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Abstract

Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many micro-

bial species, but its primary evolutionary role remains controversial. Much recent research

has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead

that intragenomic conflict provides a coherent framework for understanding the evolutionary

origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally

descended bacterial population undergoing HDT through transmission of mobile genetic

elements (MGEs) and genetic transformation. Including the known bias of transformation

toward the acquisition of shorter alleles into the model suggested it could be an effective

means of counteracting the spread of MGEs. Both constitutive and transient competence

for transformation were found to provide an effective defence against parasitic MGEs; tran-

sient competence could also be effective at permitting the selective spread of MGEs confer-

ring a benefit on their host bacterium. The coordination of transient competence with cell–

cell killing, observed in multiple species, was found to result in synergistic blocking of MGE

transmission through releasing genomic DNA for homologous recombination while simulta-

neously reducing horizontal MGE spread by lowering the local cell density. To evaluate the

feasibility of the functions suggested by the modelling analysis, we analysed genomic data

from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This

revealed the frequent within-host coexistence of clonally descended cells that differed in

their MGE infection status, a necessary condition for the proposed mechanism to operate.

Additionally, we found multiple examples of MGEs inhibiting transformation through integra-

tive disruption of genes encoding the competence machinery across many species, provid-

ing evidence of an ongoing “arms race.” Reduced rates of transformation have also been

observed in cells infected by MGEs that reduce the concentration of extracellular DNA

through secretion of DNases. Simulations predicted that either mechanism of limiting trans-

formation would benefit individual MGEs, but also that this tactic’s effectiveness was limited

by competition with other MGEs coinfecting the same cell. A further observed behaviour we
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hypothesised to reduce elimination by transformation was MGE activation when cells

become competent. Our model predicted that this response was effective at counteracting

transformation independently of competing MGEs. Therefore, this framework is able to

explain both common properties of MGEs, and the seemingly paradoxical bacterial behav-

iours of transformation and cell–cell killing within clonally related populations, as the conse-

quences of intragenomic conflict between self-replicating chromosomes and parasitic

MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales

means their contribution to bacterial evolution is likely to be substantially greater than previ-

ously appreciated.

Author Summary

Bacteria are able to rapidly change their characteristics, such as antibiotic resistance, by

acquiring genes from surrounding cells. Some sets of genes, called mobile genetic elements

(MGEs), drive their own movement between bacterial cells by transmitting in viral or

viral-like manners. These selfish genes spread themselves, even if harmful to their bacterial

host. Some bacteria also actively absorb DNA from the environment, a process known as

transformation. Why bacteria employ transformation is controversial. Importing all DNA

molecules at the same rate means cells acquire detrimental and beneficial mutations at

equal frequencies. However, transformation does exhibit a known bias: it preferentially

imports shorter DNAmolecules, meaning it tends to delete, rather than insert, genes. By

incorporating this bias into computer simulations, we show that the spread of a selfish

mobile genetic element between bacteria is inhibited when cells use transformation to

delete it from their genomes. We hypothesised that this ability to delete selfish mobile

genetic elements is an important function of transformation. To test this hypothesis, we

analysed longitudinal bacterial samples from individuals colonised by S. pneumoniae and

found the bacterial cells often differed in the mobile genes they contained while still in the

same host and are, therefore, able to exchange DNA by transformation. Additionally,

transformable bacteria had fewer selfish mobile genes than related nontransformable bac-

teria. We also identified examples of mobile elements that employ various tactics to pre-

vent their host cells undergoing transformation, indicating that some selfish mobile genes

are able to circumvent deletion-by-transformation. Hence, we conclude bacterial evolution

is strongly influenced by an ongoing arms race between cells and selfish mobile genes.

Horizontal exchange of DNA is common in many bacterial species [1,2], and it has become

clinically relevant in recent decades through facilitating the spread of antimicrobial resistance

[3] and evasion of vaccine-induced immunity [4]. However, the horizontal movement of

sequence between cells is an ancient process, as revealed by its substantial effects on the overall

tree of life [5]. This is despite the many risks to a recipient cell from the acquisition of DNA

from an external source, such as the replicative, transcriptional, and metabolic burden of new

genes, as well as the possible disruption of regulatory and protein interaction networks [6]. Per-

haps most importantly, there is the potential for the acquisition of genomic parasites, against

which all genomes of self-replicating cells must defend themselves [7].

Horizontal DNA transfer (HDT), a term we define to encompass all movement of heritable

genetic material whether or not it alters the recipient genome, is frequently driven by such
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parasitic loci, grouped together as mobile genetic elements (MGEs). MGEs encode at least

some of the machinery required for their transfer between cells (horizontal transmission), and

consequently drive two of the three principal mechanisms of HDT in bacteria: conjugation, the

movement of DNA through an MGE-encoded conjugative pilus [8]; and transduction, the

movement of DNA through an MGE-encoded virion particle [9]. To defend themselves, cells

encode means of inhibiting this lateral spread, such as restriction-modification and clustered,

regularly interspaced, short palindromic repeats (CRISPR) systems [10,11]. However, many

MGEs insert into their host cell’s chromosome, and post-integration, these defences cannot

prevent such genomic parasites from subsequently maintaining a stable association with their

host and passing into descendants (vertical transmission).

The third principal mechanism of HDT is transformation, the import of exogenous DNA

that can be incorporated into the genome through homologous recombination, first identified

in S. pneumoniae [12,13]. Natural genetic transformation is not driven by MGEs, but instead

facilitated by competence machinery encoded by the bacterium itself; while not ubiquitous

across bacteria, the competence machinery is usually conserved across a species [14,15]. Typi-

cally, the first step of transformation involves binding of double-stranded DNA (dsDNA) to a

surface receptor (ComEA in gram-positive bacteria; ComE in gram-negative bacteria). This

requires a pseudopilus formed of ComY or ComG proteins (in gram-positive bacteria) or Pil

proteins (in gram-negative bacteria) [14,16,17]. The bound DNA then passes through a special-

ised pore (ComEC in gram-positive bacteria; ComA in gram-negative bacteria) [18] that trans-

locates the nucleic acid into the cytosol in a single stranded form, with the concomitant

degradation of the complementary strand [19,20]. In gram-positive bacteria, ComFA appears to

have a role in driving this DNA import [21]; in the gram-negative bacteriumHaemophilus influ-

enzae, ComM has been identified as playing a role in transformation post-import [22]. Upon

import, this single-stranded DNA (ssDNA) is itself cut into fragments [23,24], with a median

length of approximately 6.6 kb in S. pneumoniae [23]. These ssDNA fragments are then bound

by proteins inside the cell, culminating in the formation of a RecA nucleoprotein filament

[25,26]. This is the form in which the ssDNA can invade the host chromosome duplex, poten-

tially resulting in homologous recombination [27]. The components of this highly-specialised

competence machinery are encoded by multiple nonmobile loci within the cellular genome.

With the apparent exceptions ofHelicobacter pylori and the Neisseriaceae, naturally trans-

formable bacteria tend to tightly control expression of the competence machinery [15], making

it difficult to identify the full range of species in which the system is active [28,29]. Distinct

quorum-sensing systems based on secreted peptide pheromones are used in S. pneumoniae

[30], Bacillus subtilis [31] and Streptococcus thermophilus [32], whereas nonpeptide autoindu-

cers regulate expression in Vibrio cholerae [33]. These signals are then transduced to a regula-

tor of transcription, such as the competence-specific sigma factor σX in S. pneumoniae [34] or

the ComK transcriptional regulator in B. subtilis [35]. In addition to the genes directly required

for competence, these often activate a range of other coordinated activities as part of what

appears to be a broader stress response, referred to by terms such as ‘K state’ or ‘X state’ [15].

Notably, in the well-studied species S. pneumoniae and B. subtilis, competence has been found

to be coordinated with the secretion of bacteriocins that kill noncompetent cells in a process

termed “fratricide” or “cannibalism” [36], as well as cell cycle arrest [37,38]. In B. subtilis, the

noisy transcription of comK results in phenotypic differentiation termed “bet hedging” [39,40],

with the population reaching a dynamic equilibrium in which a subset of the population

actively replicates, while around 15% of the population are competent, nonreplicative, persister

cells [41,42]. Hence, competence is expressed in a diverse set of patterns in different species.

What selective advantage transformation provides to the cell remains controversial [15,43].

Three primary groups of hypotheses have been proposed as explanations. The first is that HDT

Elimination of Mobile Elements by Transformation
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facilitates the acquisition of beneficial genetic polymorphisms and, therefore, can be considered

analogous to eukaryotic sexual reproduction. Straightforward forms of these models can dem-

onstrate that recombining populations often have a higher fitness than nonrecombining popula-

tions [44–46], but such explanations are disfavoured, as they rely upon group selection [47].

Identifying an advantage at the level of the individual is difficult, as the competence system facil-

itates the acquisition of beneficial and deleterious sequence at the same rate in these models.

One explanation is the existence of synergistic epistasis, the situation in which polymorphisms

interact such that their cumulative effect on an individual’s fitness is greater than the sum of

their individual effects [48–50]; however, experimental investigation of adaptive changes from

in vitro evolution experiments has found antagonistic epistasis between mutations to be more

common [51,52]. Another set of models uses the scenario of recombining cells entering a new

niche [53], such that acquired alleles are biased toward being beneficial, as they arise from

donors already better adapted to the new conditions. Transformation can, therefore, be advanta-

geous if competent cells encounter different environments continuously [46] or periodically

[41], akin to the “Red Queen” hypothesis that individuals must unceasingly change to avoid

decreasing in fitness [54]. However, exchanges of DNA between different lineages of transform-

able bacteria are not frequent enough to disrupt predominately clonal population structures

[55–57], with years often elapsing between substantial imports of divergent sequence [58].

The infrequent exchange of DNA between lineages does not preclude exchange of sequence

between closely related genotypes facilitating the repair of deleterious mutations. Owing to the

physical structuring of bacterial populations, it is much more likely that cells will undergo

recombination with clonally related neighbours than with other, divergent lineages. Neverthe-

less, such a mechanism seems unlikely to be the primary purpose of the competence machin-

ery. Transformation cannot distinguish recent point mutations from the alleles that repair such

spontaneous changes; furthermore, previous models have identified the problem that if delete-

rious mutations are frequent and often result in cell lysis, then the pool of DNA available for

transformation will be enriched for lower fitness alleles [48]. Additionally, transformation

events that reverse the most commonly observed mutations in S. pneumoniae are efficiently

inhibited by the mismatch repair system [59,60]. Effective against particular base substitutions

but not large insertions or deletions, this repair system also has lower, but detectable, activity in

B. subtilis [61,62] andH. influenzae [63] and is present in many transformable species [64].

The second set of hypotheses suggest that imported DNA is used as a template to repair

dsDNA breaks [65]. Potential mutagens have been found to increase the rate of transformation

in S. pneumoniae [66], Legionella pneumophila [67], andH. pylori [68], with conflicting data as

to whether the same regulation is observed in B. subtilis [69–72]. However, experimental work

detected no such regulation in S. thermophilus [73] orH. influenzae [71,74]. Similarly, there is

some evidence for transformation increasing resistance to ultraviolet exposure from experimental

work on B. subtilis [70], but the same result was not observed inH. influenzae [74,75] or L. pneu-

mophila [67]. While all bacteria suffer dsDNA breaks as part of normal DNA replication, trans-

formation is found in distantly related species that are unlikely to be subject to particularly high

or variable burdens of DNA damage, such as the nasopharyngeal commensals S. pneumoniae,H.

influenzae, and Neisseria meningitidis. Correspondingly, the SOS response ofH. influenzae lacks

the translesion repair system [76], important in repair of mutagen-induced damage in B. subtilis

and many other species, while both N.meningitidis and S. pneumoniae generally lack identifiable

SOS responses [64,77] despite the import of translesion repair genes into at least one S. pneumo-

niae isolate on a conjugative element [78]. Hence, there is no strong evidence that the compe-

tence system functions as an alternative to, or an enhancement of, the known role of the SOS

response in ameliorating the effects of mutagens, although comparisons between the gene con-

tent of species in different niches are confounded by the associated variation in genome size [79].

