HOROCYCLE FLOW ON FLAT PROJECTIVE BUNDLES: TOPOLOGICAL REMARKS AND APPLICATIONS

FERNANDO ALCALDE CUESTA AND FRANÇOISE DAL'BO

Abstract

In this paper we study topological aspects of the dynamics of the foliated horocycle flow on flat projective bundles over hyperbolic surfaces and we derive ergodic consequences. If $\rho: \Gamma \rightarrow \operatorname{PSL}(n+1, \mathbb{R})$ is a representation of a non-elementary Fuchsian group Γ, the unit tangent bundle Y associated to the flat projective bundle defined by ρ admits a natural action of the affine group B obtained by combining the foliated geodesic and horocycle flows. If the image $\rho(\Gamma)$ satisfies Conze-Guivarc'h conditions, namely strong irreducibility and proximality, the dynamics of the B-action is captured by the proximal dynamics of $\rho(\Gamma)$ on $\mathbb{R P}^{n}$ (Theorem A). In fact, the dynamics of the foliated horocycle flow on the unique B-minimal subset of Y can be described in terms of dynamics of the horocycle flow on the non-wandering set in the unit tangent bundle X of the surface $S=\Gamma \backslash \mathbb{H}$ (Theorem B). Assuming the existence of a continuous limit map, we prove that the B-minimal set is an attractor for the foliated horocycle flow restricted to the proximal part of the non-wandering set in Y (Theorem C). As a corollary, we deduce that the restricted flow admits a unique conservative ergodic U-invariant Radon measure (defined up to a multiplicative constant) if and only if Γ is convex-cocompact. For example, the foliated horocycle flow on the projective bundle defined by the CannonThurston map is uniquely ergodic.

1. Introduction

In the 1930s G.A. Hedlund [13] proved the minimality of the right action of the unipotent subgroup

$$
U=\left\{\left.\left(\begin{array}{ll}
1 & s \\
0 & 1
\end{array}\right) \right\rvert\, s \in \mathbb{R}\right\}
$$

of $\operatorname{PSL}(2, \mathbb{R})=\{ \pm I d\} \backslash \operatorname{SL}(2, \mathbb{R})$ on the quotient $X=\Gamma \backslash \operatorname{PSL}(2, \mathbb{R})$ by a cocompact Fuchsian group Γ. Later H. Furstenberg [11] obtained a stronger result, namely the U-action is uniquely ergodic. Identifying $\operatorname{PSL}(2, \mathbb{R})$ and the unit tangent bundle of the hyperbolic plane \mathbb{H} with the Poincaré metric, when Γ is torsion-free, the quotient X becomes the unit tangent bundle of the hyperbolic surface $S=\Gamma \backslash \mathbb{H}$. In this geometric setting, the U-action on X identifies with the horocycle flow and we write

$$
h_{s}(\Gamma u)=\Gamma u\left(\begin{array}{ll}
1 & s \\
0 & 1
\end{array}\right)
$$

for all $u \in \operatorname{PSL}(2, \mathbb{R})$ and all $s \in \mathbb{R}$. Hedlund's and Furstenberg's results have been extended to the case where Γ is finitely generated, but replacing X by the nonwandering set Ω_{X} of the U-action. Notice that Ω_{X} is also the unique non-empty minimal invariant closed set for the action of the affine group

$$
B=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & a^{-1}
\end{array}\right) \right\rvert\, b \in \mathbb{R}, a \in \mathbb{R}_{*}^{+}\right\}
$$

on X. In that case, the dynamic properties of the U -action from a double topological and measurable perspective can be gathered in the following statement:

[^0]Theorem. Let Γ be a finitely generated Fuchsian group.
(1) For any $x \in \Omega_{X}$, either $x U$ is periodic or $\overline{x U}=\Omega_{X}$ [8, 10, 13].
(2) For any ergodic U-invariant Radon measure μ supported by Ω_{X}, either μ is supported by a periodic orbit or μ is the Burger-Roblin measure up to a multiplicative constant [5, 19, 20, 21, 22].

As explained in [8], it turns out that property (1) is true if and only if Γ is finitely generated. However, the topological dynamics of the U-action on Ω_{X} is not well understood otherwise. On the other hand, it follows from Ratner's work that the measure μ in property (2) is finite if and only if μ supported by a periodic orbit or μ is the Haar measure (up to a constant) and in this case the surface S has finite volume.

In this paper we study the foliated horocycle flow on flat projective bundles over hyperbolic surfaces. Given a non-elementary Fuchsian group Γ, we consider a representation

$$
\rho: \Gamma \rightarrow \operatorname{PSL}(n+1, \mathbb{R})
$$

with $n \geq 1$. The subgroup $\Gamma_{\rho}=\{(\gamma, \rho(\gamma) \mid \gamma \in \Gamma\}$ of $\operatorname{PSL}(2, \mathbb{R}) \times \operatorname{PSL}(n+1, \mathbb{R})$ acts properly discontinuously on $\tilde{Y}=\operatorname{PSL}(2, \mathbb{R}) \times \mathbb{R P}^{n}$. As this action preserves the product structure of \tilde{Y}, the projective bundle $Y=\Gamma_{\rho} \backslash \tilde{Y}$ over $X=\Gamma \backslash \operatorname{PSL}(2, \mathbb{R})$ admit a foliation transverse to the fibration $\pi: Y \rightarrow X$ (which sends $\Gamma_{\rho}(u, x) \in Y$ onto $\left.\Gamma_{u} \in X\right)$. The leaves are 3-manifolds endowed with a natural $\operatorname{PSL}(2, \mathbb{R})$ geometric structure. Clearly the U-action on \tilde{Y} defined by right translation on the first factor induces an U-action on Y preserving each leaf. This action defines the foliated horocycle flow on Y [16]. In the same way, the affine group B acts on Y preserving each leaf.

Our goal is to prove topological properties of the actions of B and U on Y when ρ satisfies two conditions, which we call Conze-Guivarc'h conditions:
(CG1) $\rho(\Gamma)$ is strongly irreducible,
(CG2) $\rho(\Gamma)$ contains a proximal element.
Both conditions guarantee the existence of a unique non-empty minimal $\rho(\Gamma)$ invariant closed set $L(\rho(\Gamma))$ in $\mathbb{R} \mathrm{P}^{n}$ 7. It is the closure of the dominant directions of the proximal elements of $\rho(\Gamma)$.

