
A&A 529, A153 (2011)
DOI: 10.1051/0004-6361/201016358
c© ESO 2011

Astronomy
&

Astrophysics

Horizontal flow fields observed in Hinode G-band images

I. Methods

M. Verma and C. Denker

Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany
e-mail: [mverma;cdenker]@aip.de

Received 19 December 2010 / Accepted 10 March 2011

ABSTRACT

Context. The interaction of plasma motions and magnetic fields is an important mechanism, which drives the solar activity in all its
facets. For example, photospheric flows are responsible for the advection of magnetic flux, the redistribution of flux during the decay
of sunspots, and the build-up of magnetic shear in flaring active regions.
Aims. Systematic studies based on G-band data from the Japanese Hinode mission provide the means to gather statistical properties
of horizontal flow fields. This facilitates comparative studies of solar features, e.g., G-band bright points, magnetic knots, pores, and
sunspots at various stages of evolution and in distinct magnetic environments, which advances our understanding of the dynamic Sun.
Methods. We adapted local correlation tracking (LCT) to measure horizontal flow fields based on G-band images obtained with the
Solar Optical Telescope on board Hinode. A total of about 200 time-series with a duration between 1–16 h and a cadence between
15–90 s were analyzed. Selecting a high-cadence (∆t = 15 s) as well as a long-duration (∆T = 16 h) time-series enabled us to optimize
and validate the LCT input parameters, which ensures a robust, reliable, uniform, and accurate processing of a huge data volume.
Results. The LCT algorithm produces best results for G-band images with a cadence of 60–90 s. If the cadence is lower, the velocity
of slowly moving features will not be reliably detected. If the cadence is higher, the scene on the Sun will have evolved too much to
bear any resemblance with the earlier situation. Consequently, in both instances horizontal proper motions are underestimated. The
most reliable and yet detailed flow maps are produced using a Gaussian kernel with a size of 2560 km × 2560 km and a full-width-at-
half-maximum (FWHM) of 1200 km (corresponding to the size of a typical granule) as sampling window.
Conclusions. Horizontal flow maps and graphics for visualizing the properties of photospheric flow fields are typical examples for
value-added data products, which can be extracted from solar databases. The results of this study will be made available within the
“small projects” section of the German Astrophysical Virtual Observatory (GAVO).

Key words. Sun: photosphere – Sun: surface magnetism – sunspots – Sun: granulation – techniques: image processing –
methods: data analysis

1. Introduction

Data from space do not suffer the deleterious effects of Earth’s
turbulent atmosphere, which blur and distort images so that fea-
tures may fade into obscuration, which makes it difficult to fol-
low them from image to image. The huge volume of the Hinode
G-band images with good spatial resolution, cadence, and cover-
age provide time-series of consistent quality to quantify photo-
spheric proper motions, which can be used in comparative stud-
ies.

Various techniques have been developed in the past decades
to measure horizontal proper motions on the solar surface.
Basically, they can be divided into two classes. The first class
includes feature tracking (FT) methods, which follow the foot-
prints of individual features in images of a time-series (see e.g.
Strous 1995). Tracking facular points of opposite magnetic po-
larity in an emerging flux region effectively demonstrated the
potential of the FT techniques (Strous et al. 1996). However, the
steps of image processing (segmentation, labeling, and identifi-
cation) rely on prior knowledge about the object under investi-
gation. Therefore, FT methods seem to be better suited for case
studies rather than bulk processing of huge data volumes, where
the reduction of dimensionality is a desirable feature. The ball-
tracking method developed by Potts et al. (2004) can also be
subsumed under FT techniques, because artificial tracer particles

are introduced to follow the footprints of local intensity min-
ima. The balltracking method works well for granulation so that
it is a good choice for the characterization of supergranulation
(Potts & Diver 2008). Nevertheless, it might introduce a scale
dependence when tracking on other (small-scale) features such
as bright points, penumbral grains, and umbral dots.

The second class is based on local correlation track-
ing (LCT), where displacement vectors are derived by cross-
correlating small regions in consecutive images of a time-series.
The principles of LCT are laid out in the seminal work of
November & Simon (1988). Leaving behind the underlying ve-
locity assumption of LCT, Schuck (2006) developed a technique
to track optical flows and named it the differential affine velocity
estimators (DAVE). Chae & Sakurai (2008) presented a formula-
tion of the non-linear case and called it accordingly the nonlinear
affine velocity estimators (NAVE). These authors also provide a
detailed parameter study of LCT, DAVE, and NAVE based on
images reflecting analytical solutions of the continuity equation
as well as on magnetogram data from Hinode and MHD simula-
tions. Similarly, Welsch et al. (2007) compared these velocity in-
version techniques based on MHD simulations, with the known
velocity field.

Various other technical aspects have to be considered while
implementing techniques for optical flow tracking. Because in-
terpolations are required in the various data reduction steps,
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Fig. 1. Calibrated G-band images of active regions a) NOAA 10960 and b) NOAA 10930 observed on 2007 June 4 and 2006 December 7,
respectively. The FOV is 111′′ × 111′′. The annotation of the axes refers to heliocentric coordinates given in seconds of arc. The region in the
rectangular white box is used for further analysis, zooming in on a quiet Sun region that contains numerous G-band bright points that outline the
supergranular boundaries. The images were normalized in a way that the mode of the quiet Sun intensity distribution corresponds to unity.

we refer to Potts et al. (2003), who describe the systematic er-
rors that can be introduced by unsuitable interpolation schemes.
More recently, Löfdahl (2010) discussed image-shift measure-
ments in the context of solar wavefront sensors, which are also
applicable to the LCT implementations.

Hinode G-band images offer an excellent opportunity for
systematic statistical studies of flow fields because of their uni-
form quality in the absence of seeing distortions, thus allowing
us to directly compare flow fields in different solar settings. In
Sect. 2 we introduce the high-cadence and long-duration datasets
that are used to find the optimal parameters for computing LCT
maps based on time-series of Hinode G-band images. The im-
plementation of the algorithm is described in Sect. 3. Section 4
presents the results of this parameter study and justifies our
choice of LCT parameters, which will be used to create value-
added data to complement the Hinode database. The most impor-
tant parameters are summarized in Sect. 5, which also introduces
some of the future uses of such a database.

2. Observations

Images obtained in the Fraunhofer G-band (bandhead of the CH
molecule at λ430.5 nm) have high contrasts, and small-scale
magnetic features can be easily identified with bright points
(Berger et al. 1995). Despite the observational advantages of
this “proxy-magnetometry” (Leenaarts et al. 2006), the theo-
retical description of the molecular line-formation process is
far from easy (cf. Sánchez Almeida et al. 2001; Steiner et al.
2001; Schüssler et al. 2003). The LCT techniques, however, can
take full advantage of the high contrast and the rich structural
contents of G-band images. On Hinode (Kosugi et al. 2007)
these observations are carried out by the broad-band filter im-
ager (BFI) of the Solar Optical Telescope (SOT, Tsuneta et al.
2008).

