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Abstract We consider Einstein–Horndeski–Maxwell grav-
ity, together with a cosmological constant and multiple Horn-
deski axions. We construct charged AdS planar black holes
in general dimensions where the Horndeski axions span over
the planar directions. We analyze the thermodynamics and
obtain the black hole volumes. We show that the reverse
isoperimetric inequality can be violated, implying that these
black holes can store information more efficiently than the
Schwarzschild black hole.
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1 Introduction

There has been tremendous progress in understanding the
properties of black holes, classically much more than quan-

a e-mail: hsliu.zju@gmail.com
b e-mail: mrhonglu@gmail.com

tum mechanically. There is, however, a lack of understanding
of one rather mundane concept, the volume of a black hole.
Black hole thermodynamics appears to imply the membrane
paradigm [1] or more generally the holographic principle
[2], which makes the black hole event horizon more physi-
cally relevant. Nevertheless, a black hole does occupy space
and we would like to know its volume. A naive proposal is
to simply integrate out the volume density over the “space”
encircled by the horizon, namely

V =
∫

inside
dD−1x

√−g. (1.1)

For the Schwarzschild black hole in four dimensions, this
gives precisely 4

3πr3
0 , which is the same as the Euclidean

volume of a spherical ball of radius r0. This definition,
however, cannot withstand scrutiny. First of all, the time
coordinate t is not globally defined crossing over the hori-
zon, and the constant-t slice inside the horizon is not nec-
essarily spacelike. Secondly, the metric inside the horizon
may not be uniquely defined, even when the spacetime out-
side the horizon is completely fixed, owing to the local-
ity of Einstein’s equations. For example, the point-source
Schwarzschild black hole has the same spacetime metric out-
side the horizon as that of black hole generated by a spherical
shell of the same mass. Integrating the spacetime geometry
inside the horizon can obviously lead to different answers
even though the black holes look identical from the outside
of the horizon.

For asymptotic anti-de Sitter (AdS) black holes, the vol-
umes can be determined indirectly by means of the first law
of black hole thermodynamics. The negative cosmological
constant � contributes to the energy–momentum tensor like
perfect fluid with positive pressure P = −�/(8π). Treating
this pressure as a thermodynamic variable, one can derive
its conjugate thermodynamic volume Vth by completing the
black hole first law
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dM = T dS + VthdP + · · · . (1.2)

With the inclusion of (Vth, P), the black hole mass M should
then be interpreted as the enthalpy of the thermodynamic sys-
tem [3,4]. Interestingly, the volume obtained by this means
for the Schwarzschild AdS black hole turns out to be precisely
the same as the naively expected Euclidean volume. Since
the volume is independent of the cosmological constant, it
is expected to be true even for the usual asymptotically flat
Schwarzschild black hole.

For a generic AdS black hole, one requires an exact solu-
tion in order to determine its volume by means of complet-
ing the first law. By contrast, the entropy can be determined
locally as 1/4 of the area of the horizon in Einstein grav-
ity, or more generally by the Wald entropy formula [5,6],
which requires only the near horizon geometry. An integral
form of calculating the volume can also be derived from
the Wald formalism [7,8], which necessarily requires exact
solutions. Interestingly the integration is more naturally per-
formed from horizon to asymptotic infinity [8]. Recently, a
local formula of determining the volume of a black hole was
proposed for static black holes, and was tested against a large
number of known black holes [9].

Having obtained both the entropy (or area) and the volume,
it is of interest to compare the two quantities. In Euclidean
space, for a fixed enclosing area, the spherical ball has the
largest volume. For black holes, it appears to be opposite.
By examining large number of black holes, static or rotat-
ing ones, Cvetič et al. [4] noticed that thermodynamic vol-
umes appear to be equal to or more than the corresponding
Euclidean volumes associated with the entropy. Physically,
it implies that, for a given entropy, the Schwarzschild black
hole occupies the least volume, and hence it is most efficient
in storing information. This reverse isoperimetric inequality
(RII) was conjectured to be generally true for all black holes
[4].

The CGKP conjecture is rather robust. In fact, for the
local volume formula of static black holes proposed in [9],
the CGKP conjecture becomes a simple consequence of the
null-energy condition. However, counter examples were also
found in some super rotating solutions where the horizon
geometry becomes no longer compact [10,11]. However, no
counter example was found for static black holes in Einstein
gravities.

Since the CGKP conjecture may be related to the energy
condition for black holes with compact horizons [9], we
expect that the RII will be violated in higher-derivative grav-
ities, which typically involve ghost excitations. A simple
example is provided by Einstein gravity with a cosmolog-
ical constant �, extended with quadratic curvature invari-
ants αR2 +βRμνRμν . The theory contains inevitable ghost-
like massive spin-2 modes [12,13], except at some critical
point where the massive spin-2 modes become log modes

[14,15]. In this theory, the Schwarzschild AdS black hole
with f = − 1

3�r2 + 1 − 2μ/r remains an exact solution.
(Recently, further new black holes were numerically estab-
lished to exist [16].) The mass [17] and entropy [14], how-
ever, are modified to become

M = (1 + 2�γ )μ, S = (1 + 2�γ )πr2
0 , (1.3)

where γ = 4α + β. Completion of the first law implies

Vth = 4
3π(1 + γ�)r3

0 − 4πγ r0. (1.4)

It can easily be checked that the RII can be indeed violated.
Recently, the violation was also observed [18] in black holes
of Einsteinian cubic gravity [19,20]. Although the theory is
engineered to be ghost free in the AdS vacuum, the violation
might be indicative that ghost excitations may arise in the
black hole background.

As we saw above, a new subtlety emerged for higher-
derivative gravities. The entropy based on the Wald entropy
formula is no longer purely geometrical. We can thus define
the Euclidean volume associated with a black hole based
either on its entropy S, or on its geometric area A of the
horizon, namely

VS ≡ ω

D − 1

(
4S

ω

) D−1
D−2

, or VA ≡ ω

D − 1

(A
ω

) D−1
D−2

.