Elimination of Mobile Elements by Transformation
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The third set of hypotheses are based on the competence system functioning as a means of

scavenging nucleotides from the environment [43,80]. This is consistent with only the minority

of transforming DNA being integrated into the chromosome [19], as well as competence being

induced by purine starvation inH. influenzae [81] and by nucleoside starvation in V. cholerae

[82]. Although not known to be naturally transformable itself, orthologues of competence

genes in Escherichia coli have been found to facilitate nutrient acquisition in vitro [83]. How-

ever, some species only develop competence in the absence of nutrient starvation, and others

limit the molecules they import in a sequence-specific manner to avoid acquiring DNA from

other species [15]. Additionally, it is difficult to understand how the import of a single DNA

strand as a protected nucleoprotein filament, with the other strand degraded extracellularly,

maximizes the acquisition of nutrients, whereas it is optimised for integration of imported

DNA into the chromosome [41].

Here, we present a novel hypothesis motivated by several key characteristics of HDT by

transformation. The first is that physical structuring of populations means most exchanges are

between isogenic, or near-isogenic, cells. The second is that in vitro and in vivo characterisation

of recombinant S. pneumoniae [4,60,84] andH. influenzae [85] isolates has demonstrated that

transformation results in the integration of DNA tracts with an approximately geometric

length distribution. The majority of such recombinations have been shown to be shorter than

common MGEs [60,85,86], which are typically several kilobases in length and often much

larger [87]. The third is that homologous recombination is able to span regions of dissimilar

sequence in either imported or chromosomal DNA, meaning transformation can alter genome

content [88,89]. As the acquisition of longer DNA molecules is limited by extracellular degra-

dation, cleavage on import [23,24], and restriction endonuclease cleavage of novel sequence

[89], transformation has a tendency to delete, rather than import, genes. Hence, if infected and

uninfected cells exist in close proximity, transformation should act to remove MGEs far more

efficiently than it spreads them, making it an effective means of inhibiting the vertical transmis-

sion of genomic parasites.

Results

Asymmetrical Transfer Benefits Transformable Cells

To explore potential benefits of different evolutionary strategies to bacterial cells, a stochastic

compartmental model was developed to simulate genetic exchange through HDT (see Meth-

ods). The first simulations investigated scenarios in which transformation might facilitate the

import of beneficial foreign DNA, corresponding to either the acquisition of novel loci or the

reversal of Muller’s ratchet by repairing deleterious mutations. These featured two strains of

different fitnesses, one of which was competent for transformation, growing and competing in

a homogeneous environment. Increasing the rate of transformation, τ, was advantageous to the

transformable strain so long as the nontransformable strain was fitter and, therefore, donating

beneficial alleles (Fig 1A). The greater the fitness advantage of the donor, the greater τ needed

to be for the transformable strain to acquire the beneficial allele before it was outcompeted.

However, when the nontransformable strain was less fit, increasing τ was detrimental to the

transformable strain, which could only diversify through the acquisition of deleterious alleles.

This situation was exacerbated if transformation has an associated fitness cost, set at 5% in Fig

1B. In these simulations, the cost of expressing the competence machinery meant the trans-

formable strain was outcompeted by a fitter competitor more quickly, limiting the opportunity

for the acquisition of beneficial loci, and outcompeted a less fit competitor more slowly,

increasing the opportunity for the acquisition of deleterious alleles. Hence, in these simula-

tions, transformation’s ability to facilitate exchange between strains can only provide a long-

Elimination of Mobile Elements by Transformation

PLOS Biology | DOI:10.1371/journal.pbio.1002394 March 2, 2016 5 / 42



term benefit to cells if they continuously encounter potential donors of alleles that increase

their fitness to an extent that outweighs the cost of expressing the competence machinery, and

those beneficial alleles can be acquired more quickly than the transformable cells are outcom-

peted by the potential donors.

The symmetrical shuffling of alleles in this scenario only occurs if donor and recipient have

similarly sized alleles of a shared locus. However, homologous recombination is able to transfer

DNA when there is similar sequence only at both ends of an otherwise divergent locus, even if

the intervening sequence is the length of a typical genomic island [60]. Homologous recombi-

nation can, therefore, change a genome’s content through integrating or deleting components

of the accessory genome, depending on whether the intervening locus is present in the

imported DNA or recipient genome, respectively (Fig 2A). If such allelic variation in the length

of a locus exists, then all else being equal, transformation has a bias towards shorter alleles,

resulting in a tendency to delete, rather than import, sequence [90–93]. This is a consequence

of the necessity for similarity at each end of an imported DNA fragment for it to be stably inte-

grated into a chromosome; any cleavage that separates one of these regions from the other,

which becomes increasingly likely as the distance between the homologous arms lengthens,

prevents the integration of the entire intervening imported sequence [94].

Fig 1. Variation in the effectiveness of transformation when importing DNA from a different strain. (A) Heatmap showing the outcome of simulated
competitions between two strains, of which only one is transformable. Each cell in the grid represents a specific transformation rate (τ) and relative fitness of
the allele at an exchangeable locus within the transformable strain, displayed at the top of each column. Relative fitnesses greater than one indicate the
transformable strain has an initial advantage over the nontransformable strain; relative fitnesses below one indicate the nontransformable strain has the initial
fitness advantage. Each cell is split in two: the “S” component shows the outcome of simulations in which transformation is symmetrical, and the “A”
component shows the outcome of simulations in which transformation is asymmetrical, with the lower fitness allele acquired at a rate 10-fold lower than that
of the higher fitness allele. (B) Heatmap showing the outcome of simulated competitions between two strains, of which only one is transformable, when there
is a cost associated with the expression of the competence machinery. This figure shows the outcome of simulations analogous to those displayed in panel
A, except that the transformable strain has a growth rate, γ, 5% lower than the nontransformable strain to represent the cost of the competence machinery.
This cost was constant across simulations and independent of the relative fitness difference between the alleles of the exchangeable locus. Raw data are
tabulated in S1 Data.

doi:10.1371/journal.pbio.1002394.g001
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Fig 2. Modelling the interaction of HDTmechanisms in a simple bacterial population. (A) Definition of the asymmetry parameter, φ. (B) Illustration of
the exchange of DNA within and between clonally related cells. (C) Description of the stochastic compartmental model of within-population HDT.

doi:10.1371/journal.pbio.1002394.g002
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The parameter φ is included in our model to represent the asymmetric integration of alleles

of different lengths (model parameters are summarised in S1 Table). When φ = 1, both alleles

of such loci are exchanged at an equal rate (symmetrical transformation); if φ< 1, then the

shorter allele is imported at a higher rate than the longer allele, a situation reversed if φ> 1.

Assuming imported DNA fragments have a geometric length distribution with a rate parame-

ter of λR bp
-1 [60], then φ is a function of an insertion’s length, x, of the form φx = (1-λR)

x. The

simulations were run as previously described, with a transformable and nontransformable

strain initially distinguished by a biallelic locus, with one strain having a neutral short allele

and the other a long allele associated with a fitness cost. The transformable cells acquired long

alleles at a rate of φ = 0.1 relative to the short allele (see Methods). In simulations in which the

deleterious insertion was initially present in the transformable strain, transformation was bene-

ficial in facilitating removal of the locus. However, increasing rates of transformation were neu-

tral when the transformable strain was fitter, as any rise in the rate at which the longer allele

was acquired was compensated for by its more rapid removal, a pattern observed whether or

not there was a fitness cost associated with the expression of the competence machinery (Fig

1A and 1B; S1 Data). Hence, asymmetric transformation can purge genomes of deleterious

insertions.

Asymmetrical Transformation Counteracts MGE Spread

In these simulations, the deleterious long alleles were eventually removed from the population

by transformation; following their elimination, there is no longer a benefit to retaining the

competence system. However, deleterious insertions are continuously generated within bacte-

rial populations through MGE movement [57]. We extended the stochastic compartmental

model of bacterial HDT such that the deleterious MGEs transmitted horizontally within a com-

munity of cells at a rate parameterised by β, assumed to be much faster than the rate of MGE

transmission between communities (βi; Fig 2B and 2C). The model simulated the growth, com-

petition, and DNA exchange between susceptible (S) and infected (I) bacteria, isogenic except

for a single locus at which an MGE was present in the I bacteria. Transformation was only able

to eliminate MGEs when they were integrated into the host chromosome. MGEs excised them-

selves from the host chromosome at rate f, which determined the rate at which they transi-

tioned from vertical to horizontal transmission. Simulations were conducted with two MGE

types: “more horizontal” (MH; β = 10−6 unless stated, b = 10, f = 0.05, cM = 0.075, a = 1), which

frequently transmitted between cells, and “more vertical” (MV; β = 10−3 unless stated, b = 5,

f = 0.005, cM = 0.0025, a = 0), which more stably associated with host chromosomes.

The first set of simulations (Fig 3A) compared different φ values against MGEs of varying

transmissibility, with a fixed transformation rate of τ = 10−4. We found that simulations with φ

> 1, which favoured the transfer of insertions, actively drove the spread of MGEs through the

cell population. However, when asymmetry favoured the import of shorter alleles (φ< 1),

transformation was highly effective at inhibiting the spread of MHMGEs over a narrow range

β values, and MVMGEs across all tested β values. Similarly, when φ = 0.1, higher rates of τ

were found to be more effective against MV across all tested values of β, whereas MH could

still spread through the population if sufficiently transmissible (Fig 3B). Sensitivity analyses

indicated elimination of MGEs was dependent upon a sufficiently high concentration of extra-

cellular DNA for homologous recombination, facilitated by higher cell growth rates and greater

stability of extracellular molecules (S1 Fig).

This mechanism was also found to provide a benefit at the level of the population. Indepen-

dent simulations were run in which cells were either nontransformable or transformable (φ =

0.1, τ = 10−4) and, therefore, affected by an associated cost of expressing the competence

Elimination of Mobile Elements by Transformation
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Fig 3. Identifying the necessary conditions for constitutive competence to be effective in inhibiting MGE transmission. (A) Heatmap showing the
outcome of simulations in which MGEs infect cells competent for transformation at rate τ = 10−4. The colour of the heatmap represents the proportion of the
population infected by MGEs over the course of each simulation. Each cell represents a specific MGE transmissibility (β) and transformation asymmetry (φ);
the “MH” and “MV” components show simulations with MGEs having relatively greater propensities for horizontal and vertical transmission, respectively. (B)
Heatmap, displayed as in panel A, but this time comparing the effects of varying β against changing the rate of transformation (τ) with a fixed value of φ = 0.1.
(C) Conditions necessary for transformation to provide a fitness advantage to the population. This heatmap shows the ratio of the total number of cells in two
independent sets of simulations: one in which cells were nontransformable, and another in which the cells were transformable and suffered an associated
cost (cC). In both sets of simulations, either the MH or MVMGEs were present in the populations, each of which was associated with a varying cost to the
host (cM); transformation was only effective at inhibiting the transmission of MV. The higher the value of the ratio, indicated by the heatmap colour, the
relatively greater the size of the bacterial population when cells were transformable. Raw data are tabulated in S1 Data.

doi:10.1371/journal.pbio.1002394.g003
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machinery (cC). Each population featured either MH or MV, with the associated cost of being

infected by such an MGE, cM, varying between simulations. The heatmap summarizing the

ratio of the total cell population recorded from the simulations with identical parameterization,

but differing in whether or not the competence machinery was expressed, is shown in Fig 3C.

