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HOROCYCLE FLOW ON FLAT PROJECTIVE BUNDLES:

TOPOLOGICAL REMARKS AND APPLICATIONS

FERNANDO ALCALDE CUESTA AND FRANÇOISE DAL’BO

Abstract. In this paper we study topological aspects of the dynamics of the
foliated horocycle flow on flat projective bundles over hyperbolic surfaces and
we derive ergodic consequences. If ρ : Γ → PSL(n+1,R) is a representation of a
non-elementary Fuchsian group Γ, the unit tangent bundle Y associated to the
flat projective bundle defined by ρ admits a natural action of the affine group
B obtained by combining the foliated geodesic and horocycle flows. If the

image ρ(Γ) satisfies Conze-Guivarc’h conditions, namely strong irreducibility
and proximality, the dynamics of the B-action is captured by the proximal
dynamics of ρ(Γ) on RPn (Theorem A). In fact, the dynamics of the foliated
horocycle flow on the unique B-minimal subset of Y can be described in terms
of dynamics of the horocycle flow on the non-wandering set in the unit tangent
bundle X of the surface S = Γ\H (Theorem B). Assuming the existence of a
continuous limit map, we prove that the B-minimal set is an attractor for the
foliated horocycle flow restricted to the proximal part of the non-wandering set
in Y (Theorem C). As a corollary, we deduce that the restricted flow admits
a unique conservative ergodic U -invariant Radon measure (defined up to a
multiplicative constant) if and only if Γ is convex-cocompact. For example,
the foliated horocycle flow on the projective bundle defined by the Cannon-
Thurston map is uniquely ergodic.

1. Introduction

In the 1930s G.A. Hedlund [13] proved the minimality of the right action of the
unipotent subgroup

U = {

(

1 s
0 1

)

| s ∈ R }

of PSL(2,R) = {±Id}\SL(2,R) on the quotient X = Γ\PSL(2,R) by a cocompact
Fuchsian group Γ. Later H. Furstenberg [11] obtained a stronger result, namely the
U -action is uniquely ergodic. Identifying PSL(2,R) and the unit tangent bundle
of the hyperbolic plane H with the Poincaré metric, when Γ is torsion-free, the
quotient X becomes the unit tangent bundle of the hyperbolic surface S = Γ\H.
In this geometric setting, the U -action on X identifies with the horocycle flow and
we write

hs(Γu) = Γu

(

1 s
0 1

)

for all u ∈ PSL(2,R) and all s ∈ R. Hedlund’s and Furstenberg’s results have been
extended to the case where Γ is finitely generated, but replacing X by the non-
wandering set ΩX of the U -action. Notice that ΩX is also the unique non-empty
minimal invariant closed set for the action of the affine group

B = {

(

a b
0 a−1

)

| b ∈ R, a ∈ R
+
∗
}

onX . In that case, the dynamic properties of the U-action from a double topological
and measurable perspective can be gathered in the following statement:
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Theorem. Let Γ be a finitely generated Fuchsian group.

(1) For any x ∈ ΩX , either xU is periodic or xU = ΩX [8, 10, 13].

(2) For any ergodic U -invariant Radon measure µ supported by ΩX , either µ is
supported by a periodic orbit or µ is the Burger-Roblin measure up to a multiplicative
constant [5, 19, 20, 21, 22].

As explained in [8], it turns out that property (1) is true if and only if Γ is finitely
generated. However, the topological dynamics of the U -action on ΩX is not well
understood otherwise. On the other hand, it follows from Ratner’s work that the
measure µ in property (2) is finite if and only if µ supported by a periodic orbit or
µ is the Haar measure (up to a constant) and in this case the surface S has finite
volume.

In this paper we study the foliated horocycle flow on flat projective bundles
over hyperbolic surfaces. Given a non-elementary Fuchsian group Γ, we consider a
representation

ρ : Γ → PSL(n+ 1,R)

with n ≥ 1. The subgroup Γρ = { (γ, ρ(γ) | γ ∈ Γ } of PSL(2,R)× PSL(n+ 1,R)

acts properly discontinuously on Ỹ = PSL(2,R) × RPn. As this action preserves

the product structure of Ỹ , the projective bundle Y = Γρ\Ỹ over X = Γ\PSL(2,R)
admit a foliation transverse to the fibration π : Y → X (which sends Γρ(u, x) ∈ Y
onto Γu ∈ X). The leaves are 3-manifolds endowed with a natural PSL(2,R)-

geometric structure. Clearly the U -action on Ỹ defined by right translation on the
first factor induces an U -action on Y preserving each leaf. This action defines the
foliated horocycle flow on Y [16]. In the same way, the affine group B acts on Y
preserving each leaf.