(1.5)

These two definitions are identical in Einstein gravity, but
different when this theory has higher-order extensions. The
RII can thus obey two statements:

(i): Vth ≥ VS, or (ii): Vth ≥ VA. (1.6)

Note that the RII for black hole with (1.3) and (1.4) in the
above quadratically extended gravity can be violated for the
two statements.

We are interested in examining the RII conjecture in ghost-
free higher-derivative gravities. The simplest example may
be the Einstein–Gauss–Bonnet theory. The AdS black hole
was constructed in [21,22]. The entropy and volume can be
easily obtained, given by

S = 1
4ωr D−2

0

(
1 + 2(D − 2)(D − 3)k

α

r2
0

)
,

Vth = ω

D − 1
r D−1

0 , (1.7)

where α is the Gauss–Bonnet coupling constant and k =
1, 0,−1 is the topological parameter. Thus the RII of state-
ment (ii) in (1.6) is saturated, but the RII of (i) will be vio-
lated for positive α, for spherically symmetric black holes
with k = 1.

In this paper, we consider Einstein–Horndeski–Maxwell
gravity [23] with multiple Horndeski axions. In this theory,
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the axion fields χi couple non-minimally to the Einstein ten-
sor, namelyGμν∂

μχi∂
νχi . Although the theory involves four

derivatives; however, each field at the equations of motion has
at most two derivatives acting on directly. It follows that the
linearized theory is of two derivatives, analogous to Einstein–
Gauss–Bonnet gravity. This implies that the theory can be
ghost free, provided that the kinetic term of each mode is non-
negative. Horndeski gravity has been deeply investigated in
the context of cosmology (see e.g. [24,25]); and also in the
context of astrophysical objects like Neutron Stars (see e.g.
[26,27]).

We construct new AdS planar black holes in general
dimensions where the Horndeski axions span over the pla-
nar directions. We analyze the global structure and obtain
the thermodynamic volumes by establishing the first law of
black hole thermodynamics. Comparing the entropies and
volumes, we find that the RII can be violated in both state-
ments of (1.6), even within the no-ghost condition.

The paper is organized as follows. In Sect. 2, we
present the Einstein–Horndeski–Maxwell gravity with mul-
tiple Horndeski axions. We consider the ansatz for charged
AdS planar black holes and derive the equations of motion.
We determine the first law of black hole thermodynamics up
to the point where only the mass and volume are to be deter-
mined. We also provide the no-ghost condition on the param-
eters. In Sect. 3, we present exact solutions of charged AdS
planar black holes in four and five dimensions. We determine
all the thermodynamic quantities including the volume, by
completing the first law. In Sect. 4, we construct the solutions
to general dimensions and study their properties. In Sect. 5,
we discuss the RII and show that it can be violated by our
black holes. We conclude this paper in Sect. 6.

2 Horndeski gravity with multiple axions

2.1 The theory and covariant equations of motion

In this paper, we consider Einstein–Horndeski gravity [23]
with N number of Horndeski axions χi . We also include a
negative cosmological constant � < 0 and a Maxwell field
A with its field strength F = dA. The full Lagrangian in
general D dimensions is given by

L√−g
= κ(R − 2� − 1

4 F
2)

− 1
2 (αgμν − γGμν)

N∑
i=1

∂μχi ∂νχi . (2.1)

The corresponding covariant equations of motion from the
variation of the metric, the axion fields χi and Aμ are, respec-
tively, given by

κ

(
Gμν + �gμν − 1

2
F2

μν + 1

8
F2gμν

)

−
2∑
i

1
2α
(
∂μχi∂νχi − 1

2gμν(∂χi )
2
)

−
N∑
i=1

1
2γ
( 1

2∂μχi∂νχi R − 2∂ρχi ∂(μχi Rν)
ρ

− ∂ρχi∂σ χi Rμ
ρ

ν
σ − (∇μ∇ρχi )(∇ν∇ρχi )

+ (∇μ∇νχi )�χi + 1
2Gμν(∂χi )

2

− gμν

[− 1
2 (∇ρ∇σ χi )(∇ρ∇σ χi )

+ 1
2 (�χi )

2 − ∂ρχi∂σ χi R
ρσ
]) = 0,

∇μ

(
(αgμν − γGμν)∇νχi

) = 0, ∇νF
νμ = 0. (2.2)

Although Horndeski gravity involves a total of four deriva-
tives, each field in the equations of motion above has at
most two derivatives acting on directly. Consequently, the lin-
earized theory in any background contains only two deriva-
tives. Ghost excitations typically associated with higher-
derivative theories can be avoided. However, conditions on
parameters still have to be imposed so that the kinetic terms
of the linearized modes are non-negative. Without loss of
much generality, we shall set κ = 1 throughout of the paper,
with the understanding that an overall 1/(16π) factor in the
action.

Since we consider the case with a negative cosmological
constant �, the theories all admit the AdS vacuum. In this
vacuum, the effective kinetic term of the Horndeski axions
becomes

L(χi ,kin) = 1
2 (α + γ�)(−g00)

N∑
i=1

χ̇2. (2.3)

The ghost-free condition requires that [28]

α + γ� ≥ 0 i.e. γ ≤ α

(−�)
. (2.4)

In this paper, we assume that the constant α is positive, and
hence any negative γ satisfies the no-ghost condition. The
no-ghost condition also allows a small window of positive γ

values. (The theory reduces to Einstein theory with minimally
coupled matter when γ = 0.) There is a critical situation
when the parameters satisfy

α + γ� = 0, (2.5)

for which case the kinetic terms of the axions vanish, analo-
gous to the critical point in Einstein–Gauss–Bonnet gravity
discussed in [29].

As we shall show presently, the no-ghost condition (2.4)
ensures that entropies of the new black holes we construct
in this paper are all non-negative. It is also worth noting that
the no-ghost condition (2.4) together with λ < 0 ensure the
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reality condition of the axion in black holes constructed in
[30] where the axion χ is a function of r .

