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HORIZONTAL HOLONOMY AND FOLIATED MANIFOLDS

YACINE CHITOUR, ERLEND GRONG, FRÉDÉRIC JEAN AND PETRI KOKKONEN

Abstract. We introduce horizontal holonomy groups, which are groups de-
fined using parallel transport only along curves tangent to a given subbundle
D of the tangent bundle. We provide explicit means of computing these holo-
nomy groups by deriving analogues of Ambrose-Singer’s and Ozeki’s theorems.
We then give necessary and sufficient conditions in terms of the horizontal ho-
lonomy groups for existence of solutions of two problems on foliated manifolds:
determining when a foliation can be either (a) totally geodesic or (b) endowed
with a principal bundle structure. The subbundle D plays the role of an or-
thogonal complement to the leaves of the foliation in case (a) and of a principal
connection in case (b).
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1. Introduction

Given a foliation F of a Riemannian manifold (M,g) there are several results
related to global geometry [12, 13, 24], nearly Kähler manifolds [30], PDEs on
manifolds [3, 8, 26] and probability theory [17] relying on the property that the
leaves of F are totally geodesic submanifolds. Hence, given a foliation F of a
manifold M , it is natural to ask if M has a Riemannian metric g that makes
the leaves of F totally geodesic. Such a metric always exists locally, but global
existence is far from being trivial, see e.g. [36, 11]. If we in addition require that
a given transverse subbundle D is orthogonal to F , an appropriate Riemannian
metric may not even exist locally. We will show that the existence of such a metric
can be determined using horizontal holonomy.

The idea of horizontal holonomy consists of considering parallel transport only
along curves tangent to a given subbundle D ⊆ TM , often referred to as the
horizontal bundle, hence the name. Such a holonomy was first introduced for
contact manifolds in [18], partially based on ideas in [34] and generalized later in
[23]. In this paper, we both define horizontal holonomy in greater generality and
most importantly provide tools for computing it, in the form of analogues of the
theorems of Ambrose-Singer [2] and Ozeki [31].

Our above mentioned problem of totally geodesic foliations with a given orthog-
onal complement can now be rewritten in terms of horizontal holonomy as follows.
Consider a manifold M whose tangent bundle is a direct sum TM = D⊕V with V
being an integrable subbundle corresponding to a foliation F , and D being a com-
pletely controllable subbundle. Let H ⊆ GL(Sym2 V ∗

x ) be the D-horizontal holo-
nomy group at an arbitrary point x ∈ M , defined relative to a vertical connection
on V . We prove that there exists a Riemannian metric g on M such that D is the
g-orthogonal complement to V and the leaves of F are totally geodesic submani-
folds if and only H admits a fixed point which is positive definite as a quadratic
form on Vx. This question does not only have relevance for geometry but also for
the theory on sub-elliptic partial differential operators. To be more precise, let L
be a second order partial differential without constant term and consider its symbol
σL : T

∗M → TM as the unique bundle map satisfying

df(σL(dg)) =
1

2
(L(fg)− fLg − gLf) , for any f, g ∈ C∞(M).

Let us consider the case where α(σLα) ≥ 0 and the image of σL is equal to a
proper subbundle D of TM ; hence L is not elliptic. The typical example of such
an operator L is the sub-Laplacian operator associated with a sub-Riemannian
manifold. Finding a totally geodesic foliation F which is orthogonal to D enables
one to obtain results on the corresponding heat flow of L such as analogues of the
Poincaré inequality, the Li-Yau inequality and the parabolic Harnack inequality,
see e.g. [5, 6, 4, 21, 22] for details.

The horizontal holonomy of a vertical connection on V can also be related to the
existence of a principal bundle structure on M . Assume that the leaves of F consist
of the fibers of a fiber bundle π : M → B and that D is a subbundle transversal
to F . We can then establish a link between a trivial horizontal holonomy and the
existence of a principal bundle structure of π with D as a principal connection.

The structure of the paper is as follows. In Section 2.1 we give the definition of
horizontal holonomy of a general connection ω on a principal bundle. In Section 2.2,
we first limit ourselves to the case where D is equiregular and bracket-generating
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and we introduce the main tool for deriving our results, namely two-vector-valued
one-forms related to D that we call selectors. In Section 2.3, we prove that the
horizontal holonomy of ω is equal to the full holonomy of a modified connection
and we show that the Ambrose-Singer and Ozeki theorem are still valid with an
adapted modification of the curvature of ω. In both cases, explicit formulas for the
modified connection and curvature are given using a selector of D. We rewrite our
results in the setting of affine connections in Section 2.4 and consider horizontal
holonomy of a general subbundle D in Section 2.5 and Section 2.6.

In Section 3, we apply horizontal holonomy to vertical connections on foliations.
In Section 3.1, given a foliation F and a transversal subbundle D, we provide both
necessary and sufficient conditions for the existence of a metric g such that F is
totally geodesic with orthogonal complement D. In Section 3.2 we use horizontal
holonomy to determine when a fiber bundle can be endowed with the structure of
a principal bundle with a given connection D. We note that holonomy in these two
cases is related to parallel transport of respectively symmetric tensors and vectors
along curves tangent to D and is not related to concepts of holonomy as in [9, 10].
Since in both cases, the conditions require the computation of horizontal holonomy
groups, we give in Subsection 3.3 explicit formulas for generating sets of the Lie
algebra of such groups in terms of curvature operators. We deal with concrete
examples in Section 4. In particular, we give examples of foliations F that cannot
be made totally geodesic, given a fixed orthogonal complement. We also completely
describe the case of one-dimensional foliations.

1.1. Notation and conventions. If Z is a section of a vector bundle Π: V → M ,
we use Z|x to denote its value at x. The space of all smooth sections of V is denoted
by Γ(V ). If V is a subbundle of TM , Γ(V ) is considered as a subalgebra of Γ(TM).
If X is a vector field, then LX is the Lie derivative with respect to X . We use
Sym2 V to denote the symmetric square of V . If E and F are vector spaces, then
GL(E) and gl(E) denote the space of automorphisms and endomorphisms of E,
respectively and we identify the space of linear maps from E to F with E∗ ⊗ F .

Acknowledgements. The authors thank E. Falbel for helpful comments and useful
insights.

2. Horizontal holonomy

2.1. Definition of horizontal holonomy group. Let M be a finite dimensional,
smooth and connected manifold, π : P → M a smooth fiber bundle and V = kerπ∗

the corresponding vertical bundle. For x ∈ M , we use Px to denote the fiber π−1(x)
over x. Let H be an arbitrary subbundle of TP . An absolutely continuous curve
c : [t0, t1] → P is said to be H-horizontal if ċ(t) ∈ Hc(t) for almost every t ∈ [t0, t1].

A subbundle H of TP is said to be an Ehresmann connection on π if TP = H⊕V .
Here π : P → M is considered as a surjective submersion. For every x ∈ M ,
v ∈ TxM and p in the fiber Px, there is a unique element hpv ∈ Hp satisfying
π∗hpv = v called the H-horizontal lift of v. Furthermore, if γ : [t0, t1] → M is
an absolutely continuous curve in M with γ(t0) = x0, a horizontal lift of γ is a
H-horizontal absolutely continuous curve c : [t0, t1] → P that projects to γ. As any
horizontal lift c(t) is solution of the ordinary differential equation

ċ(t) = hc(t)γ̇(t),
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c(t) is uniquely determined by its initial condition c(t0) ∈ Px0
on an open subin-

terval of [t0, t1] containing t0. The Ehresmann connection is said to be complete if,
for every absolutely continuous γ : [t0, t1] → M , all corresponding horizontal lifts
are defined on [t0, t1].

A smooth fiber bundle π : P → M is called a principal G-bundle if it admits a
continuous right action P ×G → P such that the connected Lie group G with Lie
algebra g preserves the fibers and acts freely and transitively on them. For every
g-valued function f ∈ C∞(P, g), let σ(f) be the vector field on P defined by

(2.1) σ(f)|p =
d

dt
p · expG(tf(p))

∣∣∣∣
t=0

, p ∈ P.

In particular, for any element A ∈ g, we get a corresponding vector field σ(A) by
considering it as a constant function on M . Then P ×g → V , (p,A) 7→ σ(A)|p is an
isomorphism of vector bundles. A connection form ω on P is a g-valued one-form ω
satisfying

ω(σ(A)|p) = A, ω(v · a) = Ad(a−1)ω(v),

for every A ∈ g, p ∈ P , v ∈ TP and a ∈ G.We say that an Ehresmann connectionH
on the principal G-bundle π : P → M is principal if it is invariant under the group
action, i.e., if Hp · a = Hp·a for any p ∈ P , a ∈ G. An Ehresmann connection is
principal if and only if there exists a connection form ω on P such that H = kerω.
In that case, H-horizontal curves or lifts will also be referred to as ω-horizontal.
Note that a principal Ehresmann connection is complete.

In what follows, H is assumed to be a principal Ehresmann connection on π
corresponding to a connection form ω. However, non-principal Ehresmann connec-
tions will appear elsewhere in the text. For more on Ehresmann connections and
principal bundles, we refer to [28].

Let ω be a connection form on a principalG-bundle π : P → M and letH = kerω.
For every p ∈ P , we use L ω(p) to denote the collection of all H-horizontal lifts
c : [0, 1] → P of absolutely continuous loops γ : [0, 1] → M based in π(p) such that
c(0) = p. The holonomy group of ω at p is then defined as

Holω(p) = {a ∈ G : c(1) = p · a for some c ∈ L
ω(p)} .

Since M is connected, the groups Holω(p) coincide up to conjugation.
Let us now consider an arbitrary subbundle D of TM . We want to introduce a

type of holonomy that only considers the loops in M that are D-horizontal.

Definition 2.1. For p ∈ P , let L ω,D(p) ⊂ L ω(p) be the collection of H-horizontal

lifts of all D-horizontal loops γ : [0, 1] → M based in π(p) = x. The horizontal

holonomy group of ω with respect to D is the group

Holω,D(p) = {a ∈ G : c(1) = p · a for some c ∈ L
ω,D(p)}.

If D is completely controllable (i.e., any two points in M can be connected

by a D-horizontal curve), then the groups Holω,D(p) with p ∈ P , coincide up to
conjugation. If ω and ω̃ are two connections on P , the sets L ω,D(p) and L ω̃,D(p)
may coincide for every p ∈ P even if the connections are different. Since in this
case these connections also have the same horizontal holonomy group with respect
to D, we introduce the following equivalence relation on connections of P .
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Definition 2.2. Let π : P → M be a principal G-bundle and D a subbundle of TM .

Two connection forms ω and ω̃ are called D-equivalent if

ω(v) = ω̃(v), for any v ∈ TP satisfying π∗v ∈ D,

and we write [ω]D for the equivalence class of the connection form ω.

Any two D-equivalent connection forms ω and ω̃ have the same horizontal lifts

to P of D-horizontal curves and hence Holω,D(p) = Holω̃,D(p) for every p ∈ P .

