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Abstract

Hippocampal lesions produce memory deficits, but the
exact function of the hippocampus remains obscure.
Evidence is presented that its role in memory may be
ancillary to physiological regulation. Molecular studies
demonstrate that the hippocampus is a primary target for
ligands that reflect body physiology, including ion balance
and blood pressure, immunity, pain, reproductive status,
satiety and stress. Hippocampal receptors are functional,
probably accessible to their ligands, and mediate physio-
logical and cognitive changes. This argues that an early
role of the hippocampus may have been in sensing soluble
molecules (termed here ‘enteroception’) in blood and
cerebrospinal fluid, perhaps reflecting a common evol-
utionary origin with the olfactory system (‘exteroception’).

Functionally, hippocampal enteroception may reflect feed-
back control; evidence is reviewed that the hippocampus
modulates body physiology, including the activity of the
hypothalamus–pituitary–adrenal axis, blood pressure,
immunity, and reproductive function. It is suggested that
the hippocampus operates, in parallel with the amygdala,
to modulate body physiology in response to cognitive
stimuli. Hippocampal outputs are predominantly inhibi-
tory on downstream neuroendocrine activity; increased
synaptic efficacy in the hippocampus (e.g. long-term
potentiation) could facilitate throughput inhibition. This
may have implications for the role of the hippocampus and
long-term potentiation in memory.
Journal of Endocrinology (2001) 169, 205–231

The hippocampus and memory

Attention has focused on the hippocampus in view of its
likely role in memory encoding and its dysfunction in
Alzheimer’s disease. The hippocampal formation undoubt-
edly contributes to the encoding of long-term memories,
but an exclusive focus on memory would be a mistake.
The present review emphasises an important aspect of
hippocampal function: that of responding to and governing
body physiology. What follows briefly revisits the role of
the hippocampus in learning and memory, and the
electrophysiological correlates of memory processes, before
considering how the spectrum of genes expressed in the
hippocampal formation may cast light on the involvement
of the hippocampus in other processes. (In this paper,
‘hippocampus’ and ‘hippocampal formation’ are used inter-
changably to denote the juxtaposition of the fields of the
cornu ammonis with the dentate gyrus.)

Memory and the hippocampus

The hippocampus, located beneath the cerebral hemi-
spheres, resembles a large ‘wishbone’ (the curved

Y-shaped bone in the chicken neck), but takes its name
from the appearance of its arms in cross-section – the
interlocking double-U formed by the tightly aligned cell
bodies of ammon’s horn (cornu ammonis) and the dentate
gyrus – reminiscent of the shape of Hippocampus spp.
(Fig. 1; for detailed reviews of hippocampal structure see
Amaral 1987, Amaral & Witter 1989). Memory problems
in a patient with limbic damage (i.e. at the edge of the
forebrain) were first recorded in 1898; another 60 years
elapsed before the hippocampus was pinpointed as playing
a special role. The remarkable individual, ‘H M’, under-
went bilateral hippocampectomy to alleviate severe epi-
lepsy; he was found subsequently to have lost all ability to
remember recent events, although immediate working
memory, recall of long-distant events and skill learning
generally remained intact (Scoville & Milner 1957). Simi-
lar findings were reported in other patients at the time
(Stepien & Sierpinski 1964). Memory impairment associ-
ated with Alzheimer’s disease also reflects early dysfunc-
tion of the hippocampus (Carlesimo & Oscar-Berman
1992). These and other data argue that the primate
hippocampus plays a pivotal role in declarative or episodic
memory processes required for event learning and recall
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(Squire 1992, Eichenbaum et al. 1992). Similar conclu-
sions have been reached in rodents, in which damage to
the hippocampus can lead to failure to remember the
location of a hidden platform in the water maze (Morris
et al. 1982, 1986, Morris 1989), a task believed to reflect
declarative memory processes. (For the distinction be-
tween declarative and procedural (skill learning) memory,
and equally, between the explict/implict and episodic/
semantic divisions of memory, see Cohen & Eichenbaum

1993, Tulving & Markowitsch 1998.) Because hippo-
campal lesions do not eradicate previously established
memory traces, the hippocampus could be a temporary
store for information, particularly spatial information, that
is subsequently encoded in other cortical regions (Marr
1971, Willshaw & Buckingham 1990, Recce & Harris
1996).

Two electrophysiological phenomena provide further
insights into the role of the hippocampus. Firstly, some
neurones in the rodent hippocampus fire according to the
location or orientation of the animal (O’Keefe & Conway
1978, O’Keefe & Nadel 1978, O’Keefe 1979). These
‘place cells’ appear to process spatial information and could
in some way provide instructions as to the spatial location
of the animal. This theory is by no means generally
accepted (Cohen & Eichenbaum 1991). Secondly, hippo-
campal synapses display a robust and easily measured form
of stimulus-dependent plasticity that could underlie some
memory processes. Long-term potentiation (LTP; a sus-
tained increase (often a doubling) in the efficacy of
transmission at a synapse or group of synapses) can be
elicited experimentally by a short train of high-frequency
stimuli; potentiation can persist for days in the intact
animal (Bliss & Gardner-Medwin 1973, Bliss & Lømo
1973). Artificial depolarisation of the downstream neurone
concurrently with firing of the upstream neurone (‘pair-
ing’) also brings about robust potentiation at their synaptic
junction (Jaffe & Johnston 1990, Lin et al. 1993, Magee &
Johnston 1997). This would appear to fulfil the criteria of
a learning device as proposed by Hebb (1949): hippo-
campal LTP has been widely conjectured to be the
molecular embodiment of a temporary memory trace (Bliss
& Collingridge 1993). This is supported by the impair-
ment of spatial learning in rats that is produced by
pharmacological blockade of LTP (Morris et al. 1986) and
by studies on LTP-impaired transgenic animals (Chen &
Tonegawa 1997). Despite this mass of data, the case for a
link between hippocampal LTP and memory is very much
circumstantial.

Although the hippocampus may contribute to
learning and memory, particularly in tasks demanding
spatial navigation, memory processing is but one of a
long list of diverse functions attributed to the formation.
The hippocampus is likely to contribute to attention,
arousal and emotional states, including stress; disorders
associated with the hippocampus include not only
memory deficits but also anxiety, delusional disorders,
depression, epilepsy, and schizophrenia. Furthermore,
the hippocampus contributes to adaptive and reproduc-
tive behaviour, including maternal care. (For general
overviews of the functions ascribed to the hippocampal
formation see, in particular, Douglas 1967, Squire et al.
1989, Eichenbaum et al. 1992, Jarrard 1995.) The
specific computational task that the hippocampus
performs is unknown, but it is abundantly clear that its
role is not restricted to memory processing. Heretically,

Figure 1 Cross-section of the mouse brain and hippocampus. (A)
Sagittal section of mouse brain; Cb, cerebellum; Cx, cortex; Hpc,
hippocampus; Ob, olfactory bulb. (Courtesy of K Rose.) (B) Cresyl
violet stain of a horizontal section of 33-day-old mouse brain
subregion containing the hippocampus. CA1, CA3, regions of the
cornu ammonis; CA2 (not labelled) is the small area separating
CA1 and CA3; DG, dentate gyrus; ErCx, entorhinal cortex; Sub,
subiculum. (Original photomicrograph (markings overlaid) from
Angevine (1965), � Academic Press, with permission.)

R LATHE · Hormones and the hippocampus206

www.endocrinology.orgJournal of Endocrinology (2001) 169, 205–231

Downloaded from Bioscientifica.com at 08/23/2022 05:37:01AM
via free access



memory formation could even be secondary to its
central function, so far obscure.

Genes expressed in the hippocampus

Much of what we know about the function of the
hippocampus derives from lesion studies, including phar-
macological, surgical, and genetic lesions. An alternative
approach is beginning to yield some insights; this has
involved the inspection of genes expressed in the hippo-
campal formation. Although the brain is known to express
a greater fraction of the genome than other tissues (Hahn
& Laird 1971, Bantle & Hahn 1976, Milner & Sutcliffe
1983), one study suggested that the hippocampus might be
a particularly rich site of gene expresssion. Random
insertion of a reporter gene into the mouse genome was
combined with analysis of hippocampal expression of the
reporter: 37% of insertions (95% confidence interval 21 to
59%; 22 lines studied) were found to be expressed in the
hippocampus (Steel et al. 1998), suggesting that more than
one-third of protein-coding genes are expressed here.
Three such genes were examined, all were membrane-
associated polypeptides with likely signalling roles (Steel
et al. 1998). In another study, one random gene isolated on
the basis of hippocampus-enriched expression was found
to encode an enzyme responsible for local metabolism of
adrenal steroids (Stapleton et al. 1995, Rose et al. 1997).
Together these findings prompt the suggestion that the
hippocampus might express an unusually high proportion
of receptors and ancillary signalling molecules.

To address this, a survey was carried out. This con-
firmed an unusual density and diversity of receptor
expression in the hippocampus. Expression was demon-
strated either directly (in situ hybridisation, immunohisto-
chemistry, ligand uptake) or indirectly (e.g. by effects on
synaptic plasticity in slices or on neurite outgrowth in
hippocampal cultures). Over and above the expected
targets for neurotransmitters and neuropeptides, the
spectrum of receptors present in the hippocampus in-
cludes, for illustration, binding sites, activities, or both, for
basic ions and metabolites, steroids, prostaglandins, lym-
phokines, blood control factors, immune system compo-
nents, hypothalamic releasing hormones, and growth,
reproductive and gastrointestinal hormones. Table 1 gives
a list of more than 60 ligands with binding sites/receptors
identified in the hippocampus.

It should not be inferred that the hippocampus is,
inevitably, the primary site of receptor expression. Many
receptors are found in several brain regions, particularly
the hypothalamus, cortical areas, the amygdala, and the
olfactory bulb. For others, however, expression appears to
be most robust in the hippocampal formation. For
example, the luteinising hormone (LH) receptor is ex-
pressed at greatest density in the cornu ammonis regions
and the dentate gyrus (Lei et al. 1993); binding sites for

insulin and insulin-like growth factors (IGFs)-I and -II
show a marked preference for the hippocampus (Lesniak
et al. 1988, Marks et al. 1990, 1991, Couce et al. 1992,
Doré et al. 1997), whereas binding of peripherally
administered [3H]corticosterone demonstrates that the
mineralocorticoid receptor is very substantially restricted
to, if not almost exclusively located in, the hippocampus
(Fig. 2), although there is expression, at lower levels, in the
hypothalamus and amygdala.

