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HOROCYCLE FLOWS ON CERTAIN
SURFACES WITHOUT CONJUGATE POINTS^)

BY

PATRICK EBERLEIN

Abstract. We study the topological but not ergodic properties of the
horocycle flow {h,} in the unit tangent bundle SM of a complete two
dimensional Riemannian manifold M without conjugate points that satisfies
the "uniform Visibility" axiom. This axiom is implied by the curvature
condition K < c < 0 but is weaker so that regions of positive curvature may
occur. Compactness is not assumed. The method is to relate the horocycle
flow to the geodesic flow for which there exist useful techniques of study. The
nonwandering set QA Q SM for {/j,} is classified into four types depending
upon the fundamental group of M. The extremes that ßA be a minimal set
for {h,} and that Qh admit periodic orbits are related to the existence or
nonexistence of compact "totally convex" sets in M. Periodic points are
dense in Qh if they exist at all. The only compact minimal sets in Qh are
periodic orbits if M is noncompact. The flow (h,) is minimal in S M if and
only if M is compact. In general {A,} is topologically transitive in Uh and the
vectors in Qh with dense orbits are classified. If the fundamental group of M
is finitely generated and Qk = SM then (h¡) is topologically mixing in SM.

Introduction. Horocycles have played an important role in noneuclidean
geometry since its beginning, but horocycle flows on the unit tangent bundle
of an orientable surface were evidently studied seriously for the first time by
Hedlund and Hopf in the 1930's. The horocycle flow was defined for surfaces
of constant negative curvature and was shown to be minimal if M is compact
and ergodic if M has finite area. Apparently there was no study of the
horocycle flow for the case of an arbitrary orientable, noncompact surface
where the nonwandering set of the flow need not be the full unit tangent
bundle, SM, of M.

In this paper we define and study the horocycle flow on the unit tangent
bundle of a more general class of orientable surfaces, the unijorm Visibility
surfaces. We consider arbitrary surfaces of this type, both compact and
noncompact, and we obtain basic information about the nonwandering set
flA Q SM. In particular we classify fiA into four possible types, find criteria for
the existence and classification of dense orbits in QA and the existence and
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2 PATRICK EBERLEIN

density of periodic points in Qh, and describe the minimal subsets of the flow
restricted to flA. For example, we show that the horocycle flow is minimal in
SM, M a uniform Visibility surface, if and only if M is compact. We do not
consider ergodic problems. For recent work in this direction see [11], [18] and
[19].

Uniform Visibility surfaces are surfaces that satisfy the "uniform Visibility"
axiom, a certain condition on geodesies that is implied by the curvature
condition K < — c < 0. However, the geometric condition is much more
general. One can show that any compact surface with Anosov geodesic flow is
a uniform Visibility surface. Moreover, it is shown in [5] that any compact
surface with negative Euler characteristic and without conjugate points along
any geodesic is a uniform Visibility surface. One may create uniform Visibility
surfaces whose curvature has both signs by starting with a complete surface M
of constant negative curvature and modifying the metric in a neighborhood of
a set of points {pa} that lie at a distance > e > 0 from each other. In fact, for
a suitable modification one may obtain a complete metric with Anosov
geodesic flow that agrees with the original metric outside the union of some
neighborhoods {Vj of {pa} and that has prescribed constant curvature ka > 0
on a neighborhood Ua of pa, Ua Q Va. Details of this construction may be
found in [13]. If M is compact, then any small C2 perturbation of such a
metric is also a uniform Visibility metric.

In the first section of the paper we list some basic background results that
are needed for the exposition. Briefly, one studies the geometry of a uniform
Visibility surface M = H/D by extending the action of the deckgroup D on
H, the universal Riemannian covering surface, to the points at infinity, denoted
by H(cc). One defines a limit set L(D) Q H(co) that is invariant under D, and
obtains information about the geometry of M by analyzing the action of D on
UP).

In the second section we define and state the continuity of the horocycle
flow in the unit tangent bundle of an orientable uniform Visibility surface M.
In special cases this section is unnecessary. For example, if M is compact with
K < 0 or with Anosov geodesic flow in SM, then the flow arises from a C1
vector field on SM and is automatically continuous. In general the flow does
not appear to arise from a C vector field (see the discussion in §2), and
consequently the flow maps must be defined explicitly. The construction is
clear but technical and only statements of results are given in this section. The
proofs are found in the Appendix.

In the third section we obtain basic dynamical information about the
horocycle flow. The method, an old one, is to use information about the
geodesic flow in SM to obtain information about the closely related horocycle
flow. We characterize and classify the nonwandering set ßA of the horocycle
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HOROCYCLE FLOWS ON CERTAIN SURFACES 3

flow. We also describe the periodic points of the flow in terms of the
"parabolic" fixed points in the limit set L(D), and we obtain existence
theorems for the periodic points. For example, if nx(M) is finitely generated,
then ßA contains no periodic points if and only if M admits a nonempty
compact, totally convex set (Theorem 3.7). We also show that the periodic
points are dense in ßA if they exist at all.