The following results extend well known properties of the actions of B and U on X to the projective bundle Y :

Theorem A. Let Γ be a non-elementary Fuchsian group and $\rho: \Gamma \rightarrow \operatorname{PSL}(n+1, \mathbb{R})$ be a representation satisfying conditions (CG1) and (CG2). Then there is a unique B-minimal set $\mathcal{M}_{B} \subset Y$, i.e. \mathcal{M}_{B} is a non-empty B-invariant closed set such that $\overline{y B}=\mathcal{M}_{B}$ for all $y \in \mathcal{M}_{B}$.

Theorem B. Under the same assumptions of Theorem A, for each point $y \in \mathcal{M}_{B}$, we have:

$$
\overline{y U}=\mathcal{M}_{B} \Leftrightarrow \overline{\pi(y) U}=\Omega_{X}
$$

Corollary 1. Let Γ be a non-elementary Fuchsian group and $\rho: \Gamma \rightarrow \operatorname{PSL}(n+$ $1, \mathbb{R}$) be a representation satisfying conditions (CG1) and (CG2). Then \mathcal{M}_{B} is U-minimal (and therefore the unique U-minimal subset of Y) if and only if Γ is convex-cocompact.

In the last part of the paper, we will add a strong condition on ρ, called Nielsen's condition, implying the existence of a continuous section for π :
(N) ρ induces a continuous map $\varphi: L(\Gamma) \rightarrow L(\rho(\Gamma))$, called limit map, such that $\varphi \circ \gamma=\rho(\gamma) \circ \varphi$ for all $\gamma \in \Gamma$.

As $L(\rho(\Gamma))$ is minimal, the map φ is always surjetive. If we denote

$$
Y_{\text {prox }}=\Gamma_{\rho} \backslash \operatorname{PSL}(2, \mathbb{R}) \times L(\rho(\Gamma))
$$

the B-invariant closed set $\Omega_{\text {prox }}=Y_{\text {prox }} \cap \pi^{-1}\left(\Omega_{X}\right)$ inherits from Y a natural structure of $L\left(\rho(\Gamma)\right.$)-fibre bundle over Ω_{X}. By construction, it always contains the B-minimal set \mathcal{M}_{B}. Condition (N) gives arise to a continuous section $\Phi: X \rightarrow Y$ for the fibration $\pi: Y \rightarrow X$.

Theorem C. Let Γ be a non-elementary Fuchsian group and $\rho: \Gamma \rightarrow \operatorname{PSL}(n+1, \mathbb{R})$ be a representation satisfying conditions (CG1), (CG2) and (N). Then
(1) $\mathcal{M}_{B}=\Phi\left(\Omega_{X}\right)$,
(2) \mathcal{M}_{B} is a U-attractor relative to $\Omega_{\text {prox }}$, i.e. for any point $y \in \Omega_{\text {prox }}$ and for any sequence $s_{k} \rightarrow+\infty$, we have:

$$
h_{s_{k}}(y) \rightarrow y^{\prime} \Rightarrow y^{\prime} \in \mathcal{M}_{B} .
$$

Corollary 2. Under the conditions of Theorem С. if m is a conservative ergodic U-invariant Radon measure on Y supported by $\Omega_{\text {prox }}$, then the support of m is equal to \mathcal{M}_{B} and there exist a conservative ergodic U-invariant Radon measure μ on X supported by Ω_{X} such that $m=\Phi_{*} \mu$.

Corollary 3. Under the conditions of Theorem प, assume Γ is finitely generated. Then there is a unique conservative ergodic U-invariant Radon measure m on $\Omega_{\text {prox }}$ (defined up to a multiplicative constant and supported by the unique U-minimal set \mathcal{M}_{B} in $\Omega_{\text {prox }}$) if and only if Γ is convex-cocompact. In particular, there is a unique U-invariant probability measure m on $Y_{\text {prox }}$ if and only if Γ is cocompact.

The uniqueness of U-invariant probability measures on Y projecting to Haar measure on X has been proved by C. Bonatti, A. Eskin and A. Wilkinson [4] when Γ has finite covolume. Here we use Nielsen's condition (N) to deduce a similar property, both for finite and infinite measures, from the existence of a topological attractor. However, a strictly ergodic approach can be applied to prove Corollary 3 for Y under conditions (CG1) and (CG2). Details will be discussed elsewhere.

2. Preliminaries

A matrix $A \in S L(n+1, \mathbb{R})$ is said to be proximal if A admits a simple dominant real eigenvalue λ_{A}. Let $w_{A} \in \mathbb{R}^{n+1}$ be an eigenvector associated to λ_{A} and $\chi_{A} \in$ $\mathbb{R} \mathrm{P}^{n}$ its direction, also called dominant for A. Further, we have the decomposition

$$
\mathbb{R}^{n+1}=\mathbb{R} w_{A} \oplus W_{A}
$$

where

$$
W_{A}=\left\{w \in \mathbb{R}^{n+1} \mid \lambda_{A}^{-k} A^{k} w \rightarrow 0 \text { as } k \rightarrow+\infty\right\} .
$$

Definition 1. Let G be a subgroup of $\operatorname{SL}(n+1, \mathbb{R})$. We say G is:
(CG1) strongly irreducible if there does no exist any proper non-trivial subspace of \mathbb{R}^{n+1} invariant by the action of a subgroup of finite index of G;
(CG2) proximal if G contains a proximal element A.
Both conditions will be called Conze-Guivarc'h conditions.