Our initial selection criteria were that at least 100 G-band
images had to be recorded on a given day, which should addi-
tionally have a cadence of better than 100 s. It turned out that
these criteria restricted us to data with only half the spatial reso-
lution (0.11′′ pixel−1), where 2 × 2 pixels were binned into one.
In total 48 datasets with 2048×1024 pixels and 153 datasets with
1024 × 1024 pixels were selected for further analysis. The time

intervals covered by these datasets range from one to 16 h. The
bulk statistical analysis will be presented in forthcoming publi-
cations. Here, we will discuss the LCT algorithm in detail and
justify our choice of input parameters. For this purpose, we se-
lected two datasets: one with a high cadence and another one
with a long duration. In addition, we picked a dataset without
binning to study the dependence of flow maps on the spatial res-
olution of the input data.

2.1. High-cadence sequence

The LCT depends on several input parameters such as the time
interval between successive images and the sampling window’s
size and form. We analyzed a one-hour time-series with a ca-
dence of 15 s to validate the intrinsic accuracy of the LCT al-
gorithm. The data were captured from 14:27–15:27 UT on 2007
June 4 (see Fig. 1a). The time-series contains 238 images with
1024 × 1024 pixels. The observations were centered on the ac-
tive region NOAA 10960, which was located on the solar disk
at heliocentric coordinates E630′′ and S125′′ (µ = 0.75). The
active region was in the maximum growth phase and had a com-
plex magnetic field configuration. NOAA 10960 was classified
as a βγδ-region and was the source of many M-class flares, in-
cluding a major M8.9 flare at 05:06 UT on 2007 June 4, which
has been analyzed in a multi-wavelength study by Kumar et al.
(2010).

2.2. Long-duration sequence

Solar features evolve on different time scales from about five
minutes for granulation to several tens of hours for supergranu-
lation. Obviously, the time over which individual LCT maps are
averaged plays a decisive role in the interpretation of these aver-
age flow maps. Hence, we selected a time-series with 16 hours of
continuous data captured on 2006 December 7 (see Fig. 1b). This
long-duration sequence starts at 02:30 UT and ends at 18:30 UT.
It includes 960 images with 1024×1024 pixels and has a cadence
of 60 s. Owing to memory constrains imposed by the subsonic
filtering we chose an area of 210×595 pixels centered on a region
with granulation and G-band bright points (white box Fig. 1b).
This region is to the west of the active region NOAA 10930,
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located at heliocentric coordinates E777′′ and S88′′ (µ = 0.59).
The sunspot group was classified as a βγδ-region that exhibits
a complex magnetic topology and produced numerous C-, M-,
and X-class flares. This region has been extensively studied, es-
pecially around the time of an X3.4 flare on 2006 December 13
(e.g., Schrijver et al. 2008). The LCT techniques were used by
Tan et al. (2009) to study horizontal proper motions associated
with penumbral filaments in a rapidly rotating δ-spot.

2.3. High-spatial resolution sequence

Only a few datasets of G-band images exist with the full spatial
resolution of 0.055′′ pixel−1 and a cadence suitable for LCT. We
selected a one-hour time-series, which was acquired starting at
04:00 UT on 2006 November 26. This high-spatial resolution
sequence contains 118 images with 2048×2048 pixels and has a
time cadence of about 30 s. The observations were centered on a
quiet Sun region near the disk center at heliocentric coordinates
E108′′ and S125′′ (µ = 0.99), which contains only a few G-band
bright points and no major magnetic flux concentrations.

3. Implementation of the LCT algorithm

3.1. Preprocessing of the G-band images

The data analysis was carried out in the interactive data language
(IDL)1. Datasets are split in 60-min sequences with 30 min over-
lap between consecutive sequences. In preparation for the LCT
algorithm, basic data calibration was performed, which consists
of subtraction of dark current , correction of gain, and removal of
spikes caused by high-energy particles. Figure 1 contains sam-
ple G-band images for the high-cadence and the long-duration
dataset after basic calibration. After initial data calibration, the
geometric foreshortening corrected and the images were resam-
pled in a regular grid with a spacing of 80 km × 80 km, i.e.,
the images appear as if observed at the center of the solar disk.
Residual effects of projecting the surface of a sphere onto a plane
are neglected, since the FOV of the G-band images is still rela-
tively small. A grid size of 80 km was chosen so that the fine
structure contents of the G-band images were not diminished.
Pixels close to the solar limb were projected onto several pix-
els in planar coordinates. Thus, the accuracy of the flow maps
at these locations is not as good as for locations close to disk
center.

In a 60-min sequence are l = 0, 1, 2, . . . , L− 1 calibrated and
deprojected images, where L is the total number of images in a
particular sequence. For an image with N×M pixels the intensity
distribution is represented by i(x, y) with x = x0, x1, . . . , xN−1

and y = y0, y1, . . . , yM−1 as pixel coordinates. The indices are
typically dropped to ease the notation. The data processing
makes extensive use of the fast fourier transform (FFT). The
FFT of the intensity distribution i(x, y) is simply denoted by
F (i(x, y)).

3.2. Aligning the images within a time-series

In principle, images could be aligned using the pointing infor-
mation of the spacecraft. However, we calculate shifts between
consecutive images il−1(x, y) and il(x, y) by computing the cross-
correlation using only the central part of the images, which is
half of the original image size. These shifts are then applied in

1 www.ittvis.com

succession to align all images with respect to the first image us-
ing cubic spline interpolation with subpixel accuracy. The signa-
ture of the 5-min oscillation is removed from the time-series by
applying a 3D Fourier filter. This filter, sometimes called a sub-
sonic filter, has a cut-off velocity of cs ≈ 8 km s−1 corresponding
to the photospheric sound speed. Because the subsonic filter uses
a 3D Fourier transform, some edge effects are sometimes noted
for the first and last few images of a time-series. For this rea-
son we decided to discard the images during the first and last
two minutes of the time-series after applying the subsonic filter.
Therefore, the final time-series is shortened by this amount of
time (see Sect. 3.5).

3.3. LCT algorithm

The LCT algorithm is based on ideas put forward by November
& Simon (1988). The algorithm was adapted to subimages with
sizes of 32× 32 pixels corresponding to 2560 km × 2560 km, so
that structures with dimensions smaller than a granule will con-
tribute to the correlation signal. Because cross-correlation tech-
niques are sensitive to strong intensity gradients, a high-pass fil-
ter was applied to the entire image, suppressing gradients related
to structures larger than granules. The high-pass filter is imple-
mented as a Gaussian with a FWHM of 15 pixels (1200 km). To
indicate that we refer to an subimage with 32 × 32 pixels and
not the entire image, we use the notation i(x′, y′). The Gaussian
kernel used in the high-pass filter then becomes

g(x′, y′) =
1

2πσ2
exp

(

− r(x′, y′)2

2σ2

)

, (1)

where σ = FWHM/(2
√

2 ln 2) and r(x′, y′) = (x′2 + y′2)1/2. The
high-pass filtered image can be expressed as

ihigh(x, y) = i(x, y) − i(x, y) ⊗ g(x′, y′), (2)

where ⊗ denotes a convolution. The result is an image rich in
detail, where the low spatial frequencies have been removed.