In the fourth section we apply the results of the third. Some of these results,
particularly those regarding the existence and classification of dense orbits in
SM, are obtained in the case K = — 1, ßA = SM by Hedlund in [15]. We show
that the horocycle flow has a dense orbit in ßA if ßA = SM, and in general ßA,
if nonempty, has a dense orbit except possibly in an exceptional case that we
believe does not occur and in the degenerate case that ßA contains only
periodic vectors (see Theorem 4.1). Assuming that ßA does admit a dense
horocycle orbit we characterize those vectors in ßA whose horocycle orbit is
dense in ßA. As one consequence of this discussion we show that if M is a
noncompact, finitely connected uniform Visibility surface of finite area (or
more generally if ßA = SM), then every horocycle orbit in SM is either dense
in SM or periodic. In this section we also study the minimal sets of the flow.
If the flow is minimal in ßA, then M admits a nonempty compact totally
convex set, and the converse is true except possibly in the exceptional case
referred to above. If M is finitely connected and ßA contains periodic orbits,
then the periodic orbits are the only minimal sets in ßA. In the infinitely
connected case we know little about the minimal sets in ßA except that they
consist entirely of "almost minimizing" vectors (Proposition 4.6). However,
the only compact minimal sets are periodic orbits. (By finitely connected we
mean that the fundamental group is finitely generated. Equivalent conditions
for surfaces without conjugate points are given in Theorem A of [3].)

We conclude §4 with a discussion of topological mixing. Our main result is
that if ßA = SM and M is finitely connected but not necessarily compact, then
the horocycle flow is topologically mixing in SM. In particular this result holds
for all compact orientable surfaces with arbitrary curvature K < 0 and
negative Euler characteristic. The basic technique is due to Brian Marcus [18]
who used it to prove topological mixing in the case that M is compact with
A"<0.

1. Notation and preliminaries. We begin with notation. M will always denote
a complete Riemannian manifold, and d(, ) will denote its Riemannian
metric. All vectors tangent to M will be assumed to have length one, and SM
will denote the bundle of unit tangent vectors of M with p: SM -* M the
projection map. All geodesies of M will be assumed to have unit speed, and
for any vector v in SM, yv will denote the unique geodesic of M whose velocity
at / = 0 is v. The terms maximal geodesic, geodesic ray and geodesic segment
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4 PATRICK EBERLEIN

will denote a geodesic of M defined on R, [0, oo] and a compact interval
respectively. A geodesic ray y is divergent if for any compact subset C of M
there exists a positive number tQ such that y(r) £ M — C for t > tQ. A
geodesic ray is minimizing (on [0, oo]) if d(y0,yt) = t for all t > 0; ultimately
minimizing if there exists a positive number t0 such that d(yt,yt0) — t — t0 for
all / > f0 ; and almost minimizing if d(y0, yt) — t > —A for some positive
number A and all t > 0. A vector v in 5Af is minimizing, ultimately
minimizing, almost minimizing or divergent if the geodesic % has this property.

The rest of this section is a rapid sketch of basic definitions and facts.
Details are omitted and may be found in §§1 through 5 of [10], §§1 and 2 of
[5] or §§1 and 2 of [4].

Two points p and q on a geodesic y are conjugate along y if there exists a
nonzero Jacobi vector field on y that vanishes atp and q. M has no conjugate
points if no geodesic of M has a pair of conjugate points. If M is simply
connected and has no conjugate points, then any two points of M are joined
by a unique geodesic. In the sequel, H will always denote a complete, simply
connected manifold without conjugate points and M an arbitrary complete
manifold without conjugate points. M may be represented as a quotient H/D,
where D is a freely acting, properly discontinuous group of isometries of H.

Definition 1.1. If p and q are distinct points of H, then y denotes the
unique geodesic of H such that 1^(0) = p and ypq(a) = q, where a = d(p, q).
Let V(p,q) denote y'pq(0).

If H is two dimensional, then for any maximal geodesic y of H, H — y
consists of two connected components, each of which is convex in the sense
that it contains the unique geodesic segment joining any two of its points.

Definition 1.2. Let H be two dimensional, and let y be a maximal geodesic
of H. Relative to a fixed orientation of H a point pin H — y lies to the right
(left) of y if for some number / the pair of unit vectors {V(yt,p),y'(t)} has the
same (opposite) orientation. The right (left) halfplane determined by y consists
of those points lying to the right (left) of y.