Remark 2.3. (a) Rather than introducing the above equivalence classes, we could
have considered partial connections such as in [18]: given a principal G-bundle
π : P → M and a subbundle D of TM , a (principal) partial connection over D
is a subbundle E , invariant under the action of G, such that π∗ maps E on D
bijectively on every fiber. For every equivalence class [ω]D, we obtain a partial
connection by E : = (π∗)

−1(D) ∩ kerω. Conversely, following the argument of
[27, Theorem 2.1], one proves that any partial connection can be extended to a
full connection on π. Hence, there is a one-to-one correspondence between
partial connections and D-equivalence classes. For us, the language of D-
equivalence classes will be more convenient.

(b) For any connection form ω, the identity component of Holω(p) is obtained by
horizontally lifting all contractible loops based at π(p). For horizontal holo-
nomy, we have a similar description. For any loop γ : [0, 1] → M based in x,
we say that it is D-horizontally contractible if γ is a D-horizontal loop and if
there exists a homotopy [0, 1]× [0, 1] → M , (s, t) 7→ γs(t) such that γ0(t) = x,
γ1(t) = γ(t), γs(0) = γs(1) = x and t 7→ γs(t) is a D-horizontal curve for

any s ∈ [0, 1]. The identity component of Holω,D(p) is obtained by horizon-
tally lifting D-horizontally contractible loops. If D is bracket-generating, (i.e.,
if TM is spanned by vector fields with values in D and their iterated brack-
ets) then a D-horizontal loop is D-horizontally contractible if and only if it
is contractible (see [35] and [19, Theorem 1]). As a consequence, the iden-

tity component of Holω,D(p) is obtained by horizontally lifting contractible
D-horizontal loops. On the other hand, such a property may not hold when D
is not bracket-generating, as the following example shows. Consider R4 with
coordinates (x, y, z, w) and let D be the span of ∂

∂x and ∂
∂y +x(w ∂

∂z −z ∂
∂w ). Fix

a point (x, y, z, w) with (z, w) 6= (0, 0). Then all D-horizontal loops starting
from this point are contained in a manifold diffeomorphic to R2 ×S1 and some
of them are contractible but not D-horizontally contractible.

(c) The definition of horizontal holonomy does not change if we define L ω,D(p)
to be the collection of horizontal lifts of all loops based in π(p) that are both
D-horizontal and smooth, see [7, Theorem 2.3] and [20, last sentence].

2.2. Equiregular subbundles and selectors. In this paragraph, we assume that
the subbundleD of TM is equiregular and bracket-generating and the corresponding
definitions are given next.

Definition 2.4. Let D be a subbundle of the tangent bundle TM of a connected

manifold M .

• We say that D is equiregular of step r if there exist a flag of subbundles of TM

(2.2) 0 = D0 ( D1 = D ( D2 ( · · · ( Dr,
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such that Dr is an integrable subbundle and such that Dk is the span of vectors

fields with values in D and their iterated brackets of order less than k − 1 for

any 2 ≤ k ≤ r.
• We say that D is bracket-generating if TM is spanned by vector fields with values

in D and their iterated brackets.

• We say that D is completely controllable if any two points in M can be connected

by a D-horizontal curve.

From the above definitions, an equiregular subbundle D is bracket-generating if
and only if Dr = TM . Furthermore, D is completely controllable if it is bracket-
generating [16, 32]. We give some examples to illustrate the above definitions.

Example 2.5. (a) A subbundle is integrable if and only if it is equiregular of step 1.
(b) Consider R3 with coordinates (x, y, z). Let φ : R → R be a real valued smooth

function and define D as the span of ∂
∂x and ∂

∂y + φ(x) ∂
∂z .

(i) If φ(x) = x, then D is bracket-generating and equiregular of step 2.
(ii) If φ(x) = x2, then D is bracket-generating, but not equiregular, since

span{X,Y, [X,Y ]} is not of constant rank, and so D2 is not well-defined.

(iii) If φ(0) = 0 and φ(x) = e−1/x2

for x 6= 0, then D is completely controllable
but neither bracket-generating nor equiregular.

(c) Consider R4 with coordinates (x, y, z, w) and let D be the span of ∂
∂x and

∂
∂y + x ∂

∂z . Then D is equiregular of step 2, but not bracket-generating.

(d) If D has rank greater or equal to 2, a generic choice of a subbundle D of TM
is bracket generating in the sense of [29, Proposition 2].

We consider here the case when D is equiregular (of step r ∈ N) and bracket-
generating. The remaining cases are addressed in Sections 2.5 and 2.6.

For 0 ≤ k ≤ r, we use Ann(Dk) ⊆ T ∗M to denote the subbundle of T ∗M
consisting of the covectors that vanish on Dk. In particular, Ann(Dr) reduces to
the zero section of T ∗M . The following definition introduces the main technical
tool in order to formulate our results on horizontal holonomy groups.

Definition 2.6. Let D be a bracket-generating, equiregular subbundle of step r with

the corresponding flag given as in (2.2). We say that a two-vector-valued one-form

χ ∈ Γ(T ∗M⊗
∧2

TM) is a selector ofD if it satisfies the following two assumptions.

(I) For every 0 ≤ k ≤ r − 1, χ(Dk+1) ⊆
∧2

Dk ⊆
∧2

TM.
(II) For every 1 ≤ k ≤ r − 1 and one-form α with values in Ann(Dk) and every

vector v ∈ Dk+1, we have

α(v) = −dα(χ(v)).

Taking k = 0 in Item (I) yields that any selector must satisfy χ(D) = 0. If χ is
a selector, we use ιχ to denotes its transpose or contraction operator, i.e., for every
vector v and two-covector η one has (ιχη)(v) : = η(χ(v)).

The next lemma provides basic properties associated with selectors.

Lemma 2.7. (a) A bracket-generating equiregular subbundle D admits at least one

selector.

(b) The set of selectors of D in Γ(T ∗M ⊗
∧2

TM) is an affine subspace. In fact, if

χ0 is a selector of D, then {χ−χ0 : χ is a selector of D} is a C∞(M)-module.
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(c) Let β and η be a one-form and a two-form on M , respectively. Let χ be a

selector of D. Then there exists a unique one-form α satisfying the system of

equations

(2.3) α|D = β|D, ιχdα = ιχη,

and α is given by

(2.4) α = (id+ιχd)
r−1β − ιχ

r−2∑

j=0

(
r − 1

j + 1

)
(dιχ)

jη.

(d) Let dχ : Γ(T
∗M) → Γ(

∧2
TM) be defined by dχ : = d(id+ιχd)

r−1. Then, for

every one form β, dχβ only depends on β|D and dχβ = 0 if and only if there

exists a one-form β̃ such that

β̃|D = β|D, dβ̃ = 0.

We provide an example of selectors before giving the argument of the above
lemma.

Example 2.8. For n ≥ 1, consider R2n+1 with coordinates (x1, . . . , xn, y1, . . . , yn, z).
For every 1 ≤ j ≤ n, define Xj = ∂

∂xi
and Yj = ∂

∂yi
+ xi

∂
∂z and let D be the span

of these vector fields. The subbundle D is then bracket-generating and equiregular
of step 2. Furthermore, for every 1 ≤ k ≤ n, the two-vector-valued one-forms χk

defined, for every 1 ≤ j ≤ n, by

χk(Xj) = 0, χk(Yj) = 0 and χk( ∂
∂z ) = Xk ∧ Yk,

are selectors of D. The collection of all selectors of D is

χ1 + spanC∞(M){χ
j − χ1, 2 ≤ j ≤ n} =

{
n∑

k=1

fkχk : fk ∈ C∞(M),

n∑

k=1

fk ≡ 1

}
.

Remark 2.9. The reason for our choice of the term “selector” is the following. Let
Z be a vector field with values in Dk+1 for some k = 0, . . . , r − 1. By definition,
we can write Z using vector fields with values in Dk and first order Lie brackets
of vector fields with values in the same subbundle. However, such a decomposition
is not unique. The idea is that a selector gives us a way of selecting one of these

representations. That is, if χ(Z) =
∑l

i=1 Xi∧Yi, Items (I) and (II) in Definition 2.6
ensure that we can write

Z =
l∑

i=1

[Xi, Yi] + Z2,

where the vector fields Xi, Yi and Z2 = Z −
∑k

i=1[Xi, Yi] take values in Dk.

Proof of Lemma 2.7. (a) Endow M with a Riemannian metric g. Let Ek denote
the g-orthogonal complement of Dk−1 in Dk for 1 ≤ k ≤ r. In other words

D = E1, D2 = E1 ⊕⊥ E2, . . . , Dr = TM = E1 ⊕⊥ · · · ⊕⊥ Er.

For 1 ≤ k ≤ r, let prEk denote the g-orthogonal projection onto Ek and set
prEr+1 to be equal to the zero-map. We next define a vector-valued two-form

Φ:
∧2

TM → TM as follows. Let X and Y be two vector fields with values
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in Ei and Ej respectively with i ≤ j and let x ∈ M . We write v = X |x and
w = Y |x. We set

Φ(v, w) =

{
0 if i ≥ 2,
prEj+1 [X,Y ]|x if i = 1.

Since prEj+1 [X,Y ]|x does not depend on the choices of sections X and Y of
respectively E1 and Ej , the vector Φ(v, w) is well defined. The image of Φ is

E2 ⊕ · · · ⊕ Er. Define χ : TM →
∧2 TM such that χ vanishes on E1 and for

any w ∈ Ek, 2 ≤ k ≤ r, χ(w) is the unique element in
∧2

TM satisfying

Φ(χ(w)) = w, χ(w) ∈ (kerΦ)⊥,

with the latter denoting the g-orthogonal complement of the kernel of Φ in∧2 TM . From this definition, Item (I) follows readily. Furthermore, let X
and Y be two arbitrary vector fields with values in E1 and Ej respectively, with
j < r. If Z = Φ(X,Y ) and α is a one-form vanishing on Dj = E1 ⊕ · · · ⊕ Ej ,
then

−dα(χ(Z)) = −dα(X,Y ) = α([X,Y ]) = α(Φ(X,Y )) = α(Z),

so (II) is satisfied as well.
(b) If χ1 and χ2 are two selectors of D, then from Definition 2.6, we have that

ξ = χ1 − χ2 is a map that satisfies ξ(Dk+1) ⊆
∧2 Dk, k = 0, . . . , r − 1 and for

any α ∈ Γ(AnnDk) and w ∈ Dk+1, k = 1, . . . , r − 1, we have

dα(ξ(w)) = 0.

Clearly, the space of all such ξ is closed under addition and multiplication by
scalars or functions.

(c) We start by showing uniqueness of a solution of (2.3). Thanks to the linearity
of the equations of (2.3), it amounts to prove that α = 0 is the unique solution
to (2.3) when β = 0 and η = 0 . Such an α must take values in Ann(D),
meaning that, for every w ∈ D2, we have dα(χ(w)) = 0 = −α(w), and so α
must vanish on D2 as well. By iterating this reasoning, it follows that α = 0.

As regards the existence of a solution of (2.3), the linearity of the equations
of (2.3) implies that it is enough to consider two cases, namely (i) β = 0 and
(ii) η = 0. We start with Case (i). Since ιχη vanishes on D, it follows that
(id+ιχd)ιχη vanishes on D2 by Definition 2.6 (II). Iterating this argument, we
obtain

(id+ιχd)
r−1ιχη =

r−1∑

j=0

(
r − 1

j

)
(ιχd)

jιχη = 0.