The core of the LCT algorithm is the cross-correlation
cl(x, y, x′, y′) computed over a 32 × 32 pixel region centered on
the coordinates (x, y) for each pixel in image pairs il−1(x, y) and
il(x, y), which can be written as

cl(x, y, x′, y′) = ℜ{F −1[F (il−1(x, y, x′, y′)g(x′, y′)
)

×F ∗(il(x, y, x′, y′)g(x′, y′)
)]}

d(x′, y′), (3)

where g(x′, y′) denotes a weighting function also serving as
an apodising window. This function has the same form as the
Gaussian kernel previously used in the high-pass filter. This en-
sures that the displacement vectors are computed without pref-
erence in azimuthal direction. We also multiplied the cross-
correlation functions by a mask d(x′, y′) so that the maximum
of the cross-correlation function is forced to be within a distance
of cs, lim = 12 pixels from its center. The typical time interval
between consecutive images is in the range from 60–90 s, i.e., a
feature moving at the photospheric sound speed of cs ≈ 8 km s−1

would travel 480–720 km, corresponding to 6–9 pixels. This jus-
tifies our choice of cs, lim, which also takes into account some
numerical errors. The position of the maximum of the cross-
correlation function is calculated with subpixel accuracy by a
parabolafit to the neighboring pixels. The numerical accuracy of
the parabola fit is about one fifth of a pixel or 16 km on the solar
surface, which corresponds to about 200 m s−1 for proper mo-
tions measured from a single pair of G-band images. Therefore,
many flow maps had to be averaged to determine reliable hori-
zontal proper motions.
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Fig. 2. a) The average (60-min) G-band image after correction of geometrical foreshortening corresponding to the G-band image shown in Fig. 1a.
The red arrows indicate the magnitude and direction of the horizontal proper motions. Arrows with a length corresponding to the grid size
indicate velocities of 1 km s−1. b) Adaptive and fixed intensity thresholds are used to identify conglomerates of G-band bright points, granulation,
penumbrae, umbrae, and pores. Color codes are used to point out c) flow speed and d) direction in high-resolution flow maps. The flow direction is
encoded according to the 12 colors of the compass rose. Sources and sinks in a flow field can be identified in e) a divergence map. The f) forward
cork maps provides additional means of visualizing converging motions. Test particles are subsequently superimposed on an average G-band
image after they have followed the flows for two (blue), four (orange), and eight (red) hours. The conspicuous network of corks is related to the
spatial scales of the meso-and supergranulation.

3.4. LCT data products

Once the individual flow maps were calculated they were saved
in binary format. In addition, average maps of horizontal speed
and flow direction as well as the x- and y-components of the
horizontal flow velocity (vx, vy) were stored in native IDL for-
mat. Some auxiliary variables were saved as well so that they
can be used, e.g., in annotating plots depicting the flow fields. A
sample of these plots for a 60-min average flow field is shown
in Fig. 2. In Fig. 2a horizontal proper motions are plotted as red
arrows with a 60-min averaged G-band image as a background.
The moat flow starting at the sunspot penumbra and terminating
at the surrounding G-band network is clearly discernible.

In Fig. 2b we used an adaptive thresholding algorithm to
discern between granulation, G-band bright points, and strong

magnetic features. Indiscriminately, we used a fixed intensity
threshold of Imag = 0.8 for strong magnetic features and an adap-
tive threshold for G-band bright points, which can be given as

Ibp = 1.15 + 0.2(1 − µ), (4)

where µ = cos(θ) is the cosine of the heliocentric angle θ.
The darkest parts of sunspots (umbrae) and pores can be iden-
tified using another fixed threshold of Idark = 0.6, while sunspot
penumbrae cover intermediate intensities from Idark to Imag, al-
lotting the range Imag to Ibp to granulation. The adaptive thresh-
old was necessary, as a first order approximation, to account for
the center-to-limb variation (CLV) of the G-band bright points,
which exhibit much higher contrasts near the solar limb. This
adaptive thresholding algorithm allows us to study the proper-
ties of horizontal proper motions for different solar features.
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Apart from the conventional way of displaying velocity vec-
tors as arrows we present two-dimensional high-resolution speed
(Fig. 2c) and azimuth (Fig. 2d) maps. In these maps, the physi-
cal quantities are computed for each individual pixel so that the
fine structure of the flow field becomes accessible. The color
scale for the speed values is the same for all plots in this study.
Indeed, we used the same color scale for all flow maps in the
database so that flows for different scenes on the Sun can be di-
rectly compared. In the azimuth map the direction is encoded in
a 12-color compass-rose, which can be found to the very right of
this panel. In principle more colors could be used to illustrate the
flow direction. However, such plots would become very crowded
and are very hard to interpret. The essential features of the flow
field, i.e., inward motion of the penumbral grains in the inner
penumbra and outward motions related to Evershed and moat
flows, can easily be identified.

Divergence (Fig. 2e) and vorticity maps were also compiled
for each time-series. The maximum values for divergence (1.5×
10−3 s−1) and vorticity (0.6×10−3 s−1) in these maps are an order
of magnitude higher than values found for quiet Sun granulation
in previous studies. However, higher values are not surprising,
because we calculated them for each pixel in the high-resolution
maps capturing more of the small-scale motions. Reassuringly,
our values of the 10th percentile for divergence (4.3 × 10−4 s−1)
and vorticity (1.9×10−4 s−1) are essentially the same as reported
by Simon et al. (1994). On the other hand, in the present study
the divergence is four times and the vorticity is two times higher
than the values presented by Strous et al. (1996) but their values
were computed in the proximity of an emerging active region. In
summary and keeping in mind the different LCT parameters used
in the different studies, the statistical properties of the flow fields
as presented in this study agree with previous investigations.

In order to visualize the temporal evolution of the horizontal
proper motions, we computed forward (Fig. 2f) and inverse cork
maps. Evenly spread test particles are allowed to float forward
in time with a given horizontal speed for a certain time interval
(see Molowny-Horas 1994). In the inverse cork map the particles
float backward in time. This is accomplished by simply revers-
ing the sign of the velocity components. The forward cork map
is used to visualize regions of converging flows, and the inverse
map is a good tool to study divergence regions. We tracked test
particles for consecutively two, four, and eight hours. These par-
ticles were initially distributed on an equidistantly spaced grid
with a spacing of 10 pixels, i.e., one particle was placed every
0.8 Mm. The most conspicuous feature of the forward cork map
are the tracer particles that outline the network of G-band bright
points, which corresponds to the supergranular boundaries.