Assuming now that H has arbitrary dimension and that q, r are points of H
distinct from a point p in H we define •£ (q, r) to be the angle subtended by
V(p,q) and V(p,r), the value lying in [0,t¡].

Definition 1.3. H satisfies the Visibility axiom if for every point/» in H and
every positive number e there exists a positive number R = R(p,e) such that
if y: [a, b] -* H is a geodesic segment satisfying the condition d(p, y) > R,
then <íp (ya, yb) < e. H satisfies the uniform Visibility axiom if the constant R
may be chosen to depend only on e.

H satisfies the uniform Visibility axiom if the sectional curvature K is
everywhere < -c2 < 0. Henceforth we shall assume that either H satisfies the
uniform Visibility axiom or H has nonpositive sectional curvature and satisfies
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HOROCYCLE FLOWS ON CERTAIN SURFACES 5

the Visibility axiom. M = H/D will be called a (uniform) Visibility manifold
(or surface in dimension two). Our arguments will always assume that H
satisfies the uniform Visibility axiom, but they work equally well in the second
case. We use extensively the results of [7] which are also true in the uniform
Visibility case. Some proofs in [7] require modification, but this can be
accomplished using the results of §2 of [4].

Definition 1.4. Geodesies y and a in H are asymptotes if there exists a
constant c > 0 such that d(yt,ot) < c for all t > 0. Geodesies y and a in
M = H/D are asymptotic if they have lifts y and à to H that are asymptotic.
Vectors v, w in SM or SH are asymptotic if the geodesies y, and y^ are
asymptotic.

Let y(co) denote the asymptote equivalence class of the geodesic y, and let
y(-oo) denote the equivalence class of the geodesic y~x : t -* y(—t). A.point at
infinity for H is an equivalence class of geodesies of H, and ¿/(oo) denotes the
set of all points at infinity. A geodesic y is said to join points x, y in //(oo) if
[x,y) = {y(oo),y(-co)} as unordered sets. Let //denote H U //(oo).

Proposition 1.5. Let y be a geodesic in H, and let p be any point of H. Then
there exists a unique geodesic o such that o(0) = p and a is asymptotic toy. If x
and y are distinct points in //(oo), then there exists a geodesic y joining x toy.

The geodesic joining x to y need not be unique (Proposition 5.1 of [10]).
Geodesies y and o of H are equivalent if they join the same points in //(oo).
Geodesies y and o of M = H/D are equivalent if they have lifts to H that are
equivalent.

If p in H and x in //(oo) are arbitrary points let ypx denote the unique
geodesic y such that y(0) = p and y(oo) = x. Let V(p,x) denote y'px(fS). If q,
r are points of H = H U //(oo) distinct from a point/? in //, then let $:p (q,r)
denote the angle subtended by V(p,q) and V(p,r). The space 77 has a cone
topology that makes it homeomorphic to the closed unit «-ball. Relative to this
topology the functions V(p,x) and 3:p (q,r) are continuous in the variables/?,
x and p, q, r.

Isometries of H and limit sets. If ç> is an isometry of H then <p extends to a
homeomorphism of H by requiring that (¡o[y(oo)] = (<p ° y)(oo). Each isometry
<p of H has a fixed point in 7/ since H is an «-ball. If <p has a fixed point in //,
then <p is elliptic, a case we do not consider.

Definition 1.6. Let <p be an isometry of H that generates a freely acting,
properly discontinuous (infinite) cyclic group of isometries of //. Then tp is
parabolic if it has a single fixed point in //(oo), and <p is axial if it has exactly
two fixed points in //(oo).

If <p is a nonidentity isometry of H that generates a freely acting, properly
discontinuous isometry group, then m has at most two fixed points in //(oo) by
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6 PATRICK EBERLEIN

Proposition 2.6 of [5] and hence must be either parabolic or axial. If <p is axial
with fixed points x, y in //(oo), then there exists a geodesic y joining x to y
such that (<p » y)(t) = y(t + c) for all t and some positive number c.

Definition 1.7. Let D denote a freely acting, properly discontinuous group
of isometries of H. Let L(D) be the set of accumulation points in //(oo) of an
orbit D(p), where p is a point of H. L(D) is called the limit set of D and its
complement 0(D) = H(oo) - L(D) is the set of ordinary points of D.

L(D) is a closed, Z)-invariant subset of H(co) that does not depend on the
point p. It is precisely the set of points in U where D fails to act freely and
properly discontinuously. L(D) consists of one point, two points, a Cantor set
or equals //(oo). If M = H/D is two dimensional, then L(D) consists of one
point or two if and only if D = trx (M) is infinite cyclic. If L(D) is an infinite
set, then M admits infinitely many inequivalent periodic geodesies, and the
orbit D(x) is dense in L(D) for each x in L(D).