Hence, ιχη = −ιχd
∑r−2

j=0

(
r−1
j+1

)
(ιχd)

jιχη and so we can take

α = −

r−2∑

j=0

(
r − 1

j + 1

)
(ιχd)

jιχη = −ιχ

r−2∑

j=0

(
r − 1

j + 1

)
(dιχ)

jη

a solution to (2.3). Note that α vanishes on D as required, since χ vanish on D.
We next turn to Case (ii), i.e., we assume that η = 0 in (2.3). Define α1 = β

and αk+1 = (id+ιχd)α
k for k = 1, . . . , r − 1. We show by induction on k ≥ 1

that αk(v) = β(v) for v ∈ D and (ιχdα
k)(w) = 0 for w ∈ Dk. The conclusion

trivially holds for k = 1 since χ vanishes on D1. Furthermore, for every v ∈ D,
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one has αk+1(v) = αk(v) + ιχdα
k(v) = αk(v). We complete the induction step

by observing that

ιχdα
k+1 = (id+ιχd)ιχdα

k,

vanishes on Dk+1 if ιχdα
k vanishes on Dk. The desired solution α is simply αr.

(d) If β1|D = β2|D, then β1 − β2 is a one-form with values in Ann(D) and one has
that

(id+ιχd)
r−1(β1 − β2) = 0.

Hence dχβ1 = dχβ2.

Consider a closed one form β̃ and a one-form β such that β|D = β̃|D. Then

dχβ = dχβ̃ = (id+dιχ)
r−1dβ̃ = 0. Conversely, if β is a one-form such that

dχβ = 0, then β̃ := (id+ιχd)
r−1β clearly satisfies the two equations dβ̃ = 0

and β̃|D = β|D.
�

We next extend the conclusion of Lemma 2.7 (c) to the context of forms taking
values in a vector bundle. For that purpose, consider a vector bundle E → M with
an affine connection ∇. The exterior covariant derivative d∇ is defined as follows:
for every k-form η ∈ Γ(

∧k T ∗M ⊗ E) with k ≥ 0,

(a) If k = 0, then d∇η = ∇
�
η,

(b) If β is a real-valued form, then d∇(η ∧ β) = (d∇η) ∧ β + (−1)kη ∧ dβ.

Then, the conclusion of Lemma 2.7 (c) still holds true for forms taking now values in
any vector space if one replaces the exterior derivative d with the exterior covariant
derivative d∇. Indeed, if α is an E-valued one-form vanishing on Dk, then for any
w ∈ Dk+1 and selector χ, we have

d∇α(χ(w)) = −α(w).

Hence, we can use the same argument as in the proof of Lemma 2.7 (c) to obtain a
formula for the unique solution α to the equation α|D = β|D and ιχd

∇α = ιχη for
given β and η. In fact, we can get the following more general result by using the
same approach.

Corollary 2.10. Let χ be a selector of D, Π: E → M a vector bundle over M
and β, η respectively a one-form and a two form taking values in E. Consider an

operator L : Γ(T ∗M ⊗ E) → Γ(
∧2

T ∗M ⊗ E) such that, for 1 ≤ k ≤ r − 1 and

α ∈ Γ(T ∗M ⊗ E) vanishing on Dk, one has that (id+ιχL)α vanishes on Dk+1.

Then the unique solution α to the system of equations α|D = β|D, ιχLα = ιχη is

given by

α = (id+ιχL)
r−1β − ιχ

r−2∑

j=0

(
r − 1

j + 1

)
(Lιχ)

jη.

Furthermore, if we define Lχ : = L(id+ιχL)
r−1, then Lχα only depends on α|D

and it vanishes Lχα = 0 if and only if there exists some one-form β with

α|D = β|D, Lβ = 0.
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2.3. Computation of horizontal holonomy groups. A central result for the
characterization of the holonomy of a connection ω in principal bundles is the
Ambrose-Singer Theorem, which essentially says that the Lie algebra of Holω can
be computed from the curvature form Ω of ω, see [2] and [27, Theorem 8.1]. Re-
call that in the case of infinitesimal holonomy or in the analytic framework, the
Ambrose-Singer Theorem admits a sharpened form established by Ozeki [31]. In
this section, we provide versions of Ambrose-Singer and Ozeki Theorems describing
the horizontal holonomy group of equiregular subbundles, and which rely on an
adapted curvature form that we introduce below.

For that purpose, we consider the following notations. Let π : P → M be a
principal G-bundle where g denotes the Lie algebra of G. We define a bracket of
g-valued forms on P as next: if α and β are real valued forms and A,B ∈ g, then

[α⊗A, β ⊗B] := (α ∧ β)⊗ [A,B].

In particular, if η is a g-valued one-form, then [η, η](v, w) = 2[η(v), η(w)].
A function f (a form η respectively) on P with values in g is called G-equivariant

if it satisfies

f(p · a) = Ad(a−1)f(p) (η(v1 · a, · · · , vk · a) = Ad(a−1)η(v1, . . . , vk) respectively).

Consider the vector bundle AdP → M defined as the quotient (P × g)/G with
respect to the right action of G given by (p,A) · a : = (p · a,Ad(a−1)A). Any
section s ∈ Γ(AdP ) defines a unique G-equivariant map s∧ : P → g such that
s(π(p)) = (p, s∧(p))/G. In that way, one can associate with a connection form
ω on P an affine connection ∇ω on AdP by letting ∇ω

Xs be the section of AdP
corresponding to the G-equivariant function ds∧(hX). Here, X is a vector field on
M and hX denotes its ω-horizontal lift defined by hX |p = hpX |π(p).

We have a similar identification between AdP -valued forms and G-equivariant
horizontal forms. Write H = kerω and V = kerπ∗. We say that a form on

P is horizontal if it vanishes on V . Any AdP -valued form η ∈ Γ(
∧k T ∗M ⊗

AdP ) corresponds uniquely to a horizontalG-equivariant form η∧ by η(v1, . . . vk) =
(p, η∧(hpv1, . . . , hpvk))/G where vj ∈ TxM, j = 1, . . . , k and p ∈ Px. From this

definition, it follows that d∇
ω

η corresponds to pr∗H dη∧. Moreover, if α and β are
Ad(P )-valued forms, we will use [α, β] for the Ad(P )-valued form corresponding
to [α∧, β∧].

A special AdP -valued form is the curvature form Ω of the connection ω, corre-
sponding to the equivariant horizontal two-form Ω∧ = pr∗H dω.Note that Ω∧(v, w) =
dω(v, w) + 1

2 [ω, ω]. Moreover, for every vector fields X,Y on M , one has that

(2.5) [hX, hY ]− h[X,Y ] = −Ω∧(hX, hY ).

The next proposition describes the horizontal holonomy group of a connection
ω with respect to a subbundle D as the holonomy of an adapted connection.

Proposition 2.11. Let π : P → M be a principal bundle over M . Let D be an

equiregular and bracket-generating subbundle of TM .

(a) Let ω be any connection form on π with corresponding curvature form Ω. If for
some selector χ of D, we have

(2.6) ιχΩ = 0,

then Holω,D(p) = Holω(p) for any p ∈ P .
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(b) For any connection form ω and selector χ of D, there exists a unique connection

ω̃ ∈ [ω]D with curvature satisfying (2.6).

As a consequence, for any connection form ω, there exists a connection form ω̃ such

that

Holω,D(p) = Holω̃,D(p) = Holω̃(p), for any p ∈ P.

In particular, Holω,D(p) is a Lie group.

The proof relies on Corollary 2.10 and on the following lemma. We first give
some extra notation. For every subset A of the Lie algebra (Γ(TP ), [ �, � ]), we use
LieA and Liep A , p ∈ P , to denote respectively the Lie algebra generated by A

and the subspace of TpP made of the evaluations at p of the elements of LieA .

Lemma 2.12. Let H and Ĥ be two subbundles of TP . For p ∈ P , define the orbit

Op of H at p as the sets of points in P that can be reached from p by H-horizontal

curves. Define in the same way the orbit Ôp of Ĥ at p. If

(2.7) Liep Γ(Ĥ) ⊆ Liep Γ(H), for every p ∈ P,

then Ôp ⊆ Op also holds for every p ∈ P . If equality holds true in (2.7), then

Ôp = Op.

Note that for every points p0 and p1 of P , the orbits Op0
and Op1

are either
disjoint or coincide.

Proof. From the Orbit theorem, see e.g. [1, Theorem 5.1], one gets that, for every
p ∈ P , Op is a connected immersed submanifold of P . Furthermore, by [1, Corol-
lary 5.1], we have that for every p0 ∈ P and p ∈ Op0

, Liep Γ(H) ⊆ TpOp0
. It follows

that for every p ∈ Op0
,

Ĥp ⊆ Liep Γ(Ĥ) ⊆ Liep Γ(H) ⊆ TpOp0
.

As a consequence, Ĥ|Op0
⊂ TOp0

. Hence, for every Ĥ-horizontal curve c : [0, 1] → P

and t ∈ [0, 1], there exists a connected neighborhood Ut of t in [0, 1] such that
c(Ut) ⊆ Oc(t). Since [0, 1] is compact, we can pick a finite number of point 0 = t0 <
t1 < t2 < · · · < tk ≤ 1, such that {Utj}

n
j=1 is an open covering of [0, 1]. Since for

j = 0, . . . , k − 1, Uj and Uj+1 are not disjoint, it must follow that the orbits Oc(tj)

all coincide with Oc(t0) = Oc(0). Hence every Ĥ-horizontal curve c with c(0) = p is

contained in Op, implying that Ôp ⊆ Op. �

We now turn to the proof of Proposition 2.11.

Proof of Proposition 2.11. (a) For 1 ≤ k ≤ r, consider the subbundles Ek of TP
defined by

Ek = {hpv : v ∈ Dk, p ∈ P}.

For every p ∈ P , let Op and Ok
p denote the orbits of H and Ek at p respectively.

From the definition of holonomy, it follows that

Holω(p) = {a ∈ G : p · a ∈ Op}.

The same identity holds for Holω,D(p) with Op substituted by O1
p . Hence,

Holω(p) = Holω,D(p) if O1
p = Op. We next show that these equalities hold

true if equality (2.6) holds. We first prove that Lie Γ(Ek) = Lie Γ(Ek+1) for
1 ≤ k ≤ r − 1.
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Let then 1 ≤ k ≤ r − 1 and notice that one has the obvious inclusion
Lie Γ(Ek) ⊆ Lie Γ(Ek+1). Equality follows if hZ ∈ Lie Γ(Ek) for any vector field
Z with values in Dk+1. Pick such a Z and let X1, . . . , Xl, and Y1, . . . , Yl be

any choice of vector fields with values in Dk such that χ(Z) =
∑l

i=1 Xi ∧ Yi.

From the definition of χ, it follows that Z =
∑l

j=1[Xj , Yj ] + Z2 where Z2 is

some vector field with values in Dk. Using (2.5) and (2.6), we deduce that

hZ =
l∑

j=1

[hXj, hYj ] + hZ2 ∈ Lie Γ(Ek).