Conditions (CG1) and (CG2) are satisfied by G if and only if they are satisfied by its Zariski closure in $\operatorname{SL}(n+1, \mathbb{R})[7]$. But these conditions do not imply that G is Zariski dense in $\mathrm{SL}(n+1, \mathbb{R})$ (since $\mathrm{SO}(n, 1)$ satisfies (CG1) and (CG2)).
Proposition 1 (7). Let G be a subgroup of $\operatorname{SL}(n+1, \mathbb{R})$ satisfying (CG1) and (CG2). Then

$$
L(G)=\overline{\left\{\chi_{A} \in \mathbb{R P}^{n} \mid A \in G \text { proximal }\right\}} .
$$

is the unique G-minimal set in $\mathbb{R P}^{n}$.
Remark 1. Assume $G \subset \operatorname{PSL}(n+1, \mathbb{R})$ is discrete and consider the G-action induced on $L^{c}(G)=\mathbb{R P}^{n}-L(G)$. For $n=1$, as this action is properly discontinuous, the set $L(G)$ is a G-attractor (i.e. for any point $\xi \in \mathbb{R} \mathrm{P}^{1}$ and for any non stationary sequence g_{k} in G, the condition $g_{k} \cdot \xi \rightarrow \xi^{\prime}$ implies $\left.\xi^{\prime} \in L(G)\right)$ which captures the proximal dynamics of G. However, for $n \geq 2$, these properties are not true in general as the following example proves.
Example 1. Consider \mathbb{R}^{3} equipped with the Lorentz quadratic form

$$
q(x)=x_{1}^{2}+x_{2}^{2}-x_{3}^{2} .
$$

For $i=-1,0,1$, denote $\mathcal{H}_{i}=\left\{x \in \mathbb{R}^{3} \mid q(x)=i\right\}$ and let $p: \mathbb{R}^{3}-\{0\} \rightarrow \mathbb{R P}^{2}$ be the canonical projection. Let $S O^{+}(2,1)$ be the connected component of the identity in the group $S O(2,1)$ of orientation-preserving linear isometries of q and take a discrete subgroup G of $S O^{+}(2,1)$. If G is non-elementary and contains no elliptic elements, then $G \backslash \mathcal{H}_{-1}^{+}$is isometric to a hyperbolic surface S, where $\mathcal{H}_{-1}^{+}=\mathcal{H}_{-1} \cap\left\{x \in \mathbb{R}^{3} \mid x_{3} \geq 0\right\}$ (see [8]). The limit set $L(G)$ is contained into $p\left(\mathcal{H}_{0}^{+}-\{0\}\right)$. For any vector $x \in \mathcal{H}_{1}$, the orthogonal plane (with respect to q) intersects \mathcal{H}_{0} along two lines $D_{1}(x)$ and $D_{2}(x)$. Let $\mathcal{H}_{1}(G)$ be the set of vectors $x \in \mathcal{H}_{1}$ such that the directions of $D_{1}(x)$ and $D_{2}(x)$ belong to $L(G)$. This is a G-invariant closed subset of $\mathbb{R}^{3}-\{0\}$. According to [8, Proposition VI.2.5], the dynamics of the G-action on $\mathcal{H}_{1}(G)$ is dual to that of the geodesic flow on the nonwandering set of $T^{1} S$. In particular, the G-action on $\mathcal{H}_{1}(G)$ has dense orbits (see [8, Property VI.2.12]), as well many non-empty proprer minimal sets, and hence the G-action on the closure $\mathcal{F}(G)$ of $p\left(\mathcal{H}_{1}(G)\right)$ in $\mathbb{R} \mathrm{P}^{2}$ also has dense orbits, as well many non-empty invariant closed sets $F \subset \mathcal{F}(G)$ such that $L(G) \subset F$. In conclusion, the G-action on $L^{c}(G)$ is not discontinuous and $L(G)$ is far from being a G-attractor.

Let Γ be a non-elementary Fuchsian group and $\rho: \Gamma \rightarrow \mathrm{SL}(n+1, \mathbb{R})$ a representation satisfying conditions (CG1) and (CG2). TheoremsAandB will be proved using a dual approach. Namely, as the linear action of Γ on $E=\{ \pm I d\} \backslash \mathbb{R}^{2}-\{0\}$ and the projective action of Γ on $\mathbb{R P}^{1}$ are conjugated to the Γ-actions on $\operatorname{PSL}(2, \mathbb{R}) / U$ and $\operatorname{PSL}(2, \mathbb{R}) / B$ respectively, both actions are dual to the U-action and the B-action on $X=\Gamma \backslash \operatorname{PSL}(2, \mathbb{R})$.

In our case, the linear and projective actions extend to actions of

$$
\Gamma_{\rho}=\{(\gamma, \rho(\gamma) \mid \gamma \in \Gamma\}
$$

on $E \times \mathbb{R} \mathrm{P}^{n}$ and $\mathbb{R} \mathrm{P}^{1} \times \mathbb{R} \mathrm{P}^{n}$. As before, they are dual to the U-action and the B action on the flat projective bundle $Y=\Gamma_{\rho} \backslash \tilde{Y}$ over X where $\tilde{Y}=\operatorname{PSL}(2, \mathbb{R}) \times \mathbb{R P}^{n}$. From a geometrical point of view, Y is the unitary tangent bundle to the foliation by hyperbolic surfaces on $\Gamma_{\rho} \backslash \mathbb{H} \times \mathbb{R} P^{n}$ which is induced by the horizontal foliation on $\mathbb{H} \times \mathbb{R P}^{n}$.

Theorem A*. Under the assumptions of Theorem A, there is a unique non-empty minimal Γ_{ρ}-invariant closed set $\mathcal{M} \subset \mathbb{R} \mathrm{P}^{1} \times \mathbb{R P}^{n}$. Moreover $\mathcal{M} \subset L(\Gamma) \times L(\rho(\Gamma))$.