Definition 1.8. Points x and y of //(oo), not necessarily distinct, are dual
relative to D or simply dual if there exists a sequence <pnQ D such that
<p„(/z) -* x and %l(p) ~* y for every point p in H.

From Propositions 2.6 and 2.8 of [5] we obtain

Proposition 1.9. If L(D) is a single point x, then x is dual to itself. If L(D)
consists of two points x, y then x and y are dual, but neither point is dual to itself.
If L(D) is an infinite set, then any two points of L(D), not necessarily distinct, are
dual.

Horospheres. For details see §3 of [10], §2 of [7] and §2 of [4].
Define B: SHXH -> R by B(v,p) = ltin,^+aad(p,%t) - '• Define a: H

X H X H -* R by
(1) If x E //(oo), then a(p,x,q) = B(V(p,x),q).
(2) UxEH then a(p,x,q) = d(q,x) - d(p,x).

The functions B and a are continuous relative to the product topologies.
Definition 1.10. The horosphere determined by a unit vector v = {q

E H: B(v,q) = 0}. Let L(p,x) denote the horosphere determined by V(p,x);
alternatively, L(p,x) = {q E H: a(p,x,q) = 0). A horosphere at x is a
horosphere L(p, x) for some p in //.

Definition 1.11. A Busemann function f at a point x in //(oo) is one of the
functions/: q -* a(p,x,q).

Proposition 1.12. Busemann functions have the following properties:
(1) Iff is a Busemann function at any point x in //(oo), then \f(p) — f(q)\

< d(p,q) for any points p, q of H.
(2) If fand g are any two Busemann functions at a point x in //(oo), thenf — g

is constant in H. In particular f(yt) - f(ys) = s - t for any geodesic y with
y(oo) = x and for all numbers s, t.
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HOROCYCLE flows on certain surfaces 7

(3) Any Busemann function f at x is CX in H and (gradf)(q) = -V(q,x)for
ail q in H. The level sets of fare the horospheres at x.

Definition 1.13. Let /be a Busemann function at x, L a horosphere at x
and/? a point of L. The inside of L = [q E H: f(q) < f(p) = f(L)), and the
outside ofL = {qE H: f(q) >/(/>)}.

The various minimizing conditions on geodesies of M = H/D can be
formulated usefully in terms of Busemann functions. Let y be a geodesic ray
in //, and let y = 77 ° y be the corresponding geodesic ray in M. Let / be a
Busemann function at x = y(oo). Then y is minimizing if and only if
/(<pyO) > /(yO) for all m in D; ultimately minimizing if and only if /(<py/0)
> S(ytQ) for some tQ > 0 and all <p; almost minimizing if and only if
/(<pyO) > /(yO) - ;4 for all cp and some positive number A. See the argument
of Lemma 7.3 of [10] for details.

2. Definition of the horocycle flow. We assume in this section that M = H/D
is a complete, orientable two dimensional manifold that either has nonpositive
Gaussian curvature or has no conjugate points and satisfies the uniform
Visibility axiom. Fix orientations of H and M so that the projection map
ir: H -* M is orientation preserving. In defining the horocycle flow in SM we
obtain a continuous map h: S M xR-> S M with associated flow maps
h,: v -» h(t,v). We apparently cannot easily obtain this flow from a C1 vector
field on SM in the general situation that we consider. There does exist a
naturally defined vector field Z on SM, and it gives rise to the flow maps (h{)
whenever it is C1 (for example, M compact with K < 0). In general it is not
clear that Z satisfies Lipschitz conditions strong enough to produce unique
integral curves through each point of M. For this reason the construction of
the flow depends upon elementary but technical results that are only stated
here and proved in detail in the Appendix.

Proposition 2.1. Let L(p,x) be an arbitrary horocycle in H. Then there exists
a unique Cx unit speed curve ß: R -» L(p,x) that is a diffeomorphism o/R onto
L(p,x) such that ß(0) = p and the pair {V(p,x),ß'(0)} is positively oriented.

Assuming this fact we may define the horocycle flow in SM. We call the
curve ß the positively oriented parametrization of L(p,x) starting at p.

Definition 2.2. Let / G R and v E SH be given. Define h0 to be the
identity map on SH. If t ¥= 0 and v is written as V(p,x), then define
htv — V(ßt,x), where ß is the positively oriented parametrization of L(p,x)
starting at p.

Proposition 2.3. For any numbers s, t we have hs+t = hs° ht.

Proposition 2.4. Define h: S// X R -> SH by h(v, t) = ht(v). ISSHXR has
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8 PATRICK EBERLEIN

the product topology, then the map h is continuous.