2.2 AdS planar ansatz

In this paper, we construct electrically charged AdS planar
black holes. It is clear that Reissner–Nordstrøm (RN) black
holes with all χi = 0 are solutions. The RII can easily be
shown to be saturated by these solutions [4]. In this paper,
we are thus interested in black holes with non-vanishing χi .

For � = 0, a no-go theorem was established that there is
no asymptotically flat neutral black holes involving the axion
field [31,32]. This no-go theorem can easily be overcome by
considering charged black holes [33]. With � �= 0, black
hole solutions with a single axion that depends on the radial
coordinate (or even time) were constructed in [30,33–35].
Thermodynamics of such black hole were analyzed in [36,
37], where it was shown that the Wald entropy formula is no
longer valid owing to the branch-cut divergence of the axion
on the horizon.

When the theory involves multiple axions, one can con-
sider “magnetic” axion ansatz such that the axions span
over the planar directions. Such a four-dimensional solution
was first constructed in [28]. Holographic transport prop-
erties with momentum dissipation by the Horndeski axions
were studied in [28,38], focusing the properties at the critical
region (2.5). Here we generalize the construction to general
D dimensions. We consider

ds2
D = −h(r)dt2 + dr2

f (r)
+ r2(dx2

1 + · · · + dx2
D−2),

A = a(r) dt, χi =
{

λxi , i = 1, 2, . . . , D − 2,

0, i ≥ D − 1.
(2.6)

Note that we assume that there is a sufficient number of
axions, i.e. N ≥ D−2. With this ansatz, the scalar equations
of axions χi are automatically satisfied and λ can be viewed
as an integration constant. The Maxwell equation implies

a′ = Q

rD−2

√
h

f
, (2.7)

where Q is an integration constant, parameterizing the
strength of the electric charge.

The Einstein equations reduce to the following two first-
order differential equations of the metric functions (h, f ):

σ f ′

f
+ 2�r

(D − 2) f
+ Q2

2(D − 2)r2D−5 f

+ 2(D − 3) f + αλ2

2r f
− (D2 − 9D + 22)γ λ2

4r3 = 0,

σ

(
f ′

f
− h′

h

)
= γ λ2

r3 , σ ≡ 1 − (D − 4)γ λ2

4r2 . (2.8)

It can easily be shown that h can be expressed as

h = σ− 2
D−4 f. (2.9)

We can thus solve (2.7) for the electric potential a(r) and
obtain

a = − Q

(D − 3)r D−3 2F1

×
[

1
D−4 , 1

2 (D − 3); 1
2 (D − 1); (D−4)γ λ2

4r2

]
. (2.10)

We have chosen the gauge such that a vanishes at the asymp-
totic infinity. We have thus only one equation and one func-
tion left to solve, namely the f equation in (2.8). We shall
present and study the solutions in Sects. 3 and 4.

2.3 The thermodynamics of black holes

The goal of this paper is to construct AdS planar black holes
and using the first law of thermodynamics to compute their
volumes. Before obtaining exact solutions, many proper-
ties can be established using the equations of motion only.
Assuming that a black hole exists with the event horizon
located at r = r0 for which h(r0) = 0 = f (r0), we can
determine its temperature

T =
√
h′ f ′
4π

∣∣∣
r=r0

= −4�r2
0 − (D − 2)αλ2 − Q2r−2(D−3)

0

8π(D − 2)r0 σ
(D−3)/(D−4)
0

. (2.11)

Here, we define σ0 ≡ σ(r0). It is clear that a well-defined
event horizon must satisfy

σ0 = 1 − (D − 4)γ λ2

4r2
0

> 0. (2.12)

Interestingly, this condition is always satisfied for negative
γ , which also ensures the ghost-free condition. As we men-
tioned in Sect. 2.2, the Wald entropy formula is not valid
for black holes in Horndeski gravity where the axion χ is
a function of r [36,37]. However, for our new black holes
where axions span over the AdS planar directions, we find,
after careful evaluation, that the Wald entropy formula does
work, giving

S = 1
4ωr D−2

0

(
1 − (D − 2)γ λ2

4r2
0

)
. (2.13)

Here we assume that the volume of the space dxidxi in the
planar direction is ω. The validity of this entropy will be
reaffirmed by the first law of black hole thermodynamics
which we shall discuss presently.

The black hole in a well-defined theory with no ghost
excitations should not have negative entropy. When γ is pos-
itive, there is, however, a potential danger of having nega-
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tive entropy. To study this, we note that the solution has the
extremal limit of zero temperature. Consequently the horizon
radius has a minimal value for a given λ; it is given by

r2
0 ≥ r2

min = (D − 2)αλ2

4(−�)
. (2.14)

Note that the above rmin is the radius of the extremal black
hole with Q = 0. For non-vanishing Q, the extremal radius
becomes larger. Thus the minimal value of the entropy of the
black holes for a given λ is

Smin = ω(D − 2)

16(−�)
λ2 (α + γ�) r D−4

0 (2.15)

The entropy is therefore non-negative provided that the no-
ghost condition (2.4) is satisfied. Note also that if r0 = rmin

satisfies (2.12), then the minimum black hole radius can be
reached; otherwise, the solution becomes singular before the
horizon shrinks to rmin.

Analogously, even before we construct the full black hole
solution, we can determine the electric charge Qe and its
thermodynamic conjugate electric potential �e, namely

Qe = 1

16π

∫
∗F = ω

16π
Q,

�e = a(∞) − a(r0) = −a(r0). (2.16)

Typically, coupling constants in a theory should not be
treated as a thermodynamic variable. However, the cosmo-
logical constant in AdS is special in that it can be viewed as an
integration constant of an equivalent D-form field strength
of some (D − 1)-form gauge potential. The cosmological
constant can then be treated as a variable, namely the ther-
modynamic pressure P . The first law of black hole thermo-
dynamics becomes

dM = T dS + �edQe + VthdP, (2.17)

where M is the mass of the black hole, and should be inter-
preted as enthalpy now [3,4]. The quantity Vth is the thermo-
dynamic volume conjugate to the pressure. The determina-
tion of the mass and volume relies on solving the f equation
in (2.8). We shall carry out this task in Sects. 3 and 4 for
various dimensions.