At first glance, this apparent complexity of receptor
expression in the hippocampus could be a simple exper-
imental artefact. The close alignment of neuronal cell
bodies in the hippocampus could increase the sensitivity of
detection of gene expression by in situ staining, affinity or
hybridisation techniques; what appears to be selectively
present in the hippocampus might not be specific at all.
Several lines of evidence argue against this explanation.
Firstly, the pattern of expression of each gene is distinct –
some express robustly in cornu ammonis region CA1 but at
undetectable levels in the adjacent dentate gyrus where
the neuronal alignment is equally tight; others show the
reverse pattern. Secondly, in several cases the additional
abundance in the hippocampus has been verified by
techniques insensitive to the stacking density of the
neuronal cell bodies, such as northern hybridisation, or
by binding and immunological studies after dissection.
Two examples illustrate this: 1) hippocampal punches
showed greater binding of ligands targeting either
mineralocorticoid receptor or glucocorticoid receptor
([3H]aldosterone and [3H]dexamethasone) per mg total
protein than did punches from other brain regions
(Magarinos et al. 1989); 2) binding of [125I]insulin,
[125I]IGF-I or -II, and [125I]interleukin 1 (IL-1), normal-
ised to tissue protein, was generally greater in the dentate
gyrus than in any other region with the possible exception
of the piriform cortex (Ban 1994, Doré et al. 1997). Table
2 presents a list of some important hormone/ligand bind-
ing sites that are present in great or greatest abundance in
the hippocampus (see also Fig. 2).

Accessibility and functionality of hippocampal receptors

The question arises, are the ectopically expressed receptors
in the hippocampus accessible to ligands present in blood
or cerebrospinal fluid (CSF), and are they functionally
coupled to downstream signal transducing mechanisms? In
terms of accessibility, the hippocampus could be well
positioned to receive soluble ligands from blood or CSF,
lying alongside the choroid plexus with its rich blood
supply and immediately adjacent to the cerebral ventricles.
Adjacent brain regions may be equally well placed to
receive soluble ligands, but the positioning of the hippo-
campus alongside the brain ventricles appears to be
conserved in evolution. There is evidence, furthermore,
to suggest that many ligands can gain access to the
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hippocampus and, in a number of cases, it is the primary
brain binding site.

Peripherally administered corticosterone accumulates,
in brain, very selectively in the hippocampus (panel MR
in Fig. 2); however, it may be unsurprising that small
molecules such as steroids can traverse the blood–brain

barrier (BBB; Herbert 1986). Nevertheless, larger peptide
or polypeptide ligands seem able to cross into the brain,
including insulin, ILs -1, -2 and -6, immunoglobulin,
and a number of neurotrophins (Pardridge et al. 1985,
Zlokovic et al. 1990b, Banks et al. 1991, 1994, 1995, Banks
& Kastin 1991, Martin et al. 1992, Waguespack et al. 1994,

Figure 2 Localised expression of receptors and binding sites for blood hormones in the hippocampus. The selection of brain binding sites
is intended to be representative but is subservient to the availability and quality of in situ studies presented in the literature. ANGIVR:
In situ binding of 125I-Ang IV to guinea pig brain. Greatest binding density is to regions CA1–3 and the dentate gyrus (DG), with significant
binding in the medial habenula, cortex, thalamus, and cerebellum. (Reproduced from Fig. 1 of Wright et al. (1993), � Pergamon, with
permission.) IGF2R: Binding of [125I]IGF-II to rat brain. Binding was recorded principally in the hippocampus (regions CA1–3 and dentate
gyrus (DG)) and cortex. (Reproduced from Fig. 2 in Doré et al. (1997), � IBRO/Elsevier, with permission.) NHE4: In situ hybridisation of
rat brain to a probe specific for the sodium-hydrogen exchanger NHE4 reveals selective expression in regions CA1-3 of the hippocampus,
but not the dentate gyrus. (Reproduced from Fig. 6 in Bookstein et al. (1996), � The American Physiological Society, with permission.)
IL1R: Binding of [125I]-IL-1 receptor antagonist to mouse brain. Greatest binding recorded was to the hippocampus (principally the dentate
gyrus) and choroid plexus, with significant diffuse binding in the cortex. (Reproduced from Fig. 5 of Takao et al. (1992), � Elsevier, with
permission.) A very similar pattern was observed with binding of [125I]-IL-1 to mouse brain sections (Takao et al. 1992; Ban et al. 1994).
LHR: In situ hybridisation to female rat brain using a probe specific for the LH receptor. Levels of expression in brain are greatest in the
hippocampus and dentate gyrus, some expression was also detected in other brain regions, including cerebellum, brainstem,
hypothalamus, choroid plexus and ependymal cells of the ventricles. (Reproduced from Fig. 7 in Lei et al. (1993), � The Endocrine
Society, with permission.) MR: Autoradiography of brain of adrenalectomised rat labelled in vivo with [3H]corticosterone. Binding is
predominantly to mineralocorticoid receptor located in hippocampal CA regions and dentate gyrus. (Reproduced from Fig. 2 in de Kloet
(1991), � Academic Press, with permission.) Mineralocorticoid receptor expression is also present in the hypothalamus, choroid plexus
and brainstem (see de Kloet 1991). IL6R: In situ hybridisation to rat brain with a probe specific for the IL-6 receptor. mRNA was present
at greatest abundance in the hippocampus (regions CA1-3 and dentate gyrus), cerebellum and olfactory system, with scattered positive
cells in the cortex and hypothalamus. (Reproduced from Fig. 2 in Schöbitz et al. (1993), � European Neuroscience Association, with
permission.) MAS: In situ hybridisation of rat brain to a probe specific for c-mas, a potential but unconfirmed angiotensin receptor. Strong
labelling was exclusively linked to the dentate gyrus, hippocampal regions CA1-4, olfactory tubercle (medial part; Tu), piriform cortex and
the olfactory bulb (OB), with diffuse staining in the cortex; apparent cerebellar expression is due to non-specific effects. (Reproduced from
Fig. 3 in Bunnemann et al. (1990), � Elsevier, with permission.) TRB2: In situ hybridisation to rat brain with a probe specific for the thyroid
hormone receptor type �-2. mRNA was most abundantly detected in the hippocampus (regions CA1-3 and dentate gyrus (dg)),
cerebellum, hypothalamus and brainstem, with diffuse cortical staining. (Reproduced from Fig. 4 in Li & Boyages (1996), � The Endocrine
Society, with permission.)
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Poduslo & Curran 1996). Peripherally administered
chorionic gonodotrophin (125I-hCG) can cross the BBB
to bind selectively to LH receptors within the hippo-
campal formation (Lukacs et al. 1995); a similar result has
been obtained with 125I-prolactin (J Russell, personal
communication). Specialised polypeptide transporter sys-
tems have been suggested (reviewed by Herbert 1986; see
also Meisenberg & Simmons 1983); specific transporters
have been documented for arginine-vasopressin (AVP;
Zlokovic et al. 1990a) and for the Tyr-MIF-1 (encephalin,
dynorphin) family (Reed et al. 1994). Furnished with
these examples it seems prudent to assume that many
blood- (and CSF-) borne ligands can gain access to binding
sites in the brain, prominently in the hippocampus, either
by diffusion or by facilitated transport.

Are these receptors functional? Taking a single measure
of bioactivity, the modulation of synaptic plasticity
(including LTP) in hippocampal slices, almost without
exception those hormones and ligands that have been
studied produce significant effects. These ligands include
(the list is not exhaustive): activin, angiotensin, basic
fibroblast growth factor, cholecystokinin (CCK), cortico-
sterone, corticotrophin-like peptide, oestrogen, histamine,
interferon, IL-1�, IL-2, IL-6, melatonin, plasmin, somato-
statin, thyroid hormone, and tumour necrosis factor. One
may conclude that the receptors are functionally coupled
to signal transducing machinery. A similar conclusion was
discussed by Sanes & Lichtman (1999).

Mediation of functional changes in vivo: adrenal and gonadal
steroids
There is a further caveat. Binding to hippocampal
receptors and modulation of excitability or LTP induction
argue for, but do not prove, in vivo functionality. Never-
theless, there is abundant evidence that peripherally syn-
thesised receptor ligands can modulate brain function and
behaviour. This is borne out by a series of examples,
described below, that illustrate the diversity and possible

physiological significance of ligand interactions with
hippocampal receptors. The first two examples concern
steroids synthesised from the adrenal and gonads.

Glucocorticoids Corticotrophin-releasing factor (CRF)
released from the hypothalamus in response to stress
stimulates the pituitary to secrete adrenocorticotrophin
(ACTH) that, in turn, directs the adrenal gland to secrete
stress hormones (noradrenaline, adrenaline, and gluco-
corticoids). The principal circulating glucocorticoid in
rodent, corticosterone (cortisol in human), targets
receptors throughout the body, but also in the brain. Two
principal types of glucocorticoid receptor have been
described. The first, termed the mineralocorticoid receptor
in view of its affinity for aldosterone in addition to
corticosterone, is selectively and abundantly expressed,
in brain, in the hippocampal neurones (see Fig. 2);
[3H]aldosterone and [3H]dexamethasone show greater
binding to hippocampal tissue than to other brain regions
(Magarinos et al. 1989). The mineralocorticoid receptor
has high affinity for glucocorticoids and, under resting
conditions, is largely complexed to ligand. The homolo-
gous glucocorticoid receptor is widely expressed through-
out the brain, including the hippocampus (Aronsson et al.
1988, McGimsey et al. 1991, Van Eekelen & de Kloet
1992), but has lower affinity for glucocorticoids, such
that it becomes occupied only under stress conditions
accompanied by increased glucocorticoid concentrations
(reviewed by de Kloet 1991). In addition to these nuclear
receptors, there is strong evidence for a second type of
receptor at the cell surface, so far uncharacterised, that
mediates fast non-genomic actions of corticoids (including
aldosterone) on neuronal excitability (Orchinik et al. 1991,
Wehling et al. 1993, Iwasaki et al. 1997, Joels 1997).
Note that, within the hippocampus, there are subtle and
intriguing differences in the patterns of expression of
glucocorticoid receptors between rat, hamster and human
(Sutanto et al. 1988, Seckl et al. 1991).

Table 2 Key ligands, binding sites and receptors enriched in the hippocampus

Hormone/ligand/binding site

Primary physiological parameter
Blood pressure Angiotensin IV (AT4)
Blood ion balance Calcium (extracellular calcium receptor, CaR)

Osmolarity? Sodium? (sodium–hydrogen exchanger,
NHE4)

Infection and immunity Interleukin 2
Pain Nociceptin
Reproductive status (also Growth) Androgens

Oestrogen (ER�, ER�)
Luteinising hormone

Satiety (Growth) Acidic fibroblast growth factor
Insulin; insulin-like growth factors

Stress Glucocorticoids (MR, GR)

ER, MR, GR, oestrogen, mineralocorticoid and glucocorticoid receptor respectively.
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Glucocorticoids modulate neuronal function in the hippocampus
Glucocorticoids can impair hippocampal LTP in vitro
(Dubrovsky et al. 1987, Pavlides et al. 1993), as well as
increasing afterhyperpolarisation mediated by small-
conductance calcium-activated potassium channels (SK
channels) (Joels & de Kloet 1989) that have been impli-
cated in arousal. Because of the ‘inverted-U’ response to
these hormones (Diamond et al. 1992), low concentrations
maintain, moderate concentrations promote, and high
concentrations impair neuronal function. LTP is depen-
dent on adrenal output in vivo, and adrenalectomy results
in a significant decrease in the extent of LTP (Shors et al.
1990). Conversely, stress and excess glucocorticoids impair
neuronal function and survival in the formation, and
hippocampal-dependent memory (reviewed by Sapolsky
et al. 1986, Filipini et al. 1991, de Kloet 1991, Kerr et al.
1994, McEwen & Sapolsky 1995, Lupien & McEwen
1997, de Kloet et al. 1998). However, glucocorticoid
regulation is complex. Circulating concentrations change
systematically through the light/dark cycle and adrenalec-
tomy modifies the circadian dimorphism of hippocampal
LTP (Dana & Martinez 1984). In rats, in vivo LTP was
most easily elicited duing the hours of darkness whereas,
after adrenalectomy, reversal was reported – LTP could be
readily induced during daylight hours, but only with
difficulty during darkness (Dana & Martinez 1984).