We prepared overview web pages for the respective dates
when suitable time-series of G-band images were available,
which contain all six plots of Fig. 2 along with vorticity and
inverse cork maps. The results of this study will ultimately be
published as a small GAVO2 project as a value-added product of
the Hinode database.

3.5. Timing issues related to the image capture

Local correlation tracking delivers localized displacements ob-
served in image pairs. These displacements in conjunction with
the time that has elapsed between the acquisition of both images
yield localized velocity vectors. Therefore, accurate knowledge
of the time interval between consecutive images used in the LCT
algorithm is essential. The time interval ∆t for the high-cadence

2 www.g-vo.org

image sequence observed on 2007 June 4 has a bimodal distri-
bution with values ∆t of 14.4 s (60.7%) and 16 s (39.3%). The
average value is ∆t̄ ≈ 15.0 s. The difference of 1.6 s is an arti-
fact of the polarization modulation. The polarization modulation
unit (PMU) is located just behind the telescope exit slit within
the optical telescope assembly but in front of the tip-tilt mirror
that is employed by the correlation tracker (see Tsuneta et al.
2008). A common CCD camera is assigned to both the broad-
and narrowband filter imagers (BFI and NFI). The critical timing
between camera and PMU is handled by the focal plane package.
The PMU is a continuously rotating waveplate, which is always
turned on – even for non-polarimetric data such as G-band im-
ages. Its rotation period is T = 1.6 s and all exposure timing is
controlled with the clock of the PMU. This is the reason for the
non-uniformity in the observed time-interval ∆t.

However, we do not find a bimodal pattern in the LCT dis-
placements but only fluctuations related to evolving features
on the Sun and some residual numerical effects. Therefore, we
opted to use the fixed time interval ∆t̄ in the data analysis.
Sometimes a “traffic jam” in the data transfer might result in
even larger timing errors. On the other hand, averaging indi-
vidual LCT maps over an hour (or longer) will only result in
velocity errors of less than a tenth of a percent, i.e., the speed
measured by the LCT algorithm is not significantly affected. In
summary, accurate timing has to be ensured to obtain reliable
LCT flow maps and all data were checked for consistency be-
tween recorded time stamps and measured horizontal displace-
ments. Because the individual flow maps during the first and last
two minutes of the one-hour sequences do not reflect the true
proper motions but are artifacts of the subsonic filtering, we ex-
cluded them from the calculation of the average flow maps.

4. Results

4.1. Statistical properties of flow maps and time cadence
selection

The one-hour time-series on 2007 June 4 contains 238 G-band
images, i.e., the time cadence is ≈15 s. This higher temporal
resolution allows us to study the intrinsic accuracy of the LCT
algorithm. We calculated LCT maps using seven different time
intervals ∆t = 15, 30, 60, 90, 120, 240, and 480 s. Note that
the time interval over which flow maps are averaged is reduced
to ∆T = 3600 s − ∆t, i.e., in case of the longest time cadence
by as much as 8 min. However, these slightly different averaging
times will not change the results discussed below. When using all
individual LCT maps to compute the average horizontal proper
motion, we refer to these data as the entire sequence. On the
other hand, when we split the entire sequence into four disjunct
sets, we refer to them as interleaved datasets, i.e., every fourth
LCT map is employed to compute the average horizontal proper
motion. Because these flow maps cover exactly the same period
of time, differences can be directly attributed to the numerical
accuracy of the LCT algorithm.

For the entire sequence and interleaved datasets we com-
puted statistical parameters that describe the distribution of hor-
izontal proper motions for granulation in the vicinity of active
region NOAA 10960. We used the adaptive thresholding al-
gorithm (Eq. (4)) to select only granulation excluding G-band
bright points. The proper motions accordingly refer to plasma
motions in the absence of any strong magnetic field concentra-
tions. This selection facilitates comparing horizontal flow speeds
and their distributions in all cases of the present work.
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We calculated the mean v̄, median vmed, maximum vmax, and
10th percentile v10 of the horizontal flow speeds. Since the maxi-
mum speed vmax is only based on a single value, it is easily influ-
enced by numerical errors and the data calibration. The 10th per-
centile v10 is more robust because it describes a property of the
entire distribution, i.e., the high-velocity tail. Along with these
quantities we also calculated the varianceσ2

v , standard deviation
σv, skewness γ1,v, and kurtosis γ2,v. The last two statistical pa-
rameters describe the deviation of the distribution from a normal
distribution.

We find an increase of the average velocity with increasing
time cadence ∆t starting from about 0.40 km s−1 for ∆t = 15 s,
arriving at a maximum value of about 0.47 km s−1 for ∆t = 60–
90 s, and then decreasing from about 0.45 km s−1 for ∆t = 120 s
to 0.34 km s−1 for ∆t = 240 s, reaching the lowest value of about
0.23 km s−1 for ∆t = 480 s. Other statistical parameters such as
vmed, v10, vmax, σ2

v , and σv follow the same trend.
The initially increasing values can be explained by the time

required for a solar feature to move from one to the next pixel.
Three velocity values have to be considered: (1) the photo-
spheric sound speed of ≈8 km s−1, (2) the maximum photo-
spheric velocity of ≈2 km s−1 measured by LCT techniques, and
(3) the average speed for the proper motion of the granulation of
≈0.5 km s−1. For ∆t = 15 s the average displacement is around
one tenth of a pixel, whereas the numerical accuracy for a single
measurement is only one fifth of a pixel, because the maximum
of the cross-correlation function can only be determined with
this precision. Thus, in this case a solar feature has insufficient
time to move, which results in underestimating its velocity.

For ∆t = 60–90 s, the horizontal displacement is sufficiently
large so that a feature could have moved to one of the neigh-
boring pixels. The speed in individual LCT maps is now well
within the range where numerical accuracy issues are negligi-
ble. Starting at ∆t = 120 s the mean velocity becomes lower,
while there is sufficient time for a solar feature to move quite
some distance, the feature might have evolved too much, so that
the LCT algorithm might not any longer trace the same feature.
This leads to diminished horizontal velocities.

Thus, 60–90 s is the good choice for measuring of horizon-
tal flow speeds with LCT techniques. In this range of the time
cadence, the mean values v̄ of the interleaved datasets are essen-
tially the same. Their deviations are much smaller than the pre-
viously discussed systematic trends. In summary, all flow maps
for the database were calculated using ∆t = 60–90 s. If the time
interval ∆t was shorter, a multiple of the time interval ∆t′ = n∆t
with n = 2, 3, or 4 was used.