The relation between the sets \mathcal{M}_{B} and \mathcal{M} considered in Theorems A and A^{*} is given by

$$
\mathcal{M}_{B}=\left\{\Gamma_{\rho}(u, \chi) \in Y \mid(u(+\infty), \chi) \in \mathcal{M}\right\}
$$

where $u(+\infty)$ is the endpoint of the geodesic ray associated to $u \in T^{1} \mathbb{H}$.
For each vector $v \in E$, denote $\bar{v} \in \mathbb{R P}^{1}$ its direction. Clearly the set

$$
E(\Gamma)=\{v \in E \mid \bar{v} \in L(\Gamma)\}
$$

is dual to Ω_{X} and the set

$$
E(\mathcal{M})=\left\{(v, \chi) \in E \times \mathbb{R} \mathrm{P}^{n} \mid(\bar{v}, \chi) \in \mathcal{M}\right\}
$$

is dual to \mathcal{M}_{B}.
Theorem B*. Under the assumptions of Theorem A, for each pair $(v, \chi) \in E(\mathcal{M})$, we have:

$$
\overline{\Gamma_{\rho}(v, \chi)}=E(\mathcal{M}) \Leftrightarrow \overline{\Gamma v}=E(\Gamma)
$$

3. Proof of Theorems A* and B*

Let Γ be a non-elementary Fuchsian group and $\rho: \Gamma \rightarrow \operatorname{PSL}(n+1, \mathbb{R})$ be a representation satisfying (CG1) and (CG2). Take $(\gamma, A) \in \Gamma_{\rho}$ with A proximal and denote $\chi_{A} \in \mathbb{R} P^{n}$ the dominant direction of A. Since A has infinite order, γ is hyperbolic or parabolic. Consider $\gamma^{+}=\lim _{k \rightarrow+\infty} \gamma^{k}(z)$ for any $z \in \mathbb{H}$.

Lemma 1. For any non-empty Γ_{ρ}-invariant closed set $F \subset \mathbb{R} \mathrm{P}^{1} \times \mathbb{R P}^{n}$, we have $\left(\gamma^{+}, \chi_{A}\right) \in F$.
Proof. Since $\mathbb{R P}^{1}$ is compact, F projects on a $\rho(\Gamma)$-invariant closed subset of $\mathbb{R P}^{n}$ containing $L(\rho(\Gamma))$. It follows that there exists $\xi \in \mathbb{R} P^{1}$ such that $\left(\xi, \chi_{A}\right) \in F$. If $\xi \neq \lim _{k \rightarrow+\infty} \gamma^{-k}(z)$, then $\lim _{k \rightarrow+\infty} \gamma^{k}(\xi)=\gamma^{+}$and hence

$$
\lim _{k \rightarrow+\infty}\left(\gamma^{k}(\xi), \rho\left(\gamma^{k}\right) \chi_{A}\right)=\lim _{k \rightarrow+\infty}\left(\gamma^{k}(\xi), A^{k} \chi_{A}\right)=\left(\gamma^{+}, \chi_{A}\right) \in F
$$

Otherwise, by the irreducibility condition (CG1), there exists $\gamma^{\prime} \in \Gamma-<\gamma>$ such that $\rho\left(\gamma^{\prime}\right) \chi_{A}$ does not belong to the projection \bar{W}_{A} of W_{A} into $\mathbb{R} \mathrm{P}^{n}$. Since Γ is discret, we have $\gamma^{\prime}(\xi) \neq \xi$. As a consequence, we have:

$$
\lim _{k \rightarrow+\infty}\left(\gamma^{k}\left(\gamma^{\prime}(\xi)\right), A^{k} \rho\left(\gamma^{\prime}\right) \chi_{A}\right)=\left(\gamma^{+}, \chi_{A}\right) \in F
$$

Proof of the Theorem A^{*}, By Lemma 11 the intersection of all non-empty closed Γ_{ρ} sets contains

$$
\mathcal{M}=\overline{\left\{\left(\gamma^{+}, \chi_{A}\right) \mid \gamma \in \Gamma, A=\rho(\gamma) \text { proximal }\right\}} \subset L(\Gamma) \times L(\rho(\Gamma))
$$

Thus \mathcal{M} becomes the unique minimal set for the Γ_{ρ}-action on $\mathbb{R} \mathrm{P}^{1} \times \mathbb{R P}^{n}$.
Remark 2 (on the shape of \mathcal{M}). (1) If ρ is not injective, then $\mathcal{M}=L(\Gamma) \times$ $L(\rho(\Gamma))$ because $N=\operatorname{Ker} \rho$ is a normal subgroup of Γ and then $L(\Gamma)=L(N)$.
(2) A similar conclusion holds if ρ is indiscrete (in the sense that $\rho(\Gamma)$ is not discrete). Indeed, let γ_{k} be a non-stationary sequence of elements of Γ such that $\rho\left(\gamma_{k}\right) \rightarrow I d$. Passing to a subsequence if necessary, there exist two points ξ^{-}and ξ^{+}in $\mathbb{R} \mathrm{P}^{1}$ such that

$$
\lim _{k \rightarrow+\infty} \gamma_{k}(\xi)=\xi^{+}
$$

for any $\xi \neq \xi^{-}$(see for example [2, Lemma 2.2]). For any $\chi \in L(\rho(\Gamma)$), take an element $(\xi, \chi) \in \mathcal{M}$ such that $\xi \notin \Gamma \xi^{-}$. Since Γ is non elementary, such element always exists. For any $\gamma \in \Gamma$, we have:

$$
\lim _{k \rightarrow+\infty}\left(\gamma \gamma_{k} \gamma^{-1}(\xi), \rho\left(\gamma \gamma_{k} \gamma^{-1}\right) \chi\right)=\left(\gamma\left(\xi^{+}\right), \chi\right)
$$

Therefore $\Gamma_{\rho}\left(\gamma\left(\xi^{+}\right), \chi\right) \subset \mathcal{M}$ and hence $L(\Gamma) \times L(\rho(\Gamma))=\mathcal{M}$.
(3) In the opposite side, if $n=1$ and ρ is the natural inclusion of Γ into $\operatorname{PSL}(2, \mathbb{R})$, then $\mathcal{M}=\{(\xi, \xi) \mid \xi \in L(\Gamma)\}$.

Two lemmas are needed to prove Theorem B*
Lemma 2. Let Γ be a non-elementary Fuchsian group and $\rho: \Gamma \rightarrow \operatorname{PSL}(n+1, \mathbb{R})$ be a representation satisfying (CG1) and (CG2). There are two hyperbolic elements γ_{1} and γ_{2} of Γ such that
(1) the dominant eigenvalues λ_{1} and λ_{2} generate a dense subgroup of the positive multiplicative group \mathbb{R}_{+}^{*},
(2) $A_{1}=\rho\left(\gamma_{1}\right)$ and $A_{2}=\rho\left(\gamma_{2}\right)$ are proximal.