Before finishing this subsection, we point out that in the
above discussion, we treated the integration constant λ as a
fixed thermodynamic variable, i.e. it does not vary thermody-
namically. The physical interpretation of λ is the “magnetic”
charge of the axions, namely

�i = 1

16π

∫
dχi = L

16π
λ. (2.18)

For simplicity, we assume that
∫

dxi = L and hence ω =
LD−2. It follows from the axion equations that its potential

is given by

ui (r) = νi (r) − νi (r0),

νi (r) = λLD−3
∫ r

dr
√−g(αgii − γGii ). (2.19)

where we have chosen the gauge such that ui vanishes on
the horizon. Unlike the electric potential of Maxwell field,
for which the difference between the horizon and asymptotic
infinity is finite. The above value diverges asymptotically.
We thus need to renormalize the magnetic potential to a finite
value νi (r0), up to an additive numerical constant. The first
law is then modified to become

dM = T dS + �edQe + VthdP + νid�i . (2.20)

Owing to the complication arising from the inclusion of this
thermodynamic quantity, we consider in this paper the sim-
plified situation where the �i are fixed thermodynamically.
We shall come back to this point briefly in Sect. 3. Thermody-
namics carrying magnetic axion charges in Einstein gravity
were studied in [39].

2.4 Ghost-free condition

In Sect. 2.1, we established that the theory is ghost free in the
AdS vacuum provided that the parameter γ for the Horndeski
term satisfies (2.4). In this section, we would like to examine
the same condition in the AdS planar black holes. The kinetic
term of the axion perturbations take the form

L(δχi ,kin) = 1
2 K (r)(−g00)δχ̇iδχ̇i ,

K (r) = α − (D − 2)
γ f ′

2r
− (D − 2)(D − 3)

γ f

2r2 . (2.21)

The ghost-free condition requires that K is non-negative
on and outer of the event horizon. Asymptotically, we have
f ∼ −2�r2/((D − 1)(D − 2)), and hence we recover the
condition (2.4). On the horizon, making use of the equations
of motion, we find

K (r0) =
(

α + γ� + γ Q2

4r2(D−2)
0

+ αγλ2

2r2
0

)
σ(r0). (2.22)

For positive γ , this quantity is clearly non-negative provided
that the ghost-free condition (2.4) is satisfied. For negative
γ , it is advantageous to re-express K (r0) in terms of the
temperature defined in the previous subsection. We find

K (r0) = α − 2(D − 2)πγ σ
1

D−4
0

T

r0
. (2.23)

It is then clear that, for negative γ , we have K (r0) > 0 also
for black holes. The above calculation is indicative that the
perturbations of the χi do not give rise to ghost modes. Of
course, one needs to establish that K (r) is non-negative for
all the r ≥ r0, which can easily be done once the analytical
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solution for f is obtained in the next section. The ghost-free
condition in four dimensions was also studied in [28].

3 Charged AdS planar black holes D = 4, 5

In this section, we solve the function f in (2.8) in four and five
dimensions. The resulting solutions describe charged AdS
planar black holes. We analyze the global structure and obtain
the first law of thermodynamics. We focus on the discussion
of the black hole volumes.

3.1 Four dimensions

In four dimensions, the equations discussed in the previous
section become degenerate, and hence it should be solved on
its own. The solutions were first constructed in [28] and it is
given by

ds2 = e
γ λ2

4r2

(
− f̃ dt2 + dr2

f̃

)
+ r2(dx2

1 + dx2
2 ),

A =
√

πQerfi
(√

γ λ

2r

)
√

γ λ
dt, χi = λxi , (3.1)

where the function f̃ is given by

f̃ = e
γ λ2

4r2
(
− 1

6λ2(3α + γ�) − 1
3�r2

)
− μ

r

+
πerfi

(√
γ λ

2r

)

12
√

γ λr

(
γ λ4(3α + γ�) + 3Q2

)
. (3.2)

Note that, for negative γ = −γ̃ , the error function terms all
continue to be real because

erfi
(√

γ λ

2r

)
√

γ λ
−→

erf

(√
γ̃ λ

2r

)
√

γ̃ λ
. (3.3)

At the asymptotic r → ∞ region, the metric function gtt
behaves

− gtt = − 1
3�r2 − 1

6λ2(3α + 2γ�) − μ

r

+ 6Q2 − �γ 2λ4

24r2 + · · · . (3.4)

Thus the solution is asymptotic to the AdS spacetime of cos-
mological constant �.1 The constant μ term is associated
with the condensate of the massless graviton, since it has
the same falloff as the graviton in the linearized theory on
the AdS vacuum. The solution contains, however, additional

1 To be precise, owing to the axion contribution to the subleading term,
the metrics are in general asymptotically locally AdS, except when
λ(3α + 2γ�) = 0. This is the case for all of our solutions.

slower falloff terms, which will not vanish owing to the no-
ghost condition (2.4). The resulting ADM mass will then
diverge, which is related to the divergence of the potential
associated with the magnetic axion charges (2.19). This prob-
lem persists even in Einstein gravity with γ = 0, in which
case the solution was obtained in [40]. In this paper, we adopt
the concept of “gravitational mass” that is associated with the
graviton mode [41], namely

M = 1
8π

ωμ. (3.5)

As r runs from the AdS boundary into the bulk, for suffi-
ciently large μ, there exists r0 > 0 such that f̃ (r0) = 0.
This gives rise to the event horizon of a black hole. All the
thermodynamic variables can be obtained, given by

T = e
γ λ2

4r2
0
(−4�r4

0 − 2αλ2r2
0 − Q2

)
16πr3

0

,

S = 1
4ωr2

0

(
1 − γ λ2

2r2
0

)
,

� =
√

πQerfi
(√

γ λ

2r0

)
√

γ λ
, Qe = 1

16π
ωQ, P = − �

8π
,

Vth = 1
2ω

⎛
⎝2r0(2r

2
0 + γ λ2)e

γ λ2

4r2
0 − √

πγ 2λ4
erfi(

√
γ λ

2r0
)

√
γ λ

⎞
⎠ .