We finally get that Lie Γ(E1) = Lie Γ(Er) = Lie Γ(H) and conclude the argu-
ment by using Lemma 2.12.

(b) Let ω̃ be a connection form ω̃ = ω+α∧ with α∧ being an equivariant horizontal

one-form. Write the ω̃-horizontal lift as h̃ and let Ω̃ be the curvature form of
ω̃. By definition, one has h̃pw = hpw − σ(α∧(hpw)) for any p ∈ Px, w ∈ TxM ,
x ∈ M . Furthermore, for any vector fields X and Y on M , we have

Ω̃∧(h̃X, h̃Y ) = dω(h̃X, h̃Y ) + dα∧(h̃X, h̃Y )

= −[α∧(hX), α∧(hY )]− σ(α∧(hX))α∧(hY ) + σ(α∧(hY ))α∧(hX)

+ Ω∧(hX, hY ) + dα∧(hX, hY )

= Ω∧(hX, hY ) + dα∧(hX, hY ) + [α∧(hX), α∧(hY )]

= Ω∧(hX, hY ) + (pr∗H dα∧)(hX, hY ) +
1

2
[α∧, α∧](hX, hY ).

Consider the operator Lω : Γ(T ∗M ⊗AdP ) → Γ(
∧2 T ∗M ⊗AdP ), defined

by

Lωβ : = d∇
ω

β +
1

2
[β, β].

For 1 ≤ k ≤ r − 1, notice that if β vanishes on Dk, then Lωβ(χ(w)) = −β(w)
for every w ∈ Dk+1. From the above computations, it follows that one has the

following equivalence: ω̃ ∈ [ω]D and ιχΩ̃ = 0 if and only if the AdP -valued
one-form α corresponding to α∧ satisfies the system of equations

(2.8) α|D = 0, ιχL
ωα = −ιχΩ.

This solution exists and is unique according to Corollary 2.10.
�

Using Proposition 2.11 and its argument, we can now provide the above men-
tioned versions of Ambrose-Singer’s and Ozeki’s theorems for equiregular subbun-
dles.

Theorem 2.13. (Ambrose-Singer’s theorem for horizontal holonomy group) Let

π : P → M be a principal G-bundle with connection form ω, D a bracket-generating,

equiregular subbundle of P of step r and χ a selector of D. Define the operator

Lω : Γ(T ∗M ⊗AdP ) → Γ(
∧2 T ∗M ⊗AdP ) by

(2.9) Lωβ : = d∇
ω

β +
1

2
[β, β].

Let Ω be the curvature form of ω and define

(2.10) Ωχ : = (id+Lωιχ)
r−1Ω.
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Finally, let Op0
be the set of points p ∈ P that can be reached from p0 with ω-

horizontal lifts of D-horizontal curves. Then the Lie algebra of Holω,D(p0) is equal

to

{Ω∧
χ(hpv, hpw) : v, w ∈ Tπ(p)M,p ∈ Op0

}.

Proof. Let ω̃ ∈ [ω]D be the unique element with curvature Ω̃ satisfying ιχΩ̃ = 0.

We will show that Ωχ = Ω̃. From the proof of Theorem 2.11(b), one has that

Ω̃ = Ω+Lωα, where α is the unique solution to (2.8). According to Corollary 2.10,

one gets that α = ιχ
∑r−2

j=0

(
r−1
j+1

)
(Lωιχ)

jΩ. It follows that

Ω̃ = Ω + Lωιχ

r−2∑

j=0

(
r − 1

j + 1

)
(Lωιχ)

jΩ =

r−1∑

j=0

(
r − 1

j

)
(Lωιχ)

jΩ = Ωχ.

We conclude the proof of Theorem 2.13 by using Proposition 2.11 and the usual
Ambrose-Singer Theorem. �

Theorem 2.14. (Ozeki’s theorem for horizontal holonomy group) We use the

notations of Theorem 2.13 and the following ones: let h be the ω-horizontal lift, p0 be
an arbitrary point and denote the Lie algebras of G and Holω,D(p0) by respectively

g and h. For any p ∈ P , define the subspace a(p) of g by

a(p) = span

{
hX1hX2 . . . hXkΩ

∧
χ(hY1, hY2)

∣∣
p
:

Y1, Y2 ∈ Γ(TM),
Xj ∈ Γ(D), k = 0, 1, . . .

}
.

Then a(p0) is a subalgebra of h. Furthermore,

(a) h is spanned by {a(p) | p ∈ Op0
}.

(b) If rank a(p) is independent of p, then h = a(p0).
(c) If both ω and χ are analytic, then h = a(p0).

Proof. By Theorem 2.11, let ω̃ ∈ [ω]D be the unique element such that its curvature

Ω̃ satisfies Ω̃(χ(�)) = 0. We then know that Holω,D(p) = Holω̃(p). Let h̃ denote

the ω̃-horizontal lift. We know that Ω̃(h̃Y1, h̃Y2) = Ωχ(hY1, hY2). Furthermore,
since Lω defined in (2.9) preserves analyticity, the construction of ω̃ in the proof of
Theorem 2.11 (b) gives us that this connection is analytic whenever ω and χ are
analytic.

Consider the subspaces

b(p) = span

{
h̃Z1h̃Z2 . . . h̃ZkΩ

∧
χ(hY1, hY2)

∣∣
p
:

Y1, Y2 ∈ Γ(TM),
Zj ∈ Γ(TM), k = 0, 1, . . .

}
.

The usual Ozeki theorem along with the above observations means that our desired
result holds true with b(p) in the place of a(p). We will show that a(p) = b(p) to
complete the proof.

If Z is a vector field in Dk+1 with χ(Z) =
∑l

i=1 Xi ∧ Yi, then

h̃Z =

l∑

i=1

[h̃Xi, h̃Yi] + h̃Z2, Xi, Yi, Z2 ∈ Γ(Dk),

since Ω̃(χ(·)) = 0. It follows that we can write h̃Z as a sum of k-th order operators
constructed with horizontal lifts of elements in D, thus yielding

b(p) = span

{
h̃Z1h̃Z2 . . . h̃ZkΩ

∧
χ(hY1, hY2)

∣∣
p
:

Y1, Y2 ∈ Γ(TM),
Zj ∈ Γ(TM), k = 0, 1, . . .

}
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= span

{
h̃X1h̃X2 . . . h̃XkΩ

∧
χ(hY1, hY2)

∣∣
p
:

Y1, Y2 ∈ Γ(TM)
Xj ∈ Γ(D), k = 0, 1, . . .

}
.

Since ω̃ ∈ [ω]D, we have that h̃X = hX for every X ∈ Γ(D) and the result
follows. �

Remark 2.15. Let ω be a connection on the principal G bundle P
π
→ M . Proposi-

tion 2.11 says that each selector χ gives us a unique connection ω̃ ∈ [ω]D such that

Holω,D(p) = Holω̃,D(p) = Holω̃(p). However, we do not claim that these are the

only elements satisfying this property. For example, if Holω,D = G, then it trivially

follows that Holω,D = Holω̃,D = Holω̃ holds for any ω̃ ∈ [ω]D.

2.4. Horizontal Holonomy of affine connections. As in the case of usual holo-
nomy, we can also consider the horizontal holonomy group of an affine connection,
as initiated in [23]. Let Π: V → M be a vector bundle with an affine connection ∇.
Let D be a subbundle of TM and use L D(x) to denote the set of D-horizontal
loops γ : [0, 1] → M based at x ∈ D. For t ∈ [0, 1], let Pγ(t) : Vx → Vγ(t) denote the
linear isomorphism defined by the parallel transport along the curve γ in time t.
Then we define the horizontal holonomy group of ∇ by

Hol∇,D(x) =
{
Pγ(1) ∈ GL(Vx) : γ ∈ L

D(x)
}
.

Write Hol∇,TM (x) = Hol∇(x). We say that two connections ∇ and ∇̃ are D-

equivalent if (∇v − ∇̃v)Z = 0 for any v ∈ D and Z ∈ Γ(V ). We write [∇]D for the

equivalence class of∇ with respect to this relation. Clearly, Hol∇̃,D(x) = Hol∇,D(x)

if ∇̃ ∈ [∇]D.
The correspondence to our theory of principal bundles goes as follows. Let ν

be the rank of V and consider Rν endowed with its canonical basis denoted by
e1, . . . , eν . The frame bundle π : FGL(V ) → M of V is the principal GL(ν)-
bundle such that for every x ∈ M , the fiber FGL(V )x over x consists of all linear
isomorphisms ϕ : Rν → Vx and the group GL(ν) acts on the right by composition.

From the affine connection ∇, we construct a corresponding principal connection
ω on FGL(V ) as follows. Define H ⊆ T FGL(V ) as the collection of all tangent
vectors of smooth curves ϕ in FGL(V ) such that, for every 1 ≤ j ≤ ν, ϕ(�)ej is
a ∇-parallel vector field along π ◦ ϕ. It is standard to check that H ⊕ kerπ∗ =
T FGL(V ) with H being invariant under the group action. Hence, there exists a
unique connection form ω satisfying kerω = H.

In this case, we can identity AdFGL(V ) with the vector bundle gl(V ) of endo-
morphisms of V through the mapping (ϕ,A)/G 7→ ϕ◦A◦ϕ−1. Furthermore, for any

ϕ ∈ FGL(V )x, we have the correspondence Hol
∇,D(x) = ϕ◦Holω,D(ϕ)◦ϕ−1. Also,

if Ω is the curvature form of ω, then R∇(v, w) = ϕ ◦ Ω∧(hϕv, hϕw) ◦ ϕ−1, where
the curvature R∇(X,Y ) = [∇X ,∇Y ]−∇[X,Y ] is seen as a gl(V )-valued two-form.

We summarize our results so far in this setting. Let D be a bracket-generating,
equiregular subbundle of TM of step r and Π: V → M a vector bundle over M .
If∇ is an affine connection on V , we will denote the induced connection on gl(V ) by
the same symbol. Corresponding to ∇, define an operator L∇ : Γ(T ∗M ⊗ gl(V )) →

Γ(
∧2

T ∗M ⊗ gl(V )) by

L∇α = d∇α+
1

2
[α, α].

Then Proposition 2.11 and Theorems 2.13 and 2.14 read as follows in the case of
affine connection.
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Theorem 2.16. Let ∇ be an affine connection on V .

(a) If there exist a selector χ of D such that ιχR
∇ = 0, then Hol∇,D(x) = Hol∇(x)

for any x ∈ M .

(b) For every connection ∇ on V and every selector χ of D, there exists a unique

affine connection ∇̃ ∈ [∇]D such that ιχR
∇̃ = 0. The connection ∇̃ is equal to

∇+ α with α ∈ Γ(T ∗M ⊗ gl(V )) given by

α = ιχ

r−2∑

j=0

(
r − 1

j + 1

)
(L∇ιχ)

jR∇.

This implies in particular that Hol∇,D(x) is a Lie group.

(c) For any x ∈ M , if h is the Lie algebra of Hol∇,D(x), then

h =

{
Pγ(1)

−1R∇
χ (v, w)Pγ(1) :

γ : [0, 1] → M is D-horizontal

γ(0) = x, γ(1) = y, v, w ∈ TyM

}
.