Our goal is to prove topological properties of the actions of B and U on Y when
ρ satisfies two conditions, which we call Conze-Guivarc’h conditions :

(CG1) ρ(Γ) is strongly irreducible,

(CG2) ρ(Γ) contains a proximal element.

Both conditions guarantee the existence of a unique non-empty minimal ρ(Γ)-
invariant closed set L(ρ(Γ)) in RPn [7]. It is the closure of the dominant directions
of the proximal elements of ρ(Γ).

The following results extend well known properties of the actions of B and U on
X to the projective bundle Y :

Theorem A. Let Γ be a non-elementary Fuchsian group and ρ : Γ → PSL(n+1,R)
be a representation satisfying conditions (CG1) and (CG2). Then there is a unique
B-minimal set MB ⊂ Y , i.e. MB is a non-empty B-invariant closed set such that
yB = MB for all y ∈ MB.

Theorem B. Under the same assumptions of Theorem A, for each point y ∈ MB,
we have:

yU = MB ⇔ π(y)U = ΩX .

Corollary 1. Let Γ be a non-elementary Fuchsian group and ρ : Γ → PSL(n +
1,R) be a representation satisfying conditions (CG1) and (CG2). Then MB is
U -minimal (and therefore the unique U -minimal subset of Y ) if and only if Γ is
convex-cocompact.
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In the last part of the paper, we will add a strong condition on ρ, called Nielsen’s
condition, implying the existence of a continuous section for π:

(N) ρ induces a continuous map ϕ : L(Γ) → L(ρ(Γ)), called limit map, such that
ϕ◦γ = ρ(γ)◦ϕ for all γ ∈ Γ.

As L(ρ(Γ)) is minimal, the map ϕ is always surjetive. If we denote

Yprox = Γρ\PSL(2,R)× L(ρ(Γ)),

the B-invariant closed set Ωprox = Yprox ∩ π−1(ΩX) inherits from Y a natural
structure of L(ρ(Γ))-fibre bundle over ΩX . By construction, it always contains the
B-minimal set MB. Condition (N) gives arise to a continuous section Φ : X → Y
for the fibration π : Y → X .

Theorem C. Let Γ be a non-elementary Fuchsian group and ρ : Γ → PSL(n+ 1,R)
be a representation satisfying conditions (CG1), (CG2) and (N). Then

(1) MB = Φ(ΩX),

(2) MB is a U -attractor relative to Ωprox, i.e. for any point y ∈ Ωprox and for any
sequence sk → +∞, we have:

hsk(y) → y′ ⇒ y′ ∈ MB.

Corollary 2. Under the conditions of Theorem C, if m is a conservative ergodic
U -invariant Radon measure on Y supported by Ωprox, then the support of m is equal
to MB and there exist a conservative ergodic U -invariant Radon measure µ on X
supported by ΩX such that m = Φ∗µ.

Corollary 3. Under the conditions of Theorem C, assume Γ is finitely generated.
Then there is a unique conservative ergodic U -invariant Radon measure m on Ωprox

(defined up to a multiplicative constant and supported by the unique U -minimal set
MB in Ωprox) if and only if Γ is convex-cocompact. In particular, there is a unique
U -invariant probability measure m on Yprox if and only if Γ is cocompact.

The uniqueness of U -invariant probability measures on Y projecting to Haar
measure on X has been proved by C. Bonatti, A. Eskin and A. Wilkinson [4] when
Γ has finite covolume. Here we use Nielsen’s condition (N) to deduce a similar
property, both for finite and infinite measures, from the existence of a topological
attractor. However, a strictly ergodic approach can be applied to prove Corollary 3
for Y under conditions (CG1) and (CG2). Details will be discussed elsewhere.

2. Preliminaries

A matrix A ∈ SL(n+1,R) is said to be proximal if A admits a simple dominant
real eigenvalue λA. Let wA ∈ R

n+1 be an eigenvector associated to λA and χA ∈
RPn its direction, also called dominant for A. Further, we have the decomposition

R
n+1 = RwA ⊕WA

where

WA = {w ∈ R
n+1 |λ−k

A Akw → 0 as k → +∞}.

