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ABSTRACT

This paper proposes a method to reproduce the Head Related Transfer Function (HRTF) in the horizontal
auditory scene. The method is based on a separable representation which consists of a Fourier Bessel
series expansion for the spectral components and a conventional Fourier series expansion for the spatial
dependence. The proposed representation can be used to predict HRTFs at any azimuth position and at any
frequency sampling point from a finite number of measurements. Implementation details are demonstrated
in the paper. Measured HRTFs from a KEMAR manikin and analytically simulated HRTFs were used to
validate the fidelity and predictive capabilities of the method. The average mean square error for model
reconstruction is less than two percent.

1. INTRODUCTION

The ability of human beings to localize the sound in

three dimensions depends on the way the sound waves

from the same source differ from each other as they

reach the left and right ears. The head, torso, shoul-

ders and the outer ears modify the sound arriving at a

person’s ears. This modification can be described by a

complex response function, the Head Related Transfer

Function (HRTF), which depicts how a given sound wave

input (parameterized as frequency and source location)

is filtered by the diffraction and reflection properties of

the individual body shape before the sound reaches the

listener’s eardrum. Theoretically, HRTFs can be used

to generate binaural sound, a “virtual acoustic environ-

ment”, as it contains all the information about the sound

source’s location (its direction and distance from the lis-

tener).

To synthesize the auditory scene, a straightforward way

is to filter the original monaural sound through a proper

set of measured HRTFs for each individual. However,

to represent the entire auditory scene, one common ap-

proach is to have functional representations of the HRTF,

such as filter bank models [1, 2] and transfer decompo-

sitions (principal component analysis [3, 4] and spheri-

cal harmonics [5]). As the weights of these models are

available only for either the measured directions or sam-

pled frequency points, the HRTF must be interpolated

between two discrete measurement positions or discrete

frequencies. Many techniques have been proposed now

to perform the interpolation of the HRTF, such as the bi-

linear method [6], pole-zero approximation models [7]

and spherical spline-based methods [8]. Nevertheless,

the most appropriate interpolation is still considered as

an open question. A more efficient approach is to have

continuous functional representation of HRTFs.

This paper proposes a method to reproduce HRTFs at

all possible positions in the horizontal plane based on

a novel HRTF Fourier Bessel functional representation.

The Fourier Bessel functional model uses the Fourier

series to separate the spatial and spectral dependence

of the HRTF. According to the strong correlation be-

tween the measured spectral structure of the HRTF and

the family of Bessel functions of the first kind, we use

the Fourier-Bessel series to represent the Fourier series

weights (spectral components of HRTFs). Both Fourier

series and Fourier-Bessel series are well-studied com-

plete orthogonal functions and can be readily applied to

accurately model the HRTF. Further, by applying these

two sets of continuous functions, each individualized

HRTF is transformed to a coefficient matrix, which could

be very easily saved and processed to predict HRTFs

at any arbitrary position in two dimensions. Given the
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characteristics of the Fourier Bessel functional model,

the reproduction implementation details are elaborated

in the paper. Finally, the reproduction results of the pro-

posed method are validated by comparing a KEMAR

manikin measured [9] and analytically simulated HRTFs

[10] with the corresponding reproduced HRTFs.

2. HRTF FOURIER BESSEL FUNCTIONAL

MODEL

A continuous functional representation is a mathematical

model or equation that represents the HRTF as a func-

tion of continuous variables (source positions and fre-

quency points). The horizontal plane HRTF is denoted

by H( f ,φ) as a function of frequency f and azimuthal

angle φ . In this section we develop spatial and spectral
continuous representations of the HRTF.

