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Stanley, Sarah, Katie Wynne, Barbara McGowan, and Stephen Bloom. Hormonal Regulation of Food Intake.
Physiol Rev 85: 1131–1158, 2005; doi:10.1152/physrev.00015.2004.—Our knowledge of the physiological systems
controlling energy homeostasis has increased dramatically over the last decade. The roles of peripheral signals from
adipose tissue, pancreas, and the gastrointestinal tract reflecting short- and long-term nutritional status are now
being described. Such signals influence central circuits in the hypothalamus, brain stem, and limbic system to
modulate neuropeptide release and hence food intake and energy expenditure. This review discusses the peripheral
hormones and central neuronal pathways that contribute to control of appetite.

I. INTRODUCTION

The brain regulates energy homeostasis in re-
sponse to signals from both adipose tissue and the
gastrointestinal tract. The drive to eat and energy ex-
penditure are adjusted so that over time, body weight
remains stable.

Over the past decade, our knowledge of this homeo-
static system has increased dramatically. Important ad-
vances have been made in the characterization of hypo-
thalamic neuronal networks and neuropeptide transmit-
ters, along with the discovery of circulating peptides that
send signals to the brain regarding the body’s nutritional
status (see Fig. 1).

Disorders of this essential homeostatic mechanism
lead to obesity and its associated complications. Cur-
rently, the prevalence of obesity is increasing un-
abated, bringing with it significant morbidity and mor-
tality. The understanding of the physiological systems
regulating food intake and body weight is fundamental
to establishing effective therapies for this world-wide
epidemic.

II. PERIPHERAL REGULATORS OF APPETITE

A. Adipose Tissue Hormones

1. Leptin

Although originally thought to be inert tissue solely
for the storage of energy, it has now become clear that
adipose tissue is an active endocrine organ. One of its
most important hormones is leptin, a peptide hormone
with numerous actions, including influences on energy
homeostasis and neuroendocrine and immune function.
Leptin is the product of the ob gene expressed predomi-
nantly in adipocytes (458) but also at lower levels in
gastric epithelium (23) and placenta (267). Circulating
leptin levels reflect both energy stores and acute energy
balance. Plasma leptin levels are highly correlated with
adipose tissue mass (258), but food restriction results in
suppression of circulating leptin (143, 258), which can be
reversed by refeeding or insulin administration. Exoge-
nous leptin administration, both centrally and peripher-
ally, reduces spontaneous and fasting-induced hyperpha-
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gia (7) whilst chronic peripheral administration reduces
food intake resulting in loss of fat mass and body weight
(168).

Leptin signals via a single-transmembrane domain
receptor of the cytokine receptor family (394). Alternative
mRNA splicing and posttranslational processing result in
multiple isoforms of the receptor (Ob-R) (75, 393). The
alternate splice variants of the receptor may be classified
into three forms: long, short, and secreted (150, 393). The
long form, Ob-Rb, receptor possesses a long intracellular
domain that binds to JAK-kinases (238) and to STAT 3
transcription factors (411) resulting in signal transduction
and leptin’s effects on food intake (238). Activation of the
JAK-STAT pathway induces expression of suppressor of
cytokine signaling-3 (SOCS-3), one of a family of cytokine-
inducible inhibitors of signaling. SOCS-3 expression is
upregulated by leptin in hypothalamic nuclei expressing
the Ob-Rb receptor. Overexpression of SOCS-3 blocks
leptin’s actions on a reporter gene construct in vitro and,
therefore, obesity-related leptin resistance has been pos-
tulated to be a consequence of increased or excessive
SOCS-3 expression. Consistent with this hypothesis, neu-
ron-specific conditional deletion of SOCS-3 in mice re-
sults in resistance to diet-induced obesity (291). Similarly,
mice heterozygous for global SOCS-3 deficiency are resis-
tant to weight gain and more sensitive to the weight-
reducing effect of exogenous leptin administration (193).
Thus suppression of SOCS-3 expression may be a poten-
tial treatment of leptin-resistant obesity.

Circulating leptin crosses the blood brain barrier
(BBB) via a saturable process (28), and it has been pro-
posed the short forms of the receptor play a role in this
transport of leptin (121). The secreted (or soluble) form
of the leptin receptor is thought to bind circulating leptin,
thus modulating its biological availability and hence ac-
tivity (150).

The long form of the leptin receptor, Ob-Rb, is ex-
pressed widely within the hypothalamus but is found
particularly in the arcuate nucleus (ARC), ventromedial
and dorsomedial hypothalamus (VMH and DMH, respec-
tively), lateral hypothalamic area (LHA) and medial pre-
optic area (MPOA) (128, 135, 167). Ob-Rb are also ex-
pressed in appetite-modulating pathways in the brain
stem (277). Peripheral leptin administration alters neuro-
nal activity in these hypothalamic and brain stem regions
(127). In the ARC, Ob-Rb mRNA is expressed by the two
major neuronal groups: neurons expressing the orexi-
genic neuropeptides neuropeptide Y (NPY) and agouti
related peptide (AgRP) (276) and also by neurons ex-
pressing proopiomelanocortin (POMC) and cocaine- and
amphetamine-regulated transcript (CART) (73). Leptin in-
hibits the activity of orexigenic NPY/AgRP neurons and
reduces expression of NPY and AgRP (122, 166, 357, 379)
whilst leptin activates anorectic POMC/CART neurons.
Thus, in conditions of low circulating leptin, such as food
restriction, NPY and AgRP expression are upregulated
and the orexigenic NPY/AgRP neurons are activated,
while in times of plenty, with high plasma leptin, the
anorectic pathways mediated by POMC and CART are
switched on. Although Ob-Rb are expressed in many hy-
pothalamic nuclei, the actions of leptin may differ be-
tween these hypothalamic regions. With the use of viral-
mediated gene expression, chronic leptin overexpression
in the ARC, PVN, and VMH resulted in reduced food
intake and energy expenditure. However, leptin overex-
pression in the MPOA did not alter food intake but did
reduce energy expenditure (25).

The absence of leptin has profound effects on body
weight. Lack of circulating leptin, due to a mutation in the
ob gene, leads to hyperphagia, obesity, as well as neuroen-
docrine and immune disturbance in the ob/ob mouse,
which can be normalized by leptin administration (64,

FIG. 1. Energy homoestasis is controlled by periph-
eral signals from adipose tissue, pancreas, and the gastro-
intestinal tract. Peripheral signals from the gut include
peptide YY (PYY), oxyntomodulin (OXM), ghrelin, pancre-
atic polypeptide (PP), glucagon-like peptide 1 (GLP-1),
and cholecystokinin (CCK). These gut-derived peptides
and adiposity signals influence central circuits in the hy-
pothalamus and brain stem to produce a negative (�) or
positive (�) effect on energy balance. Thus the drive to
eat and energy expenditure are adjusted so that over time,
body weight remains stable.
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168, 318). Similarly, human leptin deficiency in both chil-
dren and adults causes severe obesity and hypogonadism
(284, 382), which can be ameliorated by recombinant
leptin therapy (132, 246). In addition to its effects on food
intake, leptin also modulates energy expenditure in ro-
dents (though not in humans); the hypothalamo-pituitary
control of the gonadal, adrenal, and thyroid axes (7, 67);
and the immune response (251). Thus the body’s response
to a decrease in energy stores appears to be integrated by
reduced circulating leptin. Similarly, defective leptin re-
ceptor signaling also alters body weight and endocrine
function. A point mutation in the intracellular domain of
the Ob-Rb receptor that prevents signaling results in obe-
sity in db/db mice (69, 238). Defects in the human leptin
receptor have also been described. As with leptin defi-
ciency, these individuals have hypogonadism and early-
onset morbid obesity, although, interestingly, the obesity
is less severe than that seen in individuals with absent
plasma leptin (78).

A small proportion of obese human subjects have an
absolute or relative leptin deficiency, but the majority of
obese animals and humans have raised plasma leptin (87,
258). This suggests resistance to leptin’s actions, and
indeed, subcutaneous administration of recombinant lep-
tin to obese humans has only a modest effect on weight
(142, 183). Leptin resistance appears to be the combina-
tion of several factors, both impaired transport across the
BBB and signaling defects in leptin-responsive neurons.
Peripheral leptin administration to rodents with diet-in-
duced obesity fails to reduce food intake (415). Although
these rodents respond to central leptin administration,
hypothalamic STAT3 activation following intracerebro-
ventricular leptin is reduced in animals with diet-induced
obesity (121). Continuous central leptin infusion has a
biphasic action on hypothalamic NPY expression. As ex-
pected, there is an initial suppression of NPY mRNA
levels by leptin administration but with continued leptin
infusion, NPY expression returns to levels seen in control
animals (338). Leptin resistance may be a consequence of
obesity, but reduced sensitivity to leptin may contribute
to the etiology of obesity. Lack of sensitivity to the ano-
rectic actions of central leptin administration can predict
the later development of obesity in rodents on a high-
energy diet (244). Furthermore, a high-fat diet itself, be-
fore changes in body composition, may induce leptin
resistance, since rodents placed on a high-fat diet have an
attenuated response to leptin administration even before
weight gain (250).

Thus, although leptin deficiency has profound effects
on food intake, body weight, and endocrine function, the
high leptin levels found in obese individuals are much less
effective at reversing weight gain. Thus leptin’s primary
role may be as a hormone of starvation rather than one of
plenty.