(3.6)

As we discussed in Sect. 2.3, the entropy is non-negative
provided that the no-ghost condition (2.4) is satisfied.

Note that if we follow the discussion at the end of Sect. 2.3,
we can also introduce the axion magnetic charge λ as the
thermodynamic variables and obtain its conjugate potential.
The first law is then extended to (2.20). The formulas can be
somewhat complicated and they do not add further clarity,
and we therefore shall not present them here.

The above thermodynamic quantities are well defined for
γ > 0. When γ is negative, the situation can be some-
what subtle. The ghost-free condition implies that γ can be
arbitrarily negative, and correspondingly the mass and vol-
ume defined above can hence be arbitrarily negative. This
is clearly unsatisfactory. In order to resolve this issue, we
introduce γ̃ = −γ > 0. We find that

M → − ω

96
√

π
λ3
√

γ̃ (3α − �γ̃ ) as γ̃ → +∞. (3.7)

This negative mass divergence can be resolved by shifting
the coefficient μ to μ̃ and define the mass as

M = 1
8π

ωμ̃, μ̃ = μ −
√

π

12 �(γ̃ λ2)
3
2 +

√
π

4 αλ3
√

γ̃ . (3.8)

Consequently, the black hole volume for γ = −γ̃ < 0 is

shifted by a thermodynamic constant factor
√

πω(γ̃ λ2)
3
2 ,

namely
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Vth = 1
2ω

(
2r0

(
2r2

0 − γ̃ λ2
)

e
− γ̃ λ2

4r2
0

+√
π
(
γ̃ λ2

) 3
2

(
1 − erf

(√
γ̃ λ

2r0

)))
. (3.9)

(Recall that the parameters (λ, γ ) are not treated as thermo-
dynamic variables in this paper.) It can be evaluated numer-
ically that the volume is non-negative. Note that the volume
formula for γ > 0 and γ < 0 are smoothly connected at
γ = 0.

Owing to the lack of the independent definition of the
black hole mass and thermodynamic volume for our black
holes, there is an ambiguity of adding extra constants to the
volume formula. However, it appears to be rather ad hoc to

add an extra term
√

πω(−γ λ2)
3
2 to formula as γ crosses

from positive to negative values, if it were to simply to avoid
arbitrarily negative mass and volume. As we shall see in
the next subsection, the situation becomes more severe in
five dimensions. The volume formula satisfying the first law
without analogous shift cannot be both real, making the shift
mandatory. It is also worth noting that the shift quantity is
purely “numerical” in that the quantity is not a thermody-
namic variable and does not participate in the differentia-
tions in the first law. Finally, as we shall discuss in Sect. 5,
the ambiguity of the volume definition will not affect the key
conclusion of this paper, namely the RII can be violated by
the black holes in Horndeski gravity.

3.2 Five dimensions

As was discussed in Sect. 2.2, the functions (h, a) were
solved for general dimensions. In five dimensions, they are
given by

h = σ−2 f, a = 2Q

γ λ2 log

(
1 − γ λ2

4r2

)
, σ = 1 − γ λ2

4r2 .

(3.10)

The function f can also be solved easily from (2.8). For
γ < 0, we have

f = − 1
12�(2r2 + γ λ2) − 1

4αλ2

− μ

r2 − γ (3α + γ�)λ4

48r2 log

(
1 − 4r2

γ λ2

)

− Q2

3γ λ2r2 log

(
1 − γ λ2

4r2

)
, with γ < 0. (3.11)

This solution is well behaved for negative γ , which is consis-
tent with the no-ghost condition (2.4). However, the no-ghost
condition allows also for a narrow window of positive γ , in
which case the function f becomes complex at the asymp-

totic regions. For positive γ , it is more natural to write

log

(
1 − 4r2

γ λ2

)
= log

(
4r2

γ λ2 − 1

)
+ iπ. (3.12)

The complex number can be absorbed into the redefinition
of μ and the solution remains real at the asymptotic large r
region. The solution becomes

f = − 1
12�(2r2 + γ λ2) − 1

4αλ2 − μ

r2

− γ (3α + γ�)λ4

48r2 log

(
4r2

γ λ2 − 1

)

− Q2

3γ λ2r2 log

(
1 − γ λ2

4r2

)
, with γ > 0. (3.13)

Thus we see that in five dimensions, the reality condition
requires us to use different forms of the solution to describe
black holes for negative or positive γ . This is analogous to the
case in four dimensions, even though the reason is somewhat
different. Note that the Q-term and σ take the same form as
γ crosses from negative to positive regions. Note also that
the γ > 0 and the γ < 0 solutions have the same limit of
γ → 0.

The thermodynamic quantities are all obtained in Sect. 2.3,
except for M and Vth. We find that, for the mass given by
(4.4), the black hole volume in five dimensions is given by

γ < 0: Vth = 1
4ω

(
r4

0 + 1
2 γ λ2r2

0 + 1
8γ 2λ4 log

(
1 − 4r2

0

γ λ2

))
,

γ > 0: Vth = 1
4ω

(
r4

0 + 1
2 γ λ2r2

0 + 1
8γ 2λ4 log

(
4r2

0

γ λ2 − 1

))
.

(3.14)

Thus we see that the reality condition alone makes it manda-
tory to use different volume formulas for the γ < 0 and
γ > 0 regions. It is easy to check, however, that the two for-
mulas are smoothly connected. In other words, both Vth and
dVth/dγ are continuous at γ = 0. Also note that the volume
is non-negative in all the parameter regions of the black hole.