Definition 1. Let G be a subgroup of SL(n+ 1,R). We say G is:

(CG1) strongly irreducible if there does no exist any proper non-trivial subspace of
R

n+1 invariant by the action of a subgroup of finite index of G;

(CG2) proximal if G contains a proximal element A.

Both conditions will be called Conze-Guivarc’h conditions.
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Conditions (CG1) and (CG2) are satisfied by G if and only if they are satisfied by
its Zariski closure in SL(n+ 1,R) [7]. But these conditions do not imply that G is
Zariski dense in SL(n+ 1,R) (since SO(n, 1) satisfies (CG1) and (CG2)).

Proposition 1 ([7]). Let G be a subgroup of SL(n + 1,R) satisfying (CG1) and
(CG2). Then

L(G) = {χA ∈ RPn |A ∈ G proximal }.

is the unique G-minimal set in RPn. �

Remark 1. Assume G ⊂ PSL(n + 1,R) is discrete and consider the G-action
induced on Lc(G) = RPn−L(G). For n = 1, as this action is properly discontinuous,
the set L(G) is a G-attractor (i.e. for any point ξ ∈ RP1 and for any non stationary
sequence gk in G, the condition gk.ξ → ξ′ implies ξ′ ∈ L(G)) which captures the
proximal dynamics of G. However, for n ≥ 2, these properties are not true in
general as the following example proves.

Example 1. Consider R3 equipped with the Lorentz quadratic form

q(x) = x2
1 + x2

2 − x2
3.

For i = −1, 0, 1, denote Hi = { x ∈ R
3 | q(x) = i} and let p : R3 − {0} → RP2

be the canonical projection. Let SO+(2, 1) be the connected component of the
identity in the group SO(2, 1) of orientation-preserving linear isometries of q and
take a discrete subgroup G of SO+(2, 1). If G is non-elementary and contains
no elliptic elements, then G\H+

−1 is isometric to a hyperbolic surface S, where

H+
−1 = H−1 ∩ { x ∈ R

3 |x3 ≥ 0 } (see [8]). The limit set L(G) is contained into

p(H+
0 − {0}). For any vector x ∈ H1, the orthogonal plane (with respect to q)

intersects H0 along two lines D1(x) and D2(x). Let H1(G) be the set of vectors
x ∈ H1 such that the directions of D1(x) and D2(x) belong to L(G). This is a
G-invariant closed subset of R3 − {0}. According to [8, Proposition VI.2.5], the
dynamics of the G-action on H1(G) is dual to that of the geodesic flow on the non-
wandering set of T 1S. In particular, the G-action on H1(G) has dense orbits (see
[8, Property VI.2.12]), as well many non-empty proprer minimal sets, and hence
the G-action on the closure F(G) of p(H1(G)) in RP2 also has dense orbits, as
well many non-empty invariant closed sets F ⊂ F(G) such that L(G) ⊂ F . In
conclusion, the G-action on Lc(G) is not discontinuous and L(G) is far from being
a G-attractor.

Let Γ be a non-elementary Fuchsian group and ρ : Γ → SL(n+1,R) a representa-
tion satisfying conditions (CG1) and (CG2). Theorems A and B will be proved using
a dual approach. Namely, as the linear action of Γ on E = {±Id}\R2−{0} and the
projective action of Γ on RP1 are conjugated to the Γ-actions on PSL(2,R)/U and
PSL(2,R)/B respectively, both actions are dual to the U -action and the B-action
on X = Γ\PSL(2,R).

In our case, the linear and projective actions extend to actions of

Γρ = { (γ, ρ(γ) | γ ∈ Γ }

on E × RPn and RP1 × RPn. As before, they are dual to the U -action and the B-
action on the flat projective bundle Y = Γρ\Ỹ over X where Ỹ = PSL(2,R)×RPn.
From a geometrical point of view, Y is the unitary tangent bundle to the foliation
by hyperbolic surfaces on Γρ\H×RPn which is induced by the horizontal foliation
on H× RPn.

Theorem A*. Under the assumptions of Theorem A, there is a unique non-empty
minimal Γρ-invariant closed set M ⊂ RP1 ×RPn. Moreover M ⊂ L(Γ)×L(ρ(Γ)).
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The relation between the sets MB and M considered in Theorems A and A* is
given by

MB = {Γρ(u, χ) ∈ Y | (u(+∞), χ) ∈ M},

where u(+∞) is the endpoint of the geodesic ray associated to u ∈ T 1
H.