2. Adiponectin

Adiponectin, also called adipocyte complement-re-
lated protein (Acrp30), apM1 or adipoQ, is a 244-amino
acid protein secreted from adipose tissue. Its circulating
levels are up to 1,000-fold higher than other circulating
hormones such as leptin and insulin (401). Adiponectin
has four domains: a cleaved amino-terminal signal se-
quence, a region with no homology to other known pro-
teins, a collagen-like region, and a carboxy-terminal glob-
ular domain. The globular domain forms homotrimers,
and additional interactions with collagenous segments
cause the formation of higher molecular weight com-
plexes (315). The globular domain shares a sequence
homology with several proteins, including the comple-
ment factor protein C1q and tumor necrosis factor-�
(TNF-�).

The function of adiponectin is largely unknown but is
postulated to regulate energy homeostasis (353). The
plasma concentration of adiponectin is inversely corre-
lated with adiposity in rodents, primates, and humans (16,
192, 194). Adiponectin is significantly increased after food
restriction in rodents (39) and after weight loss induced
by a calorie-restricted diet (191) or gastric partition sur-
gery in obese humans (449). Peripheral administration of
adiponectin to rodents has been shown to attenuate body
weight gain, by increased oxygen consumption, without
affecting food intake (39, 145, 448). The effect of periph-
eral adiponectin on energy expenditure seems to be me-
diated by the hypothalamus, since adiponectin induces
early gene c-fos expression in the PVN and may involve
the melanocortin system (325). It is perhaps counterintui-
tive for a factor that increases energy expenditure to
increase following weight loss; however, reduced adi-
ponectin could perhaps contribute to the pathogenesis of
obesity.

Studies show that plasma adiponectin levels nega-
tively correlate with insulin resistance (192), and treat-
ment with adiponectin can reduce body weight gain, in-
crease insulin sensitivity, and decrease lipid levels in
rodents (39, 325, 448). Adiponectin knock-out mice dem-
onstrate severe diet-induced insulin resistance (256) and
a propensity toward atherogenesis in response to intimal
injury (224). Thus adiponectin, as well as increasing en-
ergy expenditure, may also provide protection against
insulin resistance and atherogenesis.

The mechanism by which adiponectin improves in-
sulin resistance, glucose metabolism, and attenuation of
weight gain is not yet fully understood, although some of
these effects may be mediated through metabolic path-
ways that include regulation of food intake, gluconeogen-
esis, and lipogenesis (368). Of interest, peroxisome pro-
liferator-activated receptor gamma (PPAR-�) agonists,
the thiazolidinediones, can increase circulating adiponec-
tin levels in both rodent models of obesity (83) and in
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patients with obesity/type II diabetes mellitus (257).
Indeed, chronic transgenic expression of adiponectin
causes effects that are similar to those of chronic treat-
ment with thiazolidinediones, suggesting that part of the
insulin-sensitizing effects of thiazolidinediones may be
mediated by an increase in adiponectin levels (82).

Recently, two distinct adiponectin receptors have
been cloned (447). The first, adipoR1, is highly expressed
in skeletal muscle, has a high affinity for the globular
domain of Acrp30 (gAcrp30), and a has low affinity for the
full-length ligand. The second, adipoR2, is highly ex-
pressed in the liver and shows preferential binding to the
full-length ligand. This is consistent with earlier reports
that show a differential effect of gAcrp30 and the full-
length ligand in muscle and liver. Adiponectin receptors
have also been detected in the brain, and more specifi-
cally in the hypothalamus (325).

3. Resistin

Resistin is produced by adipose tissue and appears to
increase insulin resistance. Circulating resistin is in-
creased in obese rodents (380) and falls after weight loss
in humans (412). Recent studies suggest that resistin
knockout mice show increased glucose tolerance with a
high-fat diet (385). Transgenic mice overexpressing a
dominant negative form of resistin show increased adi-
posity with elevated leptin and adiponectin levels, as well
as enhanced glucose tolerance and insulin sensitivity
(385). Although resistin may contribute to the develop-
ment of insulin resistance and diabetes in obesity (380),
its role in the pathogenesis of obesity remains to be
defined.

B. Pancreatic Hormones

1. Insulin

The pancreatic hormone insulin was one of the first
adiposity signals to be described (358) and, like leptin, is
positively correlated with long-term energy balance (24,
437). Plasma insulin concentrations depend on peripheral
insulin sensitivity, which is related to both total body fat
stores and fat distribution, with visceral fat being a key
determinant (324). However, unlike leptin levels, which
are relatively insensitive to acute food intake, insulin
secretion increases rapidly after a meal (323).

There is considerable evidence that insulin acts as an
anorectic signal within the central nervous system (CNS).
Centrally administered insulin or an insulin mimetic de-
creases food intake and body weight (8) and alters ex-
pression of hypothalamic genes known to regulate food
intake. Insulin infusion into the third cerebral ventricle in
rodents (198) or lateral ventricle in primates (438) dose-
dependently decreases food intake resulting in weight

loss over a period of weeks. Intrahypothalamic (PVN)
insulin injection also decreases food intake and weight
gain in rats (275). Treatment with novel, orally available
insulin mimetics also decreases weight gain, adiposity,
and insulin resistance in mice on a high-fat diet (8). Con-
versely, antibodies to insulin injected into the VMH of rats
stimulate food intake (383), and repeated administration
of antiserum increases food intake and rate of weight gain
(270). Administration of antisense RNA against the insulin
receptor precursor protein results in hyperphagia and
increased fat mass (309). Similarly, neuron-specific dele-
tion of the insulin receptor results in obesity, hyperinsu-
linemia, and dyslipidemia in male mice (56).

Insulin enters the CNS via saturable, receptor-medi-
ated uptake across the BBB at levels proportional to
circulating insulin concentrations (34). Little or no insulin
is synthesized within the brain (27, 439). Therefore, pe-
ripheral insulin should have actions similar to central
insulin administration. Studies of systemic insulin admin-
istration are complicated by hypoglycemia, which in itself
potently stimulates food intake, but hyperinsulinemic, eu-
glycemic clamp studies have indeed shown a reduction in
food intake in both rodents and baboons (305, 440).

Insulin signals via a cell-surface insulin receptor,
which is composed of an extracellular, ligand binding
�-subunit and an intracellular �-subunit with intrinsic
tyrosine kinase activity. There are two splice variants of
the insulin receptor: subtype A with greater affinity for
insulin and widespread expression and subtype B with
lower affinity and expression in classical insulin-respon-
sive tissues such as fat, muscle, and liver. Insulin recep-
tors are widely distributed in the brain, particularly in
hypothalamic nuclei involved in food intake (ARC, DMH,
PVN, suprachiasmatic and periventricular regions) (88,
263). Insulin receptor activation is via several insulin
receptor substrates (IRSs), which include IRS-1 and IRS-2
(30, 58). Although IRS-1 null mice show no differences in
food intake or body weight from their wild-type litter-
mates (14), IRS-2 null mice have increased food intake,
increased fat stores and infertility (58). IRS-2 mRNA is
highly expressed in the ARC, and therefore, insulin’s cen-
tral actions may be mediated by IRS-2 (58). Insulin and
leptin, along with other cytokines, appear to share com-
mon intracellular signaling pathways. Both may signal via
IRS and the enzyme phosphatidylinositol (PI) 3-kinase
(306, 324), allowing intracellular integration of their ap-
petite-regulating actions.

The pathways mediating insulin’s effects on food
intake remain to be fully elucidated. Hypothalamic NPY
may be an effector of insulin’s actions. Intracerebroven-
tricular insulin administration prevented the fasting-in-
duced increase in NPY mRNA expression in the PVN and
ARC in rats (360). NPY expression is also increased in
insulin-deficient, streptozotocin-treated rats but restored
by insulin replacement (428, 435). The melanocortin sys-
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tem has also been implicated as a mediator of insulin’s
central actions. Insulin receptors are present on arcuate
POMC neurons (37), and third ventricle administration of
insulin increases POMC mRNA expression (37). Insulin’s
anorectic actions are blocked by a melanocortin antago-
nist (37). Furthermore, POMC expression is greatly re-
duced in rats with untreated diabetes and partly restored
by peripheral insulin treatment (371). Therefore, it is
likely that both the NPY and melanocortin systems are
important downstream mediators of insulin’s actions on
food intake and body weight.

2. Pancreatic polypeptide

Pancreatic polypeptide (PP) is a member of the PP-
fold family of peptides which also includes peptide YY
(PYY) and NPY. They have significant sequence homology
including several tyrosine residues (85). They share a
common tertiary structure, an �-helix and polyproline
helix, connected by a �-turn to produce a characteristic
U-shape, the PP-fold (157).

PP is primarily produced by cells at the periphery of
the islets of Langerhans but is also secreted by the exo-
crine pancreas and distal gastrointestinal tract (233).
Plasma PP concentrations show diurnal variation, with
lowest levels in the early hours of the morning and highest
in the evening (400). In addition to this, circulating PP
concentrations rise following food intake and remain el-
evated for �6 h (4). Postprandial release is biphasic, and
although total release is proportional to caloric intake, the
contribution of the first phase increases with consecutive
meals (400). Circulating PP levels are also elevated by
ghrelin, motilin, and secretin and by gastric distension
(18, 74, 281, 319) and reduced by somatostatin adminis-
tration (316). Plasma PP concentrations have been sug-
gested to be inversely proportional to adiposity, with
elevated levels in anorexic subjects (147, 408) and both
reduced levels (155, 234) and attenuated second phase
release in obese subjects (234). Subjects with obesity due
to Prader-Willi syndrome have reduced basal and blunted
postprandial PP release, which may contribute to their
hyperphagia and obesity (460, 461). However, others re-
port no difference in plasma PP concentrations between
lean and obese subjects (436) or following weight loss in
obese subjects (278).