In simulations involving MH, against which transformation was ineffective, either the total

number of cells was similar in the matched sets of simulations, if cC was negligible, or the non-

transformable cells were detectably more successful, if cC was high. However, transformation

was effective at inhibiting the spread of MV, and, therefore, in simulations involving this MGE

in which cM was greater than cC, transformation resulted in the cell population being more

numerous when transformable, despite the associated costs of the competence machinery.

Hence, constitutive asymmetric transformation inhibits the vertical transmission of deleterious

MGEs, thereby allowing bacteria to purge such parasites from their genomes, potentially result-

ing in increased fitness of individual cells and populations.

Transient Competence Removes Deleterious MGEs

In many species, competence is only transiently expressed, rather than being constitutive. To

test whether these expression patterns are compatible with inhibiting the spread of MGEs, pop-

ulations were simulated in which cells were only competent in a “C state.” As competence is

often regulated by diffusible signals, cells were assumed to enter C state upon an intercellular

signal, a “C signal” (sC) constitutively generated by all cells, surpassing a threshold, tC. C-state

cells suffered a cost to expressing competence, quantified as a growth inhibition cC, and exited

C state at the rate rC (Fig 4A). These parameters were sufficient to define a cell-density-depen-

dent C state (gC = 10, rC = 0, cC = 0.1), in which cells became irreversibly competent above a

particular density threshold, and a “bet hedging” strategy (gC = 0.1, rC = 0.5, cC = 1), which

resulted in a dynamic equilibrium in which approximately 13% of the population was in C

state, with their growth completely arrested, at any point in time. Neither caused much change

in the overall growth pattern of the population (Fig 4B).

C state can also mimic “fratricide” or “cannibalism” [15]. Lysis of surrounding bacteria,

which are usually near-isogenic clonal descendants of a recent common ancestor, may be

important in raising the concentration of DNA available for transformation. To explore the

biological significance of this, C-state cells were enabled to kill non-C-state cells at a rate kC
(Fig 4A). This inclusion of transient arrest of cell growth and cell–cell killing (cC = 1, kC> 0)

resulted in oscillatory growth patterns in which populations went through alternate phases of

clonal growth and competence. At kC = 10−6, competence was transient but associated with lit-

tle change in population size, while kC = 10−3 drove large population oscillations. Increasing rC
had the opposite effect on oscillation amplitude and frequency (Fig 4B). Large, unexplained

population oscillations have been observed during the growth of S. pneumoniae in a chemostat

in the absence of phage [95,96], and their occurrence during carriage could explain the discrep-

ancy between census and effective population sizes in animal models [97].

Like constitutive competence, transient competence was also effective in inhibiting the

spread of MV (Fig 4C). Irreversible cell-density-dependent C state eliminated MV from the

population more quickly than bet hedging, although the latter strategy confined the costs of

expressing competence to only a subset of the population. Oscillatory growth patterns were

effective when transformation was rapid, necessitating a high value of τ and sufficient DNA

release to sustain transformation throughout the competence period. This was facilitated by the

cycles of cell–cell killing and rapid growth driven by kc> 0, and a shorter period during which

competence-associated arrest of growth applied (S2 Fig). By contrast, the spread of MH was

only inhibited by large oscillations in cell population size (Fig 4C), also driven by higher values
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of kC, although this effect was contingent upon the MGEs being relatively unstable outside the

cell, such that they could not survive extracellularly from one population boom to the next (S3

Fig). Hence, we find that coregulation of cell–cell killing with asymmetric transformation, as

modelled by this C state, can synergistically combine to block the transmission and spread of

MGEs. Horizontal transmission is limited by the large reductions in the density of susceptible

cells during population crashes, which are contemporaneous with large releases of DNA that

can limit vertical transmission through transformation. Importantly, all simulated patterns of

growth and competence were found to be compatible with the elimination of parasitic MGEs.

SomeMGEs have spread successfully while carrying cargo, such as antibiotic resistance, that

can be beneficial to their bacterial host [4,84]. To explore the spread of beneficial MGEs, we allow

Fig 4. Inhibition of MGE transmission by transient competence. (A) Model of a transient competent (“C”) state and cell–cell killing of non-C-state cells.
(B) Graph showing the original cell growth curve (no C state), cells entering the C state in a cell-density-dependent manner, then never leaving (kC = 0 and rC
= 0); a “bet hedging” strategy (kC = 0, gC = 0.1, rC = 0.5) in which only a fraction of the population is competent for transformation at any one time; cells
undergoing small population oscillations (kC = 10−6) and cells undergoing large population oscillations (kC = 10−3) at frequencies determined by rC. (C)
Heatmap summarising the outcomes of simulations comparing patterns of growth and competence expression in panel B with different MGEs. Colours are
scaled as in Fig 3. Results for two representatives of MH and MV are shown, each associated with different rates of HDT. Transformation at the specified τC

rate occurred in the C state, such that the cells that never entered the C state were never competent for transformation. Raw data are tabulated in S1 Data.

doi:10.1371/journal.pbio.1002394.g004
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fitness “costs” to be negative, corresponding to advantages that increase the replication rate. Fig 5

shows the spread of beneficial and deleterious MV when the cell population undergoes irrevers-

ible density-dependent competence (Fig 5A), low-amplitude oscillations (Fig 5B), or high-ampli-

tude oscillations (Fig 5C). Constitutive, density-dependent transformation is the most effective at

eliminating MV, regardless of whether they are detrimental or beneficial. By contrast, transient

competence is able to remove deleterious MV but permit those that are beneficial to the cell to

spread over multiple orders of magnitude variation in τ. This is the consequence of the MGEs

increasing in frequency between phases of competence through both transmission and selection.

However, at the population level, asymmetric transformation is still required to preferentially

acquire beneficial alleles, with tightly regulated expression of competence alone being insufficient

(S3 Fig). Hence, transiently competent populations biased against acquiring insertions through

transformation can often allow beneficial MGEs to spread, while eliminating deleterious MGEs.

Frequent Opportunities for MGE Removal by Transformation

For cells to derive a benefit from transformation acting to remove MGEs, there must be fre-

quent instances of deleterious MGEs being polymorphic within otherwise isogenic cell popula-

tions. We explored the potential for such situations within a dataset of over 3,000 sequenced

isolates of S. pneumoniae, of which 1,715 represented longitudinal sampling of 371 hosts [98].

By performing a systematic search for variation in the three major classes of MGEs found in

the pneumococcus (phage, integrative conjugative elements, and phage-related chromosomal

islands [PRCI] [57]), we uncovered multiple instances of MGE variation between closely

related isolates from the same host sampled on different days, despite the comparative insensi-

tivity of sampling a single colony per timepoint. All but one of the well-characterised examples

involved changes in prophages, which integrate into the genome and do not typically contain

beneficial cargo genes in S. pneumoniae [57].

Phylogenies were constructed that accounted for divergence through interstrain transfor-

mation, thereby reconstructing clonal descent (S4 Fig) [99]. Such analysis of the most common

lineage in the sampled population, BAPS cluster (BC) 1-19F, demonstrated that the MGE vari-

ation within carriage represented changes in the prophage content of stably carried bacteria

with very similar core genomes, rather than a host acquiring new genotypes with stable MGE

content (Fig 6, S2 and S3 Tables). The detectable frequency of integrative MGE acquisition

indicates these otherwise isogenic, recombining populations will frequently consist of coexist-

ing S and I cells. That this coexistence may persist over weeks or longer is suggested by the

repeated identification of the same MGE within a particular host, contrasting with its absence

from other timepoints during individual carriage episodes. However, many bacteria were non-

lysogenic, and there is little evidence of prophages being conserved over substantial propor-

tions of the lineage’s overall evolutionary history, consistent with selection against cells

infected with these parasites (S5 Fig) [57,100,101].

The precise mechanisms by which the MGEs may be eliminated are difficult to differentiate

in populations with few distinguishing genetic markers. However, in one of the rare cases in

which interstrain DNA transfer was detected within a single carriage episode, a transformation

event was associated with the loss of an otherwise stable PRCI (S6 Fig) [57]. This observation

of an MGE apparently being removed by transformation demonstrates the feasibility of the

mechanism underlying our model.

Recurrent Inhibition of Transformation by Prophage

The leaf nodes of the phylogenies shown in Fig 6 are marked according to the status of their

comYC gene, required for effective transformation [4,15]. S5 Fig shows that all these instances
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Fig 5. The effect of different patterns of competence expression on the transmission of MGEs that benefit their host. (A) Heatmap summarising the
outcome of simulations in which MV-type MGEs infected cells that entered the C state in a cell-density-dependent manner (rC = 0). Each cell represents a
specific transformation rate τC and “cost” of the MGE (cM); negative costs imply the MGE benefits the cell. Each cell is split into two components, representing
an MVMGE with high (β = 10−1) or low (10−3) transmissibility. (B,C) Heatmaps, displayed as in panel A, but comparing cells transiently entering the C state
with kC = 10−6 (panel B) or kC = 10−3 (panel C; rC = 0.9 and φ = 0.5 in both cases). Compared to cell-density-dependent C state, these patterns of C state
expression were still effective at inhibiting the spread of MV that were detrimental to the cell, but were a relatively lower impediment to the spread of MV that
benefitted the cell. Raw data are tabulated in S1 Data.

doi:10.1371/journal.pbio.1002394.g005
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Fig 6. Evidence for coexistence of susceptible and infected BC1-19F cells within individual carriage episodes. The displayed phylogeny was
generated based on point mutations, excluding base substitutions likely to have been introduced by recombination (S4 Fig). Leaf nodes are annotated to
indicate whether the comYC gene, required for efficient transformation, is intact (green dash) or disrupted by a prophage insertion (orange dash; see key in
Figs 8 and S5). Specific cases of changes in prophage content within what are likely to represent individual carriage episodes are highlighted. Each
box displays the annotation of a specific prophage (S2 Table), along with sequence read mapping heatmaps beneath showing the depth of coverage across
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of comYC disruption result from the insertion of a prophage into the coding sequence (CDS).

Whereas the integrases of most MGEs target them into the small noncoding fraction of the

bacterial genome, thereby minimising the selective cost imposed on the host, this was the only

example of an MGE disrupting a CDS observed in genomic data from a S. pneumoniae popula-

tion [57]. Past investigation of resistant S. pneumoniae have found a second instance of a geno-

mic island disrupting a CDS; a gene cassette encoding amefAmacrolide resistance

determinant was observed to inhibit transformation through insertion into comEC [102],

which encodes a protein critical for forming the DNA import pore.

The benefit to the MGE of disrupting the competence system of the host cell is illustrated in

Fig 7A and 7B. These display repeats of the simulations shown in Fig 3A and 3B, except that

infection by either MH or MV prevented their host undergoing transformation. The results

indicate MGEs derive an advantage from such abrogation of host competence when the trans-

formation rate was sufficiently high (τ> 10−7), and asymmetry in favour of shorter alleles suf-

ficiently strong (φ� 0.1), to impede their transmission through the population. Hence, in this

model, transformation’s potential to prevent the spread of MGEs provides the selection pres-

sure for such mobile elements to target competence genes for disruption when they integrate

into the genome.