For each vector v ∈ E, denote v̄ ∈ RP1 its direction. Clearly the set

E(Γ) = { v ∈ E | v̄ ∈ L(Γ) }

is dual to ΩX and the set

E(M) = {(v, χ) ∈ E × RPn | (v̄, χ) ∈ M}.

is dual to MB.

Theorem B*. Under the assumptions of Theorem A, for each pair (v, χ) ∈ E(M),
we have:

Γρ(v, χ) = E(M) ⇔ Γv = E(Γ).

3. Proof of Theorems A* and B*

Let Γ be a non-elementary Fuchsian group and ρ : Γ → PSL(n + 1,R) be a
representation satisfying (CG1) and (CG2). Take (γ,A) ∈ Γρ with A proximal and
denote χA ∈ RPn the dominant direction of A. Since A has infinite order, γ is
hyperbolic or parabolic. Consider γ+ = limk→+∞ γk(z) for any z ∈ H.

Lemma 1. For any non-empty Γρ-invariant closed set F ⊂ RP1 × RPn, we have
(γ+, χA) ∈ F .

Proof. Since RP1 is compact, F projects on a ρ(Γ)-invariant closed subset of RPn

containing L(ρ(Γ)). It follows that there exists ξ ∈ RP1 such that (ξ, χA) ∈ F . If
ξ 6= limk→+∞ γ−k(z), then limk→+∞ γk(ξ) = γ+ and hence

lim
k→+∞

(

γk(ξ), ρ(γk)χA

)

= lim
k→+∞

(

γk(ξ), AkχA

)

= (γ+, χA) ∈ F.

Otherwise, by the irreducibility condition (CG1), there exists γ′ ∈ Γ− < γ > such
that ρ(γ′)χA does not belong to the projection WA of WA into RPn. Since Γ is
discret, we have γ′(ξ) 6= ξ. As a consequence, we have:

lim
k→+∞

(

γk(γ′(ξ)), Akρ(γ′)χA

)

= (γ+, χA) ∈ F. �

Proof of the Theorem A*. By Lemma 1, the intersection of all non-empty closed
Γρ sets contains

M = { (γ+, χA) | γ ∈ Γ, A = ρ(γ) proximal } ⊂ L(Γ)× L(ρ(Γ)).

Thus M becomes the unique minimal set for the Γρ-action on RP1 × RPn. �

Remark 2 (on the shape of M). (1) If ρ is not injective, then M = L(Γ) ×
L(ρ(Γ)) because N = Ker ρ is a normal subgroup of Γ and then L(Γ) = L(N).

(2) A similar conclusion holds if ρ is indiscrete (in the sense that ρ(Γ) is not discrete).
Indeed, let γk be a non-stationary sequence of elements of Γ such that ρ(γk) → Id.
Passing to a subsequence if necessary, there exist two points ξ− and ξ+ in RP1 such
that

lim
k→+∞

γk(ξ) = ξ+

for any ξ 6= ξ− (see for example [2, Lemma 2.2]). For any χ ∈ L(ρ(Γ)), take an
element (ξ, χ) ∈ M such that ξ /∈ Γξ−. Since Γ is non elementary, such element
always exists. For any γ ∈ Γ, we have:

lim
k→+∞

(

γγkγ
−1(ξ), ρ(γγkγ

−1)χ
)

= (γ(ξ+), χ).
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Therefore Γρ

(

γ(ξ+), χ
)

⊂ M and hence L(Γ)× L(ρ(Γ)) = M.

(3) In the opposite side, if n = 1 and ρ is the natural inclusion of Γ into PSL(2,R),
then M = { (ξ, ξ) | ξ ∈ L(Γ) }.

Two lemmas are needed to prove Theorem B*:

Lemma 2. Let Γ be a non-elementary Fuchsian group and ρ : Γ → PSL(n+ 1,R)
be a representation satisfying (CG1) and (CG2). There are two hyperbolic elements
γ1 and γ2 of Γ such that

(1) the dominant eigenvalues λ1 and λ2 generate a dense subgroup of the positive
multiplicative group R

∗

+,

(2) A1 = ρ(γ1) and A2 = ρ(γ2) are proximal.