Gonadal steroids Gonadal steroids also target the hippo-
campus and modulate neuronal activity. In rat brain,
immunohistochemical staining with androgen receptor
antibodies revealed androgen receptor localisation in
several rat brain regions, including hypothalamus,
amygdala, septum, hippocampus, and cortex (Sar et al.
1990, Bingaman et al. 1994), confirming the findings of
earlier studies using tritiated ligand binding. In situ
hybridisation demonstrated comparable levels in hippo-
campus and hypothalamus, with hippocampal expression
being predominently in CA1 (Kerr et al. 1995). In
rhesus monkey, androgen receptor immunoreactivity was
recorded in hypothalamus, arcuate nucleus, amygdala and
hippocampus, where positive nuclei are distributed widely
in cornu ammonis regions CA1–3 and the dentate gyrus
(Choate et al. 1998).

Regarding oestrogen targets, Maggi et al. (1989)
reported that a monoclonal antibody against the breast
cancer cell line oestrogen receptor detected greater
immunoreactivity in the rat hippocampus than in other
brain regions tested, except perhaps the hypothalamus,
where immunoreactivity was comparable to that found
in hippocampus; after oestradiol benzoate treatment of
ovariectomised animals, immunoreactivity was signifi-
cantly greater in the hippocampus than in the hypothala-
mus (Maggi et al. 1989). This study was complicated by
the fact that in situ hybridisation reveals ER� to be the
principal oestrogen receptor (ER) species in the hippo-
campus, and that receptor mRNA was present in a variety

of brain regions at greater concentrations than in the
hippocampus (Shughrue et al. 1997a,b, 1998). However,
studies with conjugated oestradiol have shown that the
steroid, like the glucocorticoids, also binds to unidentified
cell-surface receptors (Zheng & Ramirez 1997), the
distribution of which is unknown. Oestradiol also modu-
lates hippocampal LTP (e.g. Cordoba Montoya & Carrer
1997) and neuronal activity in the hippocampus both
in vivo and in vitro (not reviewed here; see McEwan &
Alves 1999).

Mediation of functional changes in vivo: further examples

Modulation of hippocampal function and behaviour is not
restricted to steroids, and the following examples 1–7
support the conclusion that diverse ligands and hormones,
as suggested by the prominent expression of receptors, can
target the hippocampus and modify behaviour. These
include molecules contributing to reproduction (LH),
blood pressure (angiotensin), glucose regulation and satiety
(insulin, acidic fibroblast growth factor (aFGF)), immunity
(IL-2), pain (nociceptin), and ion sensing (the extracellular
Ca2+ receptor and, potentially, the sodium–hydrogen
exchanger, NHE4). In these cases, receptor activation has
been shown, or is likely, to manifest itself in altered
neuronal electrophysiology in the hippocampus and, in
some cases, to be associated with altered memory function.

1. Luteinising hormone In both males and females,
gonadal function is governed, in part, by the action of two
reproductive hormones, follicle-stimulating hormone
(FSH, follitropin) and LH (lutropin), released from the
pituitary in response to gonadotrophin-releasing hormone
(GnRH), also known as LH releasing hormone (LHRH).
In males, FSH is required for spermatid maturation,
whereas LH augments testosterone production. In females,
development of the ovarian follicle is determined by the
patterns of FSH and LH production in response to pulsatile
release of GnRH. Follicular maturation is stimulated by
FSH secreted in response to an increase in the frequency
of GnRH pulses, whereas the LH surge that precipitates
ovulation is brought about by a combination of increased
GnRH pulse frequency and increased oestradiol secreted
from the maturing follicle. In the brain, as far as can be
assessed, FSH receptors are absent; in contrast, LH recep-
tors are well expressed. The LH receptor is expressed in rat
brain at greatest density in the cornu ammonis regions and
the dentate gyrus, as demonstrated by in situ hybridisation,
immunocytochemistry and hormone binding (Lei et al.
1993) (see Fig. 2), although transcripts were also present in
hypothalamus, cerebellum and brainstem, but at lower
levels (Lei et al. 1993). The LH receptor is coupled to the
production of cAMP (Ji & Ji 1991), an intracellular
messenger the pivotal role of which in controlling neuronal
excitability in hippocampus is well established. As noted
earlier, the LH homologue hCG can cross the BBB
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(Lukacs et al. 1995); LH has not been studied in this
respect. LH can modulate neuronal activity in the hippo-
campus (Gallo et al. 1972), although the effects of LTP
have not been studied. Peripheral administration of hCG
not only changes wakefulness and associated behaviours
and the levels of LH receptors in hippocampus (Toth et al.
1994), but also modifies performance in a number of tests
designed to elucidate hippocampal function (Lukacs et al.
1995). In the female, the presence of LH receptors in the
brain, but the absence of receptors for FSH, would be
consistent with inferred differential biological advantages
of signalling to the brain either the early stages of egg
development mediated by FSH or the release of an
unfertilised egg under LH control. Together, these data
argue that LH selectively targets the hippocampus,
modifies neuronal excitability therein, and can thereby
modulate hippocampal function and downstream
behaviours.

2. Angiotensin Imaging reveals that several brain regions,
including the hippocampus, are activated during blood
pressure challenges (Corfield et al. 1995, Harper et al.
1998) and may therefore respond to homeostatic hor-
mones including the renin/angiotensin–system. Renin is
released from the kidney in response to a decrease in blood
pressure, and activates circulating angiotensinogen to the
decapeptide angiotensin (Ang I) by proteolytic cleavage of
the inactive precursor. Ang I is subsequently processed by
a number of enzymes, including the angiotensin convert-
ing enzyme (ACE) to generate a variety of Ang peptides
including the octapeptide Ang II, the septapeptide Ang III
and the hexapeptide Ang IV. Although not demonstrated,
the smaller size of Ang IV could facilitate passage across the
BBB. In turn, angiotensins act peripherally and centrally at
dedicated angiotensin receptors to restore blood pressure,
predominantly by modulating kidney fluid resorbtion, but
also via central responses including thirst. Angiotensin
receptors AT1, 2 and 4 are widely distributed. In brain, in
situ hybridisation demonstrated that the AT1A and AT1B
Ang II receptors are expressed in the hippocampus and
other brain regions, as confirmed by binding of radio-
labelled Ang II (Jöhren & Saavedra 1996). The AT2
receptor is present in several brain regions, but not
significantly in the hippocampus (Lenkei et al. 1997). In
contrast, the atypical AT4 receptor that binds Ang IV with
high affinity is robustly expressed in the hippocampus and
a number of other brain regions, including the cortex and
cerebellum; of 13 brain regions, the hippocampus exhib-
ited the second greatest binding density of 125I-Ang IV;
this was exceeded only by the cerebellum (Harding et al.
1992, Miller-Wing et al. 1993, reviewed by Wright &
Harding 1997) (see Fig. 2). Although not confirmed,
angiotensin receptor modulatory activity has been attrib-
uted to the c-mas oncogene (Wolf & Neilson 1992); c-mas
is also robustly expressed in the hippocampus (Fig. 2). Ang
II was reported to depress synaptic potentiation in the

dentate gyrus (Denny et al. 1991, Wayner et al. 1993);
studies with Ang IV have not been reported. Cognitive
effects are suggested by studies describing improved task
performance in hypertensive patients receiving the ACE
inhibitor captopril, independent of normalisation of blood
pressure (Sudilovsky et al. 1988). In rats, intracerebroven-
tricular infusion of Ang IV, but not of Ang II, was reported
to improve retention of a passive avoidance task (Wright
et al. 1993), and an Ang IV analogue was shown to
counteract the disruption of spatial learning induced by
scopolamine (hyoscine; Pederson et al. 1998). However,
the multiplicity of ligands and receptors complicates analy-
sis; ACE may be involved in processing neuropeptides in
addition to angiotensin(s), and local blood flow changes
may also contribute to the process. Nevertheless, the
evidence suggests that the angiotensins, production of
which is governed by blood pressure, can modify neuronal
communication in the hippocampus, and behaviour.

3. Insulin On release from pancreatic beta cells in
response to an increase in blood glucose, insulin promotes
hepatic glycogen synthesis and inhibits gluconeogenesis,
whereas in adipose tissue it reduces lipolysis. The insulin
receptor is prominently expressed in the hippocampus,
with comparable expression in the olfactory bulb and
cerebellum (Marks et al. 1991), and the insulin receptor
substrate IRS-1 (which acts downstream of the receptors
for both insulin and the related IGFs-I and -II) is robustly
expressed in both hippocampus and olfactory bulb (Baskin
et al. 1994). As seen earlier, insulin can cross the BBB
whereas, in the regions examined, the binding of insulin to
brain regions was greatest to the hippocampus, with the
possible exception of the adjacent piriform cortex. More
generally, binding sites for insulin and IGFs-I and -II show
a preference for the hippocampus (Lesniak et al. 1988,
Marks et al. 1991, Couce et al. 1992, Doré et al. 1997),
although high levels of 125I-labelled ligand binding were
observed throughout the olfactory bulb, cortex, hippo-
campus and choroid plexus, and some in the cerebellum
(Hill et al. 1988, Bondy et al. 1992, Kar et al. 1993, Doré
et al. 1997). Several studies have suggested that brain
insulin, in particular, can have effects on neuronal excit-
ability and memory. In vitro, insulin has been reported to
depress the activity of hippocampal neurones (Palovcik
et al. 1984) and was neuroprotective in a model of stroke
(Strong et al. 1990), arguing that insulin regulates hippo-
campal function. In support of these findings, diabetic rats
are impaired in both the establishment of hippocampal
LTP and in hippocampus-dependent spatial learning
(Biessels et al. 1998), but this does not distinguish between
specific signalling by insulin/glucose and loss of glucose
control (in this instance) leading to neuronal dysfunction;
note that increases in blood glucose can improve memory
performance (Gold et al. 1986, Hall & Gold 1986), and
that memory problems can be encountered in diabetic
patients (Prescott et al. 1990, Hershey et al. 1997). In the
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former patient study, memory impairments were propor-
tional to duration of illness but there was no discernible
relation to degree of glycaemic control, possibly suggesting
that the memory effects are unrelated to systemic glucose
concentrations and implying a more direct effect of insulin.
Kamal et al. (1999) showed that incubation of hippocampal
slices in glucose-free medium impaired LTP, but they
attributed this to reduced release of glutamate; they argue
that LTP changes in diabetic rats (Biessels et al. 1998) are
due to chronic disturbances of glucose control (Kamal et al.
1999). The possible involvement of insulin as a direct
mediator was not examined in these studies. On balance,
the data argue that insulin can target the hippocampus and
that memory alterations may partly reflect this targeting.
Electrophysiological and memory studies with IGFs-I and
-II have not been reported.