4.2. Determining the duration of the time averages

How many individual LCT maps have to be averaged to yield
a reliable flow map? As previously discussed, the parabola fit
to the maximum of the cross-correlation sets one limitation.
However, there are also method-independent issues to be con-
sidered. Solar features evolve over time so that a global pattern
reveals itself only after averaging many individual LCT maps.
We computed the mean horizontal flow speed as a function of
the number of individual LCT maps that were used to arrive at
an average flow map. The number of flow maps corresponds to
the time interval ∆T over which the individual flow maps were
averaged.

Figure 3 presents this functional dependence for the time ca-
dences from ∆t = 15 s to 480 s. All curves start with high ve-
locities when only a few individual LCT maps are averaged. It
takes about 20 min before the curves level out and approach an
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Fig. 3. Mean horizontal flow speed as a function of averaged LCT maps
for time cadences ∆t of 15 s (thick dashed), 30 s (thick dash-dotted
curve), 60 s (thick dash-triple-dotted curve), 90 s (thick long dashed
curve), 120 s (thin dashed), 240 s (thin dotted), and 480 s (thin solid).

asymptotic value, indicating that these average flow maps are
still dominated by the motions of fine structure contained within
the sampling window. As discussed in the context of the statis-
tical properties of the flow maps, short time cadences ∆t tend to
underestimate the flow speed. If flow speeds have been com-
puted for time intervals shorter than 20 min, feature tracking
methods are more appropriate than LCT techniques in particular
for small-scale features.

We find that all curves up to ∆t = 90 s are stacked on top of
each other without crossing the next higher curve at any point.
Starting at ∆t = 120 s we find that the curves corresponding
to the longer time cadences cross the other curves after about
20–25 min. This is another indication that solar features have
evolved too much so that LCT fails to properly track their mo-
tion. This behavior provides an explanation for the spread of ve-
locity values found in literature. In particular, short time-series,
as often encountered in ground-based observations, might be bi-
ased toward higher velocities. In summary, our choice of 60-min
averages for LCT maps is a conservative one that gives the solar
features sufficient time to reveal the global flow pattern.

4.3. Selection of the sampling window

How do the horizontal proper motions depend on size and
FWHM of the Gaussian kernel used in the LCT algorithm? To
answer this question, we calculated horizontal proper motions
using a Gaussian kernel with 64× 64 pixels, which is equivalent
to 5120 km × 5120 km on the solar surface. This larger ker-
nel was chosen to encompass successively broader FWHM. We
choose four FWHM of 7.5, 15, 22.5, and 30 pixels corresponding
to 600, 1200, 1800, and 2400 km, respectively. The FWHM of
1200 km matches the size of a granule. Individual LCT maps are
produced from image pairs separated by 60 s in time. We com-
puted the statistical parameters relating to granulation for the
entire sequence and the interleaved datasets. All statistical pa-
rameters are decreasing with increasing FWHM. For FWHM =
600 km the mean velocity is v̄ = 0.48 km s−1, which decreases
to v̄ = 0.47 km s−1 for FWHM = 1200 km, v̄ = 0.41 km s−1

for FWHM = 1800 km, and further to v̄ = 0.37 km s−1 for
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Fig. 4. Horizontal flow speed (left ) and azimuth maps (right ) measured
using Gaussian kernels with 64 × 64 pixels and various FWHM. The
FWHM of 7.5, 15, 22.5, and 30 pixels correspond to 600, 1200, 1800,
and 2400 km on the solar surface, respectively. The bottom row depicts
smoothed versions of the FWHM = 1200 km speed and azimuth maps.
The color coding is the same as in Fig. 2.

FWHM = 2400 km. Small-scale features, which exhibited the
highest proper motions, are lumped together with regions of low
flow speeds when the FWHM increases. This effect is displayed
in Fig. 4, which shows the speed and azimuth maps for the four
FWHM. As before, for a given FWHM all statistical parameters
agree with each other for up to three significant digits, i.e., there
is no indication that the algorithm’s numerical accuracy depends
on the FWHM of the kernel used in LCT.

In the case of FWHM = 1200 km, the statistical parameters
are very close to the ones calculated for the same FWHM, but
with a kernel of 32 × 32 pixels. This is not surprising, because

the Gaussian kernel assigns a much stronger weight to features in
the center of the subimage, i.e., the periphery in the 64×64 pixels
FOV has only a small influence in determining the displacement
vector for a pair of subimages. This of course only holds true
as long as the wings of the Gaussian do not significantly extend
beyond the edges of the kernel. Convolving the average flow map
(FWHM = 1200 km) with a Gaussian kernel, which had a size of
32× 32 pixels and FWHM = 26.4 pixels (2112 km), we arrive at
a smoothed version (see bottom row in Fig. 4), which is virtually
identical with the flow map with FWHM = 2400 km.

In conclusion, it makes no difference, whether one uses a
larger FWHM while computing LCT maps or one smoothes the
maps after computation. In both cases, the results are virtu-
ally the same. Because only minor changes in the LCT results
were observed for kernels with 32 × 32 pixels as compared to
64 × 64 pixels, the smaller kernel was chosen because it sig-
nificantly reduced the computing time. Furthermore, the small-
est FWHM produces the most detailed flow maps. However, we
chose a FWHM of 1200 km, favoring the spatial scales of gran-
ulation, which covers the largest fraction of the observed area.
Additional smoothing can still be applied in the later data analy-
sis stages to either reduce noise or to track flows on larger spatial
scales. For case studies regarding the fine structure of sunspots,
a smaller FWHM might be more appropriate.

4.4. Numerical errors in calculating flow maps

We computed the pixel-to-pixel rms-error for the magnitude and
direction of the flow velocity using the interleaved datasets for
different time cadences ∆t and for different FWHM of the sam-
pling window. Six difference maps (sets 1–2, 1–3, 1–4, 2–3, 2–
4, and 3–4) can be computed from the four interleaved datasets,
thus for each pixel we can derive the errors, which are primarily
due to numerical errors inherent to the LCT algorithm. The rms-
error in velocity is 15–90 m s−1 from shortest to longest cadence.
The corresponding rms-error in direction is 5◦–30◦. However,
for cadences in the range of 60–90 s, which is the range used to
create the database, the rms-error of the velocity is typically in
the range from 35–70 m s−1, while the values for the direction
vary by as much as 10◦–15◦. The largest variations in direction
are observed near the boundaries of patches showing coherent
flows. Even after correcting the 2π ambiguity in the difference
maps, we find high values at these locations. As a side note,
the rms-error in direction justifies our choice of a color wheel
with only twelve segments in the display of the azimuth maps.
One segment covers 30◦ so that pixel-to-pixel variations of about
±15◦ are suppressed. Otherwise, the azimuth maps would ap-
pear too crowded and consequently the overall flow pattern is no
longer perceptible.