2.1. HRTF spatial components modelling

One of the noticeable characteristics of the HRTF is that

the function is periodic with period 2π in the azimuthal
variable. A periodic function is most naturally expanded

using a Fourier series, which makes use of the orthogo-

nality between the complex exponentials to break up an

arbitrary periodic function into a series of simple terms

which converge in the mean. When truncated this infinite

series can provide very good approximation to the origi-

nal function given the HRTF has a low pass character in

the azimuthal variable. Thus, the continuous Fourier se-

ries can be used as basis to extract the spatial dependence

of HRTFs written as

H( f ,φ) =
∞

∑
m=−∞

Am( f )eimφ , (1)

where i=
√
−1 and the mth order Fourier series weights

are given by

Am( f ) =
1

2π

� 2π

0
H( f ,φ)e−imφdφ . (2)

Equations (1) and (2) allow the calculation of the Fourier

series weights Am( f ) given a continuous HRTF function.
In a practical context we need to reconsider equations

(1) and (2). Two important modifications are required.

Firstly (1) should be modified by truncating to a certain

order M depending on what accuracy is desired. Sec-

ondly (2) should be modified by replacing the integral

with a finite summation to calculate coefficients Am( f )
at discrete frequencies. As the solved Fourier series
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Fig. 1: The magnitude spectrum of Am( f ) calculated
from the MIT data [9].

weights Am( f ) are only available at some discrete fre-
quencies, the problem of modelling Am( f ) as a function
of frequency is addressed below to achieve the goal of a

continuous representation.

2.2. HRTF spectral components modelling

Because the physical understanding of the HRTF vari-

ance with frequency remains an open issue, there is no

obvious choice for the representation of the spectral com-

ponents. A practically effective strategy is to use a repre-

sentation consisting of a complete set of orthogonal func-

tions which can be served as basis functions to any order

of Am( f ). The concept can be expressed as

Am( f ) =
∞

∑
k=1

Cmkϕk( f ), (3)

where, ϕk( f ) is a suitable orthogonal set of functions de-
fined on the interval f ∈ (0, fmax) ( fmax are the maximum
measurement frequency).

Theoretically any general function can be perfectly ap-

proximated by Eq. (3) without error; while for practi-

cal implementation, truncation of the equation to a fi-

nite number of terms, K, will bring in inaccuracies in the

representation. In principle any orthogonal set of func-

tions on a finite interval can be adapted for the purpose

and provide an exact representation and in that sense are

equivalent. However, under truncation to a certain num-

ber of terms some orthogonal sets will perform better

AES 31ST INTERNATIONAL CONFERENCE, London, England, 2007 JUNE 25–27

Page 2 of 9



Zhang et al. Horizontal plane HRTF reproduction using continuous Fourier-Bessel functions

0

0.5

1

1.5

2

x 10
4

−40

−20

0

20

40
0

0.5

1

1.5

Frequency (Hz)

The magnitude spectrum of A
m

(f)

Fourier series order: m

Fig. 2: The magnitude spectrum of Am( f ) calculated
from an analytical model [10].

than others. That is, under truncation, different orthog-

onal sets of functions are not equivalent and there will

exist preferred choices.

The aim of this work is to find the most efficient orthog-

onal sets under truncation based on the pattern of Am( f )
(the most resemble one should give the lowest truncation

number). Fig. 1 and 2 depict a mesh plot of the mag-

nitude spectrum of Am( f ) calculated from the MIT data
[9] and a simple analytical model [10]. The figures reveal

that the energy of the HRTF frequency components does

not uniformly spread over the Fourier series expansion

order m. Instead, the pattern of Am( f ) from both data

sets exhibits similarities to the family of Bessel functions

of the first kind (Fig. 3), such as the finite value of A0( f )
at the origin f = 0, the prominence of other Am( f )s af-
ter the origin and proportionally decaying oscillation like

sine or cosine functions. This resemblance demonstrates

that there is a strong correlation between the spectral

components of HRTFs and the family of Bessel func-

tions of the first kind. Thus, in this paper, a complete

orthogonal set, the Fourier Bessel series, is proposed to

model the HRTFs frequency components Am( f ) whose
dependence on m is explained next.