4. Interleukin 2 Lapchak et al. (1991) recorded 125I-
IL-2 binding sites only in the hippocampal formation and
cerebellum. In situ hybridisation revealed that the IL-2
receptor � is prominently expressed in the hippocampus,
with intense staining in the cornu ammonis regions and
dentate gyrus (Petitto & Huang 1994); IL-2 receptor � is
also expressed here (Pettito et al. 1998). These interleukins
are also able to traverse the BBB to gain access to the
hippocampus (see earlier), where IL-2 has a variety of
neurotrophic and regulatory functions, and has been
reported to influence sleep and arousal, HPA axis
activity, and memory (Hanisch & Quirion 1995). At
the electrophysiological level, IL-2 modulates calcium
currents in hippocampal neurones (Plata-Salaman &
ffrench-Mullen 1993) and suppresses LTP (Tancredi et al.
1990, Cunningham et al. 1996). Learning and memory
were impaired in mice with a targeted disruption of the
the IL-2 gene (Pettito et al. 1999). It has also been
reported that patients receiving IL-2 infusion experience
significant cognitive effects (Walker et al. 1996). These
reports together suggest that IL-2, both peripheral and
locally produced, can gain access to the brain, wherein it
modulates LTP and memory.

In addition to IL-2, two other interleukins (ILs-1 and
-6) are also reported to target the hippocampus and impair
LTP and memory. Receptor targets for both are promi-
nently expressed in the hippocampus (Cunningham et al.
1991, Wong & Licinio 1994, Schöbitz et al. 1993), where
they inhibit LTP (Katsuki et al. 1990, Cunningham et al.
1996, Li et al. 1997, Bellinger et al. 1993); some IL-1
effects may be dependent upon vagal nerve stimulation
that can release IL-1 locally in the brain.

5. Acidic fibroblast growth factor and satiety aFGF
is synthesised by ependymal cells lining the cerebral
ventricles and is released into the CSF in response to an
increase in blood glucose. CSF concentrations increase
1000-fold after feeding or blood glucose increase, and
aFGF has been proposed as an endogenous satiety sub-

stance (Hanai et al. 1989). aFGF appears in a number of
brain regions, including the hippocampus and lateral
hypothalamus (Hanai et al. 1989). Expression of the FGF
receptor FGFR-1 is particularly high in the hippocampus
and cerebellum. FGFR-2 mRNA is found in the choroid
plexus, corpus callosum and olfactory bulb, FGFR-3
mRNA is expressed diffusely throughout the brain
(Yazaki et al. 1994), and FGFR-4 is expressed selectively
in the medial habenular nucleus (Miyake & Itoh 1996). In
the hypothalamus, aFGF is believed to suppress feeding,
but the role in hippocampus is unknown. However,
subcutaneous (s.c.) infusion of aFGF directs a dose-
dependent increase in hippocampal synaptic potentiation,
and the extent of CA1 LTP in response to tetanus was
almost doubled in aFGF-treated animals (Oomura et al.
1997). It was also reported that glucose administration 2–3 h
prior to testing resulted in some enhancement in spatial
navigation skills, and this was blocked by antibody to aFGF,
suggesting that aFGF mediates, in part, the effects on
navigation (Oomura et al. 1993, 1997). Significantly per-
haps, chronic intermittent administration of aFGF (s.c. once
a week for 9 months) resulted in significant increases in
aFGF receptor density in the hippocampus, but not in other
brain regions (Oomura et al. 1997). Although caution is
warranted in the interpretation of these experiments, it
does appear that aFGF released in response to glucose can
modulate neuronal activity in the hippocampus.

aFGF is not alone. The glucose-responsive hormones
insulin (example 3 above) and glucagon have central
effects via blood glucose, but also through direct inter-
actions. In addition, other factors including leptin, leptin-
regulated polypeptides, and CCK are also implicated in
satiety regulation (Ahima et al. 1996, Friedman & Halaas
1998, Baldwin et al. 1998, Inui 1989). Leptin binding sites
and receptor mRNA are prominent in the hypothalamus,
hippocampus and choroid plexus, and in the olfactory
system (Huang et al. 1996, 1997, Hakansson et al. 1998,
Williams et al. 1999). CCK potentiates depolarisation of
hippocampal neurones (e.g. Dahl & Li 1994), and rats
lacking the CCK-A receptor display impaired learning and
memory (Nomoto et al. 1999). It is not known whether
leptin modulates LTP and memory.

6. Nociceptin and pain The amnesic patient, H M,
had marked impairments in pain perception (Hebben
et al. 1985); this could be no more than coincidental,
but another patient (N A) also displayed amnesia and
unresponsiveness to pain after brain injury (Teuber et al.
1968). Although the lesion in N A did not affect the
hippocampus, there was considerable disruption to major
brain inputs and outputs of the hippocampal region such as
the fornix and the mammillothalamic tract (Squire &
Moore 1979). These two cases could suggest a possible
link between memory function and pain perception;
hippocampectomy has been discussed in relation to pain
relief (Gol & Faibisch 1966).
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Generally, the hippocampus is not recognised as being
central to pain sensitivity, and a large number of brain
regions are believed to be involved in such perception,
including the periaqueductal grey, the locus coeruleus, and
several thalamic and limbic structures (Willis & Westlund
1997). Injections of carbachol into a wide variety of brain
regions can suppress nociception (Klamt & Prado 1991),
and electrical stimulation at many brain sites can produce
reductions in pain sensitivity. However, interpretation of
such studies is complicated by interfering factors. For
instance, electrical stimulation at many brain sites is
aversive and could thus be expected to affect nociception.
In one study, only stimulation of the dorsal hippocampus
and the pretectal area affected nociception without being
aversive (Prado & Roberts 1985), suggesting that the
hippocampus may make a particular contribution to pain
awareness. Injection of the local anaesthetic lignocaine into
the dentate gyrus reduced pain scores (McKenna &
Melzack 1992), whereas painful stimuli produce changes
in hippocampal neuronal activity and blood flow. At barely
detectable levels of pain, regional blood flow (rBF) was
increased only in restricted cortical areas of human
volunteers. With increasing stimulus intensity, widespread
rBF increases were recorded, not only in the cortex, but
also in the contralateral hippocampus and thalamus; in
contrast, rBF in the amygdala was reduced (Derbyshire
et al. 1997). Similar findings were recorded in cats
(Sakiyama et al. 1998).

More recent lines of evidence are now beginning to
substantiate a prominent role for the hippocampus in pain
processing. Although several brain molecules modulate
nociception, including prostaglandins, several neuro-
peptides, interleukins, tumour necrosis factor, angiotensin,
bombesin and CCK, attention has focused on an endog-
enous peptide, orphanin FQ (Reinscheid et al. 1995),
also termed nociceptin (Meunier 1997). This peptide is
reported to mediate hyperalgesia by binding to the orphan
receptor, ORL1 (Shimohigashi et al. 1996, Meunier
1997). It is not known physiologically where nociceptin is
produced and the nature of its principal target sites for
action. The nociceptin receptor is widely distributed in
the brain (Neal et al. 1999); however, this receptor is
functionally coupled to G-protein coupled inwardly
rectifying K+ channel (GIRK) polypeptides (Ikeda et al.
1997) that are prominently expressed in the hippocampus
– expression of GIRK1 is enriched in the hippocampus,
olfactory bulb, thalamus and cerebellum, whereas tran-
scripts for all GIRK (and IRK) molecules examined were
particularly abundant in the dentate gyrus (Kobayashi et al.
1995, Karschin et al. 1996, Ponce et al. 1996; see in
particular the in situ hybridisation study by Karschin et al.
1996, which reveals uniformly robust expression of IRKs
1, 2 and 3 and GIRKs 1, 2 and 3 in the dentate gyrus, with
lesser expression in CA1–3). All are expressed in the
olfactory bulb, with diffuse signal in the cortex, and IRK2
and GIRK1 and 3 being expressed strongly in cerebellum;

GIRK2 is also expressed in the cerebellum, but most
strongly in the hippocampus; significant GIRK4 expres-
sion was not detected in any brain region. Notably,
nociceptin treatment of hippocampal slices inhibited LTP
(Yu et al. 1997), whereas infusion of nociceptin into the
hippocampus disrupted spatial learning (Sandin et al.
1997). Conversely, LTP and spatial learning were facili-
tated in mice lacking nociceptin receptors (Manabe et al.
1998, see also Mamiya et al. 1998).

7. Ionic sensing: calcium sensing receptor and
sodium–hydrogen exchanger The hippocampus may
also register ionic parameters. The calcium-sensitive
receptor, CaR, is a member of the seven-transmembrane
G-protein coupled receptor family. Comparative in situ
hybridisation of CaR expression in brain revealed strongest
staining in the subfornical organ, olfactory system, hippo-
campus (especially CA3), amygdala, hypothalamus and
cerebellum (Rogers et al. 1995). Immunohistochemistry
revealed particularly high levels and distinct laminar dis-
tribution in the hippocampus (principally CAs 1–3) and
cerebellum (Ruat et al. 1995); cell bodies were not
generally stained, but were surrounded by intensely
stained puncta, suggesting an association with synaptic
terminals (Ruat et al. 1995, Rogers et al. 1995). These
authors speculated that the expression of CaR in the brain
may mediate the major alterations in cognition associated
with increases or decreases in serum Ca2+; note that
synaptic potentiation in the hippocampus is critically
dependent upon external Ca2+ concentrations (e.g.
McGuinness et al. 1991).

The brain is also sensitive to Na+ and osmolarity, but
the specific receptors have not been formally identified. In
addition to CaR itself, NHE4 may be a candidate.
Sodium–hydrogen exchangers generally regulate cell vol-
ume and intracellular pH. Whereas NHE1 is ubiquitously
expressed in most if not all body tissues, including
the hippocampus, NHE2, 3 and 4 are tissue-specific
(Bookstein et al. 1994). NHE2 is, like NHE3, expressed in
the stomach and intestinal epithelia, but is also found in
the kidney. The remaining family member, NHE4, is
qualitatively different from the other sodium–hydrogen
exchanger species, despite sharing significant sequence
homology. Unlike the other cloned species, NHE4 is
inactive except under conditions of cell hyperosmolarity
and, even then, the ion flux is very much lower than
for the other exchangers and has unusual kinetics
(Bookstein et al. 1996), suggesting a regulatory role. The
pattern of expression of NHE4 is also decidedly unusual:
aside from being expressed in the kidney medulla,
NHE4 expression in brain, as assessed by in situ
hybridisation, has so far been detected only in the cornu
ammonis fields of the hippocampus (Bookstein et al.
1996). NHE4 interacts with the cellular cytoskeleton,
and thus could potentially modulate the activity of other

R LATHE · Hormones and the hippocampus214

www.endocrinology.orgJournal of Endocrinology (2001) 169, 205–231

Downloaded from Bioscientifica.com at 08/23/2022 05:37:01AM
via free access



cell-surface proteins and ion channels, including
mechanosensitive neurotransmitter receptors such as the
N-methyl--aspartate receptor that are also attached to
the cell matrix (Wyszynski et al. 1997). If this is the
case, NHE4 could modulate hippocampal neuronal
activity as a function of osmolarity, although this has not
yet been demonstrated experimentally.