4 Charged AdS planar black holes in general
dimensions

In the previous section, we discussed charged AdS planar
black holes in four and five dimensions. The different struc-
tures suggest that we should consider even or odd dimensions
separately when we generalize to higher dimensions.
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4.1 Even dimensions

We first consider the general even dimensions. We may solve
(2.8) by

f = σ
1

D−4 f̃ , h = σ− 1
D−4 f̃ , (4.1)

where σ is given in (2.8) and f̃ is given in terms of hyperge-
ometric functions:

f̃ = − 2�r2

(D − 1)(D − 2)σ
2F1

×
[
− 1

2 (D − 1), 1
D−4 ,− 1

2 (D − 3); (D−4)γ λ2

4r2

]

+ Q2

2(D − 2)(D − 3)σr2(D−3) 2F1

×
[

1
D−4 , 1

2 (D − 3); 1
2 (D − 1),

(D−4)γ λ2

4r2

]

− αλ2

2(D − 3)σ
2F1

×
[
− 1

2 (D − 3), 1
D−4 ;− 1

2 (D − 5); (D−4)γ λ2

4r2

]

− μ

σr D−3 . (4.2)

The limit of this solution to D = 4 is subtle and it is more
advantageous to solve the Eq. (2.8) directly when D = 4.
For the large r , we have

− gtt = − 2�

(D − 1)(D − 2)
r2 + c0 + c2

r2 + c4

r4

+ · · · +
c D−4

2

r D−4 − μ

r D−3 + · · · , (4.3)

where ci are constant functions of (α, γ, λ,�). Thus solu-
tions are all asymptotic to AdS. Following the same argument
in D = 4, we consider gravitational mass defined by

M = (D − 2)ω

16π
μ. (4.4)

For sufficiently large M , the solution can describe a black
hole whose event horizon is located at r0. In Sect. 2.3, all
the thermodynamic variables are derived except for the mass
and Vth. For the mass given by (4.4), we find that the black
hole volume is

Vth = ω

D − 1
r D−1

0 2F1

×
[
− 1

2 (D − 1), 1
D−4 ;− 1

2 (D − 3); (D−4)γ λ2

4r2
0

]
. (4.5)

It can easily be verified that the first law (2.17) is satisfied.
The above solution is suitable to describe solutions with

positive γ . For negative γ , it suffers from the same problem as
that in four dimensions, where the mass M becomes divergent
as γ → −∞, namely the mass becomes negative infinity in
D = 4k dimensions and positive infinity in D = 4k + 2

dimensions. For γ < 0, we find that the form of the solution
is better changed to the following:

h = σ− 2
D−4 f, σ = 1 − (D − 4)γ λ2

4r2 ,

f = 8�r4

γ (D − 3)(D − 2)2λ2 2F1

×
[
1, 1

2 (D + 1); 1
2 (D + 1) + 1

D−4 ; 4r2

(D−4)γ λ2

]

+ 2αr2

γ
(
D2 − 7D + 14

) 2F1

×
[
1, 1

2 (D − 1); 1
2 (D − 1) + 1

D−4 ; 4r2

(D−4)γ λ2

]

+ Q2σ− D−5
D−4

2(D − 3)(D − 2)r2(D−3) 2F1

×
[

1
D−4 , 1

2 (D − 3); 1
2 (D − 1); (D−4)γ λ2

4r2

]

− μσ− D−5
D−4

r D−3 . (4.6)

This solution can be obtained from (4.2) by applying appro-
priately the hypergeometric function identity

2F1[a, b; c; z] = �(c)�(b − a)

�(b)�(c − a)
(−z)−a

2F1

×
[
a, a − c + 1; a − b + 1; 1

z

]

+ �(c)�(a − b)

�(a)�(c − b)
(−z)−b

2F1

×
[
b, b − c + 1;−a + b + 1; 1

z

]
. (4.7)

Note that the Q-term is kept the same as that in (4.2). It
is easy to check that the hypergeometric functions are well
behaved for negative γ , and the solution is also asymptotic
to AdS. The mass defined by (4.4) is now non-divergent as
γ → −∞. The thermodynamic volume is now given by

Vth = − 4ωr D+1σ
D−5
D−4

0

γ (D − 3)(D − 2)λ2 2F1

×
[

1, 1
2 (D + 1); 1

2 (D + 1) + 1
D−4 ; 4r2

0
(D−4)γ λ2

]
,

(4.8)

where σ0 is defined in (2.12) and γ ∈ (−∞, 0].
We now compare the solutions (4.6) with (4.2). The only

difference between the two solutions is a constant shift of the
mass parameter μ by

μ → μ + c1 + �c2, (4.9)

where c1 and c2 are “numerical” constants. By numerical,
we mean that they depend only on the parameters (α, γ, λ),
which do not involve in the thermodynamic variations. This
implies that the difference between the Vth defined in (4.5)
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and (4.8) must be numerical also. Indeed, the difference is
given by

ω�( 1
2 (1 − D))�( 1

2 (D − 1) + 1
D−4 )

2D�( 1
D−4 )

( −1

(D − 4)γ λ2

) 1−D
2

.

(4.10)

This quantity is divergent for γ → −∞. Since we do not
have an independent way of calculating the mass and volume,
there is an ambiguity of the definition of these quantities by
shifting a “numerical” constant, and our analysis indicates
that (4.5) and (4.8) are more suitable volume formulas for
positive and negative γ , respectively. However, as we shall
see in Sect. 5, this ambiguity does not affect the conclusion
that the RII can be violated by black holes in Horndeski
gravity.