Proof. Under conditions (CG1) and (CG2), the group ρ(Γ) contains two elements
A1 and A2 which generate a non-abelian free group containing only proximal ele-
ments (see [3, Lemma 3.9] and [12, Lemma 3]). Let γ1 and γ2 be two elements of
Γ such that ρ(γ1) = A1 and ρ(γ2) = A2. Reasoning as in [9], we can replace γ1
and γ2 with two hyperbolic elements of Γ whose dominant eigenvalues λ1 and λ2

generate a dense subgroup of R∗

+. �

For each hyperbolic element γ of Γ, we denote vγ the unit eigenvector in E
associated to dominant eigenvalue λγ . Clearly vγ ∈ E(Γ) since its direction v̄γ =
γ+ ∈ L(Γ). From Theorem A*, it follows that

E(M) ⊂ E(Γ)× L(ρ(Γ)).

Lemma 3. Let (v, χ) ∈ E(M) such that Γv = E(Γ). For any hyperbolic element
γ ∈ Γ such that A = ρ(γ) is proximal, there exists α ∈ R

∗ such that

(αvγ , χA) ∈ Γρ(v, χ).

Proof. Assuming Γv = E(Γ), there exists a sequence of elements γk ∈ Γ such that
the norms ‖ γkv ‖ converge to 0 as k → +∞. Since Γ is non elementary and ρ(Γ)
is irreducible, replacing γk by γ′γk for some γ′ ∈ Γ, up to take a subsequence, we
can suppose:

(1) γkv = akvγ + bkvγ−1 where ak 6= 0 for any k,

(2) ρ(γk)χ → χ0 /∈ WA.

Let pk an increasing sequence of integers converging to +∞ such that λpk

γ ak con-
verges to some α 6= 0. Then we have γpkγkv → αvγ . Let us prove that

Apkρ(γk)χ → χA. (3.1)

Since χ0 /∈ WA, there exist an open neighbourhood V (χA) of χA containing χ0, an
integer N ≫ 0 and a constant 0 < c < 1 satisfying [12, Lemma 3]:

i) ANk(V (χA)) ⊂ V (χA) for all k ≥ 0,

iii) δ(ANkχ1, A
Nkχ2) ≤ ckδ(χ1, χ2) for all χ1, χ2 ∈ V (χA) and for all k ≥ 0,

For k ≥ 0 large enough, we have ρ(γk)χ ∈ V (χA). Assuming pk = Nqk + rk with
0 ≤ rk < N , the inequality

δ(ANqkρ(γk)χ, χA) ≤ cqkδ(ρ(γk)χ, χA)

implies
lim

k→+∞

δ(ANqkρ(γk)χ, χA) = 0

and hence
lim

k→+∞

δ(Apkρ(γk)χ, χA) = 0.



HOROCYCLE FLOW ON FLAT PROJECTIVE BUNDLES 7

This proves (3.1). Finally, we deduce:

lim
k→+∞

(

γpkγkv,A
pkρ(γk)χ

)

= (αvγ , χA) ∈ Γρ(v, χ). �

Proof of the Theorem B*. Let (v, χ) ∈ E(M) with Γv = E(Γ). Take γ1, γ2 ∈ Γ
given by Lemma 2 and its images A1 = ρ(γ1) and A2 = ρ(γ2). Applying Lemma 3,

there exists a real number α1 6= 0 such that (α1vγ1
, χA1

) ∈ Γρ(v, χ) and hence

(α1λ
p
1vγ1

, χA1
) ∈ Γρ(v, χ) (3.2)

for any p ∈ Z. Since Γvγ1
= E(Γ) [8, Theorem V.3.1], by the same argument, we

obtain another real number α2 6= 0 such that

(α1α2λ
p
1λ

q
2vγ2

, χA2
) ∈ Γρ(v, χ) (3.3)

for any pair p, q ∈ Z. As λ1 and λ2 generate a dense subgroup of R∗

+ by Lemma 2,
we deduce from (3.2) and (3.3) that

(λvγ2
, χA2

) ∈ Γρ(v, χ)

for any λ > 0.

For any (v′, χ′) ∈ E(M), since (v̄′, χ′) and (γ+
2 , χA2

) belong to the minimal set
M, there exists a sequence γk ∈ Γ such that

γkγ
+
2 → v̄′ and ρ(γk)χA2

→ χ′.