There are also hints that the hippocampus might be
involved in fluid exhange or salt homeostasis, or both. In
addition to the sodium–hydrogen exchanger NHE4,
NHE1 is well expressed in the formation (Pickard 1996),
as is the mineralocorticoid receptor (see above), also
responding to the salt regulator, aldosterone – all in
parallel with the situation in the kidney. Renin and
angiotensin are also expressed (Inagami et al. 1980,
Weyhenmeyer & Phillips 1982, Lynch et al. 1986).
Although a role in salt hunger (Denton 1982) has been
suggested (Murphy & Brown 1970), fluid exchange has
not been documented, but could potentially underlie
facilitated ligand access to neurones in the hippocampus
and other brain regions.

Hypothesis: the enteroceptive hippocampus – a metabolic and
endocrine sensor

Together, the above data argue that the hippocampus and
memory respond to a great diversity of physiological
parameters, including blood pressure and ion balance,
infection and immunity, pain, reproductive status, satiety
and stress. Peripherally or locally synthesised ligands can
often gain access to the hippocampus, and receptor bind-
ing can be associated with changes in neuronal excitability
and induction of LTP, brain function and behaviour.
Although each individual case is open to scrutiny, the
combined evidence is overwhelmingly in favour of modu-
lation of hippocampal function by hormones and metabo-
lites. Nevertheless, the hippocampus is not unique in
displaying a variety of receptors, and the hypothalamus in
particular – also the neocortex, amygdala and olfactory
system – can all be rich sites of expression. However, the
robustness and diversity of expression in the hippocampus
is unusual; this may provide a clue to the evolutionary
origin and present-day function of the hippocampal for-
mation. The following hypothesis is prompted: that the
original function of the hippocampus was in sensing
internal metabolic and hormonal status (‘enteroception’)
(see Note 1 that follows). This lays open the possibility that
enteroception can guide cognitive function, including
aspects of memory, in the vertebrate brain.

[Note 1. ‘Enteroceptive’ (en-; in, inside [Greek]), (also
‘interoceptive’), internal sensing; from ‘exteroceptive’
(ex-; out, out of [Greek]) used by Herrick (1926) to
describe external sensing performed by the olfactory
system.]

Enteroception and the evolution of the
hippocampus

The hippocampus is richly adorned with receptors for all
types of ligand; this may reflect its evolutionary origin. The
converse hypothesis – that the computational task per-
formed by the hippocampus was first neutral to internal
status, and receptor expression accumulated only later – is
not supported here. It is suggested here that the hippo-
campus evolved from and in association with a group of
modules, including the olfactory system (and perhaps the
amygdala), with specialised roles in sensing metabolites
and hormones. Before discussing a specific link between
the hippocampus and the olfactory system, two points
are considered briefly: firstly, that the brain in general
can sense internal metabolic and hormonal status, and
secondly, that the hippocampus, in particular, is involved
in such enteroception.

Evidence that the brain can cognitively sense metabolic context
Is there a brain mechanism for cognitively detecting
internal metabolites and hormones? Here, cognitive sens-
ing is distinguished from internal homeostatic sensing
mediated prominently by the hypothalamus. Over and
above such mechanisms, it is argued below that the brain
can directly sense and respond to enteroceptive inputs –
although, clearly, some such circuits do not include the
hippocampus.

Conditioned taste aversion Conditioned taste aversion
(CTA) is discussed first because, although it may provide
the best paradigm for brain sensing of soluble molecules, it
is likely to be misleading regarding hippocampal function.
Animals develop a profound aversion to a particular taste
or smell if that stimulus has previously been paired with a
metabolic stimulus, such as administration of lithium
chloride, that elicits ‘malaise’ (reviewed by Kiefer 1985,
Yamamoto 1993). Thus the brain can sense a noxious
metabolic stimulus although the ligands and receptors
involved have not been determined. Lesions to many brain
regions, including but not restricted to the amygdala,
parabrachial nucleus, hypothalamus, medial thalamus,
hippocampus and gustatory cortex, all diminish CTA
responses (Yamamoto & Fujimoto 1991, Yamamoto et al.
1995), arguing that several brain regions are involved in
sensing noxious metabolic stimuli or processing such
information, and not just the hippocampus. Lesions to the
hippocampus alone do affect CTA, but in a complex
manner (Krane et al. 1976, Kimble et al. 1979, Miller et al.
1986, Reilly et al. 1993). However, from an evolutionary
standpoint, CTA may be a primitive response that
pre-dates the divergence and specialisation of the
chemosensory regions of the brain.

Self-rewarding behaviour Many animals learn to self-
administer a variety of ‘rewarding’ drugs, including
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alcohol, amphetamines, cocaine, nicotine and phencycli-
dine, suggesting that some brain centres can respond to
these blood-borne agents and transmit this information for
learning purposes. Nevertheless, specific targeting of the
hippocampus seems unlikely, although the receptor targets
for drugs provoking self-administration are abundant in the
hippocampal formation and many such drugs have been
demonstrated to affect hippocampal neuronal excitability
and generally inhibit LTP induction (Desmond et al. 1991,
Delanoy et al. 1983, Stringer et al. 1983, Smith et al. 1993,
Sawada et al. 1994, Wayner et al. 1997). Other studies
have centrally implicated the adjacent nucleus accumbens,
although other brain regions, including the hippocampus
itself, are clearly involved (Bardo 1998). The nucleus
accumbens responds to electrical stimulation of the hippo-
campus (MacLean 1975), emphasising close connections
between these brain regions. However, in evidence for an
involvement of the hippocampus in self-rewarding behav-
iour, behavioural dependence of rats trained in a drug
discrimination paradigm for nicotine could be replaced by
administration of nicotine directly into the dorsal hippo-
campus, but not into other brain regions tested (Shoaib &
Stolerman 1996). Notably, some animals can learn to
self-administer glucocorticoids (Piazza et al. 1993) that
can preferentially target the hippocampus (also the
hypothalamus and amygdala).

Hippocampal stimulation Human volunteers receiv-
ing electrical stimulation of the hippocampal formation
report visceral sensations, but only rarely hallucinations
(reviewed by Halgren 1982). These sensations are often
‘epigastric’, consisting of a rising sensation from the
stomach and accompanied by nausea. Such sensation is
independent of the site of stimulation, and is to be
contrasted with cortical stimulation, which generally pro-
duces specific recall or hallucination that varies according
to site (Halgren 1982). However, that study did not
discriminate between direct sensing of body parameters by
the hippocampus, and indirect sensing of physiological
changes induced by the stimulation procedure.

Humoral components and memory It has been sug-
gested that blood components can comprise part of the
context of memory formation and retrieval. Antigens in
the bloodstream can act as specific cues for associative
learning (reviewed by Ader & Cohen 1991). Internal states
such as hunger and thirst (depleted glucose or water) can
be used as learning cues (Kendler 1946, Davidson 1987),
and insulin (for which the brain receptor is abundant in the
formation) can be used as an unconditioned stimulus for
associative learning (Davidson 1987), although, in that
study, signal transduction via the brain insulin receptor was
not distinguished from signalling via glucose concentration
changes. In rats learning a T-maze discrimination test
under pentobarbitone or saline treatment, performance
was optimal with the same drug status but no better than

chance when the treatments were reversed (Overton
1964). In human volunteers asked to perform a learning
task with or without having ingested ethanol, the accuracy
of recall after 2 days was most effective when alcohol
concentrations were the same as during the learning
phase (Weingartner & Faillace 1971). These studies did
not examine whether the hippocampus mediated the
metabolic sensing involved.

Internal sensing deficits in patient H M Hebben et al.
(1985) reported that, in addition to his profound memory
impairment associated with hippocampal damage, patient
H M almost never complained regarding internal states
such as hunger, thirst, pain or fatigue. When questioned,
he was as likely to rate himself as hungry or thirsty
immediately after a meal as just before the meal. Only one
of four global amnesic patients tested at the same time had
difficulty in sensing meal status, which suggests that the
sensory deficit is unrelated to memory impairment, but in
none of these patients was the memory deficit as pro-
nounced as that in H M (Hebben et al. 1985). The same
study revealed that patient H M was also impaired on a
thermal pain perception test, but because his lesion
includes the amygdala (Corkin et al. 1997), it is plausible to
suggest, as argued by Hebben et al. (1985), that some of
these deficits are due to the amygdaloid lesion.

Experimental hippocampal lesions and internal
sensing Rats with selective lesions affecting the hippo-
campus are affected in their response to food deprivation
signals (Davidson & Jarrard 1993, see also Jarrard 1993)
and display a complex but marked behavioural abnor-
mality that affects both eating and drinking (Osborne &
Dodek 1986, Osborne & Flashman 1986), best described
as ‘little and often’ (Clifton et al. 1998). Hippocampal
lesions block sodium ‘appetite’ in response to formalde-
hyde reduction of body sodium content (Murphy &
Brown 1970); lesioned animals are also unable to match
location with internal status (Hsiao & Isaacson 1971).
These studies are consistent with the suggestion that the
hippocampus can provide enteroceptive information for
the encoding and recall of memory as a function of context
(Hirsh 1974).

Conscious versus unconscious sensing The brain can
sense internal hormones and metabolites (enteroception)
and can use this information for cognitive purposes
(behavioural guides, formation of memory associations).
Several brain regions can act as targets for enteroceptive
inputs, and certainly not just the hippocampus, although
the hippocampus (and amygdala) features prominently.
This raises the intriguing question of whether enterocep-
tive inputs can be perceived by the conscious mind. In the
case of exteroceptive inputs (i.e. odour and taste), brain
effects can be noted in the absence of conscious sensing –
brain responses to odours can take place in patients who
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are asleep (Badia et al. 1990) or who deny sensing any
odour signal (Sobel et al. 1999); volatile agents that target
the vomeronasal organ do so without any conscious
perception (Monti-Bloch et al. 1998) and important
gustatory components (e.g. umami substances) have no
discernible taste (Kurihara & Kashiwayanagi 1998).
Several states, including hunger, thirst, fatigue, fever,
malaise, and stress, can be sensed consciously; there are
anecdotal reports of self-administration of coagulation
factors in patients with haemophilia before any bleeding
disorder, and of diabetic patients taking remedial action
before a glycaemic event. It may be, nevertheless, that
many enteroceptive inputs contribute to memory and
behaviour without achieving a threshold for conscious
perception.