The actions of PP on food intake depend on the route
of administration. Peripheral PP administration decreases
food intake, reduces body weight and energy expenditure,
and improves insulin resistance and dyslipidemia in obese
rodents (20, 261). In keeping with this, mice overexpress-
ing PP have a lean phenotype and reduced food intake
compared with wild-type littermates (407). However, the
efficacy of PP may be diminished in obesity as obese
rodents appear less sensitive to its anorectic actions than
normal weight rodents (271). Peripheral PP is also effec-

tive in humans. Peripheral PP infusion reduces food in-
take by 25% over 24 h in normal-weight human volunteers
(33) and twice daily PP infusion in Prader-Willi syndrome
reduced food intake by 12% (42). However, its efficacy in
nonsyndromic obesity remains to be investigated.

The PP-fold peptides bind to a family of seven trans-
membrane domain, G protein-coupled receptors, Y1-Y5

receptors (231). The receptors are classified according to
their affinity for PP, NPY, and PYY. PP binds with greatest
affinity to Y4 and Y5 receptors (231). Circulating PP is
unable to cross the BBB but may exert its anorectic effect
via the area postrema, which lacks a complete BBB (427).
PP may also influence appetite via the vagal pathway to
the brain stem, as its anorectic actions are reduced fol-
lowing vagotomy (20). The receptor mediating PP’s pe-
ripheral effects on appetite are not yet fully elucidated,
but there is evidence to suggest they may be mediated by
the Y5 receptor. Y5 receptor knockout mice do not re-
spond to peripheral PP administration; however, Y5 re-
ceptor antisense oligonucleotides do not inhibit the ano-
rectic effect of PP (207). Peripheral PP administration
reduces gastric ghrelin mRNA expression, which may be
responsible for the reduction in hyperphagia in Prader-
Willi Syndrome (20). In addition, hypothalamic NPY and
orexin mRNA expression is significantly reduced by pe-
ripheral PP (20). Thus PP sends anorectic signals via
brain stem pathways, regulation of hypothalamic neu-
ropeptides, and by modulating expression of other gut
hormones.

In contrast to the peripheral actions of PP, PP admin-
istered into the third ventricle increases food intake (76).
However, the receptors mediating this action and the
mechanisms involved are unclear.

C. Gut Hormones

1. PYY

PYY is released from the L cells of the gastrointesti-
nal tract, with increasing tissue concentrations found in
the more distal portions, the ileum, colon, and rectum (5,
120). PYY release is correlated with calorie intake, with
levels rising to a plateau 1–2 h after a meal and remaining
elevated for 6 h (5). Interestingly, the increase in plasma
PYY concentrations is seen rapidly after food intake, well
before nutrients are in contact with the L cells of the
distal intestine. This suggests initial PYY release may be
the consequence of a neural reflex though direct contact
with nutrients may play a role later (146). Macronutrient
composition of food, in addition to total calories, influ-
ences circulating PYY concentrations: isocaloric intake of
fat elicits a greater rise in plasma PYY than consumption
of protein or carbohydrate (249). Circulating PYY levels
are also influenced by other signals; gastric acid, chole-
cystokinin and luminal bile salts, insulin-like growth fac-
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tor I, bombesin, and calcitonin-gene related peptide in-
crease PYY levels, whereas levels are reduced by gluca-
gon-like peptide (GLP)-1. Unlike PP, gastric distension
has no effect (239, 301, 317).

PYY in the circulation exists in two major forms:
PYY1–36 and PYY3–36 (158). PYY3–36 binds with greatest
affinity at the presynaptic autoinhibitory Y2 receptor and
is thus a potent, peripherally active anorectic signal. It is
the product of cleavage of the amino terminus Tyr-Pro
residues by dipeptidyl peptidase IV (DPP-IV) from
PYY1–36 (116). DPP-IV is involved in the cleavage of mul-
tiple hormones including products of the proglucagon
gene (48). However, the accurate proportions of PYY1–36

and PYY3–36 in the circulation in fasting and following
food intake remain to be determined.

Peripheral administration of PYY has numerous ac-
tions. It delays gastric emptying, delays pancreatic and
gastric secretions, and increases ileal absorption of fluids
and electrolytes (6, 9, 185). Peripheral PYY3–36 adminis-
tration also inhibits food intake and reduces weight gain
in mice, rats, and primates (32, 66, 290) and improves
glycemic control in rodent models of diabetes (322).
PYY3–36 is also effective in reducing food intake in hu-
mans. Intravenous administration of PYY3–36 reduced
food intake by 30% and also reduced subjective hunger in
normal-weight human subjects (31, 32). Interestingly, this
effect is seen for up to 12 h after the PYY3–36 infusion has
finished and long after circulating PYY3–36 has returned to
basal levels (32). These data suggest PYY3–36 may be a
physiologically important postprandial satiety signal.

Unlike PP, PYY is able to cross the BBB by trans-
membrane diffusion from the circulation (307). Evidence
suggests the anorectic effect of peripheral PYY3–36 may be
mediated via the presynaptic inhibitory Y2 receptor
present on arcuate NPY neurons (54). PYY3–36 inhibits
activity of over 90% of all arcuate neurons and reverses
fasting-induced c-fos expression in the arcuate nucleus
(334). In particular, PYY inhibits NPY neurons (32) and
reduces hypothalamic NPY mRNA expression (32, 66).
Moreover, the anorectic effect of PYY3–36 is absent in Y2

receptor knockout mice and diminished by a selective Y2

antagonist (32). Reduction in NPY neuronal activity also
increases activation of arcuate neurons expressing
POMC, which may contribute to reduced food intake.

Although peripheral PYY3–36 administration induces
expression of the early gene, c-fos, in POMC neurons (32,
169) and increases arcuate POMC mRNA expression (66),
the melanocortin system does not appear to be vital for
PYY’s effects on appetite. PYY3–36 is equally effective at
reducing food intake in MC4R knockout mice (169) and
POMC null mice (65). There is some evidence to suggest
a role for CART in mediating the effect of PYY3–36 on
appetite (80). However, peripheral administration of
PYY3–36 also reduces plasma ghrelin levels (31), which
may contribute to its anorectic effect. However, the ano-

rectic effect of PYY3–36 does appear to depend on mini-
mization of environmental stress (169) and therefore
some have found its actions difficult to reproduce (402).
Both stress and PYY3–36 act via the arcuate nucleus to
alter food intake (86, 260). When appetite is inhibited by
stress, no further inhibition can occur with PYY3–36 ad-
ministration. Because rodents are easily stressed, inap-
propriate experimental conditions would mask the ano-
rectic effect of PYY3–36 leading to the variability reported.

The role of PYY in regulation of body weight is less
clear. In rodents, chronic peripheral administration of
PYY3–36 reduced weight gain (32). Obese humans have
reduced plasma PYY levels and a relative deficiency of
postprandial secretion (243), which might contribute to
the maintenance of their obesity. However, obese sub-
jects remain sensitive to the anorectic actions of exoge-
nous PYY3–36 administration. In addition, vertical banded
gastroplasty (11) or jejunoileal bypass surgery (302)
raises plasma PYY levels in obese patients, and this may
contribute to their appetite loss. Thus long-term adminis-
tration of PYY3–36 has the potential to be an effective
obesity therapy.

In contrast to peripheral PYY3–36, centrally adminis-
tered PYY1–36 and PYY3–36 increase food intake. PYY in-
jection into the third, lateral or fourth cerebral ventricles
(77, 89), the PVN (376), or the hippocampus (163) po-
tently stimulates food intake in rodents. However, this
effect is reduced in both Y1 and Y5 receptor knockout
mice (205). Therefore, while circulating PYY3–36 may ac-
cess the higher affinity ARC Y2 receptors (32), the central
feeding effects of PYY1–36 and PYY3–36 may be mediated
by the lower affinity Y1 and Y5 receptors.

2. Ghrelin

Ghrelin is the endogenous agonist of the growth hor-
mone secretagogue receptor (GHS-R) and a potent orexi-
genic factor. It is produced and released primarily by the
gastric oxyntic cells; however, total gastrectomy only re-
duces plasma ghrelin by 50–60%. The remaining circulat-
ing ghrelin is released by the duodenum, ileum, cecum,
and colon (103, 342). Ghrelin is a 28-amino acid peptide
with addition of an acyl side chain, n-octanoic acid, to the
third serine residue. This octanoylation is essential for
binding to the GHS-R type 1a and for ghrelin’s effects on
food intake (219).

Plasma ghrelin levels are regulated both by an endog-
enous diurnal rhythm and by food intake. In rats, ghrelin
peaks at the end of the light and dark periods (296). In
humans, ghrelin levels are in phase with the diurnal vari-
ation in leptin, which is high in the morning and low at
night (98). In humans with fixed meal times, plasma
ghrelin is greatest during fasting and falls after food intake
(17, 98, 404). The postprandial reduction in circulating
ghrelin is regulated both by calorie intake and circulating
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nutritional signals, such as glucose (342, 403). In rodents,
plasma ghrelin and gastric ghrelin mRNA fall after inges-
tion of either fat or carbohydrate. However, the suppres-
sion observed after fat intake is transient and has re-
turned to normal after 45 min, unlike the longer lasting
fall after carbohydrate consumption (345). Interestingly,
plasma ghrelin levels do not fall after ingestion of water,
suggesting gastric distension does not inhibit ghrelin re-
lease (403). Energy stores also regulate ghrelin. Circulat-
ing ghrelin is inversely correlated with adiposity. Thus
anorectic subjects have high plasma ghrelin, which nor-
malizes after weight gain (314). Conversely, obese indi-
viduals have reduced plasma ghrelin, which rises to nor-
mal after diet-induced weight loss (99, 172). Obese sub-
jects appear to have altered postprandial regulation of
ghrelin; they do not show the rapid postprandial fall in
circulating ghrelin, and this in turn may play a role in
continued food intake and obesity (130). The contribution
of ghrelin gene polymorphisms to obesity remains con-
troversial (184, 419). Although there are reports of poly-
morphisms associated with early-onset obesity (220, 280),
other polymorphisms have been found to be protective
against fat accumulation (409).