Proof. Under conditions (CG1) and (CG2), the group $\rho(\Gamma)$ contains two elements A_{1} and A_{2} which generate a non-abelian free group containing only proximal elements (see [3, Lemma 3.9] and [12, Lemma 3]). Let γ_{1} and γ_{2} be two elements of Γ such that $\rho\left(\gamma_{1}\right)=A_{1}$ and $\rho\left(\gamma_{2}\right)=A_{2}$. Reasoning as in 9, we can replace γ_{1} and γ_{2} with two hyperbolic elements of Γ whose dominant eigenvalues λ_{1} and λ_{2} generate a dense subgroup of \mathbb{R}_{+}^{*}.

For each hyperbolic element γ of Γ, we denote v_{γ} the unit eigenvector in E associated to dominant eigenvalue λ_{γ}. Clearly $v_{\gamma} \in E(\Gamma)$ since its direction $\bar{v}_{\gamma}=$ $\gamma^{+} \in L(\Gamma)$. From Theorem A* it follows that

$$
E(\mathcal{M}) \subset E(\Gamma) \times L(\rho(\Gamma))
$$

Lemma 3. Let $(v, \chi) \in E(\mathcal{M})$ such that $\overline{\Gamma v}=E(\Gamma)$. For any hyperbolic element $\gamma \in \Gamma$ such that $A=\rho(\gamma)$ is proximal, there exists $\alpha \in \mathbb{R}^{*}$ such that

$$
\left(\alpha v_{\gamma}, \chi_{A}\right) \in \overline{\Gamma_{\rho}(v, \chi)}
$$

Proof. Assuming $\overline{\Gamma v}=E(\Gamma)$, there exists a sequence of elements $\gamma_{k} \in \Gamma$ such that the norms $\left\|\gamma_{k} v\right\|$ converge to 0 as $k \rightarrow+\infty$. Since Γ is non elementary and $\rho(\Gamma)$ is irreducible, replacing γ_{k} by $\gamma^{\prime} \gamma_{k}$ for some $\gamma^{\prime} \in \Gamma$, up to take a subsequence, we can suppose:
(1) $\gamma_{k} v=a_{k} v_{\gamma}+b_{k} v_{\gamma^{-1}}$ where $a_{k} \neq 0$ for any k,
(2) $\rho\left(\gamma_{k}\right) \chi \rightarrow \chi_{0} \notin \bar{W}_{A}$.

Let p_{k} an increasing sequence of integers converging to $+\infty$ such that $\lambda_{\gamma}^{p_{k}} a_{k}$ converges to some $\alpha \neq 0$. Then we have $\gamma^{p_{k}} \gamma_{k} v \rightarrow \alpha v_{\gamma}$. Let us prove that

$$
\begin{equation*}
A^{p_{k}} \rho\left(\gamma_{k}\right) \chi \rightarrow \chi_{A} . \tag{3.1}
\end{equation*}
$$

Since $\chi_{0} \notin \bar{W}_{A}$, there exist an open neighbourhood $V\left(\chi_{A}\right)$ of χ_{A} containing χ_{0}, an integer $N \gg 0$ and a constant $0<c<1$ satisfying [12, Lemma 3]:
i) $A^{N k}\left(V\left(\chi_{A}\right)\right) \subset V\left(\chi_{A}\right)$ for all $k \geq 0$,
iii) $\delta\left(A^{N k} \chi_{1}, A^{N k} \chi_{2}\right) \leq c^{k} \delta\left(\chi_{1}, \chi_{2}\right)$ for all $\chi_{1}, \chi_{2} \in V\left(\chi_{A}\right)$ and for all $k \geq 0$,

For $k \geq 0$ large enough, we have $\rho\left(\gamma_{k}\right) \chi \in V\left(\chi_{A}\right)$. Assuming $p_{k}=N q_{k}+r_{k}$ with $0 \leq r_{k}<N$, the inequality

$$
\delta\left(A^{N q_{k}} \rho\left(\gamma_{k}\right) \chi, \chi_{A}\right) \leq c^{q_{k}} \delta\left(\rho\left(\gamma_{k}\right) \chi, \chi_{A}\right)
$$

implies

$$
\lim _{k \rightarrow+\infty} \delta\left(A^{N q_{k}} \rho\left(\gamma_{k}\right) \chi, \chi_{A}\right)=0
$$

and hence

$$
\lim _{k \rightarrow+\infty} \delta\left(A^{p_{k}} \rho\left(\gamma_{k}\right) \chi, \chi_{A}\right)=0
$$

This proves (3.1). Finally, we deduce:

$$
\lim _{k \rightarrow+\infty}\left(\gamma^{p_{k}} \gamma_{k} v, A^{p_{k}} \rho\left(\gamma_{k}\right) \chi\right)=\left(\alpha v_{\gamma}, \chi_{A}\right) \in \overline{\Gamma_{\rho}(v, \chi)} .
$$

Proof of the Theorem B^{*} Let $(v, \chi) \in E(\mathcal{M})$ with $\overline{\Gamma v}=E(\Gamma)$. Take $\gamma_{1}, \gamma_{2} \in \Gamma$ given by Lemma 2 and its images $A_{1}=\rho\left(\gamma_{1}\right)$ and $A_{2}=\rho\left(\gamma_{2}\right)$. Applying Lemma 3. there exists a real number $\alpha_{1} \neq 0$ such that $\left(\alpha_{1} v_{\gamma_{1}}, \chi_{A_{1}}\right) \in \overline{\Gamma_{\rho}(v, \chi)}$ and hence

$$
\begin{equation*}
\left(\alpha_{1} \lambda_{1}^{p} v_{\gamma_{1}}, \chi_{A_{1}}\right) \in \overline{\Gamma_{\rho}(v, \chi)} \tag{3.2}
\end{equation*}
$$

for any $p \in \mathbb{Z}$. Since $\overline{\Gamma v}_{\gamma_{1}}=E(\Gamma)$ [8, Theorem V.3.1], by the same argument, we obtain another real number $\alpha_{2} \neq 0$ such that

$$
\begin{equation*}
\left(\alpha_{1} \alpha_{2} \lambda_{1}^{p} \lambda_{2}^{q} v_{\gamma_{2}}, \chi_{A_{2}}\right) \in \overline{\Gamma_{\rho}(v, \chi)} \tag{3.3}
\end{equation*}
$$