For a different FWHM of the sampling window, rms-errors
for speed and direction decrease with increasing FWHM. The
velocity error is 35 m s−1 and the error in direction is about 10◦

for a FWHM of 1200 km. These errors decrease to 15 m s−1

and 5◦ for a FWHM = 1800 km and to 10 m s−1 and 4◦ for
a FWHM = 2400 km. Here, the decreasing rms-errors can
be attributed to the smoothing effect of a wider sampling win-
dow, i.e., more pixels are used with higher weights in the cross-
correlation. Furthermore, the rms-error in magnitude and direc-
tion for the time cadence ∆t = 60 s is nearly the same regardless
of the size of the Gaussian kernel (32×32 pixels vs. 64×64 pix-
els).

Finally, we calculated Pearson’s correlation coefficient be-
tween LCT maps of the interleaved datasets. Pearson’s corre-
lation coefficient indicates the degree of a linear relationship
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Fig. 5. Time-averaged G-band images with horizontal flow vectors computed for ∆T = 1, 2, 4, 8, and 16 h. Arrows with a length corresponding to
the grid spacing indicate velocities of 1 km s−1. The background images are displayed in the intensity range 0.5 ≤ I/I0 ≤ 1.5.

between two variables. A positive value of unity indicates that
the datasets are identical, disregarding a linear scaling factor.
The linear correlation coefficient for different time cadences ∆t
decreases from 0.99 to 0.93 starting at the shortest and ending at
the longest cadence. The high degree of correlation indicates that
all essential features of the flow field are captured by the LCT
algorithm. The monotonic decrease, however, indicates that nu-
merical errors increase when the cadences ∆t become too large.

4.5. Long-lived features in flow maps

The one-hour time interval over which the LCT maps are aver-
aged is insufficient to identify features that need longer to evolve,
such as meso- and supergranulation. Therefore, to clearly iden-
tify the boundaries of these large-scale convective cells and to
visualize the effects of longer time averages, we averaged LCT
maps over ∆T = 1, 2, 4, 8, and 16 h, utilizing the long-duration
dataset with 960 images and a time cadence ∆t = 60 s.

As before, we calculated the statistical parameters for the en-
tire sequence and the interleaved datasets for granulation. All ve-
locity values decrease with increasing time intervals over which
the individual LCT maps are averaged. For ∆T = 1 h the mean
velocity is v̄ = 0.44 km s−1, which decreases to v̄ = 0.38 km s−1

for ∆T = 2 h, v̄ = 0.34 km s−1 for ∆T = 4 h, v̄ = 0.30 km s−1

for ∆T = 8 h, and further to v̄ = 0.23 km s−1 for ∆T = 16 h. The
mean speed approaches a value for the global flow field with in-
creasing ∆T . However, the value for ∆T = 1 h is only slightly
lower than previously computed for the high-cadence sequence.
These small deviations (<0.05 km s−1) reflect only minute dif-
ferences between the scenes on the solar surface.

Figure 5 contains the time-averaged G-band images with su-
perposed arrows indicating speed and direction of the horizon-
tal proper motions for ∆T = 1, 2, 4, 8, and 16 h. The region
shows granulation and G-band bright points to the west of ac-
tive region NOAA 11930. Magnetic features dominate the long-
duration time averages, i.e., the flow speed is low where strong
magnetic fields are present in the chromospheric network, and
conversely the speed is high where G-band bright points outline
the boundaries of large-scale convective cells. The high speeds
associated with the local convective pattern of granules have

diminished for the long-duration flow maps and only the con-
verging motion toward the cell boundaries remains, which ex-
plains the statistical properties of the velocity values discussed
above. The overall visual impression of the vector maps is that
the arrows are more ordered in the long-duration maps, whereas
in the short-duration maps (∆T = 1 and 2 h) a larger scatter of
the flow vectors is observed on smaller scales. Nonetheless, the
imprint of the the meso- and/or supergranulation is already visi-
ble in the short-duration flow maps and becomes more prominent
the longer the time interval is over which the LCT maps are av-
eraged. Strong converging motions can be found in Fig. 5 near
the vertical alignment of G-band bright points in the northeast
corner of the FOV and at the boundary of the larger supergran-
ular cell in the southeast corner of the FOV. The supergranule
also contains substructures on smaller scales, e.g., a strong di-
vergence center exactly in the central FOV, which can be clearly
seen after averaging for at least ∆T = 2 h.

We plotted the relative frequency distributions of the flow
fields spanning time intervals of ∆T = 1, 2, 4, 8, and 16 h
in Fig. 6 to gain insight into the statistical properties of the
long-duration datasets – this time both for granulation and for
G-band bright points. The statistical parameters characterizing
these distributions are provided in Table 1 for reference. The
distribution describing granulation for the shortest time interval
(∆T = 1 h) is the broadest and has an extended high-velocity
tail. Interestingly, for velocities up to 0.6 km s−1 this distribution
is virtually the same as the distribution for an averaging time,
which is twice as long (∆T = 2 h). The only difference is the
high-velocity tail. This indicates that proper motions on small
scales still make their presence known if individual LCT maps
are not averaged for at least two hours. The peaks of these dis-
tributions are shifted toward lower velocity values (from 0.43 to
0.23 km s−1) for longer∆T . In addition, their standard deviations
are progressively becoming smaller (from 0.24 to 0.12 km s−1).
The progression of the frequency distributions shown in the left
panel of Fig. 6 supports the conclusion that the essential features
of long-duration LCT maps have been captured for ∆T = 8–
16 h.

The frequency distributions for G-band bright points differ in
some aspects from those for granulation. The high-velocity tail
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Fig. 6. Relative frequency distributions of horizontal proper motions for quiet Sun (left ) and G-band bright points (right ) calculated over ∆T = 1 h
(solid curve), 2 h (dotted curve), 4 h (dashed curve), 8 h (dash-dot-dotted curve), and 16 h (dash-triple dotted curve).

Table 1. Parameters describing the horizontal proper motions of granulation and G-band bright points calculated over ∆T = 1, 2, 4, 8, and 16 h.

Granulation Bright points
∆T v̄ vmed v10 vmax σv v̄ vmed v10 vmax σv
[h] [km s−1] [km s−1] [km s−1] [km2 s−2] [km s−1] [km s−1] [km s−1] [km s−1] [km2 s−2] [km s−1]

1 0.43 0.39 0.78 1.86 0.24 0.22 0.22 0.37 0.70 0.10
2 0.39 0.36 0.69 1.42 0.21 0.22 0.22 0.35 0.55 0.10
4 0.34 0.31 0.60 1.25 0.19 0.17 0.17 0.27 0.52 0.08
8 0.30 0.29 0.50 0.87 0.15 0.15 0.15 0.24 0.45 0.07
16 0.23 0.22 0.38 0.74 0.12 0.12 0.12 0.20 0.41 0.06

is less prominent and all statistical parameters describing the dis-
tributions are reduced by about a factor of two. The two distribu-
tion with the shortest time intervals (∆T = 1 and 2 h) show a hint
of a bimodal distribution, and they are skewed toward higher ve-
locity values. However, this might be an artifact of the adaptive
thresholding algorithm, because the areas covered by G-band
bright points are smaller and well defined in the short-duration
intensity maps. Thus, considering the FWHM = 1200 km of the
sampling window, a larger contribution from granulation is ex-
pected, if more isolated G-band bright points are present in the
maps, which are used for thresholding. Equation (4) was slightly
modified to accommodate the longer time intervals, which leads
to a fuzzier appearance of the area covered by G-band bright
points and results in a diminished contrast of the G-band bright
points. Because no contemporary magnetograms with a com-
parable spatial resolution were available, we cannot comment
on the influence of flux emergence or dispersal during the ob-
served time interval. However, the active region NOAA 10930
showed pronounced activity. In particular, the penumbra of the
small sunspot just to the east of the FOV decayed and resulted in
continuous flaring in the active region.