An increase in circulating ghrelin levels may occur as
a consequence of the anticipation of food, or may have a
physiological role to initiate feeding. Peripheral or central
ghrelin administration increases food intake and body
weight and reduces fat utilization in rodents (403, 442).
Furthermore, blockade of ghrelin’s actions by central in-
fusion of anti-ghrelin antibodies attenuates fasting-in-
duced refeeding, suggesting ghrelin is an endogenous reg-
ulator of food intake (298). Ghrelin also increases food
intake in humans. Intravenous ghrelin increased food in-
take by 28% in healthy subjects (441). In addition, rising
preprandial plasma ghrelin levels correlate with hunger
scores in humans eating spontaneously (97). The severe
hyperphagia in subjects with Prader-Willi syndrome is
associated with markedly elevated circulating ghrelin, in
contrast to most obese individuals who have suppressed
plasma ghrelin (96). Bariatric surgery reduces plasma
ghrelin despite weight loss, and this may contribute to the
appetite suppression and continued weight loss following
this treatment (99). However, Callahan et al. (62) did not
demonstrate any correlation between ghrelin levels and
spontaneous eating in humans. Similarly, altering the
feeding schedule in sheep modulates the timing of ghrelin
peaks (384). These data suggest the preprandial rise in
ghrelin may be a conditioned response possibly to pre-
pare the metabolism for an influx of calories.

Ghrelin’s actions on food intake are thought to be
mediated via the growth hormone secretagogue receptor
(GHS-R) type 1a. Ghrelin administration does not in-
crease food intake in GHS-R type 1a null mice (70, 387).
Ghrelin also increases growth hormone (GH) release via
this receptor in the hypothalamus (104, 219, 403, 443).

However, the orexigenic action of ghrelin is seen in GH-
deficient mice and therefore independent of its GH releas-
ing effects (366, 390, 403). GHS-R type 1a is expressed in
numerous tissues: hypothalamus, pituitary, myocardium,
stomach, small intestine, pancreas, colon, adipose tissue,
liver, kidney, placenta, and peripheral T cells (103, 106,
160, 176, 297). There are studies describing ghrelin ana-
logs that show dissociation between the feeding effects
and stimulation of GH, suggesting GHS-R type 1a may not
be the only receptor mediating the effects of ghrelin on
food intake (398).

Ghrelin’s actions on food intake are probably via the
ARC nucleus of the hypothalamus. Peripheral ghrelin ad-
ministration increases c-fos in ARC NPY neurons (420),
and ghrelin fails to increase food intake following abla-
tion of the ARC (390) or in knock-out mice lacking both
NPY and AgRP signaling (70). However, the brain stem
may also mediate ghrelin’s actions, since GHS-R are ex-
pressed on the vagus nerve (105) and ghrelin administra-
tion increases c-fos in the nucleus of the solitary tract
(NTS) and area postrema (237, 298).

Although the majority of ghrelin is synthesized in the
periphery, ghrelin is also expressed centrally. Ghrelin
immunoreactive neurons are found adjacent to the third
ventricle and lie between the DMN, VMH, PVN, and ARC.
These ghrelin neurons have terminals on hypothalamic
NPY/AgRP, POMC, and corticotrophin-releasing hormone
(CRH) neurons and may activate ARC NPY neurons to
form a central circuit regulating energy homeostasis (93).
In addition, the hypothalamic ghrelin neurons also termi-
nate in the LHA on neurons expressing orexin (399).
Central ghrelin administration stimulates orexin-express-
ing neurons (237, 399), and central ghrelin-stimulated
food intake is attenuated after administration of anti-
orexin antibody and in orexin null mice (399). However,
the physiological roles of peripheral and central ghrelin
remain to be fully elucidated.

Although ghrelin has potent actions on food intake in
animals and humans, both ghrelin null mice and mice
lacking GHS-R type 1a have normal appetite and body
composition on a standard diet (70, 386, 387). This ab-
sence of phenotype suggests that long-term ghrelin block-
ade may not alter body weight, and ghrelin receptor an-
tagonists may not be an effective therapy for obesity.

3. GLP-1

The preproglucagon gene product is widely ex-
pressed in the L cells of the small intestine, in the pan-
creas, and in the brain stem NTS (392). Tissue-specific
cleavage of proglucagon by the enzymes prohormone
convertase 1 and 2 results in different products (186).
Glucagon is the major product in the pancreas, whereas in
the CNS and intestine, the major products are GLP-1 and
GLP-2 and oxyntomodulin (OXM).
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GLP-1 is released by the L cells of the small intestine
following nutrient ingestion (180), and circulating GLP-1
levels are inversely correlated with body mass (188, 300,
328, 417). GLP-1 acts to inhibit food intake. Acute GLP-1
injection into the third or fourth ventricles or into the PVN
reduces calorie intake (406), and chronic central admin-
istration decreases weight gain in rodents (273). Periph-
eral injection also reduces food intake and activates c-fos

in the brain stem (392, 445). Thus peripheral GLP-1 may
influence energy homeostasis via the brain stem. In hu-
mans, GLP-1 dose-dependently decreases food intake
(416). However, when the infusions mimic postprandial
concentrations, the effect is small (139, 417). Despite
reported reduced GLP-1 levels in obesity, obese subjects
remain sensitive to the anorectic actions of GLP-1 (416).
Preprandial subcutaneous GLP-1 injection reduced calo-
rie intake by 15% and resulted in 0.5 kg weight loss over 5
days in obese individuals (299). Therefore, low circulating
GLP-1 could contribute to the pathogenesis and mainte-
nance of obesity, and GLP-1 replacement could restore
satiety.

GLP-1 is a powerful incretin hormone, potentiating
all stages of insulin biosynthesis (221, 255). Both short-
term intravenous GLP-1 infusion (303) and 6-wk subcuta-
neous GLP-1 infusion (454) are effective at normalizing
blood glucose in poorly controlled type 2 diabetes. Al-
though not a primary end point, subcutaneous infusion
also reduced body weight by 2 kg over the 6-wk period
(454). However, GLP-1 has been reported to result in
hypoglycemia in nondiabetic subjects (397), which may
limit its usefulness as an obesity therapy. In addition,
GLP-1’s use as an obesity treatment may be hampered by
its very short half-life, as it is rapidly broken down by the
enzyme DPP-IV. However, albumin-bound GLP-1, which is
resistant to DPP-IV, the GLP-1 receptor agonist exendin-4
(a naturally occurring peptide from the lizard Helo-

derma), and DPP-IV inhibitors are currently being devel-
oped as therapies for diabetes and may also have useful
roles in obesity treatment (see review in Ref. 187).

4. Oxyntomodulin

OXM is released in proportion to calorie intake from
the L cells of the small intestine (151, 242). Its release also
shows diurnal variation with peak levels in the evening
and a nadir in the early morning (242). Both central and
peripheral OXM administration acutely reduce food in-
take in rodents (100, 101), and repeated administration
reduces body weight gain and adiposity (101, 102). In
addition, OXM-treated animals lose more weight than an-
imals eating the same amount, suggesting increased en-
ergy expenditure possibly via an effect on the thyroid axis
(102). OXM also reduces hunger and food intake (by
19.3%) in healthy human volunteers, an effect which con-
tinues for 12 h postinfusion (79). Conditions such as

tropical sprue (44) and jejunoileal bypass surgery (189,
348), which are associated with reduced appetite and
intake, also result in elevated circulating OXM. Thus OXM
may play a physiological role in regulation of energy
balance.

The actions of both GLP-1 and OXM on food intake
may be mediated by the GLP-1 receptor. GLP-1 receptors
are expressed in the hypothalamus and NTS (369, 410)
and are also widespread in the periphery: gastrointestinal
tract, pancreas, lung, kidney, and heart (57, 424). Central
administration of the GLP-1 receptor antagonist exendin-
(9O39) inhibits the anorectic effects of both GLP-1 and
OXM (100, 406). However, there is some evidence to
suggest the effect of OXM on appetite may be mediated
via further receptors. OXM has a lower affinity than GLP-1
for the GLP-1R (by �2 orders of magnitude), yet they
reduce food intake at equimolar doses (134). Peripheral
GLP-1 and OXM administration result in different patterns
of c-fos activation. OXM increases c-fos in the ARC but
not in the brain stem (101). Furthermore, although ex-
endin-(9O39) blocks the anorectic effects of central OXM
and GLP-1, exendin-(9O39) administered into the ARC
only inhibits the effect of peripheral GLP-1, not OXM.
Thus there appear to be different mechanisms mediating
the actions of these gut hormones. Interestingly, OXM
may also reduce appetite by inhibition of ghrelin release.
Peripheral OXM administration reduces plasma ghrelin by
20 and 44% in rodents and humans, respectively (79, 101).