We now define the horocycle flow in SM, M = H/D. If ß is the positively
oriented parametrization of a horocycle L(p,x) that starts at/?, then <p <> ß is
the positively oriented parametrization of L(<pp,<px) that starts at <pp, for any
orientation preserving isometry <p of H. It follows that <p# o h, = h, o tpt in SH
for any /ER and any orientation preserving isometry <p of //. We may define
maps ht: SM -» S M by setting /^(^w) = ir*(h,w) for any vector w e SH
and any /ER. The maps h~t are well defined, and it follows from the
corresponding assertions for the maps ht that h, ° hs = A,+J and A: SM X R
-* SM is continuous.

3. Basic properties of the horocycle flow. In this section we describe for the
horocycle flow the nonwandering set, the periodic vectors and the a and w-
limit sets determined by a vector. Our method is to use information about the
geodesic flow to obtain information about the closely related horocycle flow.
This approach was used by Hedlund, E. Hopf and others [14], [15], [17]. If {gt}
denotes the geodesic flow on SM, then each map gt carries the horocycle orbit
of v onto the horocycle orbit of g,(v). In fact, if s, t are numbers and iz £ SM
is any vector, then

(gt ° A,)(«0 - (*i» ° 8,)(p),
where s* = s* (t, s, v) depends in general on three variables. However, if M has
Gaussian curvature K = 0, then s*(t,s,v) = s, while if M has Gaussian
curvature K = — 1 then s*(t,s,v) = se~'. One can show that if the horocycle
flow arises from a C1 vector field Z on SM, then Z is orthogonal to the C00
vector field V determined by the geodesic flow, relative to the inner product
on SM arising from the Riemannian connection on AÍ.

Our basic hypothesis is still that Af is an orientable uniform Visibility
surface or an orientable Visibility surface with nonpositive Gaussian curva-
ture. Fix compatible orientations of H and M.

A complete flow on a second countable Hausdorff space A' is a homomor-
phism <p of the additive real numbers into the group of homeomorphisms of
X. Let tpt denote tp(/) and let {tp,} denote the entire flow. For each point x in X
there are associated some closed sets that are invariant under each map <p,.

(1) u(x) = {y E X: <p, x -* y for some sequence tn diverging to +oo}.
(2) a(*) = {y E X: <ptax ->y for some sequence tn diverging to -oo}.

These are the to and a-limit sets of x. For each x E X the sets u(x) and a(x)
are contained in the nonwandering set ß   = {x E X: for any open set U
containing x, <p,(U) n U is nonempty for arbitrarily large positive values of /}.
The set ñ  is also closed and invariant under each map <p,.

In the case that we consider X = SM. We denote the horocycle flow in both
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horocycle flows on certain surfaces 9

S H and S M by (h,) and the geodesic flow by {g,}. The invariant sets for {«,}
will be denoted by ah(v), (ch(v) and ßA respectively and those for {g,} by
ag(v), ug(v) and ßg. Let h(v) denote the orbit of v under [ht). Vectors periodic
relative to {A,} will be called h-periodic or simply periodic while vectors periodic
relative to {g,} will always be called g-periodic.

We begin by proving our remark that the map g, carries h(v) onto h(gtv). It
suffices to verify this assertion in SH. Given v E SH and / G R let x — y,(oo)
and let L, LI be the horocycles determined by v, gtv. If / is the Busemann
function at x such that L = /_1(0), then L' = /"'(-i). Then

Kv) = {K(?.*): «61} and A(g,!/) = {K(?',x): q' E L'}.

By Proposition 1.12, J(yqxt) = -t for all q E L and J(yq-x(-t)) = 0 for all
q' E L, which implies that y t E L' and yq-x(—t) G L. Therefore g,«(f)
= h(gtv).

Since {g,} permutes the horocycle orbits it follows that for any v E SM and
any numbers s, t we have (gt ° hs)(v) = (h^ ° g,)(f), where s* = í*(/,í,i>). It
is not difficult to show that s* has the same sign as s.

Proposition 3.1. Lett E Randv E SM be given. Thengtah(v) = ah(g,v),
g,o)h(v) = uh(gtv) andgtQh = ßA.

Proof. If sn diverges to +co (-oo) then it is straightforward to show, using
Lemmas 2.1c and 2.4d (Appendix), that s* = s*(t,sn,v) also diverges to
+00 (-co). This shows that gt permutes the a and «-limit sets. The invariance
of ßA under gt is a consequence of the next result, which should be compared
with Lemma 3.5 of [5].

Proposition 3.2. Let v E SM be given and let v E SH be a UJt oj v. Then
v G ßA if and only if y¡¡(co) lies in L(D) and is dual to itself.

