3, we argued that an adversary may deal with Assumption 1 by
using collisions attack. For such a purpose, we focussed on the classical Long
Integer Multiplication (LIM) and we showed that horizontal collisions attacks can
be applied to distinguish when two multiplications are performed with at least
one common operand. Obviously, in practice, there are several other techniques
to implement the modular multiplication U · V mod p between two tω-bit long
integers. Let us argue here briefly that our attack still applies efficiently in some
of these other cases.

Among all existing modular multiplication techniques, two main methods
can be highlighted: those which perform long multiplications [1, 13, 24] followed

9 For instance, if L is related to the manipulation of two shares M1 and M2 of O, then
one can for instance assume that half of the Vi corresponds to M1 and the other
half to M2. Moreover, (2) is a particular case of (11) where all manipulated data are
assumed to be equal to O.



by a global reduction [5, 36] and those where multiplication and reduction are
interleaved [14,48]. The sequence of operations related to those implementations
always contain the products U [i] · V [j] that were targeted in our attack. Hence,
by applying the same approach as described in Section 4.3, it stays possible
to distinguish the two following cases: “Case (1)” when the device processes
two multiplications with independent operands and “Case (2)” when the device
computes the multiplication of two related operands that jointly depend on a
secret bit s. We recall hereafter some classical modular multiplication techniques.

Schoolbook Multiplication. This technique, also called Long Integer Multipli-
cation (LIM), is a digit-by-digit multiplication algorithm where the products
U [i] ·V [j] are executed in the row order. An alternative approach has been intro-
duced by Comba in [24]: it uses the same principle as the LIM but the products
are taken in the column order.

Karatsuba-Ofman. This technique is very popular and is considered as one of
the most efficient way to multiply two integers. If t = 2n, then U and V can be
expressed as follows10:

U = UH · 2nω + UL and V = VH · 2nω + VL , (12)

where UH , VH (resp. UL, VL) represent the n most significant ω-bit words of U
and V (resp. the n least significant ω-bit words). The core idea of Karatsuba-
Ofman multiplication is to process UV as follows:

U · V = 22nω(UHVH) + 2nω(UHVL + ULVH) + ULVL . (13)

and
UHVL + ULVH = (UH + VL)(UL + VH)− UHVH − ULVL . (14)

It may be checked that the processing of (13) and (14) may be done with 3
multiplications (instead of 4 with the LIM). By applying the idea recursively, the
overall complexity is roughly reduced from t2 to tlog2(3). When such a multi-
plication algorithm is used, only the t final elementary multiplications U [i]V [i],
with i ∈ [1, t] can be involved in a collision attack such as described in Section
4.3. This strongly decreases the efficiency of our attack.

Booth’s Multiplication. The idea here is to rewrite the representation of the
operands (for example by using a signed representation) in order to increase the
number of zeroes in the latter. The advantage of this method is that it allows a
faster multiplication. The multiplication is then performed as the LIM.

Montgomery’s Multiplication. The principle of this method is to perform the
modular multiplication using modular reductions easier to compute, by intro-
ducing an integer R, called the radix. R is defined such that R = 2tω > p.
Every element x ∈ Fp is then represented by X = xR mod p. This is called the

10 If t is odd, it can be right-padded with a zero.



Montgomery representation of x. Assume two elements are given in their Mont-
gomery representation U and V . To compute the Montgomery representation Z
of their product, we first compute the standard multi-precision multiplication of
U and V which is a number of size at most p2. By applying Montgomery reduc-
tion to this result, we obtain Z. Thus, to multiply two elements in Montgomery
representation, we only need to perform a single multi-precision multiplication
followed by a Montgomery reduction. No division is needed.

In practice, this operation can be made more efficient by interleaving the
multiplication and reduction steps. In our case, we will still be able to identify
the elementary multiplications needed for the attack.

C Projective Coordinates

In Weierstrass Equation (3), points on elliptic curves are described in affine
representation, namely using their (x, y)-coordinates. While it seems to be the
simplest way to describe points over (E), addition and doubling formulas using
affine coordinates require to compute the inverse of an element in Fp, which is
a very costly operation. This drawback led embedded systems developers to use
other kinds of representations, such as for instance the projective coordinates that
enable to perform point operations without requiring any field inversion. More-
over this type of representation avoids the need to resort to special treatment for
the point at infinity. This is an advantage compared to the affine coordinates,
since it prevents side-channel attacks that exploits the difference of representa-
tion between O and non-zero points.

To make it clear a point P = (x, y) can be expressed in projective coordinates
by a triplet (X : Y : Z) such that X = xZ and Y = yZ. Following this definition,
point (X : Y : Z) is the same as point (λX : λY : λZ) for λ 6= 0.

Obviously other types of point representations share the same properties
listed above with the projective coordinates. Jacobian coordinates or even the
Edwards’ ones are examples of such representations. They require a small num-
ber of elementary operations in order to add or double points on (E).