(d) For x ∈ M , let h denote the Lie algebra of Hol∇,D(x). Let χ be an arbitrary

selector and define

R∇
χ : = (id+L∇ιχ)

r−1R∇.

For any y ∈ M , define a(y) ⊆ gl(Vy) given by

(2.11) a(y) =

{
∇X1

· · · ∇Xk
R∇

χ (Y1, Y2)|y :
Y1, Y2 ∈ Γ(TM),

Xi ∈ Γ(D), k = 0, 1, 2 . . .

}
,

where the symbol ∇ appearing in (2.11) denotes the connection induced on gl(V )
by ∇. Then a(x) is a subalgebra of h. Furthermore, if γ : [0, 1] → M is any

D-horizontal curve with γ(0) = x and γ(1) = y, then Pγ(1)
−1a(y)Pγ(1) is

contained in h, and h is spanned by these subalgebras. Finally, if the rank of

a(y) is independent of y or if both ∇ and χ are analytic, then a(x) = h.

Remark 2.17. Theorem 2.16 greatly extends the results of [23] regarding the hori-
zontal holonomy group of an affine connection in case the subbundleD is equiregular
and bracket-generating. Note though that it is proved in [23] that the last conclu-

sion of Item (b), namely that Holω,D(x) has the structure of a Lie group, still holds
true under the sole assumption for D to be completely controllable. This last result
has been obtained by recasting horizontal holonomy issues within the framework of
development of one manifold onto another one (cf. [15]).

2.5. Equiregular subbundles. The case where the subbundle D is equiregular
of step r but not necessarily bracket-generating can be reduced to the bracket-
generating situation described previously by restricting to the leaves of the foliation
of Dr. According to Frobenius theorem, there exists a corresponding foliation
F of M tangent to Dr. Let F be a leaf of the foliation F . If x ∈ F , then

D|x ⊆ Dr|x = TxF . Hence, if p ∈ Px, then Holω,D(p) equals Holω|F ,D|F (p) where
ω|F is the restriction of ω to the principal bundle P |F → F . By restricting to each
leaf of the foliation ofDr, we are back to the case whereD is also bracket-generating.

In particular, if D is integrable, then Dr = D1 = D and Holω,D(p) = Holω|F (p) for
any p ∈ Px, x ∈ F .
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2.6. General subbundle. Let D be any subbundle of TM . Define D1 = Γ(D)
and, for k ≥ 1, set

Dk+1 =
{
Y, [X,Y ] : Y ∈ Dk, X ∈ Γ(D)

}
.

For every point x ∈ M , define the growth vector of D at x ∈ M as the sequence
n(x) = (nk(x))k≥1 where nk(x) = rankDk|x. We say that x ∈ M is a regular point

of D if there exists a neighbourhood U of x where the growth vector is constant.
We call a point singular if it is not regular. Recall that the set of singular points
of D is closed with empty interior, cf. [25, Sect. 2.1.2, p. 21].

Let π : P → M be a principal G-bundle with a connection ω. Let x be a regular
point of D, p ∈ Px and U a neighbourhood of x where the growth vector of D is
constant. We use ω|U to denote the restriction of ω to P |U → U . Then one clearly
has the following inclusions

(2.12) Holω|U ,D|U (p) ⊆ Holω,D(p) ⊆ Holω(p).

Since D|U is equiregular, it can be computed with the methods mentioned above.

Example 2.18. Consider R3 with coordinates (x, y, z). Define D as the span of ∂
∂x

and ∂
∂y + x2 ∂

∂z . Then any point (x, y, z) with x 6= 0 is a regular point.

2.7. Comparison with previous results in the contact case. Assume that M
is an oriented 2n+ 1-dimensional manifold and that D is an oriented subbundle of
rank 2n. Consider the skew-symmetric tensor

(2.13) R :

2∧
D → TM/D, R(X |x, Y |x) = [X,Y ]|x mod D,

for any X,Y ∈ Γ(D). As [X,Y ]|x mod D does not depend of choices of vector
fields X and Y extending X |x and Y |x, this map is a well-defined tensor vanishing
if and only if D is integrable. On the other hand, if R is surjective and non-
degenerate as a bilinear form, then D is called a contact structure. In particular,
contact structures are bracket-generating and equiregular subbundles of step 2. In
Example 2.8 for instance, the subbundle D is a contact structure.

Horizontal holonomy was first defined for such subbundlesD in [18]. On a contact

manifold, by Item (I) in Definition 2.6, any selector will be a map χ : TM →
∧2

D
that vanishes on D. It follows that χ can be considered as a map χ : TM/D →∧2

D. By Item (II), the map R in (2.13) is a left inverse to χ. Since both M
and D are oriented, we get an induced orientation on TM/D. Let ξ be a positively

oriented basis of TM/D and define χ(ξ) = χξ. Then
∧2

D = kerR⊕span{χξ}, and
therefore choosing a selector ofD is equivalent to choosing a two-vector field χξ that
never takes values in kerR, up to multiplication by non-vanishing smooth functions.
Hence, Proposition 2.4 and Theorem 2.1 in [18] can be considered as special cases of
our results and we have reformulated them below in terms of D-equivalence rather
than the language of partial connections used in [18].

Corollary 2.19. Let D be a contact structure on M . Let P → M be a principal

G-bundle with a connection form ω. Let χξ ∈ Γ(
∧2 D) be a two-vector field that

is transverse to kerR. Then there exists a unique connection ω̃ ∈ [ω]D whose

curvature Ω̃ satisfies Ω̃(χξ) = 0. Furthermore, if p0 ∈ P , then the Lie algebra of

Holω,D(p0) is spanned by {Ω̃∧(hpu, hpv) : v, w ∈ Tπ(p)M,p ∈ Op0
}.
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3. Two problems on foliated manifolds

3.1. Totally geodesic foliations. Let M be an n-dimensional connected manifold
and V ⊆ TM an integrable subbundle of rank ν ≤ n. By Frobenius Theorem, this
subbundle defines us a foliation F of M with leaves of dimension ν. Let D be a
subbundle of TM such that TM = D ⊕ V . The issue we address below regards
the existence of a Riemannian metric g on M such that D is the g-orthogonal
complement to V and F is totally geodesic, i.e., the leaves of F are totally geodesic
submanifolds of M .

Let g be a Riemannian metric on M with corresponding Levi-Civita connection
∇g. A submanifold F on M is called totally geodesic if the geodesics of (F,g |TF )
are also geodesics in (M,g). Consider an integrable subbundle V of TM and
denote by D its g-orthogonal complement. Let prV and prD be the g-orthogonal
projections onto V and D, respectively. The foliation F of V is totally geodesic if
and only if

II(Z1, Z2) := prD ∇g

prV Z1
prV Z2 = 0, for every Z1, Z2 ∈ Γ(TM).

The vector-valued tensor II is symmetric and is called the second fundamental form

of the leaves of F . Furthermore, for any vector field X ∈ Γ(D) and Z1, Z2 ∈ Γ(V ),
one must have

0 = −2 g(X,∇g

Z1
Z2) = −2 g(X, II(Z1, Z2)) = (LX pr∗V g)(Z1, Z2).

Hence, the foliation F is totally geodesic if and only if LX pr∗V g = 0 for every
vector field X with values in D.

Choose any affine connection ∇ on V such that for any X ∈ Γ(D) and Z ∈ Γ(V ),
we have

(3.1) ∇XZ = prV [X,Z].

Such a connection is called vertical and all such vertical connections areD-equivalent.
Write g = pr∗D gD +pr∗V gV , with metric tensors gD and gV on D and V respec-
tively. Then F is totally geodesic if and only if

(3.2) ∇v g
V = 0, for any v ∈ D.

This gives us the following reformulation of our problem. Given the direct sum
TM = D⊕ V of subbundles such that V is integrable, under what conditions does
there exist a metric tensor gV on V which is parallel in the directions of D with
respect to a connection ∇ satisfying (3.1)?

For any connection ∇ on V satisfying (3.1), denote the induced connection on

Sym2 V ∗ by the same symbol. For x ∈ M , let Hol∇,D(x) ⊆ GL(Sym2 V ∗
x ) be

the holonomy group with respect to ∇ at x. It is clear then that there exists
gV ∈ Γ(Sym2 V ∗) satisfying (3.2) if and only if

a · gV |x = gV |x, for any a ∈ Hol∇,D(x).

Hence, if F is totally geodesic then Hol∇,D(x) admits a positive definite fixed point
for any x ∈ M . As a consequence, if there exists a metric gV satisfying (3.2), then
there exists a positive definite element in Sym2 V ∗

x belonging to the kernel of every

element in the Lie algebra h of Hol∇,D(x).
Assume moreover that D is completely controllable. Then for any x ∈ M , there

is a one-to-one correspondence between positive definite fixed points of Hol∇,D(x)
and all metrics gV ∈ Γ(Sym2 V ∗) satisfying (3.2), since any such fixed point can
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be extended uniquely to a metric tensor through parallel transport. If Hol∇,D(x)
is connected, then there is a one-to-one correspondence between such metrics and
positive definite points in ∩A∈h kerA. In particular for the case when D is bracket-
generating and equiregular, let R∇

χ be defined with respect to some selector χ of D

as in Section 2.4. Then we must have R∇
χ (�, �)gV = 0 for any metric gV satisfying

(3.2). Recall by Remark 2.3 that Hol∇,D is connected whenever M is simply con-
nected and D is bracket-generating. Hence, if the latter two conditions are satisfied
for respectively M and D and R∇

χ = 0, then there is a one-to-one correspondence

between positive definite elements in Sym2 V ∗ and metrics satisfying (3.2). We note
that if e ∈ Sym2 V ∗

x , then

(R∇
χ (v1, v2)e)(w1, w2) = −e(R∇

χ (v1, v2)w1, w2)− e(w1, R
∇
χ (v1, v2)w2),

for any vj , wj ∈ TxM , j = 1, 2, where the R∇
χ on the right hand side is defined

relative to ∇ seen as a connection on V .
We summarize the findings of this section in the following theorem.

Theorem 3.1. Let V ⊆ TM be an integrable subbundle of M and let D be any

subbundle such that TM = D⊕ V . Let ∇ be any connection on V satisfying (3.1).
Assume that there exists a Riemannian metric g such that

(3.3) D is the g-orthogonal of V and the foliation of V is totally geodesic.

Then, for every x ∈ M , the group Hol∇,D(x) ⊆ GL(Sym2 V ∗
x ), has a positive

definite fixed point.

Furthermore, assume that D is completely controllable. Then M has a Riemann-

ian metric g satisfying (3.3) if and only if there exists a point x ∈ M such that

Hol∇,D(x) ⊆ GL(Sym2 V ∗
x ) has a positive definite fixed point.

We illustrate the difference between the case when D is integrable and the one
when D is completely controllable by studying a specific framework. Let V be
an integrable subbundle of TM of rank ν. Assume that M is equipped with a
Riemannian metric g and let D be the orthogonal complement of V . Following [33],
we say that F is a Riemannian foliation if

(3.4) LZ pr∗D g = 0, for any Z ∈ Γ(V ).