In six dimensions, the hypergeometric functions reduce to
ordinary functions and the volumes for positive and negative
γ are given by

γ > 0: Vth = ω
15r0

(
3r4

0 + 2γ λ2r2
0 + 2γ 2λ4

)√
1 − γ λ2

2r2
0
,

γ = −γ̃ < 0: Vth = ω
15r0

(
3r4

0 − 2γ̃ λ2r2
0

+2γ 2λ4
)√

1 + γ̃ λ2

2r2
0

−
√

2 ω
15 (γ̃ λ2)

5
2 . (4.11)

4.2 Odd dimensions

It turns out that when D is odd, the hypergeometric func-
tions in (4.2) all diverge except for the one associated with
the Q2. Thus, for odd dimensions, the general expression of
the solutions are given in (4.6), which are more suitable for
the γ < 0 case, and correspondingly the volume formula is
given by (4.8). Indeed, when D = 5, the solution reduces to
(3.11). In fact as in the five-dimensional example, the solu-
tion (4.6) can also describe the case with γ > 0, with some
appropriate redefinition of μ to absorb the complex number
so that the solution remains real. This can be done for all
odd dimensions. Since the D = 5 example illustrates this
point perfectly, we shall not elaborate on it for general odd
dimensions.

The solution degenerates in three dimensions, and we
solve the case on its own. We find

f = σ−2h, σ = 1 + γ λ2

4r2 ,

a = Q log

(
r√
γ λ

)
− γ λ2Q

8r2 ,

h = −�r2 − 1
2 (αλ2 + γ λ2� + Q2) log

(
r√
γ λ

)

−μ + γ λ2(αλ2 + Q2)

16r2 . (4.12)

The thermodynamic quantities are

M = 1
8μ, T = −4�r2

0 − αλ2 − Q2

8πr0
,

S = 1
2πr0

(
1 − γ λ2

4r2
0

)
,

Qe = 1
8 Q, � = γ λ2q

8r2
0

− Q log

(
r0√
γ λ

)
, P = − �

8π
,

Vth = 1
2π

(
2r2

0 + γ λ2 log

(
r0√
γ λ

))
. (4.13)

The solution describes the case with γ > 0. Suitable care
should be taken for negative γ as well.

5 Violations of RII

The entropy and the volume of a Schwarzschild AdS black
hole in general dimensions D in Einstein gravity are given
by

S = 1
4ωρD−2

0 , Vth = ω

D − 1
ρD−1

0 . (5.1)

Interestingly, the volume of the Schwarzschild black hole
is precisely equal to that of a spherical ball of radius ρ0 in
Euclidean space, namely

VS = ω

D − 1
ρD−1

0 = ω

D − 1

(
4S

ω

) D−1
D−2

. (5.2)

For a generic black hole with entropy S, we can define its
effective radius ρ0 by S = 1

4ωρD−2
0 . For Einstein gravity

with minimally coupled matter, ρ0 is precisely the radius
of the event horizon if the black hole is static. When the
theory involve non-minimally coupled matter or higher-order
curvature invariants, ρ0 may not be the radius of the event
horizon. We can nevertheless define the Euclidean volume
(5.2). The RII conjecture states that [4]

Vth ≥ VS . (5.3)

The Schwarzschild AdS black hole in Einstein gravity sat-
urates the inequality. It was argued [9] that this inequality
in Einstein gravity with minimally coupled matter for static
black holes is guaranteed by the null-energy condition.

In higher-derivative gravities, or gravities with non-
minimally coupled matter, the entropy is no longer simply
one quarter of the area of the horizon. In this case, the RII
conjecture expressed in (5.3) is no longer purely geometrical.
There can thus be an alternative version of the RII conjecture,
namely

Vth ≥ VA, VA = ω

D − 1

(A
ω

) D−1
D−2

, (5.4)
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where A is the area of the horizon. This RII statement
is purely geometrical. The two statements (5.3) and (5.4)
become equivalent in Einstein gravity with minimally cou-
pled matter. They are asymptotically close to each other for
large black holes when the Einstein–Hilbert term typically
dominates. We take the view that the version (5.3) is more
physically relevant, since it reflects how one can best store
the entropy for a given volume, but we also study the ver-
sion (5.4). In fact, the inequality is saturated for static black
holes in some ghost-free higher-derivative gravities such as
Gauss–Bonnet and general Lovelock gravities.

We now examine the inequality for the black holes of
Horndeski gravity constructed in the previous sections. First,
as remarked at the beginning of Sect. 2.2 that the RN black
holes are solutions. The entropy and volume for RN black
holes are given by (5.1), and hence the RII is saturated, and
the two statements of the RII are the same.

For all of our new black holes with non-vanishing axions,
the situation is very different. The corresponding Euclidean
volumes, calculated from the entropy formula (2.13), take
the form

VS = ω

D − 1
r D−1

0

(
1 − (D − 2)γ λ2

4r2
0

) D−1
D−2

. (5.5)

There is some ambiguity in our results for the thermodynamic
volume up to some constant shifting of the “numerical” quan-
tities such as (λ, γ ); however, for large enough horizon radius
r0, this ambiguity becomes insignificant. We find that

Vth

VS
= 1 + (D − 1)(D − 2)λ2

4(D − 3)r2
0

γ + O
(

1

r4
0

)
. (5.6)

The ambiguity of the definition of thermodynamic volume
gives a contribution of order 1/r D−1

0 and hence can be
ignored at large r0. Thus we see that, for large r0, the first

statement of the RII conjecture holds for positive γ , and the
saturation occurs when γ = 0 or r0 → ∞. On the other
hand, for negative γ , the RII conjecture is violated.