A second lineage from the same population, BC4-6B, included clade A that diversified simi-

larly to BC1-19F, with intermittent import of diversity through transformation and disruption

of comYC (Fig 8). Yet clade B shows little evidence of diversification through transformation or

MGE variation (S7 and S8 Figs). This reduction in all HDT mechanisms is associated with the

stable inheritance of two prophages within clade B, one of which disrupts comYC (S8 Fig),

the viral sequence for individual isolates from a single host: blue for low levels of mapping, indicating the sequence is absent, and red for high levels of
mapping, indicating it is present (see scale in Fig 8). The isolates are ordered by the date of isolation. Epidemiological data are summarised in S3 Table.

doi:10.1371/journal.pbio.1002394.g006

Fig 7. The benefit to MGEs of inhibiting rapid, asymmetric transformation. PanelsA andB repeat the simulations displayed in Fig 3A and 3B,
respectively, with the difference that the MH and MVMGEs in these simulations disrupt the host’s ability to undergo transformation when they insert into the
cell’s chromosome. Raw data are tabulated in S1 Data.

doi:10.1371/journal.pbio.1002394.g007
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Fig 8. Evidence for coexistence of susceptible and infected BC4-6B cells within individual carriage
episodes. The displayed phylogeny was generated based on point mutations, excluding base substitutions
likely to have been introduced by recombination (S7 Fig). Leaf nodes are annotated to indicate whether the
comYC gene, required for efficient transformation, is intact or disrupted by a prophage insertion (see key and
S8 Fig). Specific cases of changes in prophage content within what are likely to represent individual carriage
episodes are highlighted. Each box displays the annotation of a specific prophage (S2 Table), along with
sequence read mapping heatmaps beneath showing the depth of coverage across the viral sequence for
individual isolates from a single host, ordered by the date of isolation. Epidemiological data are summarised
in S3 Table.

doi:10.1371/journal.pbio.1002394.g008
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exemplifying the efficient vertical transmission of prophages in the absence of transformation.

However, as is necessary for competence to be preserved in the species [74], most insertions

into comYC were not successful. Instead, across BC1-19F and clade A of BC4-6B, noncompe-

tent bacteria appear to have been removed by selection at a faster rate than diversification

through interstrain transformation, with “clonal” lineages only rarely found to transmit

between multiple hosts.

MGEs Inhibit Transformation in Many Species

The insertion of a prophage into comYC is not restricted to S. pneumoniae. Searches for ortholo-

gues of the relevant phages’ integrases, which determine the site into which a phage inserts,

identified examples of a prophage targeting the same gene in several other related species; these

included Streptococcus mutans and Streptococcus parauberis, from the same genus, as well as an

example in Lactococcus lactis (Figs 9A and S9). These all inserted at an orthologous, but not per-

fectly conserved, site within the gene (S10 Fig). Unexpectedly, an orthologous integrase was

found in Streptococcus agalactiae, a species not considered to be naturally competent (Fig 9B)

[28,103]. This integrase was part of a phage that inserted into the cas3 gene of S. agalactiae’s

CRISPR2 locus [104]. While disruption of loci that inhibit infection of the cell would not be

expected to benefit a prophage, CRISPR systems are capable of targeting integrated prophages,

resulting in cell suicide, or the post-activation excised, replicating form of the phage [105–107].

Under either scenario, depleting the cytosol of functional CRISPR proteins would provide the

phage with an advantage prior to transmitting horizontally to the next cell. Hence, cellular coun-

termeasures to both defences against horizontal and vertical transmission of MGEs are targeted

by similar integrases directing the insertion of prophages in streptococci and related genera.

A different example was observed in Streptococcus equi [108], in which a prophage inserted

into the comFA gene. Orthologues of this distinct integrase were identified in other species

including the zoonotic pathogen Streptococcus suis, in which the protein again directed a pro-

phage to insert into the host cell’s comFA gene (Fig 9C). Similarly, some strains of Listeria

monocytogenes have a prophage inserted into their comK genes [109], encoding a regulator of

competence. A similar insertion was identified in a representative of Listeria innocua [110], a

further example of which is shown in S11 Fig. Searching for proteins similar to the L.monocy-

togenes prophage integrase identified a prophage inserted into comFA in representatives of the

Bacillus cereus and thuringiensis group (Figs 9D and S11). However, codon alignments demon-

strated that the insertion site within the Bacillus comFA genes was distant from that of the dis-

tinct prophage identified in S. suis (S10 Fig), suggesting the targeting of this gene represented

convergent evolution between the two MGEs. Another orthologue of the integrase found in L.

monocytogenes was present in a phage of Enterococcus faecalis, this time targeting the MGE to

insert into radC (S11 Fig); the same gene was reported to be targeted by a prophage inserted

into B. subtilis that inhibited transformation [111], although the insertion site was not demon-

strated to be the cause of this inability to integrate exogenous DNA. While RadC levels increase

during competence, it does not always appear to be essential for transformation in the labora-

tory [112].

Another previously identified example of MGEs inhibiting competence was the observation

from Aggregatibacter actinomycetemcomitans genomes that some MGEs inserted into comM

[113], which encodes a protein important for efficient incorporation of DNA into the chromo-

some through homologous recombination [22]. MGEs were also inserted into comM in a single

representative of Acinetobacter baumannii [114], and a large insertion was identified in the

same gene inMannheimia succiniciproducens [115]. Searching for orthologues of the integrase

targeting comM from A. actinomycetemcomitans identified examples in other strains of A.
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Fig 9. Selected examples of MGE insertions disrupting chromosomal protein coding sequences. (A) Comparison between Lactococcus lactis

isolates IL1403 and KLDS 4.0325, the latter of which has a prophage inserted into the comYC gene, encoding the major structural component of the
competence pilus. The sequences’ accession codes are given in brackets underneath the isolate names. Blue and orange boxes represent CDSs, with the
direction of their transcription indicated by their vertical position relative to the horizontal line; pink boxes indicate putative MGE CDSs in the same way.
Brown boxes linked by dashed lines mark the fragments of a pseudogene disrupted by MGE insertion. The red bands link regions of similar sequence in the
two loci, as identified by BLAST-like alignment tool (BLAT); the intensity of the colour indicates the strength of the match. The prophage integrase has ~51%
identity with the protein that drives integration into the orthologous gene in S. pneumoniae 670-6B (SP670_2190). (B) Comparison between Streptococcus

agalactiae isolates COH1 and FSL S3-277, the latter of which has a prophage inserted into the cas3 gene of the S. agalactiaeCRISPR2 locus. This prophage
integrase is ~76% identical with that of the prophage disrupting the comYC gene of S. pneumoniae 670-6B. (C) Comparison of Streptococcus suis isolates
P1/7 and 89–590, the latter of which has a prophage inserted into the 3’ half of the comFA competence gene. This prophage integrase is ~46% identical with
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baumannii (S12 Fig), and similar insertions were observed in genes encoding orthologues of

ComM across a diverse set of species, including the animal pathogenMannheimia haemolytica,

the human pathogen Francisella philomiragia, and the plant pathogen Pseudomonas syringae.

The Effect of Competition between MGEs

Despite the potential advantage to individual mobile elements, the disruption of competence

by MGEs is not ubiquitous. To investigate the reasons underlying this, we modelled an MGE

“MI,” intermediate in properties between MV and MH (β = 5×10−6, b = 7, f = 0.01, cM = 0.005,

a = 1), which is able to spread through a nontransformable cell population but is eliminated by

cell-density-dependent, bet-hedging, and transient patterns of competence expression (Fig

10A). However, “MINT,” which has the same properties but disrupts the competence system of

the host cell, is able to spread regardless of the type and rate of transformation of the host cell.

When MI and MINT coinfect the same cell population, both MGEs achieve similar levels of

transmission, mirroring the stability of both prophages within BC4-6B clade B, despite only

one inhibiting competence (S8 Fig). This limits the advantage of strategies such as disrupting

comYC, as the affected cell cannot eliminate superinfecting MGEs, benefitting all other ele-

ments infecting the same host.

Individual MGEs can also escape the consequences of transformation by switching from

vertical to horizontal transmission when a cell becomes competent. This is achieved through

increasing the activation rate, f, to an elevated value fC during C state. Evidence for the rele-

vance of this mechanism is the observation that many prophages [116–118] and integrative

and conjugative elements (ICEs) [119,120] excise from the chromosome in response to ele-

vated levels of RecA, the protein required for homologous recombination. Simulating the

spread of MI with low (f or fC = 0.005) or high (f or fC = 0.5) rates of activation during either

clonal growth or C state shows that relying heavily on vertical transmission (f = fC = 0.005)

makes the MGE highly susceptible to transformation (Fig 10B). By contrast, high levels of acti-

vation outside of C state (f = 0.5) results in substantial costs to the host population, with the

consequent low host cell density reducing the efficiency of horizontal MGE transmission (S13

Fig). However, activating only at a high rate during C state permits stable vertical transmission

when cells are not competent, while greatly reducing elimination through transformation. Nev-

ertheless, cells’ synergistic coupling of reduced cell density with transformation can still

strongly inhibit the spread of MGEs adopting this optimal strategy.

To test whether both these strategies for avoiding elimination by transformation might be

synergistic, the analysis of activation rates was repeated for MINT. This found that the optimal

strategy for MINT was different; as the MGE could not be removed by transformation, it could

achieve fixation in a population without elevated rates of activation in C state, and instead

benefitted from a low rate of activation regardless of the cell’s behaviour (Fig 10C). However,

when both MI and MINT were allowed to compete in the same population, both operating

under optimal strategies (f low and fC high for MI; f and fC low for MINT), MI was more suc-

cessful in a greater number of scenarios (Fig 10D). MINT, by contrast, was more successful only

if there were large changes in population size that inhibited horizontal transmission. This was

the consequence of the rapid activation of MI, following the onset of C state, allowing it to

spread horizontally at a higher rate; additionally, this behaviour facilitated killing C-state cells

in which MINT was also inserted but not yet activated. Hence, elevated fC provides an

that of the prophage inserted into the orthologous gene in Streptococcus equi (SEQ_1765). (D) Comparison between Bacillus cereus isolates MHI 226 and
VD214, the latter of which has a prophage inserted into the 5’ half of the comFA competence gene. The prophage’s integrase is ~44% identical with that of
the prophage inserted into the comK competence gene in Listeria monocytogenes (LMRG_01511).

doi:10.1371/journal.pbio.1002394.g009

Elimination of Mobile Elements by Transformation

PLOS Biology | DOI:10.1371/journal.pbio.1002394 March 2, 2016 19 / 42



Fig 10. The effectiveness of MGE strategies for reducing elimination by transformation. (A) Heatmap summarising the outcomes of simulations
comparing the patterns of cellular competence shown in Fig 4C in the presence of the MGEMI (top row), which has properties intermediate between those of
MH and MV. The colour of each cell represents the proportion of the population infected by the MGE over the course of the simulations. In the second row,
the same simulations are performed, but in this case the MGEMINT inhibits transformation in the host cell. The bottom two rows show the outcome of
simulations in which both MI and MINT infect the same population. (B) Heatmap summarising the outcomes of simulations comparing cell growth patterns
with different MI activation patterns: f, the normal rate of activation, is either low (0.005) or high (0.5), as is fC, the rate of activation in C state. (C) Heatmap
summarising the same simulations shown in panel B, but for MINT. (D) Competition between MINT operating with its optimal strategy (f and fC low) and MI
operating with its optimal strategy (f low, fC high). Both MGEs were allowed to infect the same population in these simulations. The heatmap shows the ratio
of strains infected with MINT to those infected with MI when cells grew and expressed competence for transformation under different strategies. Raw data are
tabulated in S1 Data.

doi:10.1371/journal.pbio.1002394.g010
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advantage to MGEs over competitors in the same cell, regardless of whether they inhibit trans-

formation or not. This contrasts with the disruption of host cell competence, which is an effec-

tive strategy for individual MGEs, but provides the same benefit to all MGEs parasitizing the

same host. Hence the effectiveness of transformation against MGEs is likely to be partly main-

tained by competition between MGEs that infect the same cell.