Riemannian foliations locally look like a Riemannian submersion. Recall that a
surjective submersion between two Riemannian manifolds f : (M,g) → (B,gB) is
called Riemannian if g(v, w) = gB(π∗v, π∗w) for any v, w ∈ (ker f∗)

⊥. If F is a
Riemannian foliation of (M,g), any point x ∈ M has a neighbourhood U such that
B = U/F|U is a well-defined manifold that can be given a metric gB , making the
quotient map f : U → B into a Riemannian submersion.

Let M = B × F be the product of two connected manifolds, F be the foliation
with leaves {(b, F ) : b ∈ B}, V be the corresponding integrable subbundle, and
D be any subbundle such that TM = D ⊕ V . Note that if f : M → B is the
projection, then f∗|D : D → TB is bijective on every fiber, meaning that curves in
B have D-horizontal lifts, at least for short time. We want to know if there exists
a Riemannian metric g = pr∗D gD +pr∗V gV such that the leaves of F are totally
geodesic. Since this question does not depend on gD, we may choose gD = f∗ gB |D
for some Riemannian metric on B. This will make F into a Riemannian foliation.

If D = f∗TB, we can choose any metric gV on V and the foliation is totally
geodesic. On the other hand, if D is completely controllable, the choice of metric
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is more restrictive. Indeed, if F is totally geodesic and g is a complete metric,
then the leaves of F are homogeneous spaces. For any smooth curve γ : [0, 1] → B
consider the map φγ : γ(0)× F → γ(1)× F sending a point (γ(0), z0) to the point
(γ(1), z1) if the latter is the endpoint of the horizontal lift of γ starting at (γ(0), z0).
By [24, Proposition 3.3], these maps are isometries. If D is completely controllable,
then the isometry group of (b, F ) must act transitively for any b ∈ B.

Remark 3.2. (a) We observe that by reversing the role ofD and V , we may consider
the following question. Given an integrable subbundle V and complement D,
when does there exist a Riemannian metric g on M such that V and D are
orthogonal and such that the foliation F of V is Riemannian? Let ∇′ be any
affine connection on D that satisfies

∇′
ZX = prV [Z,X ], for any Z ∈ Γ(V ), Z ∈ Γ(D).

Then (3.4) can be reformulated as ∇′
v g

D = 0 for any v ∈ V where gD =
g |D. Hence, the foliation F can only be made Riemannian with transversal

subbundle D if Hol∇
′,V (x) has a positive definite fixed point for any x ∈ M .

(b) In general, if f : M → B is a surjective submersion, F = {f−1(b) : b ∈ B} is a
Riemannian totally geodesic foliation and g is a complete metric, then by [24]
we know that the leaves of the foliation are isometric to some manifold F .
Furthermore, if G is the isometry group of F , then there exist a principal
G-bundle P → M (with action written on the left) such that

(3.5) M = G \ (P × F ),

The quotient is here with respect to the diagonal action.
(c) Even if TM = D⊕V with V not integrable, we can still define a connection∇ as

in (3.1). Studying when there exists a metric parallel with respect to∇ alongD-
horizontal curves still has applications to the heat flow of subelliptic operators
when V is not integrable, see [21, Section 3.3 & 3.8] and [22, Section 6.5].
Theorem 3.1 is also applicable to this case.

3.2. Submersions and principal bundles. Let F → M
f
→ B be a fiber bundle

over a manifold B, with the fiber F being a connected manifold. Let V = ker f∗
be of rank ν and let D be an Ehresmann connection on f , i.e., a subbundle such
that TM = D ⊕ V . The foliation of V is given by {Mb := f−1(b) : b ∈ B}. We
ask the following question: under what conditions does there exist a group action
on M rendering f a principal bundle and D a principal connection? In order to
approach this question, we first look at its infinitesimal version, namely, when does
there exist vector fields Z1, . . . , Zν on M satisfying

(i) V = span{Z1, . . . , Zν};
(ii) for any X ∈ Γ(D) and any i = 1, . . . , ν, [Zi, X ] has values in D;
(iii) g = span {Zi : i = 1, . . . , ν} is a subalgebra of Γ(TM).

If there exists a group G acting on the fibers of f : M → B such that both f
and D are principal, we can obtain the desired vector fields above by defining
Zi|x = σ(Ai) for some basis A1, . . . , Aν of the Lie algebra of G. The map σ is
here defined as in (2.1). Conversely, let Z1, . . . , Zν be vector fields satisfying Item
(i), (ii) and (iii). If these vector fields are also complete and if G is the simply
connected Lie group of g, we get a group action G × M → M . By the definition
of g, this group action preserves the fibers of f and is locally free, i.e. the stabilizers
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Gx = {a ∈ G : a · x = x} are discrete groups for any x ∈ M . Because of this,
for any x ∈ M with f(x) = b, the map G → Mb, a 7→ a · x, is a surjective local
diffeomorphism. This map must be a diffeomorphism if Mb is simply connected,
that is, if F is simply connected. Hence, if F is simply connected, the group G
acts freely and transitively on every fiber and f is a principal bundle with principal
connection D.

Define S0(D) be the space of infinitesimal vertical symmetries i.e. the space of
all Z ∈ Γ(TM) such that f∗Z = 0 and such that [Z,X ] has values in D for all
X ∈ Γ(D). This is a sub-algebra of Γ(TM) by the Jacobi identity. If g is as in
Item (iii), it will be an ν-dimensional subalgebra of S0(D). Note that if ∇ is any
connection on V satisfying (3.1), then ∇vZ = 0 for any Z ∈ S0(D) and v ∈ D.
In particular, this must hold for the vector fields Z1, . . . , Zν . If D is completely
controllable, S0(D) must be of dimension ≤ ν since every element Z is uniquely
determined by its value at one point through parallel transport. Hence, it follows
that the requirement of Item (iii) is superfluous, since if there exists vector fields
Z1, . . . , Zν satisfying Item (i) and (ii), then g = span{Z1, . . . , Zν} = S0(D).

We conclude the following from the above discussion.

Theorem 3.3. Let F → M
f
→ B be a fiber bundle with connected fiber F , V :=

ker f∗ the vertical bundle and D an Ehresmann connection on f . Let ∇ be any

connection on V satisfying (3.1).
If there exists a group action of some Lie group G on M such that f becomes

a principal bundle and D becomes a principal Ehresmann connection, then, for

every x ∈ M , one has Hol∇,D(x) = {Id} ⊆ GL(Vx), where Id denotes the identity

mapping.

Furthermore, assume that D is completely controllable and that F is compact

and simply connected. Then f can be given the structure of a principal bundle

with principal connection D if and only if there exists a point x ∈ M such that

Hol∇,D(x) = {Id} ⊆ GL(Vx).

For a related result in a special case, cf. [14].
Assume that D is bracket generating and equiregular with a selector χ. Then

R∇
χ ≡ 0 is a necessary condition for D to be a principal connection. If F is compact

and simply connected andM is simply connected as well, then the condition R∇
χ ≡ 0

condition is also sufficient. We emphasize that the only reason for the assumption
that F is compact, is to ensure that the vector fields Z1, . . . , Zν mentioned above
are complete.

Remark 3.4. Theorem 3.3 has applications to sub-Riemannian geometry since the
Lie algebra S0(D) often appear as a subalgebra of the Lie algebra of infinitesimal
isometries. Recall first that an isometry φ of a sub-Riemannian manifold (M,D,h)
is a diffeomorphism satisfying φ∗D ⊆ D with h(φ∗v, φ∗w) = h(v, w) for any v, w ∈
D. An infinitesimal isometry is a vector field Z such that, for every X ∈ Γ(D),
the vector field [Z,X ] takes values in D and Z h(X,X) = 2h(X, [Z,X ]). Let

F → M
f
→ B be a fiber bundle over a Riemannian manifold (B,gB) and D be

an Ehresmann connection on M . Define a metric on D by h = f∗ gB |D and set
V = ker f∗ for the vertical bundle with corresponding foliation F . Let g be any
metric on M such that g |D = h and V is the g-orthogonal complement of D. By
definition, f is a Riemannian submersion, F a Riemannian foliation and hence, for
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every Z ∈ Γ(V ),

Z h(X,X) = 2h(X, prD[Z,X ]) for any X ∈ Γ(D).

In order for Z to be an infinitesimal sub-Riemannian isometry, we must also have
prV [X,Z] = 0 for any X ∈ Γ(D). In other words, if ∇ is a connection on V

satisfying (3.1), then Z must be parallel along D-horizontal curves. If Hol∇,D(x) =
{Id} ⊆ GL(Vx), then V has a basis of infinitesimal isometries.

3.3. Computation of the curvature. The above problems involve the use of
connections corresponding to an affine connection ∇ satisfying (3.1). In order to
apply the results of Section 2.4, one must choose a selector and appropriate affine
connections ∇. We next give two options for the choice of ∇ and compute their
curvatures. We end with a remark on how to compute R∇

χ from R∇.

3.3.1. Connection appearing from the choice of an auxiliary metric. Choose an aux-
iliary metric g̃ on M with D and V orthogonal and define

(3.6) ∇Y Z := prV [prD Y, Z] + prV ∇g̃

prV Y Z, Y ∈ Γ(TM), Z ∈ Γ(V ).

To compute the curvature of this connection, we consider the curvature of D with
respect to the complement V , i.e, the vector-valued two-form R on M defined by

R(X,Y ) = prV [prD X, prD Y ], X, Y ∈ Γ(TM).

It is a well-defined two-form since it is skew-symmetric and C∞(M)-linear in both

arguments. We extend the connection ∇ to a connection ∇̊ on M by setting

∇̊Y X := prV [prD Y, prV X ] + prV ∇g̃

prV Y prV X(3.7)

+ prD[prV Y, prD X ] + prD ∇g̃

prD Y prD X.

Proposition 3.5. Endow M with some Riemannian metric g̃ and consider the

connection ∇ on V given by (3.6). Let II be the second fundamental form with

respect to g̃. For any X,Y ∈ Γ(TM) and Z ∈ Γ(V ), the curvature of ∇ is given by

R∇(X,Y ) = RF(prV X, prV Y )− (∇̊
�
R)(X,Y ) + S (X,Y )− S (Y,X),

where RF is the curvature of the leaves F of the foliation F with respect to g̃|F and

S (X,Y ) is the unique endomorphism satisfying the following: for every Z1, Z2 ∈
Γ(TM),

g̃(S (X,Y )Z1, Z2) = g̃(X, (∇̊Z2
II)(Y, Z1)− (∇̊prV Y II)(Z1, Z2)− (∇̊Z1

II)(Y, Z2)).

Proof. Since ∇̊ is a direct sum of a connection on D and V , we have R∇(X,Y )Z =

R∇̊(X,Y )Z for any X,Y ∈ Γ(TM), V ∈ Γ(V ). Hence, we need to compute

R∇̊(X,Y )Z for Z taking values in V .
Let us first consider the case when X and Y both take values in V . Let F be

a leaf of F . Observe that ∇̊Y Z is equal to ∇
g̃|F
X|F

Z|F on F , the latter connection

being the Levi-Civita connection of g̃|F . Hence R∇̊(X,Y )Z = RF(X,Y )Z.
If both X and Y takes values in D, then by the first Bianchi identity

R∇̊(X,Y )Z = prV R∇̊(X,Y )Z = prV � R∇̊(X,Y )Z

= prV � T ∇̊(T ∇̊(X,Y ), Z) + prV � (∇̊XT ∇̊)(Y, Z),
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with � denoting the cyclic sum and T ∇̊ denoting the torsion tensor of ∇̊. From

the definition of ∇̊, it is simple to verify that T ∇̊ = −R. Since R vanishes on V ,
we obtain

R∇̊(X,Y )Z = −(∇̊ZR)(X,Y ).