5. Cholecystokinin

Cholecystokinin (CCK) is expressed widely in the
gastrointestinal tract (232) but is found particularly in the
duodenum and jejunum. There are multiple bioactive
forms derived from the same gene product: CCK-58, CCK-
33, and CCK-8 (330). CCK is released locally and into the
circulation following nutrient ingestion. Its release is
rapid, and plasma levels remain elevated for up to 5 h
(247). CCK is also expressed within the CNS, acting as a
neurotransmitter regulating reward behavior, anxiety,
memory, and satiety (95).

The role of CCK in regulation of digestion and appe-
tite has long been known. It stimulates pancreatic and gall
bladder enzyme release, inhibits gastric emptying, and
increases intestinal motility (247, 289). CCK acts rapidly
to reduce meal size and duration in both humans and
animals (153, 217), and this effect is potentiated by gastric
distension (216). However, CCK has a half-life of only 1–2
min, and its effects are short-lived. It is ineffective if given
more than 15 min before food (153). In animals, repeated
CCK administration does not alter body weight for al-
though meal size is reduced, meal frequency increases
and there is no overall change in intake (425, 426). Simi-
larly, continuous CCK infusion is not effective after the
first 24 h (94). However, the OLETF rat, which lacks CCKA
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receptors (but not the CCKA receptor knockout mouse),
is hyperphagic and obese (286, 356). Similarly, chronic
administration of CCKA antagonists or anti-CCK antibod-
ies increases weight gain in rodents, although without a
significant change in food intake (272, 274). The long-term
effect of CCK on body weight may be the result of inter-
action with other signals of adiposity such as leptin, since
leptin enhances the satiating effect of CCK (268). The
evidence for a role of CCK in long-term body weight
regulation, and hence as a potential therapy for obesity,
remains contradictory.

CCK acts via seven transmembrane domain G pro-
tein-coupled receptors, CCKA and CCKB (421). CCKA re-
ceptors are expressed widely in the CNS including the
NTS, DMH, and area postrema, while in the periphery
they are present in the pancreas and on vagal afferent and
enteric neurons. CCKB receptors are also found on the
afferent vagus nerve and within the stomach and are
present widely in the CNS (287, 288, 421, 422). The effects
of CCK on appetite are thought to be via the CCKA recep-
tor subtype (21). Only the sulfated form of CCK, which
binds with high affinity to CCKA receptors, inhibits food
intake (153). Furthermore, food intake is increased and
satiety reduced by administration of a CCKA receptor
antagonist (36, 182). Peripheral CCK may act directly on
the CNS by crossing the BBB (331). Evidence from the
CCKA receptor knock-out (OLETF) rat suggests that CCK
may act on the DMH to suppress NPY levels (45), and
administration of CCK into the DMH reduces food intake
(47). Activation of the vagus is also important in mediat-
ing the actions of CCK on satiety (285, 355). This action
may be in part via a paracrine or neurocrine effect with
locally released CCK activating vagal fibers without sig-
nificant alteration of circulating CCK level (332). Activa-
tion of the vagus in turn activates the NTS, which then
relays information to the hypothalamus (361).

6. Bombesin

Bombesin is a tetradecapeptide originally isolated
from amphibian skin (50). Bombesin-like immunoreactiv-
ity is widely distributed in the mammalian gut, and plasma
levels have been shown to increase sharply after feeding
(152). Bombesin is similar in structure to mammalian
gastrin-releasing peptide (GRP) and neuromedin B (50). It
binds to three different receptors: a GRP receptor, a
neuromedin B receptor, and a bombesin-3 receptor (228).
Peripheral or central injections of bombesin reduce food
intake that is not blocked by vagotomy (152, 374), and its
effect is independent of CCK (248). A bombesin-3 recep-
tor knock-out mouse is moderately obese at 6–8 wk of
age, but hyperphagia is only significant 12 wk after obe-
sity has developed (310).

III. CENTRAL REGULATORS OF APPETITE

A. Hypothalamic Structure and Neuronal Pathways

Regulating Appetite

Despite wide daily variation in food intake and en-
ergy expenditure, for most individuals, body weight re-
mains remarkably stable over long periods of time. For
this, food intake and energy expenditure must be con-
stantly modulated and balanced. The hypothalamus is
essential for the regulation of appetite and energy bal-
ance. Hetherington and Ranson (181) and Anand and
Brobeck (12) first proposed a model of lateral hypotha-
lamic feeding centers and ventromedial hypothalamic sa-
tiety centers. Lesions of the LHA decrease food intake and
eventually lead to starvation and death. In contrast, le-
sions of several of the mediobasal hypothalamic nuclei
result in obesity, decreased activity, and neuroendocrine
abnormalities. Destruction of the ARC with systemic
monosodium glutamate produces obesity and hyperpha-
gia (312), while lesions of the VMN also result in in-
creased body weight and central hypogonadism (108).
Similarly, lesions slightly more dorsally in the PVN also
lead to hyperphagia and weight gain. Thus a few morpho-
logically well-defined regions of the hypothalamus appear
to play a major role in the regulation of body weight and
endocrine function. However, rather than specific hypo-
thalamic nuclei controlling energy homeostasis, it is now
thought to be regulated by neuronal circuits, which signal
using specific neuropeptides (see Fig. 2).

1. ARC

The ARC is thought to play a pivotal role in the
integration of signals regulating appetite. The ARC lies in

FIG. 2. Morphologically defined regions of the hypothalamus such
as the arcuate nucleus (ARC), paraventricular nucleus (PVN), dorsome-
dial nucleus (DMH), ventromedial nucleus (VMH), lateral hypothalamic
area (LHA), and perifornical area (PFA) appear to play a major role in
the regulation of body weight. Neuronal circuits within these regions of
the hypothalamus signal using specific neuropeptides, for example,
corticotrophin-releasing hormone (CRH), thyrotropin-releasing hor-
mone (TRH), neuropeptide Y (NPY), brain-derived neurotrophic factor
(BDNF), orexin, and melanin-concentrating hormone (MCH).
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close proximity to the median eminence, which lacks a
complete BBB (51), and thus it is uniquely placed to
respond to circulating hormonal signals. Certain plasma
hormones, for example, PYY and GLP-1, cross the BBB
via nonsaturable mechanisms (206, 307). Other signals,
such as leptin, are actively transported from blood to
brain via saturable mechanisms (28). Thus the BBB may
play a dynamic role in regulating the passage of peripheral
signals.

Two primary neuronal populations within the ARC
integrate signals of nutritional status and influence energy
homeostasis (84) (see Fig. 3). A subpopulation of neurons
in the medial ARC express the orexigenic neuropeptides
NPY and AgRP (53, 166). These neurons project primarily
to the ipsilateral PVN (26) but also locally within the ARC.
A subpopulation of ARC NPY neurons release GABA lo-
cally to inhibit the adjacent POMC neurons. More laterally
lies a second subpopulation that inhibits food intake via
the expression of CART and POMC, which is processed to
�-melanocyte stimulating hormone (�-MSH) (123, 222).
This subpopulation projects much more widely within the
CNS, to hypothalamic nuclei such as the DMH, LHA, and
perifornical area (PFA) as well as the PVN (124, 129, 202).
Schwartz et al. (361) proposed a model of appetite regu-
lation whereby arcuate neurons act as the primary hypo-
thalamic site of action of peripheral hormones, such as
insulin and leptin. These modulate activity of arcuate
neurons, which in turn project to secondary hypothalamic
nuclei, for example, the PVN or LHA. Here, the release of
further anorectic or orexigenic peptides is modulated to
adjust energy intake and expenditure to maintain a stable
body weight.

2. PVN

The PVN acts to integrate neuropeptide signals from
numerous CNS regions including the ARC and brain stem
(350). Microinjection into the PVN of almost all known
orexigenic and anorectic signals alters appetite, for ex-
ample, NPY (230), ghrelin (237), orexin-A (117, 367), CCK
(171), leptin (127, 414), and GLP-1 (414). PVN administra-
tion of melanocortin agonists potently inhibits food in-
take (154, 210). Conversely, PVN injection of a melano-
cortin antagonist stimulates food intake (154). Electro-
physiological recordings from PVN neurons have shown
ARC neurons expressing POMC potentiate inhibitory
GABAergic signaling within the PVN and thus reduce food
intake. In contrast, ARC NPY/AgRP neurons inhibit this
GABAergic signaling (92) and stimulate food intake.

Recent work suggests that neuropeptides regulating
appetite may signal via a common pathway in the PVN
involving AMP-activated protein kinase (AMPK). AMPK is
a heterodimer consisting of catalytic �-subunits and reg-
ulatory �- and �-subunits. Multiple anorectic signals such
as leptin, insulin, and the melanocortin agonist MT-II
reduce �2-AMPK activity in the ARC and PVN, whilst
orexigenic signals such as AgRP and ghrelin increase
�2-AMPK activity (13, 279). Pharmacologically mediated
increases in PVN AMPK activity increased food intake
(13). Peripheral appetite regulators are unable to modu-
late �2-AMPK activity in mice lacking the melanocortin 4
receptor (MC4R), suggesting �2-AMPK activity may be
controlled by MC4R (279).

Many neuropeptides that modulate appetite also in-
fluence endocrine function, for example, thyroid function
and hence energy expenditure. The PVN plays a major
role in integration of these functions. Both NPY/AgRP and
melanocortin projections from the ARC terminate on thy-
rotropin-releasing hormone (TRH) neurons in the PVN
(136, 241). NPY/AgRP inhibits pro-TRH gene expression
(137), while �-MSH stimulates pro-TRH expression and
inhibits the fasting-induced suppression of TRH (136).
The PVN also contains CRH-expressing neurons. NPY
projections from the ARC influence CRH expression and
release, and this in turn may modulate energy homeosta-
sis (347).