Transformable Streptococci Harbour Fewer Prophages

Our hypothesis predicts that parasitic MGEs integrated into chromosomes that have not

achieved fixation should be vertically transmitted at a lower rate in recombining populations of

naturally transformable bacteria relative to equivalent nontransformable bacteria. The implica-

tion is, all else being equal, that transformable bacteria should harbour fewer MGEs. This is dif-

ficult to test with draft assemblies of bacterial genomes, which are fragmentary, often

particularly so in regions encoding MGEs; this situation is exacerbated when multiple similar

elements are present in the same genome [57]. An alternative approach is to use complete and

high quality draft genomes from species or genera containing a mix of transformable and non-

transformable bacteria. There are over 140 suitable genome assemblies available for strepto-

cocci, of which a subset have been demonstrated to be naturally transformable [28,32,84,121–

123]; additionally, Streptococcus pseudopneumoniae was assumed to be naturally transform-

able, based on its close relationship with S. pneumoniae and Streptococcus mitis. In agreement

with a previous comment by Beres et al. [124] based on the small number of genomes available

at the time, streptococci demonstrated to be naturally transformable had significantly fewer

prophages than nontransformable streptococci (mean number of prophages per transformable

genome: 0.74; mean number of prophages per nontransformable genome: 1.85; Wilcoxon rank

sum test: W = 3065.5, p = 0.00021; S4 Table and S14 Fig) despite tending to have larger

genomes (mean size of transformable genome = 2,073,450 bp; mean size of nontransformable

genome = 2,002,130 bp; Wilcoxon rank sum test: W = 1702, p = 0.013; S4 Table). However,

there are several caveats to such an analysis. Firstly, the sampling of genomes is nonrandom,

something that this analysis partly seeks to address (see Methods). Secondly, all samples are fil-

tered by selection, and, therefore, low-fitness isolates that accumulate large numbers of MGEs

are likely to be lost from the population quickly, thereby limiting the opportunity for sampling.

Thirdly, there are other systems that inhibit the transmission of MGEs, thereby making the

comparison uncontrolled; it is noteworthy, for instance, that an analogous comparison of

MGEs and CRISPR systems in streptococci did not find evidence for these systems providing a

protective effect against phage infection [125]. In another example, a within-species analysis of

A. actinomycetemcomitans cells, of which a subset were rendered nontransformable by MGE

insertions into the comM gene, reported noncompetent isolates to have an increased suscepti-

bility to further MGE infection, although this was confounded by the associated loss of some

CRISPR functionality [113].

Discussion

The simulations and genomic analyses presented here were motivated by the unanswered ques-

tion of what function underlies the major evolutionary benefit of genetic transformation. The

model structure followed from the assumption that most HDT through transformation would

be between clonally related cells, as a consequence of the physical structuring of populations,

combined with the observations that imports are skewed toward shorter recombinations

[60,85], the import of deletions is highly efficient in the absence of recognition by mismatch

repair [59] or restriction-modification systems [89], and prophages are highly variable over

short evolutionary timescales [57,101]. The resulting model shows a benefit, at the individual
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and group levels of selection, when transformation is sufficiently fast and asymmetric to

remove deleterious MGEs from chromosomes. This benefit was found to be independent of

whether competence was transiently or constitutively expressed; one difference was that inter-

mittent periods of competence alleviated the elimination of some MGEs with beneficial cargo

genes. Coordination of competence with cell–cell killing resulted in oscillatory patterns of

growth that synergistically inhibited both the vertical and horizontal spread of MGEs. “Bet

hedging” could also be effective at inhibiting the transmission of MGEs; elimination of parasitic

elements from the chromosome would be beneficial to the competent subpopulation, while the

noncompetent, more quickly replicating cells would have the advantage when such MGEs

were not present. Models of this behaviour may be improved when the interaction of MGEs

with spores and “persister” cells [42] are better understood.

In order to be plausible, the model depended on clonally related infected and uninfected

cells coexisting within populations that could exchange DNA through transformation. This

was demonstrated to occur using genomic data on within-host bacterial diversity, albeit limited

to a single colony per timepoint. Additionally, a likely example of a detectable transformation

event removing a chromosomally integrated MGE from an infected cell was identified (S6 Fig).

Even if the rate at which transformation events occur at a given locus per unit time is low, there

is the opportunity for a homologous recombination event to be beneficial through removing an

inserted MGE up until the point at which it activates or becomes fixed in the local population;

this contrasts with the hypothesised role of transformation in the repair of dsDNA breaks, for

instance, as in these circumstances homologous recombination is only beneficial if it affects the

damaged locus before repair by other means or the next round of chromosomal replication

occurs.

However, that our hypothesised mechanism is possible and potentially of benefit to cells

does not necessarily imply that it is the primary biological role of transformation. The extent to

which cells benefit from this function may be inferred from the countermeasures employed by

MGEs to avoid elimination by homologous recombination. It is highly unlikely that any func-

tion other than transformation is targeted, based on the plethora of competence genes dis-

rupted by MGE insertions: preventing transcriptional activation of the competence machinery

(comK); eliminating the major structural component of the pseudopilus necessary for DNA

binding (comYC), and inhibiting post-binding processing of the DNA (comFA and comM).

The loci at which these MGEs integrate are unlikely to be random [126], particularly in cases

such as these in which they are conserved across species and genera despite divergence of the

insertion sites (S10 Fig). Additional evidence is the convergent evolution of MGEs inserting

into two distinct sites of the comFA gene in different genera, driven by divergent integrases

with only 34.1% amino acid identity with one another. This is despite MGE insertion sites gen-

erally being enriched outside of CDSs [57,126].

Targeting of competence genes for disruption is not the only mechanism by which MGEs

inhibit transformation events that may eliminate them from the chromosome. Some encode

secreted DNases that degrade exogenous dsDNA. Secreted “streptodornases” have been identi-

fied on prophages in a number of streptococcal and lactococcal species [127]. In B. subtilis, the

prophage-encoded DNase YokF was found to decrease transformation rates by an order of

magnitude [128]. A search of Campylobacter jejuni isolates that transformed at a reduced rate

identified the DNase Dns, encoded by the CJIE1 MGE [129]; the presence of this protein

reduced transformation rates by three orders of magnitude. Similarly, two further orthologous

DNases were identified in the C. jejuniMGEs CJIE2 and CJIE4, which were each capable of

reducing transformation frequencies of their host cells by two orders of magnitude [130].

Recently, an ICE in V. cholerae encoding the IdeA DNase was found to inhibit transformation

by two to three orders of magnitude [131].
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These countermeasures are only advantageous to MGEs if transformation inhibits their

transmission in natural populations (Fig 7). If the condition that the cost of the competence

machinery to cells is less than that of parasitic MGEs is fulfilled (Fig 3C), this implies transfor-

mation is likely to provide a net benefit to cells. That MGEs cause a severe cost to their hosts

seems a reasonable inference, given the presence of defences against horizontal transmission of

MGEs. Analogously, these defences are also part of an arms race, given the existence of MGE-

encoded proteins that inhibit restriction modification [132] and CRISPR systems [133], along-

side the prophage insertion into a CRISPR locus identified in this work. Therefore, while MGE

removal may not be the only activity facilitated by the competence system, there is evidence

that it is a function that provides a fitness advantage to the cell. Hence, this role alone may be

of sufficient selective benefit to drive the evolution of the necessary machinery. However, our

model does not predict that MGEs are likely to become sufficiently adept at preventing trans-

formation that they would render it ineffective over long evolutionary timescales. Only a subset

of MGEs would be expected to disrupt the activity of the competence machinery, because in so

doing they benefit any superinfecting MGEs that would also likely progressively reduce the fit-

ness of their host cell. The accumulation of further deleterious MGEs could potentially be

inhibited by a compensatory improvement in defences against horizontal MGE transmission,

which could account for the occasional success of nontransformable, clonally evolving lineages

such as clade B of BC4-6B, S. pneumoniae CC180 [134], and PMEN2 [84].

The atypical stability of the prophage, and, indeed, the rest of the accessory genome, in

these clonal S. pneumoniae lineages is consistent with transformation being important in

inhibiting the vertical transmission of viral sequences in bacteria. Nevertheless, there are also

alternative mechanisms that can cause the loss of MGEs that should be considered. The first

is spontaneous deletion of sequence; this would usually be disadvantageous if occurring at

random, as it would remove beneficial sequences far more frequently than detrimental

sequences. The second is removal of MGEs by intragenomic recombination events, poten-

tially mediated by the tandem att site duplications flanking many mobile elements. However,

the length of the att sites is generally determined by the MGE, and any att sites long enough

to trigger these rearrangements would be selected against through their inhibition of vertical

MGE transmission. Thirdly, MGEs may drive their own excision. Some conjugative episomes

can switch between integrated and extrachromosomal forms [135], the latter of which are

resistant to elimination by transformation. However, in the case of prophages, it seems very

likely that the majority of excision events result in host cell lysis. This may be inferred from

the large population falls observed on mitomycin C addition to lysogenic populations of rele-

vant species [136], and, furthermore, the existence of apparently altruistic cell death from

“abortive infection” systems upon phage replication would be undermined if cells frequently

survived phage infection [137]. Hence, alongside transformation’s efficiency in deleting DNA

[91–94], it is also a very effective mechanism of eliminating integrated MGEs; the imported

sequence will restore the uninfected insertion site without affecting flanking regions, which

are likely to contain beneficial genes, with no dependency on MGE-encoded loci to facilitate

the process.

The speed and frequency with which phage infection is observed to occur in S. pneumo-

niae, with competence genes disrupted by a subset of such events, contrasts with the observed

population dynamics following the introduction of the anti-pneumococcal polysaccharide

conjugate vaccines [138]. This represents the type of environmental change to which transfor-

mation has been predicted to speed adaptation [42,46], as strains targeted by the vaccine can

evade the effects of immunisation by means of transformation events that switch the bacter-

ium’s serotype through allelic replacement at the relevant genetic locus [139]. There was sub-

stantial opportunity for switching to occur, as serotypes targeted by the vaccine nevertheless
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persisted for several years after the immunisation programme began [138]. Additionally, there

was the appropriate motivation for sequence transfer. Although the fitness disadvantage of

serotypes targeted by the vaccine was small enough for them not to be immediately eliminated

from the population after immunisation began, these serotypes did eventually disappear, sug-

gesting the benefit of acquiring a nonvaccine serotype was greater than the cost of expressing

the competence machinery. However, only a subset of the targeted population showed evi-

dence of diversifying in response to vaccination years after immunization had begun, and the

examples of serotype switching that could be thoroughly characterised were found to repre-

sent the outgrowth of variants that originated prior to the vaccine’s introduction [4,138]. That

the non-prophage accessory genomes of pneumococci, including the genes determining sero-

type, were largely stable post-vaccination [57] confirms it is unlikely that transformation’s pri-

mary role is in facilitating adaptation through sequence diversification. Furthermore, such a

role is not consistent with a gene-centric view of evolution, as if diversification is the primary

purpose of transformation, then the fitnesses of all chromosomal genes in a competent cell are

reduced as a consequence of them potentially being replaced by a different allele from the

pool of exogenous DNA.

By contrast, this “chromosomal curing”model, in which transformation is primarily a

mechanism for maintaining the integrity of a cooperating set of self-replicating genes (be they

a chromosome, chromid, or plasmid) against invasion by selfish parasites, is consistent with

selection at the level of the gene, individual, and group. If the import of DNA from divergent

genotypes is sufficiently rare, then the fitness of individual genes is reduced by a negligible

degree, as their probability of being replaced with a different allele is low. However, each gene

may frequently benefit from the loss of linkage with a genomic parasite. The model is also able

to rationalise the counterintuitive cell–cell killing within clonal populations, which should be

strongly opposed by kin selection, as a mechanism to mitigate against the external threat of

parasitic MGEs.

In this model, exchanges between diverse genotypes can be viewed as an accidental byprod-

uct of otherwise beneficial exchanges between clonally related cells. This does not preclude

some such diversification through HDT being advantageous, particularly after filtering by

selection. Hence, cocirculating lineages within naturally transformable species may differ in

their rates of diversification through transformation by orders of magnitude, without a sub-

stantial fitness difference being evident [138,140]. That the most frequent sequence exchanges

are between near-isogenic cells also explains how transformable bacteria can import substantial

lengths of DNA in minutes, yet maintain pseudoclonal population structures over decades

[57]. Rather than this reflecting the rarity of sequence exchange, such population stability may

reflect the continual antagonism between different mechanisms of HDT.