for any pair $p, q \in \mathbb{Z}$. As λ_{1} and λ_{2} generate a dense subgroup of \mathbb{R}_{+}^{*} by Lemma 2, we deduce from (3.2) and (3.3) that

$$
\left(\lambda v_{\gamma_{2}}, \chi_{A_{2}}\right) \in \overline{\Gamma_{\rho}(v, \chi)}
$$

for any $\lambda>0$.
For any $\left(v^{\prime}, \chi^{\prime}\right) \in E(\mathcal{M})$, since $\left(\bar{v}^{\prime}, \chi^{\prime}\right)$ and $\left(\gamma_{2}^{+}, \chi_{A_{2}}\right)$ belong to the minimal set \mathcal{M}, there exists a sequence $\gamma_{k} \in \Gamma$ such that

$$
\gamma_{k} \gamma_{2}^{+} \rightarrow \bar{v}^{\prime} \quad \text { and } \quad \rho\left(\gamma_{k}\right) \chi_{A_{2}} \rightarrow \chi^{\prime}
$$

It follows there exists a sequence $\lambda_{k} \in \mathbb{R}$ such that

$$
\begin{equation*}
\lambda_{k} \gamma_{k} v_{\gamma_{2}} \rightarrow \alpha v^{\prime} \tag{3.4}
\end{equation*}
$$

for some $\alpha \neq 0$. As $\left(\lambda_{k} v_{\gamma_{2}}, \chi_{A_{2}}\right) \in \overline{\Gamma_{\rho}(v, \chi)}$, we deduce $\left(\alpha v^{\prime}, \chi^{\prime}\right) \in \overline{\Gamma_{\rho}(v, \chi)}$. The same argument applies when multiply the two terms of (3.4) by a real number $\lambda>0$.

We deduce from Theorem B^{*} that $E(\mathcal{M})$ is a non-empty minimal Γ_{ρ}-invariant closed set if and only if $E(\Gamma)$ is a minimal Γ-invariant closed set. Since this condition is satisfied if and only if Γ is convex-compact [8, Proposition V.4.3], we retrieve Corollary 1 :

Corollary 4. The set \mathcal{M}_{B} is U-minimal if and only if Γ is convex-cocompact
More generally, since $\mathbb{R} P^{n}$ is compact, any non-empty minimal Γ_{ρ}-invariant closed subset $F \subset E \times \mathbb{R P}^{n}$ projets onto a non-empy minimal Γ-invariant closed subset $p_{1}(F) \subset E$. If Γ is finitely generated, then either F projets onto a closed Γ orbit or $F=E(\mathcal{M})$ and Γ is convex-compact [8, Theorem V.4.1]. On the contrary, if Γ is not finitely generated, there exist examples where $E(\Gamma)$ does not admit any non-empty minimal Γ-invariant closed subset [14, 17].
Corollary 5. There exist infinitely generated Fuchsian groups Γ such that for any representations $\rho: \Gamma \rightarrow \operatorname{PSL}(n+1, \mathbb{R})$ satisfying conditions (CG1) and (CG2), the projective bundle Y does not admit any non-empty U-minimal subset of $\pi^{-1}\left(\Omega_{X}\right)$.

4. Proof of Theorem C

In this section, we restrict our attention to the space

$$
Y_{\text {prox }}=\Gamma_{\rho} \backslash \operatorname{PSL}(2, \mathbb{R}) \times L(\rho(\Gamma))
$$

This space is a $\operatorname{PSL}(2, \mathbb{R})$-invariant closed subset of Y for which the induced $\operatorname{PSL}(2, \mathbb{R})$ action is minimal. From a geometrical point of view, $Y_{p r o x}$ is the unit tangent bundle to a minimal lamination by hyperbolic surfaces. Intersecting with $\pi^{-1}\left(\Omega_{X}\right)$, we obtain a B-invariant closed set

$$
\Omega_{\text {prox }}=Y_{\text {prox }} \cap \pi^{-1}\left(\Omega_{X}\right)
$$

such that:
(i) $\Omega_{\text {prox }}$ is included in the non-wandering set for the U-action on $Y_{\text {prox }}$,
(ii) $\Omega_{\text {prox }}$ inherits from Y a natural structure of $L\left(\rho(\Gamma)\right.$)-fibre bundle over Ω_{X} with projection $\pi: \Omega_{\text {prox }} \rightarrow \Omega_{X}$.
By duality, U-orbits in $\Omega_{\text {prox }}$ are in one-to-one correspondance with Γ_{ρ}-orbits in $E(\Gamma) \times L\left(\rho(\Gamma)\right.$. Note that $\mathcal{M}_{B} \subset \Omega_{\text {prox }}$ is the unique non-empty minimal B invariant closed subset of $\Omega_{\text {prox }}$.

We also add a new condition on the representation $\rho: \Gamma \rightarrow \operatorname{PSL}(n+1, \mathbb{R})$, which we call Nielsen's condition:
(N) there exists a continuous map

$$
\varphi: L(\Gamma) \rightarrow L(\rho(\Gamma))
$$

called limit map, such that $\varphi \circ \gamma=\rho(\gamma) \circ \varphi$ for all $\gamma \in \Gamma$.
Conditions (CG1), (CG2) and (N) imply ρ is discrete injective and φ is surjective.
A wide familiy of representations ρ satisfying conditions (CG1), (CG2) and (N) can be find in the litterature: for $\rho(\Gamma) \subset S O(n, 1)$ see [24] and for $\rho(\Gamma) \subset S L(n+$ $1, R)$ Anosov see [15. In general, even if Γ is finitely generated, φ is not necessarily injective. This is the case for example if γ is hyperbolique and $\rho(\gamma)$ is parabolic [23]. One of the most surprising examples is a discrete faithful representation $\rho: \Gamma \rightarrow S O(3,1)$ of a torsion-free cocompact Fuchsian group Γ that gives raise to sphere-filling map $\varphi: S^{1} \rightarrow S^{2}$ called the Cannon-Thurston map 6].