Even though long-duration time averages are an important
tool when studying large-scale convective patterns or the persis-
tent motions in an active region, the scarcity of such datasets
argues against their use for comprehensive and comparative
studies. Since most of the characteristics of flow fields are al-
ready captured in one-hour averages, we opted for ∆T = 1 h.
Furthermore, selecting ∆T = 1 h allows us to study changes
in long-duration time-series by computing averaged flow maps
every 30 min. Another consideration is that one hour is more
then ten times the typical lifetime of granules, so that the proper
motions of individual granules should be negligible and global
motion patterns will reveal themselves.
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Fig. 7. Relative frequency distributions of horizontal proper motions
computed for all solar features (solid curve), G-band bright points (dot-
ted curve), granulation (dashed curve), umbra (dash-dotted curve) and
penumbra (dash-dot-dotted curve).

4.6. Frequency distributions for different solar features

The simplest approach to describe flow fields would be to com-
pute the overall frequency distributions for a particular FOV.
However, this simplistic approach is insufficient to recover the
underlying physics of plasma motions in the presence (or ab-
sence) of strong magnetic field. We used the adaptive threshold-
ing algorithm (Eq. (4)) described in Sect. 3.4 to compute fre-
quency distributions for granulation, penumbrae, umbrae/pores,
G-band bright points, and the entire FOV regardless of the fea-
tures contained in this region. For this case study, we used the
high-cadence sequence (see Fig. 2b for the thresholded image)
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Table 2. Statistical parameters describing the frequency distributions of the horizontal proper motions of various solar features.

v̄ vmed v10 vmax σ2
v σv γ1,v γ2,v

Feature [km s−1] [km s−1] [km s−1] [km s−1] [km2 s−2] [km s−1]

All 0.44 0.40 0.83 1.95 0.07 0.27 0.76 0.21
Granulation 0.47 0.43 0.85 1.95 0.07 0.27 0.67 0.08
Penumbra 0.30 0.24 0.62 1.43 0.05 0.23 1.46 2.07
Umbra 0.23 0.19 0.40 1.92 0.04 0.20 3.66 20.44
Bright points 0.23 0.20 0.43 1.21 0.03 0.15 1.43 2.65

Table 3. Statistical parameters describing the frequency distributions of the horizontal proper motions for various image scales.

Image scale α v̄ vmed v10 vmax σ2
v σv γ1,v γ2,v

[pixel−1] [km pixel−1] [km s−1] [km s−1] [km s−1] [km s−1] [km2 s−2] [km s−1]

0.055′′ 40 0.54 0.52 0.89 1.60 0.07 0.26 0.42 −0.09
0.110′′ 80 0.53 0.52 0.88 1.62 0.07 0.26 0.42 −0.09
0.165′′ 120 0.52 0.51 0.87 1.58 0.07 0.26 0.46 −0.04
0.220′′ 160 0.50 0.48 0.83 1.54 0.06 0.25 0.50 0.05
0.275′′ 200 0.47 0.45 0.79 1.57 0.06 0.24 0.55 0.19
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Fig. 8. Time-averaged G-band images with horizontal flow vectors (top ) and flow speed maps (bottom ) for different spatial resolution. Arrows
with the length corresponding to the grid spacing indicate velocities of 0.5 km s−1.

with ∆t = 60 s, ∆T = 1 h, and a FWHM = 1200 km. The respec-
tive distributions are shown in Fig. 7 and the corresponding sta-
tistical parameters are summarized in Table 2. Similar plots and
tables will be included in the database subsuming the more than
200 datasets that were analyzed as part of this study. We provide
Fig. 7 and Table 2 to facilitate the comparison with other case
studies. However, these data are not representative (in the sense
of a mean value) for all datasets contained in the database.

A barely detectable shoulder in the frequency distribution
for the entire FOV and the extended high-velocity tail already
hint that this distribution contains contributions from various so-
lar features. Its mean velocity v̄ = 0.44 km s−1 is slightly lower
than the corresponding value for granulation v̄ = 0.47 km s−1

that dominates the FOV. The distribution for granulation is
broader and a low value of kurtosis (γ2,v = 0.08) leads to
a flatter peak, where any indication of a shoulder is absent.
There is a noticeable difference in the distributions of strong
magnetic elements and granulation. The distributions for G-
band bright points, umbral and penumbral regions are narrow,

have sharp peaks, and are shifted toward lower velocities. The
mean velocity for these regions varies from v̄ = 0.30 km s−1

for penumbrae to v̄ = 0.23 km s−1 for umbrae/pores and G-
band bright points. Interestingly, the distributions for the um-
brae/pores and the G-band bright points are virtually identical,
while that for the penumbra has significant contributions at ve-
locities above 0.4 km s−1. This is indicative of the more complex
flow fields in the penumbra, where penumbral grains move pref-
erentially in the radial direction – inward in the inner penum-
bra and outward in the outer penumbra. This also illustrates that
some of the small-scale horizontal proper motions can be cap-
tured with the current implementation of the LCT algorithm.

4.7. Flow maps for different spatial resolution

Finally, we will address the question of how the spatial resolu-
tion affects the determination of the horizontal proper motions.
We used the high-spatial resolution sequence of Sect. 2.3 and
treated it exactly like as all the other data with the exception
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Table 4. Summary of LCT results in previous studies.