Methods

Description of the Microevolutionary Model of HDT

We developed a stochastic compartmental model that included four types of compartments:

cells, MGEs, DNA, and a signalling molecule, “C signal.” The overall structure of the model is

displayed in S15 Fig.

Bacterial cell growth (green arrows in S15 Fig) followed a logistic growth model. In the

absence of MGE infections, cells grew at a constant rate γ (set to 0.2 t-1, unless otherwise speci-

fied). Analyses of the model output sensitivity to different values of γ are shown in S1 and S3

Figs. Cells died at a density-dependent rate (brown arrows in S15 Fig) determined by γ and a

carrying capacity, κ (106 in all simulations). For the k cell compartments in the model, the

number of cells (Ni) in compartment i at time t changed at time t+1 through the demographic
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processes of birth and death by Pi, which was distributed as:

Pi;tþ1
� Binðg:dt;Ni;tÞ � Bin

g
Pj¼k

j¼1
Nj;t:dt

k
;Ni;t

 !

In all simulations, the starting inoculum of each distinct genotype was 100 cells. All cell

compartments immutably belonged to one of two strains, each of which could be indepen-

dently parameterised. The “plastic” aspect of cells’ genotypes was defined by two biallelic loci:

the first locus could either be “empty” (allele E1) or have an inserted MGE, M1; analogously,

the second could be empty (allele E2) or contain a different inserted MGE, M2. Upon density-

dependent cell death, one DNAmolecule was released from each locus, the type of which

depended on the host cell genotype (S15 Fig; blue arrows).

Any cell with an “M1” or “M2” allele therefore carried an MGE and, consequently, grew at a

rate γ(1-cM), where cM was the reduced growth of the host cell owing to the cost of the inserted

MGE. This factor only applied to the growth term of the demographic model; cells carrying

MGEs were killed through cell density-dependent death at the same rate as noncarriers. Analo-

gously, cells infected with two MGEs grew at a rate γ(1-cM1) (1-cM2). For cells in the ith com-

partment carrying MGEMq, the number of MGEs that activated per timestep interval at time t,

Aq,i,t, was distributed according to the number of cells Ni at time t and activation rate of the

MGE type q in cell type i fq,i:

Aq;i;t � Binðfq;i:dt;Ni;tÞ

The number of MGEs of typeMq released by activations occurring in cell type i, Rq,i, at time

t (dark blue and purple arrows in S15 Fig) depended on the mean burst size, bq:

Rq;i;t � PoisðbqAq;i;tÞ

As Aq,t determinesMq,t, rather thanMq,t+n where n> 0, the activation and packaging of

MGEs is effectively instantaneous in this model. This means there is no eclipse period. If

included, this would limit the fitness of horizontal transfer by slowing the rate of transmission

between cells, but as this study focused on inhibition of vertical transmission, it did not form

part of this model. The parameter a determined the consequence of MGE activation for the

cell; if a = 1, then MGE activation killed the host cell, as is typical for prophages; but if a = 0,

then MGE activation did not affect the host cell, as is typical for ICEs. As MGE activation

involves excision from the host chromosome and packaging of the MGE DNA, any cells killed

through this mechanism did not release DNAmolecules corresponding to the activated MGE,

but the appropriate allele was released from the other locus (dark blue and purple arrows in

S15 Fig).

Horizontal DNA transfer was modelled as a two-step process using one of two association

parameters: β, the infectivity associated with a particular MGE, and τ, a transformation rate

associated with a particular cell type. The noncellular components of the model were removed

from the environment at a constant “washout” rate, ω, set at 0.6 t-1 unless otherwise specified

(grey arrows in S15 Fig). Analyses of the model output’s sensitivity to different values of ω are

shown in S1 and S3 Figs. Hence, the overall rate at which noncellular agents were removed

from the simulation was a composite of cellular binding and elimination from the extracellular

environment. For the qth DNA compartment, molecules were removed at a composite rate rq
representing “washout” and binding to each of the k cell compartments, each containing Ni
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cells and undergoing transformation at a cell-determined rate τi:

rqðDNAÞ ¼ oþ
X

i¼k

i¼1

tiNi

Similarly, for the qth MGE compartment, elements were removed at a composite rate rq rep-

resenting washout and binding to each of the k cell compartments, each containing Ni cells, at

the MGE-determined rate βq:

rqðMGEÞ ¼ oþ
X

i¼k

i¼1

bqNi

For the qth type of noncellular agent in the model, the number of agents of that type (Nq)

decreased by dq per timestep as determined by the relevant value of rq:

dq � Binð1� e�rq :dt;NqÞ

The noncellular agents were then assigned to cell compartments through a multinomial dis-

tribution, which allowed for differences in τ between cell types. Within each compartment, the

bound DNAmolecules and MGEs were then randomly assigned to individual cells. In cases in

which a single cell was bound to multiple noncellular agents, a single noncellular agent was

randomly selected for interaction at that timestep; MGEs interacted through causing infection

(maroon arrows in S15 Fig), while DNA interacted through causing a transformation event

(orange arrows in S15 Fig). This structure permitted a single association constant to parameter-

ise interactions between noncellular agents and cells in a manner that could be limited by either

partner in the interaction. However, this structure has the disadvantage of artefactual antago-

nism between MGEs and DNA in the cases where both are bound to a single cell, but only one

is selected to interact with the cell. This effect is small unless there are large numbers of noncel-

lular agents interacting with individual cells per timestep. Simulations mirroring those in Figs

3B and 4C were carried out in which cells preferentially interacted with MGEs if DNA was also

bound to the cell, rather than the selection being random; the results are shown in S13E and

S13F Fig, demonstrating that any artefactual antagonism between DNA transformation and

MGE infection was negligible at the dt interval used in all simulations (10−3).

In cases in which MGEs were introduced at a constant rate, such as S13A–S13D Fig, the

number of MGEs of type q entering at each timestep, Eq, was determined by the entry rate, eq,

and the MGE burst size:

Eq � Binðeq:dt; bqÞ

The relative rate at which the “M” and “E” alleles at the two loci were exchanged was also

determined by the asymmetry parameter, φ. In the case of symmetrical transformation (φ = 1),

the rate at which the ith cellular compartment underwent transformation was determined by τi
and the number of available DNAmolecules. These factors also determined the rate at which

any transformation in which the donor and recipient alleles were the same occurred; such

recombinations did not affect cell genotype, but nevertheless depleted DNAmolecules. When

φ> 1, favouring the import of longer alleles, if Bi,q complexes of a DNAmolecule of the qth

compartment, corresponding to an “E” allele DNAmolecule, were bound to a cell of the ith

compartment, with an “M” allele at the relevant locus, the number of transformation events Ti,q
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was distributed as:

Ti;q � Binðφ�1
;Bi;qÞ

Correspondingly, when φ< 1, favouring the import of shorter alleles, if Bi,q complexes of a

DNAmolecule of the qth compartment, corresponding to an “M” allele DNA molecule, bound

to a cell of the ith compartment, with an “E” allele at the relevant locus, the number of transfor-

mation events Ti,q was distributed as:

Ti;q � Binðφ;Bi;qÞ

In all other cases, Ti,q = Bi,q. The default value of φ used in these simulations, 0.1, is a conser-

vative estimate assuming a geometric distribution of imported DNA lengths parameterised

according to the typical length of shorter classes of MGEs (~15 kb) [57] and an estimate of the

transformation length distribution biased away from shorter transformation events (mean

length of ~6.6 kb) [4,60].

The transformation rate also varied through the simulations in cases where the “C state”

was included (S15 Fig), representing the regulated, transient competence state observed in

many bacterial species. The trigger for entering C state was the “C signal,” the levels of which

(S) were determined by the rate of production by all k compartments of cells at a rate of eC per

cell (set to 10 t-1 per cell; light green arrows in S15 Fig), and elimination at the extracellular

washout rate, ω (grey arrow in S15 Fig):

Stþ1
� St þ PoisðeC

X

i¼k

i¼1

Ni;t:dtÞ � Binðo:dt; StÞ

When the C signal surpassed the threshold tC (set to 10
7), the number of non-C-state cells

(N) of compartment i entering C state (Ci
entry) was distributed according to a rate gC (set to 10

t-1 unless stated; red arrow in S15 Fig):

C
entry
i � Binðgc:dt;NiÞ

Independently of the C signal, cells of compartment i in C state (Ci) exited C state at a rate

rC (set between 0 and 0.9 t-1, depending on the growth pattern):

Cexit
i � BinðrC:dt;CiÞ

Cells in the C state grew at a reduced rate γ(1-cC), in which cC was the cost associated with

the C state. In oscillatory growth patterns, C-state cells were subject to growth arrest (cC = 1),

as has been observed in some species in which competence is regulated [37,38]. C-state cells

underwent transformation at a higher rate (τC) than cells not in C state (orange arrows in S15

Fig), and drove cell–cell killing of cells not in the “C state” as a mass action process at a rate kC
(dashed lines in S15 Fig); this mirrors “fratricide” in some streptococcal species or “cannabi-

lism” in B. subtilis [15]. For the k cell compartments in the model, the number of non-C-state

cells (Ni) in the ith compartment killed by this mechanism (Ki) depended on the total popula-

tion of C-state cells across all compartments (Cj), as well as kC:

Ki � BinðkC
X

j¼k

j¼1

Cj:dt;NiÞ
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Therefore, the overall change in the population of compartment i, if such cells were not in

the C state, could be summarised as:

Ni;tþ1
¼ Ni;t þ Pi;t � Ki;t � Ai;t � C

entry
i;t þ Cexit

i;t � Ti!!i;t þ T
!i!i;t �Mi!!i;t þM

!i!i;t

where Pi is the demographic change resulting from cell growth and death; Ki is the reduction as

a consequence of cell-cell killing; Ai is the loss of cells due to MGE activation; Ci
entry is the num-

ber of cells entering C state, while Ci
exit is the number of cells of the same genotype exiting C

state; Ti!!i is the consequence of transformation driving divergence to different genotypes,

while T!i!i is the number of cells being converted to compartment i by transformation; and

Mi!!i represents MGE infection converting compartment i cells to other genotypes, whereas

M!i!i is the reciprocal conversion of other genotypes to compartment i through infection. If

compartment i corresponds to C-state cells, the formula for the population change no longer

includes cell–cell killing, and the impact of the state change terms is reversed:

Ci;tþ1
¼ Ci;t þ Pi;t � Ai;t � Cexit

i;t þ C
entry
i;t � Ti!!i;t þ T

!i!i;t �Mi!!i;t þM
!i!i;t

For MGEs of compartment q (Mq) interacting with k cell compartments, the change

between timesteps can be summarised as:

Mq;tþ1
¼ Mq;t þ Rq;t þ Eq;t � dq

where Rq represents the release of MGEs from host cells through activation, Eq is the spontane-

ous entry of MGEs into the model, and dq represents MGEs lost to infection of cells and MGE

washout and degradation.

For DNA of compartment q (Dq) interacting with k cell compartments, the change between

timesteps can be summarised as:

Dq;tþ1
¼ Dq;t þ Lq;t � dq

where Lq represents the release of DNA through cell lysis (either a consequence of cell-density-

dependent death, MGE activation or cell–cell killing), and dq represents the uptake of DNA by

competent cells and DNA washout and degradation.