3. DMH

There is evidence for a role of the DMN in the mod-
ulation of energy intake. Destruction of the DMN results
in hyperphagia and obesity, although less dramatically
than VMN lesioning (41). Injection of orexigenic peptides,
NPY, galanin, and GABA into the DMN increases food
intake (209, 227, 375), and central NPY injection induces
c-fos in the DMN (452). The DMH has extensive connec-
tions with other hypothalamic nuclei. It receives AgRP/
NPY neurons from the ARC (202) but also contains NPY-
expressing cell bodies. �-MSH immunoreactive fibers lie

FIG. 3. A schematic representation of arcuate nucleus of the hypo-
thalamus. The arcuate nucleus (ARC) is thought to play a pivotal role in
the integration of signals regulating appetite. The ARC neurons express
many receptors including those for insulin and leptin, Y2 receptors, and
growth hormone secretagogue receptors (GHS-R). The ARC is able to
respond to peripheral signals via the median eminence (ME), which
lacks a blood-brain barrier. Two subpopulations of neurons within the
arcuate nucleus signal energy status. Agouti-related peptide (AgRP)/
neuropeptide Y (NPY) neurons promote positive energy balance. AgRP
is able to signal downstream by antagonizing melanocortin 3/4 receptors
(MC3/4) receptors, whereas NPY acts as an agonist at Y1/5 receptors.
Cocaine and amphetamine-regulated transcript (CART)/�-melanocyte
stimulating hormone (�-MSH) promote negative energy balance, and
�-MSH signals downstream by antagonizing MC3/4 receptors.
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in close proximity to these NPY-expressing cells, and
DMH administration of melanocortin agonists has been
demonstrated to reduce both local NPY expression and
suckling-induced hyperphagia in rats (71).

4. LHA/PFA

Other hypothalamic areas including the lateral hypo-
thalamic area and perifornical area (LHA/PFA) are in-
volved in downstream signaling. Indeed, the PFA is one of
the most sensitive areas for NPY-induced feeding, more
so than the PVN (378). The LHA/PFA contains melanin-
concentrating hormone (MCH) expressing neurons (266).
Here, MCH expression is regulated by nutritional status,
since fasting induces MCH mRNA expression. MCH ap-
pears to have a powerful role in appetite regulation. Re-
peated intracerebroventricular injection of MCH in-
creases food intake (327) and adiposity in rats (266).
Conversely, MCH-1 receptor antagonists inhibit feeding,
and chronic administration leads to a sustained reduction
in body weight gain (49). Overexpression of prepro-MCH
results in mice that are hyperphagic and centrally obese
(266), whereas MCH null mice are lean, hypophagic with
increased energy expenditure, despite reduced anorectic
signals such as plasma leptin and ARC POMC expression
(266, 365). Mice that lack both MCH and leptin have
reduced weight gain and adiposity compared with leptin-
deficient ob/ob mice (364). This suggests MCH may be a
downstream mediator of leptin’s and POMC’s effects on
feeding.

The LHA/PFA also contain neurons expressing pre-
pro-orexin and releasing the peptide products orexin A
and B (or hypocretin 1 and 2). The orexin-immunoreac-
tive cell population is distinct from that which produces
MCH (109, 343). Orexin neurons project widely through
the CNS including the PVN, ARC, NTS, and dorsal motor
nucleus of the vagus (109, 320) and to areas associated
with arousal and attention as well as feeding. Orexin A
has high affinity for the orexin-1 receptor, which is highly
expressed in the VMH. Orexin A and B have equal affini-
ties for the orexin-2 receptor, and this is expressed pri-
marily within the PVN (343). Prepro-orexin mRNA is up-
regulated by fasting, and central administration of orexin
A results in general arousal and probably a secondary
increase in orexigenic behavior (162, 177, 343). However,
although central administration of orexin A stimulates
daytime feeding, there is no increase in 24-h food intake
(177). Furthermore, chronic administration of orexin A
does not alter body weight (446). Orexin-knockout mice
are thought to be a model of human narcolepsy (68)
rather than altered energy balance. However, in circum-
stances of food deprivation, orexins may mediate both a
feeding response and arousal to initiate food-seeking be-
havior.

It is possible that orexins may also act as peripheral
regulators of energy homeostasis. Orexin neurons are
found in the gastrointestinal tract. They express both
orexin and leptin receptors and appear to be activated by
starvation (215). Orexin is also expressed in the gastric,
intestinal, and pancreatic endocrine cells (215), and pe-
ripheral administration increased plasma insulin levels
(308) and decreased circulating glucagon (119).

NPY, AgRP, and �-MSH immunoreactive terminals
are extensive in the LHA and are in contact with MCH and
orexin-expressing cells (52, 124, 190). Central orexin neu-
rons express both NPY receptors (63) and leptin recep-
tors (190) and hence may be able to integrate their ac-
tions. A large number of glucose-sensing neurons are
present in the LHA (40), and orexin neurons may play a
role in this. Hypoglycemia increases orexin mRNA expres-
sion and c-fos in the LHA (61, 292). The mechanisms by
which the MCH and orexin neurons influence energy ho-
meostasis remain to be fully elucidated. However, major
targets are the endocrine and autonomic nervous system,
the cranial nerve motor nuclei, and cortical structures (346).

5. VMH

The VMH has been known to play a role in energy
homeostasis for many years, since the finding that bilat-
eral VMH lesions induce hyperphagia and obesity. The
VMH receives NPY, AgRP, and �-MSH immunoreactive
projections from arcuate neurons and, in turn, VMH neu-
rons project onto both hypothalamic nuclei (e.g., DMH)
and brain stem regions (e.g., NTS). VMH expression of
neuropeptides is modulated by energy status, with altered
NPY expression in obese mice (161) and increased MC4R
expression in diet-induced obese rats (195). Brain-derived
neurotrophic factor (BDNF) is highly expressed in the
VMN, and its expression is regulated both by food depri-
vation and melanocortin agonists (444). Mice with re-
duced BDNF receptor expression or reduced BDNF sig-
naling have increased food intake and body weight (335,
444). Therefore, BDNF neurons in the VMH may act as an
additional downstream pathway through which nutri-
tional status and the melanocortin system modulate en-
ergy homeostasis.

B. Hypothalamic Regulators of Appetite

1. NPY

NPY is one of the most abundant neurotransmitters
in the CNS (10), but the ARC is the major hypothalamic
site of NPY expression (293). Hypothalamic levels of NPY
reflect the body’s nutritional status with hypothalamic
NPY mRNA and NPY release increasing with fasting and
decreasing after refeeding (203, 344, 388). NPY is the most
potent orexigen known, and repeated third ventricle or
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PVN injection of NPY causes marked hyperphagia and
obesity (377, 455). Central administration of NPY also
inhibits brown fat thermogenesis (46), suppresses sympa-
thetic nerve activity (118), and inhibits the thyroid axis
(137) to reduce energy expenditure. In addition, NPY
stimulates basal plasma insulin (282, 455) and morning
plasma cortisol (455), effects which are independent of
increased food intake.

Despite the potency of NPY’s actions on food intake,
NPY null mice have normal body weight and adiposity
(396), with the only demonstrable abnormality of energy
homeostasis being a reduction in fasting-induced feeding
(29). This normal phenotype may be due to the presence
of compensatory mechanisms or redundancy in orexi-
genic pathways, such as those which signal via AgRP
(265) to avert starvation. This redundancy may also con-
tribute to the difficulty elucidating the receptor subtype
that mediates NPY-induced feeding (329).

NPY, as part of the PP-fold family of peptides, binds
to G protein-coupled receptors designated Y1-Y6 (231).
Y1-Y5 receptors are present in rat brain; however, Y6 has
only been identified as active in mice, being absent in rats
and inactive in primates (199). The hypothalamic Y1, Y2,
Y4, and Y5 receptors have all been hypothesized to medi-
ate the orexigenic effects of NPY. Y5 receptors are
thought to play a role in food intake, since antisense
oligonucleotides to the Y5 receptor reduce food intake
(352). In addition, Y5 receptor-deficient mice have an
attenuated feeding response to NPY (264). However, con-
trary to expectation, hypothalamic Y5 receptor density is
reduced by fasting and increased by dietary-induced obe-
sity (429). Furthermore, antagonists to the Y5 receptor do
not significantly alter food intake in rats (405), and Y5

receptor-deficient mice demonstrate late-onset obesity
rather than weight loss (264). It has been suggested that
the role of the Y5 receptor is to maintain rather than
initiate the feeding response to NPY. This is supported by
the observation that Y5 receptor antisense decreases food
intake only 10 h after the onset of NPY- or PP-induced
feeding and has no effect on the initial orexigenic re-
sponse (140). Similarly, there is evidence for a role of the
Y1 receptor. Y1 receptor antagonists block both NPY- and
fasting-induced feeding (204, 430), and Y1 receptor null
mice have an attenuated feeding response to NPY (205).
However, similarly to Y5 receptors, ARC Y1 receptor den-
sity, distribution, and expression are reduced by fasting,
and these changes are moderated by glucose administra-
tion (72). NPY fragments with poor Y1 binding still in-
crease food intake to the same extent as equimolar doses
of NPY (313), and Y1 receptor-deficient mice are obese
but not hyperphagic (226). These data suggest the Y1

receptor is not responsible for the NPY feeding effect but
may play a role in energy expenditure (226). There is also
some support for a role of Y4 receptors in the orexigenic
NPY response. PP has a relative specificity for the Y4

receptor, and central administration has been shown to
elicit food intake in both mice (19) and rats (63). Y2 and Y4

receptors lie presynaptically and have an autoinhibitory
effect on NPY neurons (212, 213). As expected, Y2 recep-
tor null mice are hyperphagic and obese and have in-
creased adiposity (304). However, mice with a conditional
knockout of the Y2 receptor, and thus perhaps with more
normal neuronal circuitry, have a temporary reduction in
body weight and food intake, which returns to normal
after a few weeks (340). Thus it is probable that the
effects of NPY on feeding are mediated by a combination
of receptors rather than a single subtype.