Proof of the Theorem ©. Assume Γ is non-elementary and $\rho: \Gamma \rightarrow \operatorname{PSL}(n+1, \mathbb{R})$ satisfies conditions (CG1), (CG2) and (N). Under condition (N), we can immediately deduce the two following facts:
(i) the graph of map φ is a non-empty Γ_{ρ}-invariant closed subset of $\mathbb{R P}^{1} \times \mathbb{R P}^{n}$,
(ii) the map φ define a continuous section $\Phi: \Omega_{X} \rightarrow \Omega_{\text {prox }}$ given by

$$
\Phi(\Gamma u)=\Gamma_{\rho}(u, \varphi(u(+\infty))) .
$$

(1) The unique B-minimal set \mathcal{M}_{B} is given by

$$
\mathcal{M}_{B}=\Phi\left(\Omega_{X}\right)=\left\{\Gamma_{\rho}(u, \varphi(u(+\infty))) \in Y \mid u \in \operatorname{PSL}(2, \mathbb{R}), u(+\infty) \in L(\Gamma)\right\}
$$

Indeed, by Theorem A^{*}, we know that the unique Γ-minimal set $\mathcal{M} \subset \mathbb{R} \mathrm{P}^{1} \times \mathbb{R P}^{n}$ coincides with the graph of φ. Now our statement follows by duality.
(2) The unique B-minimal set \mathcal{M}_{B} is a U-attractor relative to $\Omega_{\text {prox }}$. Indeed, take $y=\Gamma_{\rho}(u, \chi) \in \Omega_{\text {prox }}$ and assume $h_{s_{k}}(y) \rightarrow y^{\prime}$ for some sequence $s_{k} \rightarrow+\infty$. Since $\Omega_{\text {prox }}$ is U-invariant, $y^{\prime}=\Gamma_{\rho}\left(u^{\prime}, \chi^{\prime}\right)$ with $u^{\prime}(+\infty) \in L(\Gamma)$ and $\chi^{\prime} \in L(\rho(\Gamma))$. As $y \in$ \mathcal{M}_{B} implies $y^{\prime} \in \mathcal{M}_{B}$, the proof reduces to the case where $\chi=\varphi(\xi) \neq \varphi(u(+\infty))$. By construction, there exists a sequence $\gamma_{k} \in \Gamma$ such that

$$
\gamma_{k} u\left(\begin{array}{ll}
1 & s_{k} \\
0 & 1
\end{array}\right) \rightarrow u^{\prime} \quad \text { and } \quad \rho\left(\gamma_{k}\right) \chi \rightarrow \chi^{\prime}
$$

Let us return to the hyperbolic point of view, identifying $\operatorname{PSL}(2, \mathbb{R})$ with the unit tangent bundle $T^{1} \mathbb{H}$. In this model, each element $u \in \operatorname{PSL}(2, \mathbb{R})$ identifies with $u=(u(0), \vec{u}) \in T^{1} \mathbb{H}$ where $u(0)$ is a point of \mathbb{H} and \vec{u} is a unit tangent vector to \mathbb{H} at $u(0)$. Denoting $B_{u(+\infty)}(i, u(0))$ the Busemann cocycle centred at $u(+\infty)$ and calculated at i and $u(0)$, we have the following conditions [8, Chapter V]:
(a) $\gamma_{k}(u(+\infty)) \rightarrow u^{\prime}(+\infty)$,
(b) $B_{\gamma_{k}(u(+\infty))}\left(i, \gamma_{k}(u(0))\right) \rightarrow B_{u^{\prime}(+\infty)}\left(i, u^{\prime}(0)\right)$,
(c) $\rho\left(\gamma_{k}\right) \chi \rightarrow \chi^{\prime}$.

Properties (a) and (b) imply

$$
\lim _{k \rightarrow+\infty} \gamma_{k}(u(0))=u^{\prime}(+\infty)
$$

Since

$$
B_{\gamma_{k}(u(+\infty))}\left(i, \gamma_{k}(u(0))=B_{u(+\infty)}\left(\gamma_{k}^{-1}(i), u(0)\right),\right.
$$

applying again Property (b), we deduce:

$$
\lim _{k \rightarrow+\infty} \gamma_{k}^{-1}(i)=u(+\infty)
$$

As a consequence, since $\xi \neq u(+\infty)$, we have (see [2, Lemma 2.2]):

$$
\gamma_{k}(\xi) \rightarrow u^{\prime}(+\infty)
$$

By continuity of φ, it follows:

$$
\rho\left(\gamma_{k}\right) \chi=\varphi\left(\gamma_{k}(\xi)\right) \rightarrow \varphi\left(u^{\prime}(+\infty)\right)
$$

Property (c) implies $\chi^{\prime}=\varphi\left(u^{\prime}(+\infty)\right)$ and hence $y^{\prime} \in \mathcal{M}_{B}$.
Remark 3. Example 1 shows that we cannot expect \mathcal{M}_{B} to be a global U-attractor in general. This is why we introduced the laminated space $Y_{\text {prox }}$.

Proof of the Corollary 园, Let m be a U-invariant (non necessarily finite) Radon measure on $\Omega_{\text {prox }}$. If m is conservative, then Poincaré's Recurrence Theorem (see [1] Theorem 1.1.5] for the discrete version) implies that the set of U-recurrent points

$$
\mathcal{R}_{\text {prox }}=\left\{y \in \Omega_{\text {prox }} \mid \exists s_{n} \rightarrow+\infty: h_{s_{n}}(y) \rightarrow y\right\}
$$

has full-measure, that is, $m\left(\Omega_{\text {prox }}-\mathcal{R}_{\text {prox }}\right)=0$. Since \mathcal{M}_{B} is a U-attractor relative to $\mathcal{R}_{\text {prox }}$, then $\mathcal{R}_{\text {prox }} \subset \mathcal{M}_{B}$ and therefore $m\left(\Omega_{\text {prox }}-\mathcal{M}_{B}\right)=0$. As the continuous section Φ sends homeomorphically Ω_{X} onto \mathcal{M}_{B} and m is supported by \mathcal{M}_{B}, the push-forward $\mu=\pi_{*} m$ is a U-invariant measure μ on Ω_{X}. It is also conservative and verifies $\Phi_{*} \mu=m$. Finally m is ergodic if and only if μ is ergodic.