The model was implemented using C++, with the GNU scientific library. Each simulation

was run from t = 0 to t = 1,000, with 103 timesteps per unit time. Neither increasing the number

of timesteps per unit time 10-fold, nor doubling the endpoint value of t, substantially altered

the displayed results of simulations involving different MGEs and growth patterns. In some

simulations involving high rates of transformation (τ� 0.01), the number of timesteps per unit

time resulted in detectable approximation errors in some model compartments, but validatory

simulations confirmed this did not affect reported summary statistics. At t = 0, each genotype

started at a frequency of 100 cells. If a single MGE featured in the simulation, then the two

genotypes were uninfected and infected; if two MGEs featured in the simulation, then the start-

ing cells were the two singly infected genotypes. Within each timestep, all cells were considered

capable of replication at the appropriate growth rate. Molecules were first bound to cells and

underwent transformation and MGE infection. Those cells remaining unbound to molecules

entered and exited the C state, were eliminated through cell–cell killing, activation of some

MGEs, or died through cell-density-dependent death at the appropriate per capita rates.

Reported summary values were calculated over the full extent of the simulation and represent

the mean of three simulations. The source code is available for download from https://github.

com/nickjcroucher/mgeTransformation. Parameters are summarised, along with typical val-

ues, in S1 Table; simulation outputs are recorded in S1 Data.
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Characterising Within-Host Pneumococcal Variation

The original dataset comprised 3,085 de novo assemblies of pneumococcal isolates from the

Mae La refugee camp [98]. In order to detect short-term changes in mobile genetic element

content, this study identified 374 hosts associated with two or more isolates of the same multi-

locus sequence type [98] and considered all 1,751 genomes from bacteria carried by these indi-

viduals. A quality threshold of a draft assembly N50 greater than 10 kb and a total draft

assembly length between 1.75 Mb and 2.75 Mb was imposed on this set; genomes that did not

meet these criteria were reassembled with Velvet as described previously [4]. This produced a

final set of 1,715 sequences from 371 hosts. CDSs within these genomes were annotated using

Prodigal [141] with a model trained on the reference sequence of S. pneumoniae ATCC 700669

[142] and translated to generate a database of 3,660,212 proteins. Using BLASTP [143] with an

E-value threshold of 10−10, this database was searched with a single representative sequence

from each of the 355 clusters of orthologous proteins previously found to be specific for ICEs

[57]. This process was repeated using 590 proteins specific for prophages, 142 proteins specific

for phage-related chromosomal islands, and three proteins specific for a particular prophage

remnant [57]. Putative variation in MGE content was inferred where two isolates of the same

sequence type varied by at least five BLASTP matches to proteins characteristic of a single type

of MGE; this identified 281 hosts with candidate short-term accessory genome variation. The

original Illumina sequence reads were then mapped against the variable protein coding

sequences using BWA [144]. This allowed the many cases likely representing the variable

results of de novo assembly to be distinguished from genuine cases of MGE acquisition or loss.

Of the genuine cases, almost all corresponded to changes in prophage content.

In order to determine whether such changes were likely to have occurred within a single car-

riage episode, it was necessary to construct a phylogeny to determine the level of relatedness

between isolates from the same host. This required focusing on lineages commonly identified

within the dataset; based on the candidate instances of within-host MGE variation, BCs 1-19F

and 4-6B were selected (S3 Table), along with one particular case in BC14. A reference genome

assembly was needed for each BC being analysed; S. pneumoniae Taiwan19F-14 was appropriate

for BC1-19F [145], whereas novel references were required for the other two clusters. These

were constructed by combining the original Velvet assemblies [98] with SGA assemblies [146]

using Zorro [147], then ordering the contigs using ACT [148], as described previously [138].

For all cases in which at least two isolates of the relevant BAPS cluster had been isolated from a

single host, the Illumina reads were then mapped against the reference sequence using SMALT

[149] as described previously [138]. The resulting whole genome alignment was then analysed

using Gubbins [99] to generate a maximum likelihood phylogeny while accounting for the fre-

quent transformation events occurring in pneumococcal lineages. These analyses each corre-

sponded well with the isolates’metadata, identifying closely related clusters of isolates from

individual hosts that represented likely individual carriage episodes.

In the instances in which these matched probable cases of MGE variation, regions of similar-

ity between the de novo assemblies of the relevant isolates were identified through a BLAT [150]

comparison of all the contigs in each sequence, using standard settings. This comparison file

was then used to inspect the assemblies using ACT [148]. The originally identified MGE-associ-

ated sequences within the assemblies were then located, and, if part of a larger insertion that had

characteristics of an MGE, the element was manually annotated. In some cases, genomes had to

be reassembled as described for the references, then organised into scaffolds with SSPACE2

[151] as described previously [138], in order to extract the relevant MGE sequence. This also

allowed their insertion sites to be ascertained and classified as described previously [57]. These

annotated MGEs have been submitted to Genbank with the accession codes listed in S2 Table.
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To ensure they represented genuine pneumococcal prophages, they were included in a hierar-

chical clustering of known pneumococcal prophages, constructed based on CDS content as

described previously [134]. Sequence reads were then mapped against these prophages using

BWAwith a requirement for absolute sequence identity for alignment, to minimise mapping of

sequence reads originating from other prophages not in the reference set. These read alignments

were then used to generate the heatmaps shown in Figs 6, 8, S5, S6 and S8.

Distribution of Transformation and MGEs between Streptococcal
Species

The 143 complete or high-quality draft streptococcal genomes listed in S4 Table were scanned

for prophages using Phage_Finder v2.1 [152]. Naturally transformable species within the strep-

tococcal genus were identified based on past reviews and recent experimental work

[28,32,84,121–123]. The comparison of these raw data found naturally transformable isolates

to have significantly fewer prophages than nontransformable isolates (mean number of pro-

phages per transformable genome: 0.74; mean number of prophages per nontransformable

genome: 1.77; Wilcoxon rank sum test: W = 3316, p = 0.00089). To ensure this result was not a

consequence of biased sampling, three genomes from unnamed species were excluded (Strepto-

coccus sp. I and Streptococcus sp. VT), as their competence for transformation could not be

established. Pneumococcal isolates that represented duplicate samples of very closely related

genotypes were also removed (S. pneumoniae R6, a duplicate of D39 [153], and S. pneumoniae

03–4156, 03–4183, 99–4038, and 99–4039, which all share a prophage insertion with the closely

related isolate OXC141 [134]). The results described in the Discussion confirm that the

observed association persists in this curated dataset.

Supporting Information

S1 Data. Summarised values output from simulations used to generate heatmaps in Figs 1,

3, 4, 5, 7, 10, S1–S3 and S13.

(XLSX)

S1 Fig. The effects of changing noncellular component washout rates and cell growth rates

on the spread of MGEs between constitutively competent cells. (A) This heatmap is dis-

played as in Fig 3B, but with the rate at which noncellular components are washed out reduced

by an order of magnitude to ω = 0.06. (B) This heatmap is displayed as in Fig 3B, but with the

rate at which noncellular components are washed out increased to ω = 0.99. (C) This heatmap

is displayed as in Fig 3B, but with the cell growth rate γ halved to 0.1. (D) This heatmap is dis-

played as in Fig 3B, but with the cell growth rate γ doubled to 0.4. Raw data are tabulated in S1

Data.

(PDF)

S2 Fig. Effects of the frequency and amplitude of cell population oscillations on MGE

transmission. (A) This heatmap summarises simulations in which the amplitude (kC) and fre-

quency (rC) of cell population oscillations was varied. The colour of the cells represents the pro-

portion of the cell population infected with MGEs over the course of the simulations. Each cell

is split into two components based on the speed with which the strain entered the C state (gC =

1 or 10). In this panel, the MGE present was MV (β = 10−3), and transformation was parame-

terised as τ = 10−4 and φ = 0.5. (B) This heatmap is displayed as in panel A, but the MGE pres-

ent was MV (β = 10−1) and transformation was parameterised as τ = 10−3 and φ = 0.5. (C) This

heatmap is displayed as in panel A, but the MGE present was MH (β = 5x10-7) and transforma-

tion was parameterised as τ = 10−6 and φ = 10−1. (D) This heatmap is displayed as in panel A,
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but the MGE present was MH (β = 10−6) and transformation was parameterised as τ = 10−3

and φ = 10−1. Raw data are tabulated in S1 Data.

(PDF)

S3 Fig. HDT between transiently competent cells. Panels A–D show the effects of changing

noncellular component washout rates and cell growth rates on the transmission of MGEs

between transiently competent cells. (A) This heatmap is displayed as in Fig 4C, but with the

rate at which DNAmolecules and MGEs were washed out reduced by an order of magnitude

to ω = 0.06; the C signal was still washed out at ω = 0.6 to avoid changing the pattern of bacte-

rial growth. (B) This heatmap is displayed as that in Fig 4C, but with the rate at which DNA

molecules and MGEs were washed out increased to ω = 0.99; again, the C signal was still

washed out at ω = 0.6 to avoid changing the pattern of bacterial growth. (C) This heatmap is

displayed as in Fig 4C, but with the cell growth rate γ halved to 0.1. (D) This heatmap is dis-

played as in Fig 4C, but with the cell growth rate γ doubled to 0.4. Panels E and F show the

effect of oscillatory growth on the competition between two strains entering and leaving C state

in synchrony, but with only one of the strains undergoing transformation in the C state (gC =

10 and rC = 0.5 in both cases). HDT occurs both symmetrically (“S” columns) and asymmetri-

cally (“A” columns). (E) This heatmap is displayed as in Fig 1A. It shows the outcome of simu-

lated competition between two strains, only one of which is competent for transformation in

the C state, undergoing small population oscillations owing to a C-state-associated cell–cell

killing rate of kC = 10−6. (F) This heatmap is displayed as that in Fig 1A. It shows the outcome

of simulated competition between two strains, only one of which is competent for transforma-

tion in the C state, undergoing large population oscillations owing to a C-state-associated cell–

cell killing rate of kC = 10−3. Raw data are tabulated in S1 Data.

(PDF)

S4 Fig. Phylogenetic analysis of BC1-19F isolates from longitudinally sampled hosts using

Gubbins. (A) Maximum likelihood phylogeny of isolates based on point mutations outside of

putative recombination events. Each leaf node is labelled to indicate whether the comYC gene,

required for efficient transformation, is intact. (B) Annotation of the reference genome of S.

pneumoniae Taiwan19F-14. Mobile genetic element-related sequences (the Tn916-type ICE,

PRCIs, and Pneumococcal Pathogenicity Island 1, PPI-1) are marked, as are loci encoding

major antigens (the capsule polysaccharide synthesis, cps, locus, as well as pspA and pspC). (C)

Putative recombinations occurring during the evolutionary history of BC1-19F. Red blocks

represent putative recombinations reconstructed as occurring on an internal branch, which

are, therefore, shared by multiple isolates through common descent. Blue blocks represent

putative recombinations reconstructed as occurring on a terminal branch, and are, therefore,

unique to a single isolate.

(PDF)

S5 Fig. Distribution of prophage sequences within BC1-19F. (A) Maximum likelihood phy-

logeny generated by Gubbins, as displayed in S4 Fig. (B) Hierarchical clustering of prophages

identified within BC1-19F and BC4-6B with previously identified pneumococcal prophages,

based on CDS content. Tips with dashed lines represent those prophages identified within

BC1-19F. (C) CDS annotations of the 14 prophages extracted from representatives of BC1-

19F. (D) Bars marking the extent of the individual prophage, coloured to represent their site of

insertion within the pneumococcal chromosome. Vertical lines within these bars represent

breaks between contigs. (E) Heatmap representing the distribution of prophage sequences

across BC1-19F. Each row corresponds to an isolate in the phylogeny and is coloured blue

where there is a low depth of sequence read mapping (indicating the sequence is absent from
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the isolate’s genome) and red where there is a high depth of sequence read mapping (indicating

the sequence is present in the isolate’s genome). Due to sequence similarity between prophages,

there is extensive crossmapping between related MGEs. Each case of comYC disruption can be

associated with the insertion of a prophage into the gene.