The Fourier Bessel series make use of the orthogonality

between Bessel functions of the first kind for a specific

order � on the interval (0,1) to expand a general func-

tion [11]. The Fourier Bessel series expansion of the fre-
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Fig. 3: Plot of the Bessel functions of the first kind J�(n)
for various orders �.

quency component of HRTFs is given as

Am( f ) =
∞

∑
k=1

CmkJ�(β
(�)
k

f

fmax
), (4)

where β
(�)
1 ,β

(�)
2 , ...,β

(�)
k are the positive roots of J�(x) =

0 and � is the specific order of the Bessel function of the

first kind. Cmk are complex coefficients whose depen-

dence on the choice of � is suppressed.

The coefficients of the Fourier Bessel series expansion

can thereby be resolved from [11] as

Cmk =
2

[J�+1(β
(�)
k )]2

� fmax

0
f Am( f )J�

�

β
(�)
k

f

fmax

�

d f .

(5)

As the Fourier Bessel series has infinite number of sets,

we need to decide which specific order � to use. Firstly,

the zero-th order J0(·) should be included due to the dom-
inance of A0( f ); among all orders only J0(0) = 1 could

give very efficient approximation to A0( f ) in the limit as
f → 0. However, using only one term J0(·) is not the
optimum representation for the high order Am( f ) when
m �= 0. Noticing that high order Fourier Bessel series can
match high order frequency components, we believe the

representation with � depending on m is more effective.

In this paper, we have not mathematically derived a spe-

cific formula and a simple linear relationship � = |m| is
applied. The real measurements reconstruction perfor-

mance in section 4 proves that this choice works well,
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such as high approximation accuracy and significantly

reduced number of parameters (the verification of this

simple formula will be left as on open problem).

Thus, the HRTF functional model in the frequency do-

main is obtained as

H( f ,φ) =
∞

∑
m=−∞

∞

∑
k=1

CmkJ|m|

�

β
(|m|)
k

f

fmax

�

eimφ , (6)

where

Cmk =
1

π[J|m+1|(β
(|m|)
k )]2

� fmax

0

� π

−π
fH( f ,φ)

J|m|

�

β
(|m|)
k

f

fmax

�

e−imφdφd f . (7)

Eq. (7) illustrates how to calculate the model parameters

from a continuous HRTF function. While for experimen-

tally measured HRTFs, the model coefficients Cmk are

calculated using the left Riemann sum to approximate

the integral. The implementation about appropriate trun-

cation of (6) for efficient representation is illustrated in

section 3.

Now, the HRTF representation (6) are functions of con-

tinuous variables representing the spectral and spatial

cues. On the one hand, the proposed model can achieve

HRTF reconstruction at any frequency point for an ar-

bitrary azimuth. On the other hand, given the basis

functions remain same for all listeners, for each indi-

vidualized HRTF measurement, only a coefficient ma-

trix Cmk needs to be saved. Note this coefficient matrix

is much smaller in size compared to original measure-

ments; hence the goal of data compression is achieved.

3. HRTF REPRODUCTION IMPLEMENTATION

In this section, issues about how to implement the pro-

posed HRTF model (6) are elaborated including the lim-

itation on experimental measurement.

3.1. Angular Sampling

The all-important implementation issue is to record the

plane sound field with enough samples at the desired fi-

delity. Ajdler in [12] proves that the appropriate way to

sample HRTFs is through

wt = ±
c�θ

0.09
, (8)

where c is the speed of sound propagation, �θ and wt are

the angular pulsation and temporal sampling frequency.

�θ as defined above depends on the angular sampling in-

terval. For example, under uniformly spaced sampling

(the most widely used sampling method for HRTF mea-

surement), �θ = 2π/�θ and �θ is the angular spacing
between two consecutive HRTF measurement positions.

Further, according to (8), in order to avoid spatial alias-

ing in HRTF reproduction, there is a maximum azimuthal

angular spacing�θmax beyond which fidelity is lost. The
�θmax is related to the temporal sampling frequency wt .
When the sampling frequency is 44.1 kHz (as used in
MIT data set), the maximum angular sample interval is

approximate 5 degrees.