The above studies demonstrate three points: 1) the brain
can sense internal metabolites and hormones; 2) this
information can be incorporated into new memories
and can guide behaviour; 3) several brain regions are
involved in these processes, predominantly including the
hippocampus, amygdala and functionally linked areas.

Evolution from a primitive sensory epithelium

It is argued that the hippocampus and related brain areas
can sense the composition of the internal milieu (entero-
ception) in much the same way as the olfactory system can
sense external substances (exteroception). It seems unlikely
that the machinery for sensing soluble metabolites evolved
independently; rather, the hippocampus may have evolved
from a group of modules, including the olfactory system,
with primary roles in sensing diffusible molecules. Riss
et al. (1969) suggested that the olfactory system and
hippocampus might have diverged early in evolution, and
proposed that (the limbic system including the hippo-
campus) ‘is responsive to the internal milieu, whereas the
olfactory system, a derivative of the limbic system, is
responsive to the external chemical milieu’. Evidence
linking the hippocampus and the olfactory system is
reviewed briefly below.

Anatomical evidence In the earliest vertebrates, the
olfactory system and the hippocampus (with the adjacent
piriform region) are no more than contiguous unspecial-
ised anatomical areas that line the lateral ventricle of the
primitive telencephalon (Fig. 3A). This is well illustrated
by the careful illustrations of brain sections of the common
frog (Rana pipiens) presented by Hoffman (1966) (Fig. 3B).
Herrick (1926) entertained the notion of a common origin,
whereas Sarnat & Netsky (1974) suggested that the medial
olfactory area of lower vertebrates is homologous to the
septum, hippocampus and primordium of the neocortex,
and the lateral olfactory area is homologous to the ento-
rhinal cortex, a brain area intimately involved in present-
day hippocampal function. Nieuwenhuys et al. (1997),
reviewing the evolutionary anatomy of the vertebrate

brain, conclude that not just the hippocampus, but also
the entirety of the cerebral telencephalic hemispheres,
emanates from purely olfactory centres.

Developmental evidence: functional interdepend-
ence The data from developmental analysis, particularly
using retroviral markers to track the fate of the neurone
in the developing forebrain (Grove et al. 1992), are
ambiguous regarding the development of the cortex,
hippocampus and olfactory bulb, particularly because
different external influences or inductive effects could
cause regionally distinct effects on an initially uniform
developmental structure (see the discussion held by Walsh
& Lamantia, appended to Boncinelli et al. 1995,
pp 110–116). Overlapping developmental specification is
suggested by the finding that hippocampal progenitor cells
can differentiate to form olfactory neurones (Suhonen et al.
1996). It has been proposed (Humphrey 1966), and
confirmed (Daikoku & Koide 1997), that hippocampal
development, particularly of the dentate gyrus, is critically
dependent on olfactory inputs. Efferents from the olfactory
bulb reach the adult hippocampus (MacLean 1975) (in
addition to the amygdala): for example, fast waves can be
recorded in the dentate gyrus in response to olfactory
stimuli (Heale 1994). Removal of the olfactory bulbs in
rodents produces biochemical changes in the hippocampus
(Tiong & Richardson 1990) and can impair learning in a
radial maze task (Hall & Macrides 1983).

Molecular evidence Transcription factors may be
particularly informative, because they contribute to the
developmental specification of a tissue. Expression of
the WizL (widely-interspersed zinc finger) transcript is
restricted to the olfactory bulb and the dentate gyrus
(Matsumoto et al. 1998), but this could reflect the presence
of dividing cells therein (see below). Further evidence
derives from the analysis of three other genes encoding
transcription factors: Tlx (tailless), Emx-2 (a cognate of the
Drosophila head gap gene empty spiracles) and Tbr-1
(T-box brain gene), and the pattern of expression of
transcripts encoding the ME2 transcription factor. Mice
lacking the Tlx product show a concomitant reduction in
the size of the olfactory bulb and limbic structures,
particularly the dentate gyrus (Monaghan et al. 1997),
whereas in mice mutant at the Emx2 locus, the dentate
gyrus fails to develop, CA1/3 development is impaired,
and there are pronounced defects in the olfactory system
(Pellegrini et al. 1996, Yoshida et al. 1997). During
development, robust, restricted and contiguous Tbr-1
expression is observed from the olfactory bulb through
the neocortex to the hippocampus (Bulfone et al. 1995)
(Fig. 3C); an intriguingly similar pattern is generated by
the ME2 transcription factor, although some cerebellar
expression has also been noted (Soosar et al. 1994). In
addition to these transcription factors, both the ‘olfactory’
G protein (Jones & Reed 1989) and the ‘olfactory’ cyclic
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nucleotide gated channel are prominently expressed in the
hippocampus (Pickard 1996, Bradley et al. 1997).

Electrophysiological evidence Epileptic discharges
often originate in the vicinity of the hippocampus,
but focal origins can also be found in the olfactory bulb
(Araki et al. 1995). The phenomenon of LTP can be
demonstrated in the olfactory system (Ennis et al. 1998),
although the capacity to display LTP is probably shared by
all regions of the central nervous system (CNS), and
perhaps by the peripheral nervous system. Both the
hippocampus and the olfactory bulb display cyclic waves
of synchronised neuronal activity (e.g. hippocampal �
rhythm) and there is evidence that these functionally
interconnect the two regions (Kay & Freeman 1998).
Oscillatory potentials in the olfactory bulb are also syn-
chronised with oscillations in the prepiriform cortex and
lateral entorhinal area (Eeckman and Freeman 1990) –

cortical regions communicating directly with the hippo-
campus. It may be presumed that some hippocampal
oscillations are similarly synchronised – for example, �
activity in the rodent hippocampus synchronises with
patterns of sniffing/olfactory exploration (Komisaruk
1970).

Cell division and cell loss One further striking argu-
ment linking the hippocampus and the olfactory system,
although probably not the most robust, comes from a
different line of evidence. Although most neurones are
post-mitotic, in both the olfactory system and the dentate
gyrus there are neurones that continue to divide in adult
life (e.g. Altman & Das 1965, Mares 1975), in distinct
contrast from other brain regions, with the possible excep-
tion of the cerebellum (see Note 2 that follows). Although
it is unknown why continued neuronal proliferation is
required in these tissues, chemical desensitisation in the

Figure 3 Evolution of the hippocampus from a sensory epithelium. (A) Section through
the brain of the African lungfish, Protopterus; the primordial hippocampus (*corn. amm.)
is indicated. (Reproduced from Fig. 7 in Schnitzlein (1996) � Georg Thième, with
permission.) (B) Brain section of the common frog, Rana pipiens; the primordial
hippocampal formation (*prim. hip.) is indicated. (Reproduced from Fig. 1 in Hoffman
(1996) � Georg Thième, with permission.) (C) Contiguous expression of the T-box brain
1 transcription factor Tbr-1 through olfactory bulb, neocortex and hippocampus in
sections of embryonic day 16·5 mouse brain, revealed by in situ hybridisation, illustrating
the contiguous development of the hippocampus (HPC), neocortex (NC), and olfactory
bulb (OB). (Reproduced from Fig. 5 in Bulfone et al. (1995) � Cell Press, with
permission.) (D) Suggested evolution of the olfactory system (OLF) and hippocampus
(HPC), responsible for external and internal sensing, from a primitive sensory epithelium
that sensed both internal (in) and external (ex) milieux.
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olfactory system could necessitate frequent cell turnover;
the same could hold for the hippocampus. Although cell
division is restricted to the dentate gyrus, it is tempting to
speculate that cells lost in the CA1–3 regions (which
are exquisitely sensitive to excitotoxic injury) could be
replaced from dentate precursors – although there is little
direct experimental support for this conjecture (but see
Grove et al. 1992). Impaired cell division in old age may
explain why hippocampal function and olfaction decline
in parallel (Yousem et al. 1998), and patients with
Alzheimer’s disease, a condition associated with memory
loss and hippocampal dysfunction, show degeneration of
olfactory neurones (Talamo et al. 1989) and are impaired
in olfactory identification (Thompson et al. 1998).

[Note 2. X-Irradiation of the rat neonate abolishes cell
division and leads to extensive depletion of denate granule
neurones (Bayer & Altman 1975) and spatial navigation
deficits (Czurko et al. 1997). Similar treatments affect the
olfactory bulb (Halasz 1986; Kosaka et al. 1992). Gluco-
corticoids are key regulators of dentate granule cell pro-
liferation (reviewed by Gould & McEwen 1993); studies
on the olfactory system have not been reported. In the rat,
adrenalectomy causes extensive cell loss in the dentate
gyrus, principally by apoptotic mechanisms; this is pre-
vented by corticosteroid replacement (Sloviter et al. 1989,
Gould et al. 1990, Armstrong et al. 1993). Loss occurs
principally in young animals, but also later (Sapolsky et al.
1991) – although, curiously, a small proportion of animals
with no detectable glucocorticoids showed no cell loss
(Jaarsma et al. 1992). Conversely, in the adult, excess
glucocorticoids may suppress cell proliferation (Gould et al.
1992) and increase neuronal death – for instance, infusion
of a neurotoxic ATP antimetabolite leads to selective
loss of dentate granule cells, adrenalectomy significantly
reduces the damage, and neuronal loss is generally
exacerbated by corticosterone (Sapolsky 1985, reviewed
by Sapolsky et al. 1986, McEwen 1999).]

The simplest interpretation of these summated data, but
perhaps not the only one, is that the hippocampus and
olfactory system share a common and early evolutionary
origin (Fig. 3D). This split could have been driven by the
closing of the brain ventricles that were previously
exposed to the external milieu. The exploitation of sex
steroids as olfactory pheromones by some present-day fish
may be a relic of the overlap between olfactory and
enteroceptive signalling.

Hippocampal control of body physiology

It has been argued that the hippocampus can sense
physiological parameters. This could reflect feedback
control – a brain region that responds to biochemical
changes in body milieux might itself regulate body
physiology. In the following section, it is argued that the

hippocampus not only responds to, but also governs body
physiology.

Cognitive processes within the brain are known to exert
a large degree of control over body physiology. Reflex-like
behaviour is common – the presence of a predator elicits
the secretion of stress hormones and a flight or freeze
response. Before we dismiss this as a reflex, it must be
recognised that the response is to the perception of the
predator. This nuance is illustrated by well-documented
instances in which the mere sight of a plastic rose, or a
picture of a hayfield, can precipitate an asthmatic/allergic
attack in the sensitive patient (Ader & Cohen 1991).
Control can be volitional, exemplified by patient S, who
could modify his heart rate (and other physiological
parameters) at will (discussed in Kolb & Whishaw 1990).

The following turns to a probable second role of the
hippocampus – that of regulating body physiology. As will
be seen, this dual role may have important implications for
our understanding of memory processes.