(PDF)

S6 Fig. Apparent removal of an MGE through an interstrain transformation event. (A)

Maximum likelihood phylogeny of BC14 representatives isolated from longitudinally sampled

hosts based on point mutations outside of putative recombination events. Each leaf node is

labelled to indicate whether the comYC gene is intact. Seven transformable closely related iso-

lates from host ARI-0248 are annotated. (B) Distribution of the putative PRCI PRCIARI-0248
between the seven isolates from host ARI-0248, arranged by date of isolation. Each row

beneath the PRCI annotation is a heatmap showing the depth of read coverage across the MGE

sequence. This indicates the PRCI is absent from two isolates, 09B10533 and 09B13198. (D)

Alignment of a putative PRCI from S. pneumoniae TIGR4 with the draft reference genome of

S. pneumoniae 10B00189, which carries PRCIARI-0248, and is, in turn, aligned with the draft

genome of S. pneumoniae 09B13198, which does not. In both draft genomes, the alternating

orange and brown boxes indicate different contigs within the assemblies. Red bands link

regions of sequence similarity, as calculated using BLAT; the intensity of the colour represents

the extent of the similarity. The green box demarcates the extent of an interstrain transforma-

tion event, relative to the reference genome of 10B00198, shared by 09B10533 and 09B13198

(and no other isolates) based on the Gubbins analysis. The recombination spanned PRCIARI-

0248 and appears to have caused its deletion in these two isolates.

(PDF)

S7 Fig. Phylogenetic analysis of BC4-6B isolates from longitudinally sampled hosts using

Gubbins. (A) Maximum likelihood phylogeny of isolates based on point mutations outside of

putative recombination events. Each leaf node is labelled to indicate whether the comYC gene,

required for efficient transformation, is intact. (B) Annotation of the reference genome of S.

pneumoniae 10B02680. Alternating orange and brown blocks represent different ordered con-

tigs in the curated de novo draft assembly. Mobile genetic element-related sequence (the ICE,

PRCIs, prophages, and PPI-1) are marked, as are loci encoding major antigens (the capsule

polysaccharide synthesis, cps, locus, as well as pspA and pspC). (C) Putative recombinations

occurring during the evolutionary history of BC4-6B. Red blocks represent putative recombi-

nations reconstructed as occurring on an internal branch, which are, therefore, shared by mul-

tiple isolates through common descent. Blue blocks represent putative recombinations

reconstructed as occurring on a terminal branch and are, therefore, unique to a single isolate.

(PDF)

S8 Fig. Distribution of prophage sequences within BC4-6B. (A) Maximum likelihood phy-

logeny generated by Gubbins, as displayed in S7 Fig. (B) Hierarchical clustering of prophages

identified within BC1-19F and BC4-6B with previously identified pneumococcal prophages,

based on CDS content. Tips with dashed lines represent those prophages identified within

BC4-6B. (C) CDS annotations of the twelve prophages extracted from representatives of BC4-

6B. (D) Bars marking the extent of the prophages, coloured to represent their site of insertion

within the pneumococcal chromosome. Vertical lines within these bars represent breaks

between contigs. (E) Heatmap representing the distribution of prophage sequences across

BC4-6B. Each row corresponds to an isolate in the phylogeny and is coloured blue where there

is a low depth of sequence read mapping and red where there is a high depth of sequence read

mapping. Due to sequence similarity between prophages, there is extensive crossmapping
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between related MGEs. Each case of comYC disruption can be associated with the insertion of a

prophage into the gene.

(PDF)

S9 Fig. Prophages with integrases similar to that found in the prophage disrupting comYC

in S. pneumoniae 670-6B (SP670_2190). (A) Comparison of Streptococcus mutans isolates

UA159 and NLML9, the latter of which has a prophage inserted into the comYC gene encod-

ing the major structural component of the competence pilus. The accession codes of each

sequence are given in brackets underneath the isolate names. Blue and orange boxes represent

cellular CDSs, with the direction of transcription indicated by their vertical position relative

to the horizontal line; pink boxes represent MGE CDSs in the same way. Brown boxes linked

by dashed lines mark fragments of a pseudogene disrupted by an MGE insertion. The red

bands link regions of similar sequence in the two loci, with the intensity of the colour repre-

senting the strength of the match. The level of protein identity between this prophage inte-

grase and that disrupting the comYC gene of S. pneumoniae 670-6B (SP670_2190) is

annotated. (B) Comparison of Streptococcus parauberis isolates KRS-02109 and KRS-02083,

the latter of which has a prophage inserted into the comYC gene. (C) Comparison between

Lactococcus lactis isolates IL1403 and KLDS 4.0325, the latter of which has a prophage

inserted into the comYC gene. This comparison is also shown in Fig 9A. (D) Comparison

between Streptococcus agalactiae isolates COH1 and FSL S3-277, the latter of which has a pro-

phage inserted into the cas3 gene of the S. agalactiae CRISPR2 locus. This comparison is also

shown in Fig 9B.

(PDF)

S10 Fig. MGE insertion sites within competence-associated genes. (A) Insertion of pro-

phages into comYC. All prophages had an integrase similar to SP670_2190. This section of the

comYC codon alignment shows the prophages identified in Streptococcus parauberis, Strepto-

coccus mutans, and Lactococcus lactis all insert into an orthologous, but not perfectly con-

served, location within the gene. (B) Insertion of MGEs into comM. All MGEs had an integrase

similar to CF65_00446. This section of the comM codon alignment shows the MGEs identified

in Pseudomonas syringae, Francisella philomiragia,Mannheimia haemolytica, and Acinetobac-

ter baumannii all insert into an orthologous, but not perfectly conserved, location within the

gene. (C) Insertion of prophages into comFA. The prophages identified in Bacillus thuringiensis

and Bacillus cereus have integrases similar to LMRG_01511 (and are 80.9% identical to one

another), and both insert at orthologous, but nonidentical, sites within the comFA codon align-

ment. However, the prophage inserted into comFA in Streptococcus suis has a distinct integrase

(only 34.1% identity with that identified in B. cereus), and correspondingly inserts into a differ-

ent site much further downstream in the codon alignment.

(PDF)

S11 Fig. Prophages with integrases similar to that found in the prophage disrupting comK

in Listeria monocytogenes 10403S (LMRG_01511). (A) Comparison of Listeria innocua iso-

lates 9KSM and Clip11262, the latter of which has a prophage inserted into the comK gene,

encoding the orthologue of the main regulator of competence in Bacillus subtilis. The com-

parison is displayed as described in S9 Fig. (B) Comparison of Bacillus cereus isolates MHI

226 and VD214, the latter of which has a prophage inserted into the comFA gene at a site

distinct from that targeted by the prophage displayed in Fig 9C. This comparison is also

shown in Fig 9D. (C) Comparison of Bacillus thuringiensis isolate BMB171 and a representa-

tive of serovar tolworthi, the latter of which has a prophage inserted into the comFA gene.

(D) Comparison of Enterococcus faecalis isolates V583 and RMC65, the latter of which
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has a prophage inserted into the radC gene, often upregulated during competence in multi-

ple species.

(PDF)

S12 Fig. MGEs with integrases similar to that found in the MGE disrupting comM in Aggre-

gatibacter actinomycetemcomitansHK1651 (CF65_00446). (A) Comparison of Acinetobacter

baumannii isolates LAC-4 and 1598530, the latter of which has an MGE inserted into a CDS

encoding an orthologue of ComM, a protein identified as increasing transformation efficiency

inH. influenzae. The comparison is displayed as described in S9 Fig. (B) Comparison ofMan-

nheimia haemolytica isolates D171 and USMARC-185, the latter of which has an MGE inserted

into a CDS encoding an orthologue of ComM. (C) Comparison of Francisella philomiragia iso-

lates ATCC 25015 and FAJ, the latter of which has an MGE inserted into a CDS encoding an

orthologue of ComM. (D) Comparison of Pseudomonas syringae isolates UMAF0158 and

BRIP34881, the latter of which has an MGE inserted into a CDS encoding an orthologue of

ComM.

(PDF)

S13 Fig. Exploring parameter variation and model limitations relating to interactions

between MGEs and cells. Panels A–D show further simulations investigating MGE strategies

for reducing elimination by transformation. A particular issue with the simulations presented

in Fig 10B and 10C was that the high value of f was especially detrimental to an MGE in early

timesteps, when cells are at a low density; these simulations test for the success of different

strategies when MGEs are able to invade a cell population after it had reached its carrying

capacity. (A) Heatmap showing the same simulations as in Fig 10A, except that bursts of

MGEs were introduced at a rate of 10−3 t-1 rather than being polymorphic in the initial popula-

tion. The colours of the cells represent the proportion of the cell population infected by MGEs

over the duration of the simulations. (B) Heatmap showing the overall cell population through

the simulations shown in panel A on a log10 scale. (C) Heatmap showing the same simulations

as in Fig 10B, except that bursts of MGEs were introduced at a rate of 10−3 t-1 rather than being

polymorphic in the initial population. (D) Heatmap showing the overall cell population

through the simulations shown in panel C on a log10 scale. Panels E and F evaluate the impact

of artefactual antagonism between MGE infection and transformation. The model was altered

such that whenever cells bound both DNA and MGEs, MGE infection occurred preferentially

in place of transformation. (E) The set of simulations displayed in Fig 3B are repeated with the

altered model. (F) The set of simulations displayed in Fig 4C are repeated with the altered

model. Raw data are tabulated in S1 Data.

(PDF)

S14 Fig. Distribution of prophages in complete or high-quality draft streptococcal

genomes. The genomes listed in S4 Table are plotted in terms of their overall size and the num-

ber of prophages detected within them. Points are coloured red if the isolate was known to be

naturally transformable, or otherwise blue.

(PDF)

S15 Fig. Structure of the stochastic compartmental model. (A) Links between cellular, DNA,

and MGE compartments in the basic model. Each compartment type is represented by a differ-

ent colour; the cell genotype can change through either interaction with a DNA compartment

(transformation) or an MGE compartment (MGE infection). Not shown are genetically “silent”

transformation and infection events that deplete noncellular compartment populations but do

not affect cell genotypes. Cells replicate according to their growth rate, as modified by the cost

of carried MGEs, and die through density-dependent cell death and activation of some MGEs.
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Density-dependent cell death releases one DNA molecule of the allele present at each locus of

the genotype; cell deaths associated with MGE activation release a burst of MGEs, and one mol-

ecule of the allele present at the nonactivating locus. (B) Incorporation of transient competence

into the model. All cells generate a C signal, and above a threshold level, this signal drives cells

to enter the C state. Cells left C state at a constant per capita rate, independent of the level of C

signal. Genetic alterations through transformation were only possible when cells were in the C

state. The C state also affected the population dynamics, as, in some simulations, the replica-

tion of cells was transiently arrested while they were in C state (if cC = 1 in the “bet hedging”

and oscillatory growth patterns), and C-state cells also inhibited the growth of non-C-state

cells through cell–cell killing (if kC > 0 in oscillatory growth patterns).

(PDF)

S1 Table. Description of model parameters with typical values.

(DOCX)

S2 Table. Properties and accession codes of prophages identified as part of this work. The

annotated prophage sequences shown in S5 and S8 Figs have been deposited in Genbank with

the listed accession codes. The insertion sites of the prophages, described as in [57], are detailed

along with the properties of the host bacterium.

(DOCX)

S3 Table. Epidemiological information association with the sequence data displayed in Figs

6 and 8.

(XLSX)

S4 Table. Distribution of prophages in streptococcal genomes. This table displays the prop-

erties of annotated streptococcal genomes, whether the isolate is known to be naturally trans-

formable, and the summarized output of the Phage_Finder algorithm when applied to this

sequence. These data were used to test for any difference in the distribution of prophages

between isolates known to be naturally transformable and those that are not.

(DOCX)
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