It follows there exists a sequence λk ∈ R such that

λkγkvγ2
→ αv′ (3.4)

for some α 6= 0. As (λkvγ2
, χA2

) ∈ Γρ(v, χ), we deduce (αv′, χ′) ∈ Γρ(v, χ). The
same argument applies when multiply the two terms of (3.4) by a real number
λ > 0. �

We deduce from Theorem B* that E(M) is a non-empty minimal Γρ-invariant
closed set if and only if E(Γ) is a minimal Γ-invariant closed set. Since this condition
is satisfied if and only if Γ is convex-compact [8, Proposition V.4.3], we retrieve
Corollary 1:

Corollary 4. The set MB is U -minimal if and only if Γ is convex-cocompact

More generally, since RPn is compact, any non-empty minimal Γρ-invariant
closed subset F ⊂ E × RPn projets onto a non-empy minimal Γ-invariant closed
subset p1(F ) ⊂ E. If Γ is finitely generated, then either F projets onto a closed Γ-
orbit or F = E(M) and Γ is convex-compact [8, Theorem V.4.1]. On the contrary,
if Γ is not finitely generated, there exist examples where E(Γ) does not admit any
non-empty minimal Γ-invariant closed subset [14, 17].

Corollary 5. There exist infinitely generated Fuchsian groups Γ such that for any
representations ρ : Γ → PSL(n+ 1,R) satisfying conditions (CG1) and (CG2), the
projective bundle Y does not admit any non-empty U -minimal subset of π−1(ΩX).

4. Proof of Theorem C

In this section, we restrict our attention to the space

Yprox = Γρ\PSL(2,R)× L(ρ(Γ)).

This space is a PSL(2,R)-invariant closed subset of Y for which the induced PSL(2,R)-
action is minimal. From a geometrical point of view, Yprox is the unit tangent
bundle to a minimal lamination by hyperbolic surfaces. Intersecting with π−1(ΩX),
we obtain a B-invariant closed set

Ωprox = Yprox ∩ π−1(ΩX)
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such that:

(i) Ωprox is included in the non-wandering set for the U -action on Yprox,

(ii) Ωprox inherits from Y a natural structure of L(ρ(Γ))-fibre bundle over ΩX with
projection π : Ωprox → ΩX .

By duality, U -orbits in Ωprox are in one-to-one correspondance with Γρ-orbits in
E(Γ) × L(ρ(Γ). Note that MB ⊂ Ωprox is the unique non-empty minimal B-
invariant closed subset of Ωprox.

We also add a new condition on the representation ρ : Γ → PSL(n+1,R), which
we call Nielsen’s condition:

(N) there exists a continuous map

ϕ : L(Γ) → L(ρ(Γ)),

called limit map, such that ϕ◦γ = ρ(γ)◦ϕ for all γ ∈ Γ.

Conditions (CG1), (CG2) and (N) imply ρ is discrete injective and ϕ is surjective.

A wide familiy of representations ρ satisfying conditions (CG1), (CG2) and (N)
can be find in the litterature: for ρ(Γ) ⊂ SO(n, 1) see [24] and for ρ(Γ) ⊂ SL(n+
1, R) Anosov see [15]. In general, even if Γ is finitely generated, ϕ is not necessarily
injective. This is the case for example if γ is hyperbolique and ρ(γ) is parabolic
[23]. One of the most surprising examples is a discrete faithful representation
ρ : Γ → SO(3, 1) of a torsion-free cocompact Fuchsian group Γ that gives raise to
sphere-filling map ϕ : S1 → S2 called the Cannon-Thurston map [6].

Proof of the Theorem C. Assume Γ is non-elementary and ρ : Γ → PSL(n + 1,R)
satisfies conditions (CG1), (CG2) and (N). Under condition (N), we can immedi-
ately deduce the two following facts:

(i) the graph of map ϕ is a non-empty Γρ-invariant closed subset of RP1 × RPn,

(ii) the map ϕ define a continuous section Φ : ΩX → Ωprox given by

Φ(Γu) = Γρ(u, ϕ(u(+∞))).

(1) The unique B-minimal set MB is given by

MB = Φ(ΩX) = {Γρ(u, ϕ(u(+∞))) ∈ Y |u ∈ PSL(2,R), u(+∞) ∈ L(Γ) }.

Indeed, by Theorem A*, we know that the unique Γ-minimal set M ⊂ RP1 ×RPn

coincides with the graph of ϕ. Now our statement follows by duality.