The hippocampus and body physiology

A large body of evidence argues that the hippocampus is
centrally involved in brain control of body physiology. For
instance, epileptic seizures, often originating in the hippo-
campus, can have multiple effects on physiological regu-
lation, including thermoregulation, and blood pressure,
respiratory, and gastrointestinal function. Encephalitis with
memory impairment has been linked to uncontrolled and
reflex-like drinking that is more characteristic of hypo-
thalamic stimulation, in addition to disordered tempera-
ture regulation (Howe et al. 1983). In such studies, a direct
involvement of the hippocampus is often hard to prove,
although viral infections often affect the hippocampal
formation (see Note 3 that follows) and probably predispose
to seizure. More direct evidence derives from electrical
stimulation of the awake or anaesthetised rat hippocampus:
this can evoke marked decreases in heart rate, blood
pressure, and ventilation rate (Ruit & Neafsey 1988) or
modify eating and drinking behaviours (O’Keefe & Nadel
1978). In the conscious human, electrical stimulation of
the hippocampus can produce visceromotor and endocrine
effects on heart rate, blood pressure, respiration and gastric
secretion (reviewed by Halgren 1982), although these
are not always recorded (R L Isaacson, personal
communication).

[Note 3. Virus infection via the olfactory/hippocampal
virus pathway may mediate downstream physiological
changes, including immunosuppression. Spread after nasal
entry may be facilitated by direct afferents, by prominent
receptor expression (including the ‘prion’ receptor), and by
dividing neurones – selective spread to the hippocampus,
cortex, amygdala, and brainstem has been reported for
bornavirus, herpes simplex virus (HSV), human immuno-
deficiency virus (HIV), measles, mouse parovirus, rabies,

Hormones and the hippocampus · R LATHE 219

www.endocrinology.org Journal of Endocrinology (2001) 169, 205–231

Downloaded from Bioscientifica.com at 08/23/2022 05:37:01AM
via free access



and vesicular stomatitis virus (VSV). Virus-mediated
degeneration may contribute to learning deficits
(bornavirus, HSV), behavioural abnormalities/aggression
(rabies, HSV) and immunosuppression (HIV, possibly
rabies). Bornavirus, VSV, and lymphocytic chorio-
meningitis virus are associated with persistent changes in
hippocampal function, despite clearance of virus; virus
infection could contribute to Alzheimer’s disease and
epilepsy (not reviewed).]

Hippocampal control of the HPA axis, immunity, blood
pressure, reproduction, and other physiological parameters

Hypothalamic–pituitary–adrenal axis Hippocampal
control of the HPA axis and the production of downstream
hormones, including but not restricted to adrenal gluco-
corticoids and catecholamines, have been amply demon-
strated (Feldman 1962, Van Hartesfelt 1975, Herman et al.
1989, 1992, 1996, Jacobson & Sapolsky 1991, Feldman
et al. 1995). Generally, the hippocampus inhibits the HPA
axis; lesions result in increased production of hypothalamic
corticotrophin-releasing factor and in increased adrenal
steroid concentrations (Herman et al. 1989, 1992). Dis-
ruption of the genes encoding the glucocorticoid or
mineralocorticoid receptor produces a similar effect
(Berger et al. 1996), suggesting that these receptors
mediate feedback inhibition. Other work suggests that
feedback inhibition operates principally via the mineralo-
corticoid receptor in the hippocampus, but via the gluco-
corticoid receptor at extrahippocampal sites (van Haarst
et al. 1997). However, hippocampal regulation of gluco-
corticoid secretion is complex, and lesions can result in
increase or decrease in glucocorticoid, or a change in the
diurnal rhythm of glucocorticoid secretion, and the out-
come may correlate with the type of lesion and the time
delay between hippocampal lesion and measurement.
Electrical stimulation of the hippocampus can also facilitate
or impair glucorticoid production, depending on the
procedure used. These findings suggest that hippocampal
regulation of glucocorticoid production is not tonic, but is
instead subject to active regulation.

Immunity Control extends to the immune system, and
Porter (1953) demonstrated that electrical stimulation of
the hippocampus could produce eosinopenia; stimulation
of adjacent brain regions was far less effective. Hippocam-
pal lesions affect the development, differentiation and
function of cells and tissues of the immune system, with
major effects on cellular and humoral immunity (Ader
et al. 1991, Haas & Shauenstein 1997). Effects are partly
due to control over the production of immunosuppressive
glucocorticoids, although other pathways are likely to
operate (Munck et al. 1984): the hippocampus responds to
several immune mediators, including ILs-1, -2 and -6
(example 4 above), and could control their production. As
we saw earlier, the hippocampal and olfactory systems

may be functionally interconnected; it is of interest that
olfactory bulbectomy in rodents is associated with changes
in immunological function as assessed by mitogen-
stimulated proliferation, neutrophil phagocytosis, and
monocyte activity (Song & Leonard 1995).

Blood pressure Either injection of dynorphin-A(1–8)
into the hippocampal formation, or electrical stimulation at
the same site, can result in a reduction in blood pressure
(Ruit & Neafsey 1988, Wang & Ingenito 1994). AVP
infused intracerebroventricularly reduced the pressor
response induced by electrical stimulation of the mesen-
cephalic reticular formation; this effect was abolished by
lesions to the dorsal hippocampus (Versteeg et al. 1984).
Intra-arterial injection of the �-adrenergic blocker pro-
pranolol results in a rapid depressor response. Here the
drug and a metabolite thereof accumulate preferentially in
the hippocampus (Garvey & Ram 1975a) and, when the
drug was injected into different brain regions, the lowest
effective dose and fastest kinetics for blood pressure
reduction were observed on injection into the hippo-
campus (Garvey & Ram 1975b). Heart rate control during
aversive conditioning is also abnormal in hippocampally
lesioned animals (Caul et al. 1969).

Reproduction Hippocampal regulation of reproductive
hormones (LH and FSH) has been demonstrated
(Kawakami & Kimura 1975), and effects on puberty have
been noted. In rabbits, hippocampal stimulation can pre-
cipitate ovulation; this was not obtained in rats, although
either hippocampal lesion or fornix transection can
increase serum LH and FSH (reviewed by McGowan-Sass
& Timiras 1975).

Other physiological parameters In addition to regula-
tion of stress, immunity, blood pressure, and reproduction,
evidence has been provided that the hippocampus can
govern other body parameters including blood coagulation
(Gunn & Hampton 1967, Ermolaev 1973) and milk
ejection (Tindal & Blake 1984), in addition to heat
regulation, hepatic glucose metabolism, and production of
insulin and glucagon, as demonstrated by a series of studies
by Kawakami and colleagues (see Saito et al. 1989, 1990
and references therein). Notably, in some instances at least,
the mechanism of control may bypass the HPA axis and
take place through direct innervation of body organs
probably including the ovary, liver, kidney, bone marrow,
spleen and thymus (Kawakami et al. 1981, Seto et al. 1988,
Ader et al. 1991) and the adrenal (Parker et al. 1993).

Temporal sensing and regulation Many hormones
show circadian and circannual concentration variations:
the primitive hippocampus could have used these to
register temporal context. The present-day mammalian
brain has more elaborate timing mechanisms, but which
may also involve the hippocampus (Raitiere 1992).
Animals bearing hippocampal lesions have deficits in
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performing tasks involving a time-delayed reward
(Isaacson & Schmaltz 1968) and in sequence memory
(Kesner 1985), and patient H M is unable to estimate time
duration (Richards 1973). Conversely, one may speculate
that the hippocampus could contribute to the diurnal
regulation of neuroendocrine hormones.

Hippocampal lesions and cognitive control of body physiology

The hippocampus, in addition to recording enteroceptive
data, receives cortical efferents – it may thus control body
physiology as a dual function of enteroceptive and cogni-
tive inputs, and not as a simple function of physiological
demands. Illustrating this regulation, hippocampal lesions
reduce grooming activity and provoke exploration (depen-
dent on ambient illumination; Jarrard 1993, R L Isaacson,
personal communication); this behavioural change was
abolished by adrenalectomy but then restored by cortico-
sterone (Nyakas et al. 1983). Glucocorticoid concen-
trations increase during ‘extinction’, in which the outcome
of a behaviour does not match the expected outcome
(Coover et al. 1971), and also during exposure to a novel
environment (e.g. Handa et al. 1994). Here, hippocampal
lesions impair the glucocorticoid increase and the concen-
trations fail to acclimatise (Johnson & Moberg 1980).
Glucocorticoid concentrations in rats also increase mark-
edly in response to a previously learned aversive taste (but
not with a neutral taste). Crucially, in this study the
increase in glucocorticoid was abolished by hippocampal
lesions (Smotherman et al. 1981).

Thus hippocampal activity modulates body physiology.
This is principally through neuronal outputs, but may be
partly paracrine if some ligands can target the hippocampus
and are themselves expressed in the formation – for
example, angiotensin (Weyhenmeyer & Phillips 1982,
Lynch et al. 1986) and renin (Inagami et al. 1980). Taken
together, the above observations suggest that, as part of the
enteroceptive role attributed to the hippocampus, infor-
mation supplied by the formation is transmitted to other
brain (including the hypothalamus) and body regions to
exert control over body physiology. Indeed, Alzheimer’s
disease (characterised by early dysfunction of the hippo-
campus) has been regarded as a metabolic disorder (Landin
et al. 1993, Vanhanen & Soininen 1998). However, the
hippocampus is not the only brain region governing these
physiological responses. The amygdala (below) is clearly a
major player, while many brain regions interconnected
with the hippocampus, amygdala, and hypothalamus (such
as the cingulate cortex, fornix, lateral septal and medial
mammillary nuclei, and locus coeruleus) can, when stimu-
lated, all produce pronounced changes in blood pressure,
ventilation rate, and so on.

Behavioural inhibition and the neuroendocrine code

A primary role of the hippocampus is in the integration of
enteroceptive and cognitive stimuli, and (together with

the amygdala, below) in directing appropriate neuro-
endocrine activation of the hypothalamus. The mechanism
and specificity of how the hippocampus and other brain
regions regulate the HPA axis remain a puzzle. Is the
principal influence of the higher brain on the HPA axis
excitatory or inhibitory? Early theorists proposed that the
higher brain inhibits body activity (e.g. Pavlov 1927), but
the brain/inhibition concept has been used in two con-
texts. In the first (termed here ‘-type’), inhibition
leads to HPA downregulation, suppression of active and
responsive behaviours, and diminished arousal. Pavlov’s
(1927) ‘internal inhibition’ is of this type, and corresponds
with theories of suppression of both arousal and HPA axis
activity (discussed by Levine et al. 1986). An involvement
of the hippocampus in mediating this type of inhibition has
been proposed (Douglas & Pribram 1966, Douglas 1967),
and independently by Kimble (1968). In the second
context (termed here the ‘-type’), inhibition also
leads to suppressed activity, but is accompanied by
increased arousal, HPA upregulation, and increased readi-
ness for further activity. Gray’s (1982) behavioural inhi-
bition would seem to be of this type and may correspond
to Pavlov’s (1927) ‘external inhibition’. Overall, however,
-type inhibition seems to predominate (Kimble 1968),
as illustrated by the Kluever–Bucy syndrome, precipi-
tated by removal of the temporal lobe in humans.
In the study by Terzian & Dalle Ore (1955), initial
immobility after operative recovery was followed by
memory loss accompanied by deviant hyperactivity,
including insatiable appetite and hypersexuality. In other
words, the higher brain normally inhibits these activities.
Nevertheless, although many reports have demonstrated
that removal of the hippocampus in particular leads to a
general increase in behavioural and HPA axis activity (e.g.
Herman et al. 1989, 1992), reports in the literature are
mixed (not reviewed here) and most individuals with
lesions restricted to the hippocampus do not demonstrate
aberrant hyperactivity.