α FWHM dgrid ∆t ∆T v̄ ± σv vmed vmax Remarks

[pixel−1] [s] [min] [km s−1] [km s−1] [km s−1]

November & Simon (1988) and November (1989) continuum images at λ517.5 nm, Universal Birefringent
Filter (UBF), 12 s exposure time, Dunn Solar Tele-
scope/Sacramento Peak

0.250′′ 3.3′′ 2.0′′ 67 80 0.5–1.0 (for source regions)

Brandt et al. (1988) broad-band (5.4 nm) images at λ469.6 nm, Solar
Optical Universal Polarimeter (SOUP), 20 ms exposure
time, Swedish Solar Vacuum Telescope/Observatorio
del Roque de los Muchachos

0.035′′ 2.4′′ 0.8′′ 60 79 0.67 1.2

Title et al. (1989) broad-band (100 nm) images at λ600 nm, SOUP,
short-exposure images recorded on photographic film,
Spacelab 2, provides also proper motion measurements
for other FWHM down to 1.0′′

0.161′′ 4.0′′ 2.5′′ 60 28 0.37±0.45 <1.2

Berger et al. (1998) G-band images λ430.5±0.6 nm, SOUP, 20 ms exposure
time, SVST, LCT parameter study and comparison of
proper motions between granulation and network

0.083′′ 0.83′′ 0.4′′ 24 70 1.10 ± 1.30 0.70 ∼4.0

Shine et al. (2000) continuum images near the Ni  λ676.8 nm line,
Michelson Doppler Imager (MDI), Solar Heliospheric
Observatory (SoHO), long-duration sequence of 45.5 h

0.600′′ 4.8′′ 2.4′′ 60 60 0.49 0.47 1.5

Notes. α: image scale, FWHM: width of the sampling window, dgrid: grid spacing on which LCT flow vectors are computed, ∆t: image cadence,
∆T : time interval over which individual LCT maps are averaged, v̄ ± σv: average flow speed and standard deviation, vmed: median value of the
frequency distribution, and vmax: highest observed flow speed.

that the G-band images were sampled at 40, 80, 120, 160, and
200 km after correction of geometrical foreshortening. Multiple
of 40 km were chosen to match the Hinode SOT/BFI pixel size of
0.055′′. Obviously the number of pixels in the sampling window
had to be adjusted. However, shape, size, and FWHM = 1200 km
of the sampling window were not changed.

The values describing the respective frequency distributions
are given in Table 3. They were computed for areas where the
granulation covered the full FOV. However, to visualize the
minute changes in the flow maps, we show in Fig. 8 only an
area of 8 Mm × 8 Mm. In the top row of Fig. 8 the flow vec-
tors are superposed on one-hour average G-band images with
different image scales. This scene on the Sun is dominated by
converging motions toward the X-shaped alignment of G-band
bright points. The grid spacing corresponds to 320 km and the
length of the arrows was chosen so that an arrow with a length of
exactly the grid spacing corresponds to 0.5 km s−1. The differ-
ences are so minute that they only show up in difference images
of the LCT maps. The bottom row of Fig. 8 shows the flow speed
for each pixel in the FOV at the same color scale as used in all
the other figures. The overall appearance of the flow field is the
same. However, the low resolution maps look blockier owing to
the coarser sampling, and some of the fine structure starts to fade
out.

In summary, the average velocity diminishes from
0.54 km s−1 at the highest spatial resolution to 0.47 km s−1

at the lowest resolution. This trend is the same for all other
parameters with the exception of kurtosis and skewness, which
show some (negligible) scatter. Changes of less than 15% in
velocity cannot explain the broad range of velocity values
for the horizontal proper motion reported in literature. Note,
however, that the Hinode data are not susceptible to the adverse
affect of seeing, i.e., ground-based LCT measurements will be
much more affected depending on the spatial resolution. Even
though seeing should not introduce a systematic bias in LCT
(see November & Simon 1988), it will still affect the noise in
the LCT measurements.

5. Conclusions

Many case studies exist in the literature that describe horizontal
proper motions based on LCT or FT techniques. Even though
most of them agree on the morphology of the observed flows,
significant differences are found when quantifying the flow prop-
erties. Besides obvious differences inherent to the techniques,
the choice of parameters such as sampling window, time ca-
dence, and duration can significantly impact the outcome. Some
results of previous studies are provided in Table 4 for conve-
nience and to ease the comparison with the present investigation.

We presented the implementation of an LCT algorithm,
which was used to create a database of flow maps derived from
time-series of G-band images observed with Hinode/SOT. The
parameter study and error analysis will also be beneficial to other
studies using LCT techniques. Even for observations from the
ground our results provide guidance, since LCT techniques are
not biased by seeing (see November & Simon 1988) so that our
error estimates can be understood as a lower limit.

Justifying the choice of parameters for LCT and FT algo-
rithms is always a challenging task, which should be driven by
the scientific purpose of the study. In the present study, the em-
phasis was on creating a database of flow maps that can be used
in statistical investigations regardless of the type of solar feature,
location on the Sun, or solar activity. Below, we summarize our
choice of LCT parameters.

The flow maps are based on time-series of G-band im-
ages with cadences ∆t between 60 s and 90 s. If the ca-
dence is shorter, features with low velocities cannot be accu-
rately tracked, whereas in longer cadences the features will
have evolved too much for the algorithm to recognize them any
longer. Our cadence selection is conservative in the sense that
we limit our database in favor of better comparability. Note that
there is a significant number of G-band time-series with ca-
dences of about 2 min that are not included in our database.

The evolution of individual features (granules, bright points,
penumbral grains, umbral dots, etc.) dominate flow fields on
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short time scales. Therefore, averaging over time scales signifi-
cantly longer than the lifetime of the aforementioned features is
necessary to yield the global flow field. Our choice of ∆T = 1 h
over which the flow maps are averaged ensures that the global
flow fields has emerged from the motions of individual features
and that sufficient flow maps were averaged to reduce the numer-
ical rms-errors for magnitude and direction of the flow vectors to
reasonable values of 35–70 m s−1 and 10–15◦, respectively. Note
that ∆T = 1 h is not an appropriate choice for studies focus-
ing on meso- and supergranulation because the associated flow
pattern is still very noisy and could be more easily perceived
in longer time averages. However, long-duration time-series are
rare to facilitate these studies. Whenever, time-series with longer
durations were available, we computed one-hour flow maps with
an overlap of 30 min so that the temporal evolution of the flow
field can be monitored, which is of particular interest for the in-
vestigation of explosive events such as flares, filament eruptions,
and coronal mass ejections.

In principle, the spatial resolution of Hinode/SOT would al-
low one to track features that are smaller than one second of arc.
Our choice of a Gaussian sampling window with 32× 32 pix-
els and a FWHM of 1200 km was again motivated by establish-
ing a database of flow maps for statistical studies. Therefore, we
used a FWHM, which corresponds approximately to the size of
a granule, which is one of the “largest” elements of solar fine
structures. Tracking flows on larger spatial scales can still be ac-
complished by smoothing the flow maps after the fact.

In forthcoming studies, we will use the database of flow
maps to study the statistical properties of pores, the motions in
sunspot penumbrae, and their relation to the flow pattern ob-
served in the moat of sunspots. Several years of G-band time-
series and more than 1000 individual flow maps facilitate the
study of these flows during the life cycle of solar features and
environment, i.e., as a function of solar activity or the complex-
ity of the surrounding magnetic field. Once thoroughly tested,
the value-added Hinode/SOT data will be made available as a
small project within the scope of GAVO.
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