In summary, the proposed HRTF reproduction method

requires the sound field (HRTF) to be sampled uniformly

on the horizontal plane and the angular sample interval

no more than �θmax for a specific temporal sampling
frequency following (8).

3.2. Choice of Truncation Number

The primary parameters that influence the model fitting

are the truncation numbers M and K in (6). The gen-

eral rule is to monitor the distribution of model parame-

ters Cmk over the Fourier series order m and the Fourier

Bessel series order k for each specific data set, like Fig. 4

from analytical model and Fig. 5 from MIT data. The

structure of the coefficients has a clear downward trend

in the average contribution made by Fourier series har-

monics and Fourier Bessel series of increasing degree.

Hence, a higher truncation number results in better ap-

proximation; but too large value may lead to over fit-

ting. In addition, make sure the value of Cmk is solved

over large orders. For example, the value of Cmk calcu-

lated from MIT data is nearly zero when M > 20 and

K > 100, which proves that our calculation order is ade-

quate. Then, the criteria is that at least 90% of the total

“energy” of Cmk is contained in the approximation. In

this paper, for both analytical solutions and MIT mea-

surements, the lowest truncation numbers are chosen as

ML = 16 and KL = 87 accordingly.

Once the angular sampling interval and truncation num-

bers are determined, we could estimate the model param-

eters Cmk using (7) from the experimental measurements

and further reproduce HRTFs in the whole horizontal au-

ditory scene.
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4. PRACTICAL RESULTS AND PERFOR-

MANCE ASSESSMENT

The fidelity and predictive capabilities of our proposed

horizontal planar HRTF reproduction method is vali-

dated by comparing the measured (or analytically sim-

ulated) and model reproduced data. Two sets of data are

employed in evaluation: 1) the MIT data acquired using

a KEMAR manikin [9], and 2) some analytical solutions

[10].

The error metric is defined as the percent mean square

error in the magnitude and phase spectrum at each az-

imuthal location

ei =
∑Nn=1 �H( fn,φi)− Ĥ( fn,φi)�2

∑Nn=1 �H( fn,φi)�2
×100%, (9)

where for each azimuth, HRTFs are measured (or sim-

ulated) at N frequency points. H( fn,φi) is the original
HRTFs at the nth frequency point and ith azimuth; and

Ĥ( fn,φi) is the reproduced HRTF.

The error performance is investigated for two different

classes of directions; those for which measurements (an-

alytical simulations) were conducted and contributed to-

ward the derivation of the model parameters (Recon-

struction) and directions for which had no experimental

reference (Interpolation).

4.1. Real Data

The proposed method is tested on theMITmeasurements

first. The MIT measurements were made in an anechoic

chamber; and both the “small” and “large” pinna mod-

els were tested on the KEMAR DB 4004. The measure-

ments are the head related impulse response in the time

domain at the 44.1 kHz sampling rate and each response
is 512 samples long. In the horizontal plane, a full 360

degree of azimuth was sampled in equal sized increments

(5 degrees approximately).

In order to use one set of measurement to examine two

kinds of error performance, 72 MIT measured HRTFs

in the horizontal plane are divided into two groups with

each having 36 data sets spaced by 10◦. The first group is
used to determine the model parameters Cmk; and the re-

construction performance is evaluated by comparing the

measured and model reconstructed HRTFs at these lo-

cations. The second group data is used to demonstrate

the predictive power of the model (interpolation perfor-

mance) as these locations are not used to determine Cmk.

Note that from (8), we can only interpolate the HRTFs
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Fig. 8: Reconstruction error distributions as a function

of the source position azimuthal angle φ for the MIT

HRTFs. The error reaches its maximum for source lo-

cations where the ear is maximally shadowed.

up to 10.8 kHz using the angular spacing of 10◦. In ad-
dition, the second group locations are at the midpoints of

those used to determine the modal parameters and thus

represent the locations of maximum interpolation error.