Analogously, for the second statement of RII, we find

Vth

VA
= 1 + (D − 1)λ2

4(D − 3)r2
0

γ + O
(

1

r4
0

)
. (5.7)

Therefore, the dependence of the violation on the sign of γ

is the same as Vth/VS .
It is of interest to plot the Vth/VS and Vth/VA ratios as

functions of r0 and γ . It turns out that, for our determination
of the volumes, this ratio depends only on the parameter ratio

δ = γ
λ2

r2
0

, (5.8)

but independent explicitly of the parameter α. As concrete
examples, we give the ratio explicitly in four, five and six
dimensions:

D = 4: Vth

VS
=

⎧⎪⎪⎨
⎪⎪⎩

2eδ/4(δ+2)−√
πδ3/2erfi

(√
δ

2

)
√

2(2−δ)3/2 , δ ≥ 0,

2eδ/4(δ+2)+√
π(−δ)3/2

(
1−erf(

√−δ
2 )

)
√

2(2−δ)3/2 , δ ≤ 0;

D = 5: Vth

VS
=
⎧⎨
⎩

δ2 log( 4
δ
−1)+4δ+8

21/3(4−3δ)4/3 , δ ≥ 0,

δ2 log(1− 4
δ
)+4δ+8

21/3(4−3δ)4/3 , δ ≤ 0;

D = 6: Vth

VS
=
⎧⎨
⎩

√
2−δ(2δ2+2δ+3)

3
√

2(1−δ)5/4 , δ ≥ 0,
√

2−δ(2δ2+2δ+3)−2(−δ)
5
2

3
√

2(1−δ)5/4 , δ ≤ 0.
(5.9)

The three functions and their derivatives are continuous at
γ = 0. The function Vth/VA is given by

Vth

VA
= Vth

VS

(
1 − 1

4 (D − 2)δ
) D−1
D−2 . (5.10)

Fig. 1 The left plot gives the ratio Vth/VS as a function of δ = γ λ2/r2
0 ,

and the right gives the ratio Vth/VA. In both cases, the RII holds for
δ > 0, saturated at δ = 0, and it is violated for δ < 0. The ratio
approaches zero as δ → −∞. The divergence of the left plot at the

δ > 0 region implies that these black holes with finite volume carry
no information, i.e zero entropy. On the other hand, as δ → −∞, the
black hole can carry an infinite amount of information in an infinitesimal
volume
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The plots of Vth/VS and Vth/VA as functions of δ in D =
4, 5, 6 are presented in Fig. 1. The divergence of the left plot
in the δ > 0 region implies that the black hole is not efficient
for storing information. For a given horizon radius r0, it has
the finite thermodynamic volume, but stores no information
(zero entropy). On the other hand, as δ → −∞, the entropy
becomes infinite, whilst the thermodynamic volume shrinks
to zero.

6 Conclusions and discussions

In this paper, we studied Einstein–Horndeski–Maxwell grav-
ity with a cosmological constant and multiple Horndeski
axions. We constructed a new class of AdS planar black holes
where the axions span over the planar directions. We study
black hole thermodynamics and derive the black hole volume
by means of completing the first law, in which the cosmo-
logical constant is treated as a thermodynamic variable, the
pressure. By comparing the entropy and the volume, we find
that the RII is violated when the Horndeski coupling constant
γ is negative. Owing to the fact that in Einstein–Horndeski–
Maxwell gravity, the entropy of a black hole is no longer
simply one quarter of the area of the horizon, we presented
two RII statements, one based on the entropy and the other
based on the area of the horizon, and we found that both RIIs
could be violated.

As we discussed in Sect. 2, the ghost-free condition of the
black hole backgrounds allows for γ → −∞. In this limit,
the entropy (2.13) becomes infinite, even when the area of
the horizon remains finite. It follows from (5.2) and (5.4) that
we have

VS

VA
= (

1 − 1
4 (D − 2)δ

) D−1
D−2 → +∞, as δ → −∞. (6.1)

The violation of the RII aside, the ability of storing arbitrar-
ily large amount of information on a finite physical horizon
area is counter intuitive. This phenomenon occurs also in
Einstein–Gauss–Bonnet gravity, whose black hole entropy
(1.7) becomes divergent as α → +∞. However, in the
Gauss–Bonnet theory, the quantum effects imply that the
causality will be violated when the coupling constant α is
above some critical value and the classical Lagrangian can-
not be trusted [42]. The similar S/γ dependence (2.13) sug-
gests that a similar causality bound may exist in Horndeski
gravity, which may put an upper bound on how much entropy
that can be stored in a given volume.

It is of interest to note that although we obtain the volume
formulas by indirect means of completing the first law in the
case by case basis, there is a general local expression for the
volumes of all our solutions. To see this, note that we can
write

− gtt = − 2�

(D − 1)(D − 2)
h̃(r) + h0(r), (6.2)

where (h̃, h0) do not involve any �. The thermodynamic
volumes for the black holes we constructed in this paper can
all be expressed locally as

Vth = ω

D − 1
r D−3

0 h̃(r0) σ
D−3
D−4

0 . (6.3)

This formula is analogous to the one obtained in [9] for black
holes in two-derivative gravities.

The new black holes we constructed generalize the four-
dimensional one [28] for which the holographic transport
properties with momentum dissipation by the Horndeski
axions were studied [28,38]. In addition to our focus on
studying black hole volumes, we expect these solutions in
general dimensions might have similar applications. In par-
ticular, before ending this paper, we would like to comment
on the butterfly velocity that was introduced in [43]. For our
black holes, it is simply given by

v2
B = (D − 1)T

8σ
1/(D−4)
0 r0 P

= 1

2

T S

VAP
σ

−1/(D−4)
0

(
1 − (D − 2)γ λ2

4r2
0

)−1
, (6.4)

where T, S, P and σ0 were given in Sect. 2 and VA is defined
in (5.4). (The four-dimensional result was given in [38],
although it was not put in this form.) In Einstein gravity,
surveyed for a variety of isotropic AdS planar black holes,
the butterfly velocity can be expressed as [9]

v2
B = 1

2

T S

VthP
. (6.5)

We find that this formula is no longer true in general Horn-
deski gravity, but instead we have the inequality

v2
B →

{
> 1

2
T S
VthP

, γ > 0,

< 1
2

T S
VthP

, γ < 0.
(6.6)

The equality occurs at γ = 0 or in the large black hole
r0 → ∞ limit.
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