For the last part, we consider the case when X takes values in D and Y in V
respectively. Observe again from the first Bianchi identity, that one has

0 = prV � R∇̊(X,Y )Z = R∇̊(X,Y )Z −R∇̊(X,Z)Y.

Hence, we only need to compute R∇̊(X,Y )Y to derive the result. From the defini-

tion of ∇̊, observe that for any vector field Z with values in V , we have

(∇̊X g̃)(Z,Z) = −2g̃(X, II(Z,Z)), (∇̊Y g̃)(Z,Z) = 0.

It follows that for any vector field Z1, Z2 taking values in V , we have

g̃(R(X,Y )Z1, Z2) = −g̃(R∇̊(X,Y )Z2, Z1)− (R∇̊(X,Y )g̃)(Z1, Z2),

(R∇̊(X,Y )g̃)(Z1, Z2) = 2g̃(X, (∇̊Y II)(Z1, Z2)).

This leads to the conclusion that

g̃(R∇̊(X,Y )Y, Z) = −g̃(R∇̊(X,Y )Z, Y )− 2g̃(X, (∇̊Y II)(Y, Z))

= −g̃(R∇̊(X,Z)Y, Y )− 2g̃(X, (∇̊Y II)(Y, Z))

= g̃(X, (∇̊Z II)(Y, Y ))− 2g̃(X, (∇̊Y II)(Y, Z)).

As a result, we have

R∇̊(X,Y )Z = ♯g̃(X, (∇̊
�
II)(Y, Z)− (∇̊Y II)(Z, �)− (∇̊Z II)(Y, �)) = S (X,Y )Z.

�

3.3.2. Connection appearing from a global basis. Assume that V admits a global
basis of vector fields Z1, . . . Zν . Let τ1, . . . , τν be the corresponding dual one-forms,
i.e., they vanish on D and satisfy τi(Zj) = δij for every 1 ≤ i, j ≤ ν. Define the
connection ∇ by

∇XZj := prV [prD X,Zj],

for any j = 1, . . . , ν. It is then well-defined for any Z ∈ Γ(V ) through the Leibniz
property, i.e.,

(3.8) ∇XZ = prV [prD X,Z] +

ν∑

j=1

((prV X)τi(Z))Zi.

Proposition 3.6. Define a gl(V )-valued one-form α by

(3.9) α(X)Zj =
n∑

i=1

αij(X)Zi, αij = prD LZi
τj .

The curvature R∇ of the connection ∇ defined in (3.8) is given by

R∇ = L∇α− [α, α].

We recall that [α, α](X,Y ) = 2α(X)α(Y )− 2α(Y )α(X).
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Proof. Similarly to the proof of Theorem 2.11 (b), we can show that for any pair

of connections ∇ and ∇̃ such that ∇ = ∇̃+ α, α ∈ Γ(T ∗M ⊗ gl(V )), one has

R∇ −R∇̃ = L∇̃α, (L∇ − L∇̃)α = (d∇ − d∇̃)α = [α, α],

so R∇ − R∇̃ = L∇α − [α, α]. Choose ∇̃ as the connection on V determined by

∇̃Zi = 0 and α as in (3.9) to get the result. �

3.3.3. Computing R∇
χ . Assume that D is bracket-generating and equiregular of

step r. Define η0 = R∇ as a gl(V )-valued two-form and for k = 0, . . . , r− 2, define

ηk+1 = L∇ιχη
k for some selector χ of D. Let ∇̊ be any connection extending ∇,

with torsion T ∇̊. We then have

ηk+1(X,Y ) = (∇̊X ιχη
k)(Y )− (∇̊Y ιχη

k)(X) + ηk(χ(T ∇̊(X,Y )))(3.10)

+ ηk(χ(X))ηk(χ(Y ))− ηk(χ(Y ))ηk(χ(X)),

where (∇̊Xιχη
k)(Y )Z = ∇̊Xηk(χ(Y ))Z−ηk(χ(∇̊XY ))Z−ηk(χ(Y ))∇̊XZ. It follows

that if R∇
χ is defined as in Section 2.4, then

R∇
χ =

r−1∑

j=0

(
r − 1

j

)
ηj .

4. Examples

4.1. One-dimensional foliations. Let M be a connected, simply connected man-
ifold with a foliation F corresponding to an integrable one-dimensional subbundle
V . Let D be any subbundle that is transverse to V . We assume that V is ori-
entable, i.e., V = span{Z} for some vector field Z. It follows that Ann(D), the
subbundle of T ∗M consisting of covectors vanishing on D, is oriented as well, and
we write Ann(D) = span{τ}.

Proposition 4.1. Let τ be a non-vanishing one-form on a connected, simply con-

nected manifold M . Define D = ker τ and assume that dτ |∧2 D is non-vanishing at

any point. Let Z ∈ Γ(TM) and χ ∈ Γ(
∧2

D) be respectively a vector field and a

two-vector field such that

τ(Z) = 1, dτ(χ) = −1.

Consider the operator dτ⊗χ = d(id+ιχ⊗τd) on one-forms. Then there exists a

Riemannian metric g on M such that the foliation tangent to Z is totally geodesic

and D is orthogonal to V = span {Z} if and only if

(4.1) dτ⊗χLZτ = 0.

Recall from Lemma 2.7 (d) that (4.1) is indeed independent of choice of χ.

Proof. Let prD and prV be the respective projections to D and V relative to the
direct sum TM = D ⊕ V . Since pr∗D dτ never vanishes, D must be bracket-
generating and equiregular of step 2. Furthermore, if χ is any two-vector field
such that dτ(χ) = −1, then τ ⊗ χ is a selector of D. Define a metric ∇ on
V by ∇XZ = prV [prD X,Z] = (LZτ)(prD X)Z for any X ∈ Γ(TM). Define
α ∈ Γ(T ∗M ⊗ gl(V )) as α(X)v = (LZτ)(prD X)v = (LZτ)(X)v for any v ∈ V . We
use Proposition 3.6 to obtain that

R∇
τ⊗χ = (id+L∇ιτ⊗χ)(L

∇α− [α, α]) = (id+d∇ιτ⊗χ)d
∇α



24 Y. CHITOUR, E. GRONG, F. JEAN AND P. KOKKONEN

= d∇(id+ιτ⊗χd
∇)α = d∇(id+ιτ⊗χd

∇)LZτ ⊗ idV

= (d(id+ιτ⊗χd)LZτ)⊗ idV = dτ⊗χLZτ ⊗ idV .

Since V is one-dimensional, R∇
χ = 0 is a necessary condition for the existence of

a metric g such that D and V are orthogonal and the foliation of V is totally
geodesic. Since M is simply connected and D is bracket-generating, it is also a
sufficient condition. �

Example 4.2. Consider R3 with coordinates (x, y, z). Consider the following global
basis of the tangent bundle,

X =
∂

∂x
−

1

2
y
∂

∂z
,

Y =
∂

∂y
+

1

2
x
∂

∂z
,

Z =
∂

∂z
+ φ1X + φ2Y ,

where φ1 and φ2 are two smooth arbitrary functions on R3. Define D to be the
span of X and Y and let V = V (φ1, φ2) be the span of Z. For which functions φ1

and φ2 does there exist a Riemannian metric g such that the foliation F of V is
totally geodesic and D is the g-orthogonal complement of V ?

We define τ such that τ(X) = 0, τ(Y ) = 0 and τ(Z) = τ( ∂
∂z ) = 1. Then

τ = dz +
1

2
ydx−

1

2
xdy.

The unique element χ in
∧2

D satisfying dτ(χ) = −1 is χ = X∧Y. Its Lie derivative
with respect to Z is given by

LZτ = −φ1dy + φ2dx.

Furthermore,

dχ⊗τLZτ = d(LZτ + (dLZτ)(X,Y )τ) = d(−φdy + φ2dx− (Xφ1 + Y φ2)τ)

= −dφ1 ∧ dy + dφ2 ∧ dx− d(Xφ1 + Y φ2) ∧ τ − (Xφ1 + Y φ2)dτ

= −d(Xφ1 + Y φ2) ∧ τ.

Hence dτ⊗χLZτ = 0 if and only if X(Xφ1 + Y φ2) = 0 and Y (Xφ1 + Y φ2) = 0,
which happens if and only if

Xφ1 + Y φ2 = C,

for some constant C.

In the special case of a Riemannian foliation, we can write the above as follows.
Let M be a simply connected Riemannian manifold with metric g̃. Let V = spanZ
be an integrable subbundle of TM with corresponding foliation F assumed to be
Riemannian. By normalizing Z, we may suppose that ‖Z‖g̃ = 1. Let N be the
mean curvature vector field of F , defined as N = II(Z,Z) with II being the second
fundamental form. Let R be the curvature of D with respect to V , i.e., the vector-
valued two-form defined by R(X,Y ) = prV [prD X, prD Y ]. Assume that this never
vanishes. For an arbitrary function f define the gradient∇f and horizontal gradient
∇D by respectively

df(X) = g̃(X,∇f), df(prD X) = g̃(X,∇Df).
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Then we have the following identity.

Corollary 4.3. We can find a Riemannian metric g such that D and V are or-

thogonal and F is totally geodesic if and only if there exists f ∈ C∞(M) such

that

N = −∇D log ‖R‖g̃ +∇f.

Proof. Since R is non-vanishing, D is bracket-generating and equiregular step 2.
Let ♭ : TM → T ∗M be the bijection v 7→ g̃(v, ·). We write its inverse as ♯ : T ∗M →

TM and use the same symbol for the identifications of
∧k

TM and
∧k

T ∗M
through g̃. Define τ = ♭Z. For every X ∈ Γ(TM), one has

(LZτ)(X) = g(Z, [prD X,Z]) = −
1

2
(LprD X g̃)(Z,Z) = g̃(X, II(Z,Z)) = ♭N(X).

Observe furthermore that, for any X,Y ∈ Γ(D), we have

dLZτ(X,Y ) = LZdτ(X,Y ) = (LZ pr∗D dτ)(X,Y ),

since

LZ(id− pr∗D)dτ(X,Y ) = −dτ(prV [Z,X ], Y )− dτ(X, prV [Z, Y ])

= −dτ(Z, Y )τ([Z,X ])− dτ(X,Z)τ([Z, Y ]) = 0.

Define a selector τ ⊗ χ of D by

χ = −
1

‖ pr∗D dτ‖2
♯pr∗D dτ.

Note that

dLZ(χ) = −
1

‖ pr∗D dτ‖2
(LZ pr∗D dτ)(♯pr∗D τ) = −

1

‖ pr∗D dτ‖2
g̃(LZ pr∗D dτ, pr∗D τ).