Fig. 6 compares measured and model reconstructed

HRTF magnitude spectrum at four typical directions in

the horizontal plane. The responses qualitatively show

that the model reproduces the experimental measured re-

sponses with very high accuracy. Fig. 7 illustrates the

predictive power of the model by comparing measured

and model interpolated HRTF magnitude spectrum. The

precise interpolation results prove that the proposed con-

tinuous functional model can achieve HRTF estimation

at any point in the horizontal plane.

The distribution of errors across all positions is also pre-

sented in Fig. 8 and 9 for the MIT measurements. The

worst reconstruction error is around 3% at an azimuth of

100◦−130◦ for the left ear and 280◦−320◦ for the right
ear. In MIT measurements, a source located at 90◦ az-
imuth is directly across from the right ear (the left ear is

the shadowed ear) and a source located at 270◦ is directly
across from the left ear (the right ear is the shadowed

ear). Figures reveal that the reproduction of HRTFs is

usually better at the source-facing side of the head than at

the head’s shadowed side. Observe that the interpolation

errors are slightly larger than previous reconstructional
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Fig. 9: Interpolation error distributions as a function of

the source position azimuthal angle φ for the MIT data.

errors because these directions are actually not used to

determine the model parameters.

4.2. Analytical Solutions

The proposed method is also tested on synthetic data.

We used the well known analytical sphere HRTF model

presented in [10] and a circle of 72 points on the hori-

zontal plane (note these 72 points are uniformly sampled

according to section 3.1). The HRTFs are computed at

each point at a distance of 1.2m from the sphere (head).

Then the same validation procedure is employed. The

results are very similar to those from the MIT database

described above. As an example, the error distribution

from fitting the model to the analytic solution is shown

in Fig. 10 and 11 (the left and right ears have symmetri-

cal error performance as the head is modelled as a sphere

in the analytical model). Note that, as with the MIT data,

the reconstruction error reaches maximum (nearly 1.4%)
at the head’s shadowed area.

4.3. Discussion of the Model

The reproduction of HRTFs is usually better at the

source-facing side of the head than at the head’s shad-

owed side. Two factors contribute to the relative large

errors at the head shadowed side. The most significant

is the relatively lower signal-to-noise ratio (SNR) at the

head shadowed side. The energy in the contralateral

HRTFs is less than that in the ipsilateral HRTFs. Hence,

the head-shadowed HRTFs contribute relatively little to
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estimate the model parameters Cmk. A second factor is

that the contralateral sounds may produce more varia-

tions because of the diffraction around the head. This

results in the spectral shapes that are more complicated

and more difficult to model. Therefore, it is obviously

noted from the error distributions that the error reaches

its maximum at the head shadowed side.

In view of the above two factors, we believe the syn-

thesis error at the head shadowed side can be reduced

by increasing the truncation numberM and K (including

more basis functions) in the proposed model. As stated in

section 2, truncation of the infinite series model (6) may

cause the inaccuracy of the representation. While the co-

efficients Cmk show a clear downward trend in the aver-

age contribution to approximate HRTFs; the high order

parameters correspond to the fine detail in the response.

Hence, a higher truncation number results in more accu-

rate representation.

5. CONCLUSION

In this paper, a method was developed for HRTFs repro-

duction in the horizontal plane. The method is based

on a continuous HRTF functional model which uses

Fourier series and Fourier Bessel series to separate the

spatial and spectral dependence of the HRTF. Measured

HRTFs from the KEMAR manikin and analytical simu-

lated HRTFs were used to investigate the model perfor-

mance. The average MSE between measured and model

reconstructed HRTFs is less than two percent; and the

average MSE between measured and model interpolated

HRTFs is less than four percent. The implementation re-

sults show that the method could give indistinguishable

reproduction compared with the original measurements.
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