Proof. Suppose first that v E ßA. Choose sequences (flÇR and vn Ç SM
such that tn -* +00, vn -*■ v and ht vn -* v. Let vn and v be lifts to SH of vn and
v such that v~n -* v and choose a sequence <pn Q D such that (%)*ht vn -> v.
We assert that (pnp and %Xp converge to x = ^(oo) for any pointp in //,
which shows that x lies in L(D) and is self-dual.

We show first that tpnp -* x, where p = pfv). Let xn = y¡¡ (oo). By the
choice of <p„ the point qn — p(ht vn) can be written as %lp„> where pn -* p. If
Pn " l^n) ^en the distance from qn to the geodesic ray -^ = y is
> \d(pn,qn) by the argument used to prove fact 2) of Theorem 5.2 of [7].
Hence

¿to«1/». W0» °°)) "* °° and % to*p>v*x*)= "*W'p (**«) -»■ °
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10 PATRICK EBERLEIN

by the uniform Visibility axiom. Therefore

lim <p„p = lim tpnxn = lim ^ (oo) = ^(oo) = x,
n-*oo n—»oo n—»oo     "

where wn = (yn\htnvn. Since ^.p (<p„p,<pnq) -* 0 by the uniform Visibility
axiom it follows that cpnq -* x for any point q in H.

Next we show that <p~xp -* x. Let pn, qn, xn be as above and let on be the
geodesic ray yg¡¡Xii. It suffices to prove that d(pn,on[0, oo)) -> oo, for then
•^p (in'^n) = "^»(^(O)»0^00)) ̂  0 by the uniform Visibility axiom. Then
lim„^xcp~xp = hm^^ = lmv^x,, = x. Suppose that by passing to a
subsequence we can find numbers sn > 0 such that d(pn,onsn) < K* for all zz
and some positive number K*. Now sn -* +00 since d(pn,qn) -* +00 by
Lemmas 2.1c and 2.4d (Appendix). If ̂  is any Busemann function at x„, then
fn(°nsn) = Mln) ~ sn = UPn) ~ sn ""» -°° ty Proposition 1.12. However,
Proposition 1.12 also shows that

UCv*) -A(a)I < ¿(/Wn) < **.
a contradiction. Therefore */(/>„, o„[0,00)) -» +00.

Next suppose that * E L(D) is dual to itself, and let v = (w ° y)'(0), where
y(oo) = x. We show that v E ñA. Let p — y(0). By hypothesis there exists a
sequence <pn Q D such that tpnp -» x and «p^'/z -* x. By Proposition 2.7 of [3]
there exists a point xn E //(oo) such that L(p,xn) — L(<p~xp,xn) and <p~xp
lies to the left of ypXn. The points xn converge to x by the argument proving
fact 1) of Theorem 5.2 of [7]. If ßn is the canonical unit speed parametrization
of L(p,xn) starting at p, then <p~xp = ß„(t„), where /„ -» +00. If vn =
it* V(p>xn) tûen we assert that h, vn -» tz and vn.-> v, which will prove that
v E Qh. Clearly vn-*v since xn -* x. If vn = F(/z,x„) it suffices to prove that
% " (<Pn)*Az/« -* * = ^(/>>*)- Now MK) = p and ^(00) = <p„(x„) so it
suffices to prove that <pn(xn) -» x. But 3^,-1^ (/>,x„) -* 0 since

%;'/»,7^.[0,00)) > \d(p,<p-nxp)

by the proof of fact 2) of Theorem 5.2 of [7]. Hence

<P (<PnP><Pnxn) = *V/, O».*») "* 0>

which implies that limn_i00(pnx/I = lim,,^ ynp = x. This completes the
proof.

Remark. For each iz E SM one can define prolongational limit sets h+(v)
and h~(v) as in Definition 3.2 of [6]. Then v E Slh if and only if v
E h+(v) n h~(v). If r, w are vectors in SM with lifts v, w in SH, then by
arguing as in the previous result one may show that
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h+(v) = h (v) = [w G SM: -$(oo) and ^(oo) lie in L(D) and are dual}.

Compare Proposition 3.7 of [6].
The classification of ßA.

Theorem 3.3. Given M = H/D, one of the following possibilities must occur:
(1) L(D) is a single point x. Then ßA is a connected set consisting of a single

asymptote class of vectors in SM. Every vector in ßA is h-periodic, and D is an
infinite cyclic group of parabolic isometries with fixed point x.

(2) L(D) consists of two points x,y. Then ßA is empty, and D is an infinite cyclic
group of axial isometries with fixed points x andy.

(3) L(D) is a Cantor set or L(D) = //(oo). Either ßA is a connected nowhere
dense subset of SM or ßA = SM. ßA is the orbit /i(ßg) = UieRht(Q) of the
geodesic flow nonwandering set. If M is compact then it has negative Euler
characteristic, and if M is noncompact, then D is a nonabelian free group.