(2) The unique B-minimal set MB is a U -attractor relative to Ωprox. Indeed, take
y = Γρ(u, χ) ∈ Ωprox and assume hsk(y) → y′ for some sequence sk → +∞. Since
Ωprox is U -invariant, y′ = Γρ(u

′, χ′) with u′(+∞) ∈ L(Γ) and χ′ ∈ L(ρ(Γ)). As y ∈
MB implies y′ ∈ MB, the proof reduces to the case where χ = ϕ(ξ) 6= ϕ(u(+∞)).
By construction, there exists a sequence γk ∈ Γ such that

γku

(

1 sk
0 1

)

→ u′ and ρ(γk)χ → χ′

Let us return to the hyperbolic point of view, identifying PSL(2,R) with the unit
tangent bundle T 1

H. In this model, each element u ∈ PSL(2,R) identifies with
u = (u(0), ~u) ∈ T 1

H where u(0) is a point of H and ~u is a unit tangent vector to
H at u(0). Denoting Bu(+∞)(i, u(0)) the Busemann cocycle centred at u(+∞) and
calculated at i and u(0), we have the following conditions [8, Chapter V]:

(a) γk(u(+∞)) → u′(+∞),

(b) Bγk(u(+∞))

(

i, γk(u(0))
)

→ Bu′(+∞)

(

i, u′(0)
)

,

(c) ρ(γk)χ → χ′.
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Properties (a) and (b) imply

lim
k→+∞

γk(u(0)) = u′(+∞).

Since

Bγk(u(+∞))

(

i, γk(u(0)
)

= Bu(+∞)

(

γ−1
k (i), u(0)

)

,

applying again Property (b), we deduce:

lim
k→+∞

γ−1
k (i) = u(+∞).

As a consequence, since ξ 6= u(+∞), we have (see [2, Lemma 2.2]):

γk(ξ) → u′(+∞).

By continuity of ϕ, it follows:

ρ(γk)χ = ϕ(γk(ξ)) → ϕ(u′(+∞)).

Property (c) implies χ′ = ϕ(u′(+∞)) and hence y′ ∈ MB. �

Remark 3. Example 1 shows that we cannot expectMB to be a global U -attractor
in general. This is why we introduced the laminated space Yprox.

Proof of the Corollary 2. Let m be a U -invariant (non necessarily finite) Radon
measure on Ωprox. If m is conservative, then Poincaré’s Recurrence Theorem (see
[1, Theorem 1.1.5] for the discrete version) implies that the set of U -recurrent points

Rprox = { y ∈ Ωprox | ∃ sn → +∞ : hsn(y) → y }

has full-measure, that is, m(Ωprox−Rprox) = 0. Since MB is a U -attractor relative
to Rprox, then Rprox ⊂ MB and therefore m(Ωprox−MB) = 0. As the continuous
section Φ sends homeomorphically ΩX onto MB and m is supported by MB, the
push-forward µ = π∗m is a U -invariant measure µ on ΩX . It is also conservative
and verifies Φ∗µ = m. Finally m is ergodic if and only if µ is ergodic. �

If Γ is finitely generated, as we recall in the introduction, any ergodic U -invariant
measure µ either is supported by a closed orbit or is equal to the Burger-Roblin
measure [5, 22] up to a multiplicative constant. In the last case, µ is conservative, so
Corollary 3 follows from Corollary 2. Namely, under the conditions of Theorem C
and assuming that Γ is finitely generated, there is a unique conservative ergodic U -
invariant Radon measure m on Ωprox (defined up to a multiplicative constant and
supported by the unique U -minimal set MB in Ωprox) if and only if Γ is convex-
cocompact. In particular, there is a unique U -invariant probability measure m on
Yprox if and only if Γ is cocompact. Notice that the unique U -invariant probability
measure on Y (which is obtained by lifting the Haar measure) in [4, Corollary 2.4]
is supported by Yprox. In the counterexample constructed by S. Matsumoto [18]
on a 3-dimensional compact solvmanifold, there is a unique B-invariant probability
measure m supported by the unique B-minimal set MB, but there are uncountable
many U -invariant probability measures (specifically, the ergodic components of m)
supported by uncountable many U -minimal sets.
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F-35042 Rennes (France)

Email address: francoise.dalbo@univ-rennes1.fr


	1. Introduction
	2. Preliminaries
	3. Proof of Theorems A* and B*
	4. Proof of Theorem C
	References