2. Melanocortin system

The melanocortin system is comprised of the peptide
products of POMC cleavage, their receptors, and the en-
dogenous melanocortin antagonists AgRP and agouti. Hy-
pothalamic POMC mRNA expression is regulated by nu-
tritional status with low levels in fasting that are restored
by exogenous leptin administration or 6 h after refeeding
(359, 388). Human POMC gene mutations or abnormal
POMC peptide processing result in early-onset obesity
and red hair secondary to lack of �-MSH, along with
adrenal insufficiency due to loss of ACTH (223). Haploin-
sufficiency of the POMC gene is sufficient to render mice
susceptible to diet-induced obesity (65).

Five melanocortin receptors have been identified,
MC1R-MC5R; however, MC3R and MC4R are likely to play
a role in energy homeostasis. They are widely expressed
in the hypothalamus and are found in the ARC, VMH, and
PVN (175, 294). Absence of MC4R results in hyperphagia
and obesity in rodents (131, 196), and abnormalities of
this receptor have been implicated in 1–6% of severe
early-onset human obesity (133, 253, 254). In addition,
polymorphism of this receptor has been implicated in
polygenic late-onset obesity in humans (15).

Although MC4R involvement in regulation of feeding
is well established, the role of MC3R remains unclear.
Relatively selective MC3R agonists do not alter food in-
take (1), and unlike MC4R expression, which is influenced
by energy status, MC3R expression is not (175). However,
the MC3R/MC4R antagonist AgRP is reported to increase
food intake in MC4R null mice (59). In addition, mice
lacking MC3R have increased adiposity, although not
body weight, and preferentially metabolize carbohydrate
rather than fat (60). On high-fat chow, MC3R null mice
develop obesity and have a further increase in adipose
tissue compared with wild-type littermates. Furthermore,
MC3R mutations have been reported in morbidly obese
human subjects (283).

The main endogenous ligand for the MC3R/MC4R is
�-MSH, which is expressed by cells in the lateral part of
the arcuate nucleus (423) (see above). Central adminis-
tration of MC4R agonists suppresses food intake, while
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administration of antagonists results in hyperphagia (38).
In addition to its actions on feeding, �-MSH also increases
oxygen consumption (321), suggesting increased energy
expenditure. �-MSH activates the thyroid axis (211), sym-
pathetic nervous activity, and brown adipose tissue (450).

Two endogenous antagonists of melanocortin recep-
tors have been described: agouti and AgRP. The agouti
protein is a competitive antagonist of �-MSH at MCR1 and
MCR4 (252). Agouti expression is normally restricted to
the hair follicle where its antagonist effect on the periph-
eral MC1 receptor results in a yellow pigment. However,
the agouti mouse ectopically expresses the agouti protein
within the CNS, thereby antagonizing the actions of
�-MSH at the hypothalamic MC4R resulting in hyperpha-
gia and obesity (131, 252). Unlike agouti, AgRP is ex-
pressed in the CNS, primarily in the medial part of the
arcuate nucleus (370). AgRP is partially homologous to
agouti peptide and is a potent selective antagonist at
MC3R and MC4R (311). AgRP mRNA expression is in-
creased by fasting, and unlike NPY mRNA levels, which
are reduced 6 h after refeeding, AgRP levels remain ele-
vated (388). Central administration of AgRP or AgRP-
(83O132), the carboxy-terminal fragment, is able to block
�-MSH-induced anorexia and increase nocturnal food in-
take (337). Moreover, this hyperphagia has been reported
to persist for up to a week after a single injection (165,
337). This prolonged response results in a greater cumu-
lative effect on food intake than NPY, and probably in-
volves more diverse signaling pathways than the melano-
cortin pathway alone (164, 165, 459). Independent of its
effects on food intake, AgRP may increase body weight
via decreased energy expenditure. Repeated central ad-
ministration of AgRP suppresses TRH, reduces oxygen
consumption, and decreases the ability of brown adipose
tissue to expend energy (372, 373). Transgenic mice over-
expressing AgRP are obese but, as AgRP is inactive at the
MC1 receptor, have no alteration in coat color (311).
Conversely, reduction of hypothalamic AgRP by RNA in-
terference reduces body weight (259). The role of AgRP in
human obesity is less clear cut, although a polymorphism
in the AgRP gene in humans has been reported to be
associated with reduced body weight and fat mass (262).

AgRP and NPY are colocalized in 90% of ARC neu-
rons (53, 166). Activation of ARC NPY/AgRP neurons
potently stimulates feeding via a number of pathways: the
orexigenic effect of NPY released in the PVN, AgRP an-
tagonism of MC3R/MC4R in the PVN, and local release of
NPY and GABA within the ARC to inhibit the arcuate
POMC neurons via Y1 and GABA receptors, respectively
(149, 336). However, NPY/AgRP knock-out mice have no
obvious feeding or body weight defects, and AgRP is not
present in other hypothalamic nuclei known to be in-
volved in energy homeostasis, such as the VMH (53).
Therefore, there must be other signaling pathways regu-
lating energy homeostasis (326).

3. CART

CART is the third most abundant transcript within
the hypothalamus and is expressed in the ARC (123, 222)
(with POMC), LHA, and PVN (91). Food deprivation re-
duces ARC expression of CART, whereas peripheral lep-
tin replacement to ob/ob mice stimulates CART expres-
sion (222). CART-(1O102) and CART-(82O103) injected
into the third cerebral ventricle inhibit both normal and
NPY-stimulated feeding in rats, but also cause abnormal
behavioral responses at high doses (222, 229). Intracere-
broventricular injection of antiserum against CART pep-
tide-(1O102) and CART peptide fragment-(82O103) in-
creases nocturnal feeding, suggesting CART is a physio-
logical regulator of energy homeostasis (222, 229).
However, injection of CART-(55O102) into discrete hy-
pothalamic nuclei such as the ARC and VMN actually
increases food intake (2). Thus there may be several
populations of CART-expressing neurons with differing
roles in feeding. For example, NPY release could stimu-
late a population of CART neurons in the ARC that are
orexigenic, producing positive orexigenic feedback (111).

C. Reward and Regulation of Appetite

Even in the absence of an energy deficit, the reward-
ing nature of food may act as a stimulus to feeding.
However, there is interaction between nutritional status
and the sensation of reward, as the subjective palatability
of food differs between the fed and fasting states (43).
Signals of energy status, such as leptin, are able to mod-
ulate reward pathways (148).

1. Opioids

The reward circuitry is complex, involving interac-
tions between several signaling systems, including opioid,
dopaminergic, and cannabinoid systems. Opioids play an
important role. Mice lacking either enkephalin or �-en-
dorphin lose the reinforcing property of food, regardless
of the palatability of the food tested. However, the rein-
forcing effect is regained in fasted animals; thus homeo-
static mechanisms can override the hedonistic pathways
(178). In humans, opiate antagonists reduce food palat-
ability but without altering subjective hunger (114, 451).
The nucleus accumbens (NAc) forms an important part of
the reward circuit. Microinjection of opioid agonists into
the NAc stimulates the preferential consumption of highly
palatable sucrose and fat (456, 457). Conversely, opioid
antagonists administered into the NAc reduce sucrose
ingestion rather than less palatable substances (456).

2. Endocannabinoids

The appetite-stimulating effects of marijuana (Can-

nabis sativa) have been known for a long time (3). The
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discovery of cannabinoid receptor type 1 (CB1) and can-
nabinoid receptor type 2 (CB2) (110, 269, 295), as well as
the characterization of endogenous ligands for these re-
ceptors, the endocannabinoids, have prompted further
investigation of this system. Several studies have indi-
cated that administration of cannabinoids stimulates food
intake in animal models (218, 433). Appetite is increased
by both peripheral and central administration of anand-
amide, one of the major endocannabinoids, in rodents
(173, 200, 432). This orexigenic effect may be mediated
via CB1 receptors in the hypothalamus, which colocalize
with CART, MCH, and orexin peptides (90). A CB1 recep-
tor antagonist has been shown to reduce food intake (81),
and CB1 knock-out (CB1�/�) mice show reduced caloric
intake and decreased body weight (90). However, CB1�/�

mice pups are able to overcome initial absence of milk
ingestion, suggesting development of compensatory
mechanisms that may involve an additional CB3 receptor
(144). Defective leptin signaling is associated with high
hypothalamic endocannabinoid levels in animal models
(112). A recent study shows a synergistic interaction be-
tween the cannabinoid and melanocortin systems in reg-
ulating food intake (418). It also suggests that the canna-
binoid receptors are located downstream from the mela-
nocortin system and that activation of CB1 receptors is
necessary to prevent the melanocortin system from alter-
ing food intake (418). Interestingly, CB1 receptors are
also present on adipocytes where they appear to act
directly to increase lipogenesis (90). There is currently a
CB1 selective antagonist, Rimonabant, in phase 3 clinical
trials that may be a potentially promising antiobesity
drug.