Furthermore, since F is a Riemannian foliation, one gets

1

‖ pr∗D dτ‖2
g̃(LZ pr∗D dτ, pr∗D τ) =

Z‖ pr∗D dτ‖2

2‖ pr∗D dτ‖2
= Z log ‖ pr∗D dτ‖.

Using that ‖ pr∗D dτ‖ = ‖R‖, we apply Proposition 4.1 to deduce that there exists
a metric making D and V orthogonal and F totally geodesic if and only if

0 = d(♭N − pr∗V d log ‖R‖) = d(♭N − pr∗V d log ‖R‖+ d log ‖R‖)

= d(♭N + pr∗D d log ‖R‖).

Since M is simply connected, there exists a smooth function f on M such that
♭N + pr∗D d log ‖R‖ = df . Apply ♯ to get the desired conclusion. �

Remark 4.4. We could have reached the conclusion of Proposition 4.1 without using
horizontal holonomy as well. The argument goes as follows. Given any Riemannian
metric such that D and V are orthogonal, if V is spanned by a unit-length vector

field Z̃ and τ̃ denotes the unique one-form verifying τ̃(D) = 0 and τ̃(Z̃) = 1,

then g(X, II(Z̃, Z̃)) = (LZ̃ τ̃)(X). Hence, finding such a basis vector field Z̃ such
that LZ̃ τ̃ = 0 is equivalent to showing the existence of a metric making F totally

geodesic and orthogonal to D. We prove that the existence of Z̃ and (4.1).

Assume there exists such a vector field Z̃. For every smooth function f , set

Z = Zf = ef Z̃ and τ = e−f τ̃ . One deduces that

LZτ = e−f ιZ(−df ∧ τ̃ + dτ̃ ) = pr∗D df.
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Since this form coincides with df on D, we have by Lemma 2.7 (d) that

dτ⊗χ pr
∗
D df = dτ⊗χdf = 0.

Conversely, if dτ⊗χLZτ = 0 then again by Lemma 2.7 (d), there exists a one-form
β such that β|D = LZτ |D and dβ = 0. However, since M is simply connected, then
β = df for some function f . As LZτ(Z) = 0, it follows that LZτ = pr∗D df. The

vector field Z̃ = e−fZ consequently has the desired properties.

4.2. Lie groups. Let G be a connected Lie group with a connected subgroup K.
Let g and k be their respective Lie algebras. Let p be any subspace such that
g = p ⊕ k and define D and V by left translation of p and k respectively. The
subbundle V is then integrable with corresponding foliation F = {a ·K : a ∈ F}.
We again try to determine if there exists a Riemannian metric on G such that D
and V are orthogonal and F is a totally geodesic foliation.

We use the same notation for an element in g and its corresponding left invariant
vector field. Consider the connection ∇ on V defined by

∇AC := prV [A,C], for any A ∈ g, C ∈ k.

If A,B ∈ g and C ∈ k, the curvature of ∇ is given by

R∇(A,B)C = prV ([A, prV [B,C]]− [B, prV [A,C]]− [[A,B], C])(4.2)

= prV ([A, prD[B,C]]− [B, prD[A,C]]) .

Introduce the connection ω on GL(Sym2 V ∗) corresponding to ∇. We next provide
a positive answer to the previous question in particular cases.

(a) If K is a normal subgroup, i.e., if k is an ideal, then R∇ = 0, and therefore

Holω,D ⊆ Holω which reduces to the identity element. It follows that any inner
product on k can be extended to a Riemannian metric making D orthogonal to
V and the foliation of V totally geodesic. Since

V |a = a · k = k · a, a ∈ G,

the desired Riemannian metric g is on the form g = pr∗D gD +pr∗V gV , where
gD is an arbitrary metric on D, while gV is the right translation of any inner
product on k.

(b) Assume that [k, p] ⊆ p. Then, one necessarily has that p+ [p, p] = g, i.e., D is
equiregular of step 2. Furthermore, for any A,B ∈ g, C ∈ k, one has

R∇(A,B)C = −[prk[prpA, prpB], C].

Let χ be any selector of D and notice that R∇(χ(A))C = −[prkA,C] for any
A ∈ g. Define η0 = R∇ and η1 = L∇ιχη

0. Using (3.10), we get η1 = −R∇,
and, as a consequence, R∇

χ = 0. This reflects the fact that if we give V a metric
by left translation of any inner product on k and extend this metric to TM in
an arbitrary way such that D is orthogonal to V , then F is a totally geodesic
foliation.

The general case is more complicated and is left for future research.
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4.3. An example with Carnot groups. A Carnot group of step r is a simply
connected nilpotent Lie group with a Lie algebra g with a given decomposition
g = g1 ⊕ g2 ⊕ · · · ⊕ gr satisfying [g1, gk] = gk+1 for 1 ≤ k ≤ r − 1 and [g1, gr] = 0.

For such a group we have the following result, where ⌊x⌋ denotes the floor func-
tion, i.e.

⌊x⌋ = max{n ∈ Z : x ≥ n}.

Proposition 4.5. Define

p1 =
⊕

k odd

gk, p2 =
⊕

k even
k≤⌊r/2⌋

gk, k =
⊕

k even
k>⌊r/2⌋

gk,

Let D and V be subbundles of TG obtained by left translation of p1 ⊕ p2 and k,

respectively. Then there exists a Riemannian metric on M such that D and V
are orthogonal and the foliation of V is totally geodesic if and only if [p2, k] =
0. Furthermore, if K is the connected subgroup of G corresponding to k, then

the Ehresmann connection D on π : G → G/K can be made principal under a

multiplication on the fibers of π if and only if [p2, k] = 0.

Proof. Observe first that the following relations hold true

(4.3)
[p1, p1] = p2 ⊕ k, [p1, p2] ⊆ p1, [p1, k] ⊆ p1,
[p2, p2] ⊆ p2 ⊕ k, [p2, k] ⊆ k, [k, k] = 0,

It follows that D is equiregular of step 2. Define a connection ∇ on V as follows.
If X ∈ Γ(TM) and C ∈ k, then set

∇XC = prV [prD X,C].

From (4.3), we obtain that for any A ∈ g, we have

∇AC = [prp2
A,C].

If follows that the curvature R∇ is given for any C ∈ k by

R∇(A,B)C =

{
∇prp2

[B,A]C if A,B ∈ p1

0 if A ∈ g, B ∈ p2 ⊕ k,

By using the definition of a Carnot group, we can define a selector χ of D such
that, if C ∈ gk ⊆ k for k even and greater than ⌊r/2⌋, one has χ(C) =

∑n
j=1 Ai∧Bi

with Ai ∈ g1 ⊆ p1 and Bi ∈ gk−1 ⊆ p1. Since prp2
[Ai, Bi] = 0, we get ιχR

∇ = 0,

and hence R∇
χ = R∇.

If [p2, k] = 0, then R∇
χ = 0. If [p2, k] 6= 0, let A ∈ p2 and C ∈ k be any pair

of elements such that [A,C] is not zero. By replacing C with ad(A)kC for an
appropriate value of k ≥ 0, we may assume that [A, [A,C]] = 0. Write

A =

k∑

j=1

[B1
j , B

2
j ], B1

j , B
2
j ∈ p1.

Then for any metric gV on V , we have
n∑

j=1

R∇
χ (B1

j , B
2
j )(g

V )(C, [A,C]) = − gV ([A,C], [A,C]) < 0.

Hence R∇
χ (·, ·)gV is not equal to zero for any metric gV on V . One thus concludes

by using Theorem 3.1.
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As for the second statement of principal bundle structure on π, R∇ vanishes
on V if and only if [p2, k] = 0. If the latter holds, then all left invariant vector
fields C with values in V satisfy ∇C = 0 and since these are complete, the rest
follows from Theorem 3.3. �

Example 4.6. On R2 with coordinates (x, y), define the vector fields

A =
∂

∂x
, Bk =

1

k!
xk ∂

∂y
, 0 ≤ k ≤ n.

Note that [A,Bk+1] = Bk for any k ≥ 0. Define g = g1 ⊕ · · · ⊕ gn+1 where

g1 = span{A,Bn}, gk = span{Bn+1−k, }, 2 ≤ k ≤ n+ 1.

Let G be the corresponding simply connected Lie group of g. Since our Lie algebra
was nilpotent, we will use (global) exponential coordinates, giving a point a ∈ G
coordinates (r0, r1, . . . , rn, s) if a = exp(

∑n
k=0 rkBk + sA).

(a) Define k, p1 and p2 as in Propositions 4.5. Then [p2, k] = 0, so if D and V
are obtained by left translation of p1 ⊕ p2 and k, respectively, D is a principal
connection on G/K.

(b) Consider the Abelian subalgebra k = span{B1, . . . , Bn−1} with complement
p = span{A,B0, Bn}. Let G be a simply connected Lie group with Lie algebra g
and let K be a subgroup with Lie algebra k. Let D and V be the subbundles
of TG given by left translation of p and k, respectively. ThenD is an Ehresmann
connection on

π : G → G/K,

but not principal, since [p, k] is not contained in p. We next determine a new
multiplication on the fibers of π so that D becomes principal. For that purpose,
we consider a connection ∇ on V , such that if A ∈ g and C ∈ k are two left
invariant vector fields, then

∇AC = prV [prD A,C].

This connection satisfies (3.1) and it is simple to verify that R∇ = 0. Hence,
the foliation of V can be made totally geodesic with orthogonal complement D.
Furthermore, D can be made into a principal connection, as the vector fields
Z1, . . . , Zn−1 defined by

Zk =

k−1∑

j=0

(−1)ksk

k!
Bk−j

are complete and satisfy ∇Zk = 0.

Example 4.7. Let Fn,r be the free nilpotent Lie group on n generators of step r, i.e.,
the quotient of the free Lie group on n generators by the subgroup corresponding
to the ideal generated by the brackets of order r. Define k, p1 and p2 as in Propo-
sition 4.5. Then [p2, k] = 0 if and only if r < 8. Hence, for r ≥ 8, if D and V are
defined by left translation of respectively p1 ⊕ p1 and k, then there does not exist
a Riemannian metric making D and V orthogonal and the foliation of V totally
geodesic.
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inequalities on Riemannian foliations with totally geodesic leaves. ArXiv e-prints, Aug. 2014,
1408.0548.
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[28] I. Kolář, P. W. Michor, and J. Slovák. Natural operations in differential geometry. Springer-
Verlag, Berlin, 1993.

[29] R. Montgomery. Generic distributions and Lie algebras of vector fields. J. Differential Equa-
tions, 103(2):387–393, 1993.

[30] P.-A. Nagy. Nearly Kähler geometry and Riemannian foliations. Asian J. Math., 6(3):481–
504, 2002.

[31] H. Ozeki. Infinitesimal holonomy groups of bundle connections. Nagoya Math. J., 10:105–123,
1956.

[32] P. K. Rashevskii. On joining any two points of a completely nonholonomic space by an
admissible line. Math. Ann., 3:83–94, 1938.

[33] B. L. Reinhart. Foliated manifolds with bundle-like metrics. Ann. of Math. (2), 69:119–132,

1959.
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Université Paris XI, Laboratoire des Signaux et Systèmes (L2S) Supélec, 3 rue Joliot-
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