To pursue the inhibitory idea, Adey et al. (1957),
working with monkeys and cats, showed that slow
conduction between two electrodes implanted in the
brainstem of these animals could be blocked by cortical
stimulation and, although the exact positioning of the
electrodes was unclear, the most persistent inhibition
was produced by cortical stimulation in the immediate
vicinity of the hippocampus. Feldman (1962) further
reported that high-frequency (LTP-inducing?) stimu-
lation (100–200 Hz) of the hippocampus (pyramidal cell
layer) could result in complete abolition of hypothalamic
potentials.

These and other reports (but far from all) accord with
the observations by Kimble (1968) and suggest that the
major output of the hippocampus is inhibitory upon
behavioural activity and upon the activity of the HPA axis.
A major caveat must be offered. Although particular inputs
may suppress general hippocampal activity, and thereby
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enhance neuroendocrine activity, it may not be concluded
rigorously that the hippocampus is inhibitory. For
example, a general reduction in hippocampal activity
might be accompanied by substantial increases in the
activity of a specific subset of hippocampal neurones; it is
possible (if not likely) that different hippocampal neurones
can either inhibit or activate the lower brain. Studies on
hippocampal ϑ rhythm suggest that the general activity
(summated rate of neuronal firing) of the hippocampus is
less important than the location of the neurones within the
hippocampus (CAs 1 or 3 or the dentate gyrus) and their
firing patterns.

Specificity of hormonal changes HPA axis activation
on modification of hippocampal outputs raises the
‘neuroendocrine code’ problem. How are changes in
activity within the hippocampus, and other brain regions,
translated into specific hormonal responses? As conceived
here, the code comprises two elements – coding mech-
anism and coding specificity. The former asks how
excitatory inputs arriving, for example, in the hippo-
campus are translated into inhibitory outputs, and is not
addressed here. The latter asks how a particular combi-
nation of stimuli gives rise to a specific pattern of endo-
crine secretions, whereas another combination prompts the
secretion of a different group of hormones.

When an animal is exposed to a set of stimuli judged to
be aversive – for instance a novel environment, pain, stress,
or the remembered odour of a noxious context – brain
changes prompt hypothalamic release of ACTH and
other hormones, increasing not only corticosteroids and
noradrenaline but also extra-adrenal steroids, thyroxine
and growth hormone. Renin and prolactin also increase,
with suppression of LH and testosterone on extended
stress. Different sets of stimuli result in differential release
of, for instance, corticosteroids and thyroxine (cortisol can
be high during sleep but thyroxine low; Goichot et al.
1995). A separate set of environmental stimuli generates a
different pattern of hormonal secretion: for example,
sexual arousal in male rodents and humans is accompanied
by increases in LH and testosterone production, but no
alterations in corticosteroid concentrations (Carani et al.
1990). These studies did not examine the hippocampal-
dependence of the hormonal changes, but prompt the
question of how the hippocampus and other brain regions
elicit different patterns of hormonal secretion.

Part of the answer may lie in reciprocal mapping
between the effector brain regions, including the hippo-
campus and the amygdala (see the following section), and
their hypothalamic targets. Hormone secretion by the
hypothalamus is performed by a group of nuclei that
generally line the central ventricle. The different
releasing hormones (or combinations thereof), LHRH
(GnRH), somatostatin, growth hormone releasing
hormone, corticotrophin releasing hormone (CRH or
CRF) and thyrotrophin-releasing hormone are produced

by discrete periventricular nuclei (reviewed by Swanson
1991). There are several major inputs to these nuclei, the
first relaying visceral information from the babal and
glossopharyngeal nerves, a second from the subfornical
organ, but a significant input derives from the hippo-
campus as well as the amygdala and cortex (Swanson
1991). Risold & Swanson (1996) showed, by retrograde
tracing, that different fields of the hippcampus irrigate
different areas of the lateral septal nucleus (LSN), a major
output of the hippocampus. Previous studies by Swanson
and colleagues showed that hypothalamic nuclei project
back to distinct although partly overlapping regions of the
LSN, suggesting that output neurones of the hippocampus
CA1 and CA3 fields project topographically (‘map’ onto)
hypothalamic systems co-ordinating endocrine responses
(Risold & Swanson 1996). There is evidence that different
neuroanatomical regions of the hippocampus, particularly
along the dorsoventral axis, may be functionally specialised
in terms of their connectivity to other brain regions
(Moser & Moser 1998) and this may extend to the
hypothalamus. Because stimulation of the hypothalamus
produces short-latency hippocampal potentials in the
hippocampus (Feldman 1962), mapping may be reciprocal.

The amygdala

Of the brain regions modulating neuroendocrine activity,
the amygdala is one of the most prominent (Van de Kar &
Blair 1999). It is argued here that the amygdala and the
hippocampus are similar in that they both translate cogni-
tive inputs into neuroendocrine activity, but do so in
different ways. In evolutionary terms, both brain regions
appear to have a similar antiquity. Amygdaloid stimulation
produces neuroendocrine changes, as does stimulation of
the hippocampus.. Lesions to the amygdala can produce
major changes in expressed emotionality, including fear
and aggression, although the phenotypic expression of the
lesion is variable, depending on the species examined.
Importantly, lesions to the amygdala act synergistically
with hippocampal lesions to produce emotional disturb-
ances (Zola-Morgan et al. 1991) and memory impairments
(Mishkin 1978, Squire & Zola-Morgan 1991). This is of
note because the lesion in patient H M includes much
of the amygdaloid complex (Corkin et al. 1997). As in
the hippocampus, LTP is readily demonstrated in the
amygdala (Racine et al. 1983, Chapman et al. 1990),
although the phenomenon of LTP is probably common
to all CNS regions. Gustatory and olfactory ‘place cells’
are present in the amygdala (Karadi et al. 1998) and
amygdaloid stimulation tends to inhibit the activity of the
HPA axis (Feldman 1962, Oomura et al. 1970). Many of
the genes that are expressed in the hippocampus, hypotha-
lamus, and olfactory system are also expressed in the
amygdala (although the fact that genes also expressed in
two tissues does not imply that the genes fulfil common
roles at these sites). An important interaction with the
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olfactory system has been discussed (Swanson & Petrovich
1998), and some mutations that affect the development of
the hippocampus and olfactory system also impair that
of the amygdala (e.g. Monaghan et al. 1997).

At this point the similarity ends. Whereas the hippo-
campus appears to be a uniformly continuous organ, with
a single evolutionary origin, the amygdala comprises a
conglomerate of different nuclei of independent origin –
the term ‘amygdala’ may incorrectly refer to an association
of cell types of different functions (discussed by Swanson &
Petrovich 1998). This could, plausibly, reflect (in part)
mapping of nuclei within the amygdala onto other brain
nuclei, including those of the hypothalamus. In the study
by Feldman (1962) it was reported that, when stimulation
of the hippocampus failed to inhibit hypothalamic activity,
this could be obtained by stimulating the amygdala,
suggesting that the hippocampus and the amygdala map
somewhat differently than the hypothalamus. This would
suggest that the amygdala and the hippocampus operate
in parallel, although close co-operation is suggested by
the existence of prominent reciprocal communications
between the hippocampus and amygdala (see Ten
Donkelaar, ch 22·11·5, in Nieuwenhuys et al. 1997).

Although so far unproven, it is possible that the
hippocampus might determine acquired (memory/output)
responses, whereas the fixed relays of the amygdala might
mediate innate (genetically determined) responses. HPA
activation in response to predator odour (innate) may be
independent of the hippocampus (Perrot-Sinal & Petersen
1997), whereas HPA activation as a result of a learned
aversive taste (acquired) is abolished by hippocampal lesion
(Smotherman et al. 1981). If so, this would imply that the
deficits in sensing internal status displayed by patient H M
are due to amygdaloid dysfunction, although, clearly, the
hippocampus and the amygdala intercommunicate in
complex ways.

Implications

It has been argued that the hippocampus and related brain
regions evolved from a simple sensory epithelium. Only
later in evolution did this generate the olfactory system,
responding to external chemical signals (exteroception)
and the hippocampus (together with related brain regions,
including the amygdala) that can sense internal metabolic
status (enteroception). Chemical and hormonal sensing is a
counterpart to hippocampal modulation of physiology –
lesions to or stimulation of the hippocampus can produce
diverse neuroendocrine changes; it seems likely that
the hippocampus mediates cognitive control of body
physiology. The blood pressure increase that accompanies
the perception of a predator amply illustrates such
cognitive control, although the precise contribution of the
hippocampus to this paradigm remains unclear.

This prompts the question of whether physiological
control mediated by the hippocampus might contribute to

its role in memory. Increased adrenal output (glucocorti-
coids, adrenalines), blood pressure and blood glucose
(oxygen and energy supply) can facilitate memory encod-
ing in the cortex; could the requirement for the hippo-
campus in memory processes be explained, in part,
through the downstream physiological changes it pro-
duces? If the hippocampus contributes to temporal regu-
lation of HPA axis activity (e.g. circadian rhythm) as
suggested, it might also regulate non-specific arousal
processes that themselves govern memory formation. As
will be discussed in more depth elsewhere (R Lathe,
upublished observations), an evolutionarily old and con-
served mechanism for selective memory encoding might
take advantage of the hormonal hike that new and
significant events produce.

Concerning LTP, synaptic potentiation would seem to
facilitate hippocampal throughput and thereby HPA axis
inhibition; impairment of LTP might be expected to
increase HPA axis activity. Seen in this light, there is an
intriguing and suggestive correlation between the nature
of the ligand and the effect on LTP, which might be a relic
of the early evolution of the hippocampus. Some ligands
with ‘negative’ associations, such as glucocorticoids (stress),
interleukins (infection), angiotensins (blood pressure
decrease), and nociceptin (pain), seem to inhibit LTP,
whereas ligands with ‘positive’ associations, such as aFGF
(glucose and satiety), and oestrogen (fertility), enhance
potentiation. This correlation, so far unproven, may pro-
vide an insight into the evolution of hormonal targeting of
the brain. If ‘good’ ligands improve LTP and ‘bad’ ligands
impair potentiation, LTP might provide a device for
integrating diverse enteroceptive inputs. This interpret-
ation may have significant implications for medical con-
ditions such as anxiety (Gray 1982, Gray & McNaughton
1996).

Finally, it is notable, although perhaps entirely
fortuitous, that two hormone/receptor systems targeting
the hippocampus have been highlighted by the genetic
study of human cognition. The only marker so far
identified that associates with high cognitive ability in
children was linked to the IGF-II receptor gene (Chorney
et al. 1998); a new member of the IL-1 receptor family
highly expressed in hippocampus has recently been impli-
cated in X-linked mental retardation (Carrie et al. 1999).
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