3. Others

The dopaminergic system is also integral to reward-
induced feeding behavior. The effects of central dopa-
mine signaling on feeding are thought to be mediated by
D1 and D2 receptors (225, 354). Mice that lack the tyrosine
hydroxylase gene and therefore dopamine have fatal hy-
pophagia. Tyrosine hydroxylase gene replacement, and
hence dopamine replacement, into the caudate putamen
restores feeding, while gene therapy into either the cau-
date putamen or NAc restores preference for a palatable
diet (389).

Reciprocal GABAergic connections exist between
the NAc and LHA, and it is possible that disinhibition of
LHA neurons may mediate hedonistic feeding (381). The
LHA may also reciprocally influence reward circuits via
MCH expressing neuronal projections as MCH receptors
are expressed in the NAc (341).

Other systems, including those mediated by seroto-
nin, may also be able to modulate both reward circuitry
and homeostatic mechanisms controlling feeding. Seroto-
nin may directly influence the melanocortin pathway in

the ARC via 5-hydroxytryptamine (5-HT) receptors (179).
The now-discontinued anorectic agent fenfluramine me-
diates its actions via 5-HT (170). Fenfluramine acts via
two mechanisms to increase 5-HT release. First, it binds
to 5-HT transporter proteins that move the drug into the
nerve terminal in exchange for 5-HT which moves into the
synapse, and second, it is a substrate for the vesicular
monoamine transporter that disrupts the compartmental-
ization of 5-HT in vesicles and increases the cytoplasmic
pool of 5-HT available for release.

The noradrenergic system also plays a role in appe-
tite regulation, with activation of �1- and �2-adrenergic
receptors inhibiting food intake. Phentermine acts as a
norepinephrine reuptake inhibitor, thereby increasing
synaptic norepinephrine to reduce appetite and weight
gain (35). In contrast, activation of �2-adrenergic recep-
tors increases food intake.

Neurotensin, a 13-amino acid peptide with neurons
and terminals in hypothalamic areas including the ARC
and PVN (197), has also been shown to decrease food
intake when administered centrally (245). Expression of
neurotensin is downregulated in the ob/ob mouse (431).
Studies also suggest that neurotensin mediates the central
effect of leptin on food intake (339).

D. Brain Stem Regulators of Appetite

Extensive reciprocal connections exist between the
hypothalamus and brain stem, particularly the NTS (333,
395, 413). The brain stem plays an important role in the
regulation of energy balance. The NTS is in close anatom-
ical proximity to the area postrema, a circumventricular
organ with an incomplete BBB (125). Like the ARC, the
NTS is therefore in an ideal position to respond to periph-
eral circulating signals but in addition also receives vagal
afferents from the gastrointestinal tract and afferents
from the glossopharyngeal nerves (201, 349).

1. GLP-1

The NTS contains NPY, melanocortin, and GLP-1
neuronal circuits. GLP-1 forms the major brain stem cir-
cuit regulating energy homeostasis. In the CNS, GLP-1 is
synthesized exclusively in the caudal NTS, and these pre-
proglucagon neurons also express leptin receptors. GLP-1
immunoreactive fibers then project widely, but particu-
larly to the PVN and DMN, with fewer projections to the
ARC. GLP-1 receptor expression is also widespread, both
within the hypothalamus (PVN, DMH, and supraoptic nu-
cleus) and in the brain stem (subfornical organ, organum
vasculosum laminae terminalis, and area postrema). Cen-
tral administration of GLP-1, either into the third or fourth
ventricle, potently reduces fasting and NPY-induced food
intake (406), and blockade of endogenous GLP-1 with the
GLP-1 receptor antagonist exendin-(9O39) increased
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food intake (406). This suggested a role of endogenous
hypothalamic GLP-1 in energy homeostasis. The anorectic
effect of GLP-1 is completely abolished in animals treated
with MSG; thus the ARC appears to be vital for GLP-1’s
anorectic action (391). There is still debate about the role
of conditioned taste aversion (CTA) in the reduced food
intake seen following central GLP-1 administration. How-
ever, Kinzig et al. (214) have dissociated the anorectic
actions of GLP-1 from the induction of CTA following
fourth ventricle injection (214). Data regarding the long-
term effects of central GLP-1 are also conflicting. Contin-
uous infusion of GLP-1 was initially reported not to alter
food intake or body weight (113) but later studies with
either continuous central administration or repeated in-
tracerebroventricular injection reduced both (107, 273).
However, mice lacking the GLP-1 receptor do not show
any abnormality of food intake or body weight (362).

2. Others

NPY neurons from the brain stem project forward to
the PVN (351), and extracellular NPY levels within the
NTS are modulated by feeding (453). A high density of
NPY binding sites, including Y1 receptors and Y5 recep-
tors, are found in the NTS (115, 156, 174). There is also
evidence for a separate melanocortin system in the NTS
(208). POMC-derived peptides are synthesized in the NTS
of the rat (55, 141, 208) and caudal medulla of humans
(159). Brain stem POMC neurons are activated in re-
sponse to food intake and also by CCK administration
(131). MC4R are also expressed in the NTS (294) and act
to regulate energy intake. Fourth ventricle injection of a
MC3R/MC4R agonist or administration into the dorsal
motor nucleus of the vagus nerve reduces food intake.
Conversely, MC3/4 receptor antagonist administration to
these areas increase intake (434).

Prolactin-releasing peptide (PrRP), the endogenous
ligand of the previously orphan G-coupled receptor
GPR10, is expressed in the NTS in addition to the hypo-
thalamic DMH (240). PrRP neurons are reduced in fasting
rats, and third ventricle administration of PrRP or injec-
tion into the DMH decreases nocturnal and fasting-in-
duced food intake (363). These effects may be mediated
by CRH (236). In addition, peripheral administration of
CCK activates brain stem PrRP neurons, suggesting it
mediates CCK’s central actions (235). However, repeated
administration of PrRP did not alter food intake after the
initial 72 h (126) and therefore may play a role in short-
term appetite regulation rather than in control of body
weight in the longer term.

IV. FUTURE DIRECTIONS

Long-term signals of energy stores and short-term
fluctuations in food intake are released from adipose
tissue and the gut endocrine system. These signals are
integrated in the hypothalamus and brain stem. Important
neuropeptide signals such as NPY, AgRP, and the mela-
nocortins are released and influence activity of diverse
circuits within other hypothalamic nuclei, which signal
using a wide range of transmitter systems (Fig. 4). This
homeostatic process results in subsequent changes in
appetite, behavior, and energy expenditure.

The recent clarification of the function of gut hor-
mones, adiposity signals, and hypothalamic neurotrans-
mitters has greatly expanded our understanding of the
physiology of energy balance. Although this system is
designed to maintain body weight, complex interactions
between genetic and environmental factors may impinge
on both peripheral signals and central pathways to result
in obesity. The increasing global prevalence of obesity

FIG. 4. Working model for energy homeostasis. Periph-
eral signals of energy balance including leptin, ghrelin, pep-
tide YY3–36 (PYY3–36), oxyntomodulin (OXM), glucagon-like
peptide-1 (GLP-1), pancreatic polypeptide (PP), and cholecys-
tokinin (CCK) cross the blood-brain barrier and act on brain
regions such as the hypothalamus and brain stem. The arcuate
nucleus of the hypothalamus integrates signals by altering the
relative activity of neurons expressing neuropeptide Y (NPY)/
agouti-related protein (AgRP) and neurons expressing mela-
nocortin (�-MSH)/cocaine and amphetamine-regulated tran-
script (CART). These neuropeptide circuits project to down-
stream nuclei, for example, the PVN, and modulate the release
of further anorectic or orexigenic peptides that adjust energy
intake and expenditure to maintain a stable body weight.
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makes understanding these factors an important priority.
A more detailed understanding of the pathogenesis of
obesity may make successful treatment possible.

New approaches could be tailored to provide an ef-
fective solution for the individual. Leptin replacement has
successfully treated the uncommon form of obesity due to
leptin deficiency. Similarly, obesity that results, for exam-
ple, from reduced melanocortin signaling in the brain may
respond to a melanocortin receptor agonist. Individually
tailored therapy or combination therapy will be more
effective than the currently available pharmacological
agents that are of limited efficacy and duration (see re-
view in Ref. 138).

Mimicking postprandial satiety by modulation of cir-
culating gastrointestinal hormones may provide a possi-
ble means of treating obesity. Interestingly, the reduction
in weight and appetite (22) seen in subjects following
gastrointestinal bypass surgery may be the result of al-
tered gastrointestinal hormone release, for example, ele-
vated PYY and OXM (302, 348) and/or suppressed ghrelin
levels (99). Although surgery is an effective long-term
treatment for obesity, it is a major operation with signif-
icant associated mortality, and so is rightly restricted to
those with severe morbid obesity. The changes in circu-
lating gut hormones secondary to gastrointestinal bypass
surgery suggest that modulation of gut hormones, by
other means, may be an effective long-term therapy for
obese individuals. In addition, in contrast to drugs which
affect widely distributed central neurotransmitters or
their receptors, modulation of peripheral signals would
target regions of the brain controlling appetite more spe-
cifically.

Efforts to develop pharmacological treatments for
obesity have multiplied over the last decade, and a num-
ber of therapies are currently being investigated in phase
II and III clinical trials. Attention is turning to the hedo-
nistic aspects of food intake with the development of
endocannabinoid antagonists. A fuller understanding of
the regulation of food intake will hopefully allow the
rational development of drugs that are able to reverse the
ongoing acceleration of the current obesity epidemic.
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