If Γ is finitely generated, as we recall in the introduction, any ergodic U-invariant measure μ either is supported by a closed orbit or is equal to the Burger-Roblin measure [5, 22] up to a multiplicative constant. In the last case, μ is conservative, so Corollary 3 follows from Corollary 2, Namely, under the conditions of Theorem C and assuming that Γ is finitely generated, there is a unique conservative ergodic U invariant Radon measure m on $\Omega_{p r o x}$ (defined up to a multiplicative constant and supported by the unique U-minimal set \mathcal{M}_{B} in $\Omega_{p r o x}$) if and only if Γ is convexcocompact. In particular, there is a unique U-invariant probability measure m on $Y_{\text {prox }}$ if and only if Γ is cocompact. Notice that the unique U-invariant probability measure on Y (which is obtained by lifting the Haar measure) in [4, Corollary 2.4] is supported by $Y_{\text {prox }}$. In the counterexample constructed by S. Matsumoto [18] on a 3 -dimensional compact solvmanifold, there is a unique B-invariant probability measure m supported by the unique B-minimal set \mathcal{M}_{B}, but there are uncountable many U-invariant probability measures (specifically, the ergodic components of m) supported by uncountable many U-minimal sets.

References

[1] Jon Aaronson, An Introduction to Infinite Ergodic Theory, Mathematical Surveys and Monographs, vol. 50, American Mathematical Society, 1997. MR 1450400
[2] Fernando Alcalde Cuesta and Françoise Dal'Bo, Remarks on the dynamics of the horocycle flow for homogeneous foliations by hyperbolic surfaces, Expo. Math. 33 (2015), no. 4, 431-451. MR 3431475
[3] Yves Benoist, Sous-groupes discrets des groupes de Lie, European Summer School in Group Theory (Luminy 1997), 1997.
[4] Christian Bonatti, Alex Eskin, and Amie Wilkinson, Projective cocycles over $S L(2, \mathbb{R})$ actions: measures invariant under the upper triangular group, Astérisque 415 (2020), 157-180.
[5] Marc Burger, Horocycle flow on geometrically finite surfaces, Duke Mathematical Journal 61 (1990), no. 3, 779 - 803. MR 1084459
[6] James W. Cannon and William P. Thurston, Group invariant Peano curves, Geom. Topol. 11 (2007), 1315-1355. MR 2326947 (2008i:57016)
[7] Jean-Pierre Conze and Yves Guivarc'h, Limit sets of groups of linear transformations, Sankhyā: The Indian Journal of Statistics, Series A (1961-2002) 62 (2000), no. 3, 367-385. MR 1803464
[8] Françoise Dal'Bo, Geodesic and Horocyclic Trajectories, Universitext, Springer-Verlag London, Ltd., London; EDP Sciences, Les Ulis, 2011, Translated from the 2007 French original. MR 2766419
[9] Françoise Dal'Bo, Remarques sur le spectre des longueurs d'une surface et comptages, Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society 30 (1999), no. 2, 199-221.
[10] Patrick Eberlein, Horocycle flows on certain surfaces without conjugate points, Trans. Amer. Math. Soc 233 (1977), 1-36. MR 516501
[11] Harry Furstenberg, The unique ergodicity of the horocycle flow, Recent advances in topological dynamics (Proc. Conf., Yale Univ., New Haven, Conn., 1972; in honor of Gustav Arnold Hedlund), Springer, Berlin, 1973, pp. 95-115. Lecture Notes in Math., Vol. 318. MR 0393339
[12] Yves Guivarc'h, Produits de matrices aléatoires et applications aux propriétés géometriques des sous-groupes du groupe linéaire, Ergodic Theory and Dynamical Systems 10 (1990), no. 3, 483-512. MR 1074315
[13] Gustav A. Hedlund, Fuchsian groups and transitive horocycles, Duke Math. J. 2 (1936), no. 3, 530-542. MR 1545946
[14] M. Kulikov, The horocycle flow without minimal sets, Comptes Rendus Mathematique 338 (2004), no. 6, 477-480. MR 2057729
[15] François Labourie, Anosov flows, surface groups and curves in projective space, Inventiones Mathematicae 165 (2006), no. 1, 51-114. MR 2221137
[16] Matilde Martínez, Shigenori Matsumoto, and Alberto Verjovsky, Horocycle flows for laminations by hyperbolic Riemann surfaces and Hedlund's theorem, J. Mod. Dyn. 10 (2016), 113-134. MR 3503685
[17] Shigenori Matsumoto, Horocycle flows without minimal sets, J. Math. Sci. Univ. Tokyo 23 (2016), no. 3, 661-673. MR 3526584
[18] , Weak form of equidistribution theorem for harmonic measures of foliations by hyperbolic surfaces, Proceedings of the American Mathematical Society 144 (2016), no. 3, 12891297.
[19] Marina Ratner, Strict measure rigidity for unipotent subgroups of solvable groups, Inventiones mathematicae 101 (1990), no. 1, 449-482. MR 1062971
[20] \qquad , Raghunathan's conjectures for $S L(2, \mathbb{R})$, Israel Journal of Mathematics 80 (1992), no. 1, 1-31. MR 1248925
[21] , Invariant measures and orbit closures for unipotent actions on homogeneous spaces, Geom. Funct. Anal. 4 (1994), no. 2, 236-257. MR 1262705
[22] Thomas Roblin, Ergodicité et équidistribution en courbure négative, Mémoires de la Société Mathématique de France, vol. 95, Société Mathématique de France, 2003. MR 2057305
[23] Pekka Tukia, A remark on a paper by Floyd, Holomorphic Functions and Moduli II, Mathematical Sciences Research Institute Publications, vol. 11, Springer, New York, NY, 1988, pp. 165-172. MR 955838
[24] _, The limit map of a homomorphism of discrete Möbius groups, Publications Mathématiques de l'IHÉS 82 (1995), 97-132 (en). MR 98e:57052

Galician Centre for Mathematical Research and Technology Citmaga, E-15782 Santiago de Compostela, Spain.

Email address: fernando.alcalde@usc.es
Institut de Recherche Mathématiques de Rennes, Université de Rennes 1, F-35042 Rennes (France)

Email address: francoise.dalbo@univ-rennes1.fr

[^0]: 2020 Mathematics Subject Classification. Primary 37B05, 37C85, 37D40