Proof. This result should be compared with Theorem 3.9 of [6]. All of these
cases do occur, and an example of each may be found in [6, p. 499]. In
particular if M is compact then ßg = SM and this implies that ßA = SM.

(1) The fact that D is an infinite cyclic group of parabolic isometries with
fixed point x is proved in Theorem 2.18 of [4]. By Propositions 1.9 and 3.2, ßA
consists of the vectors mn V(p,x), where/? G H is arbitrary. Therefore ßA is an
entire asymptote class of vectors in SM and is a connected set. The fact that
every vector of ßA is A-periodic is proved in the next result, Proposition 3.4.

(2) If L(D) consists of two points x, y, then D is an infinite cyclic group of
axial isometries with fixed points x and y by Theorem 2.18 of [4]. Moreover
that result implies that <p"p -* x and tp~"p -* y for any pin H and a suitable
generator <p for D. Therefore x and y are not self-dual, and ßA is empty by
Proposition 3.2.

(3) The assertions regarding D and L(D) are proved in Theorem 2.18 of [4].
If M is compact, then D contains a free subgroup on an infinite number of
generators by Theorem 1 of [8], which is also valid in the uniform Visibility
case. From Lemma 3.5 of [5] and Propositions 1.9 and 3.2 it follows that
h(iïg) Q ßA. Conversely let v E ßA be given, and let y* G SH be a lift of v.
By Proposition 3.2, x = y,*(co) lies in L(D). Let z be a point in L(D) distinct
from x, and let a be a geodesic such that a(-co) = z and o(oo) = x.
Parametrize o so that o(0) lies on the horocycle determined by v*. Thus
v* = hto'(0) for some number t since o and %* are asymptotes. The vector
w = 7T+ o'(0) lies in ßg by Proposition 1.9 and Lemma 3.5 of [5], and therefore
ßA Q A(ßg) since v = htw and v E ßA was arbitrary.

Suppose that ßA contains an open subset 0 of SM. Then (t^)~ ßA
= (V(p,x): p E H,x E L(D)) contains an open subset U of SH. The fact
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that V: HX //(oo) -» SH is a homeomorphism, where //(oo) has the topology
induced from H and H X //(oo) has the product topology, implies that there
exist open sets A Q H and B Q //(oo) such that V(A X B) Q U
ç fo)"'ßA. Therefore L(Z)) 3 /J and by Theorem 2.18 of [4] L(D) - //(oo).
Hence ßA = SM by Proposition 3.2.

Finally we show that ßA is connected. Let vectors v and w of ßA be given,
and let V(p,x) and V(q,y) be lifts of v and w respectively to SH. If r E H is
arbitrary, then t^ K(r,A:) G ßA by Proposition 3.2. Any arc joining p to r
induces an arc of asymptotic vectors in ßA from v to tt^ V(r,x). By the remark
following Proposition 2.8 of [5] we can find a sequence <p„ Q D such that
q>nx -* y. Therefore

w„ = 7T* KOp;1?,*) = 7^ F(?,<Pnx) -» ît# K(?,y) = w.

The vector w lies in the connected component C(v) containing v since vvn lies
in C(v) for each n. Therefore ßA is connected since v, w were arbitrary.

Periodic vectors. We characterize the A-periodic vectors and derive some
existence theorems and a density theorem. A vector v E SM is parabolic if for
any lift y of y, to H the asymptote class y(oo) is fixed by some parabolic
isometry in the deckgroup D for M.

Proposition 3.4. A vector v G SM is h-periodic if and only ifv is parabolic.

Proof. Suppose that v E SM is A-periodic and choose t =/= 0 so that
h,v = v. If v* E SH is any lift of v, then v* = (<p)*V* = ht(<p+v*) for
some <p in D. The isometry <p fixes x = %»(oo) since v* and <p+v* are
asymptotic. If /? = p(v*) then <p leaves invariant the horocycle L(p,x) by
Proposition 1.12(3) since L(p,x) and L(<pp,x) = <pL(p,x) have the point
<p/? = ju(<p„ t?*) in common. By Proposition 2.15 of [4] <p is a parabolic isometry
and thus v is a parabolic vector.

Conversely let v E SM be a parabolic vector. Let v* E SH be a lift of v,
and let <p G D be a parabolic isometry fixing x = y,*(oo). It follows that <p# i/*
is asymptotic to v*, and moreover y+v* = htv* for some nonzero number f
since <p leaves invariant all horocycles at x by Proposition 2.15 of [4].
Therefore htv = v and v is A-periodic.

As a corollary we obtain

Proposition 3.5. Suppose that ßA contains h-periodic vectors. Then the h-
periodic vectors are dense in ßA.

Proof. Let v E ßA be given, and let V(p,x) E SH be a lift of v. Let
w E ßA be A-periodic, and let F(*7, v) G SH be a lift of w. By the preceding
result y is fixed by some parabolic isometry <p in D. By Theorem 3.3 we may
assume that L(D) is an infinite set, and then since all orbits of D in L(D) are
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dense we may choose a sequence <pn ç D such that yny -* x. For each zz the
point <p„y is fixed by the parabolic isometry q>n<fxpñl an<* nence

vn = **v(p,<pny)

is A-periodic. Since vn -* v and tz was arbitrary the result follows.
Parabolic vectors are also significant for the geodesic flow. The next result

is a combination of Propositions 3.1 and 4.2 of [4]. We remark that if M is not
finitely connected, then by Proposition 4.3 of [4] there exists for each point p
in M a unit vector v in Tp(M) such that v E Slh, vis minimizing but v is not
parabolic.

Proposition 3.6. IfvE S M is parabolic then v is ultimately minimizing. If M
is finitely connected, then any divergent vector v E ßÄ is parabolic.

If ßg is nonempty then one may show from Theorem 2.15 of [4] and Lemma
2.7 of [5] that ßg contains g-periodic vectors. The analogy for ßA is false.

Theorem 3.7. Suppose that L(D) contains at least three points. Then the
following conditions are equivalent.

(1) M is finitely connected and SM has no h-periodic vectors.
(2) M contains a nonempty compact totally convex set A.
(3) For every i;EQ. the maximal geodesic y¡, is contained in some compact

subset of M.
(4) The set ßg is a compact subset of SM.

In the terminology of §4 of [4], (1) is equivalent to the condition that M be
finitely connected and admit only expanding ends. We remark that Qg is
nonempty by Proposition 1.9 and Lemma 3.5 of [5]. By finitely connected we
mean that irx(M) is finitely generated. A subset A of a complete Riemannian
manifold N is totally convex if for any two points p, q of A, not necessarily
distinct, the set A contains all geodesic segments joining p to q. If N has
nonpositive sectional curvature then every closed totally convex subset A is a
strong deformation retract of N. See [1] for a detailed discussion. We note that
M also admits a compact totally convex set A if L(D) contains exactly two
points x andy. If ^4 is the union of those geodesies in //joining x toy, then
ir(Ä) = A is compact and totally convex and in fact A = /i(ßg).

Proof of the theorem. We show that (1) implies (2). By Theorem 3.3
either L(D) = //(oo) or L(D) is an infinite proper subset of //(oo). We
consider these cases separately.

Suppose that L(D) — //(oo). Let p be any point in //, and let Rp C H be
the canonical fundamental domain for D with center

p = {q E H: d(p,q) < d(<pp,q) for all <p in D).
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14 PATRICK EBERLEIN

(See §2 of [3] for basic results about Rp.) If R were noncompact, then there
would exist a point x in //(oo) that is an accumulation point of some sequence
in R . The geodesic ray y_J0, oo) would therefore be contained in Rp since Rp
is closed and starshaped relative to /?. Since x E L(D) it follows from
Proposition 3.2 that (tt o ypx)'(ff) is a minimizing vector in ßA and hence v is
parabolic by Proposition 3.6. This contradicts the hypothesis of (1). Therefore
Rp is compact and M = ir(Rp) is compact. Set A = M in this case.

Next suppose that L(D) is an infinite proper subset of //(oo). Under this
condition we showed in §6 of [4] that M admits a closed, totally convex subset
MQ that is contained in every closed, totally convex subset of M. Proposition
6.4 of [4] shows that M0 is compact under the hypothesis of (1). Therefore (1)
implies (2).

We prove that (2) implies (3). Let A be a nonempty compact, totally convex
subset of M. Given v E ßg there exists a vector n*e!! that is equivalent to
v and such that y,« / G A for all t in R by Lemma 6.3b of [4]. We recall that v
and v* in SM are equivalent if there exist lifts y and o of y, and yv* to H such
that y and 5 join the same points in //(oo). Let y and o be such lifts. For any
point q — y(t) we know that

<q (y(°o),y(-oo)) = <q (ô(oo).â(-oo)) = v.

The uniform Visibility axiom implies that d(q,d) < R for some positive
number R not depending on q. Therefore

V G BrfÄ = {qEM: d(q,A) < R}

for all / in R. The set BR(A) is compact since A is compact. In fact, BR(A) does
not depend on the choice of v E ß .

We prove that (3) implies (1). If M were infinitely connected, then ßA would
contain a minimizing vector v by the remark preceding Proposition 3.6. There
would exist a vector v* in ßg that is asymptotic to v since ßA = A(ß ) by
Theorem 3.3. Therefore yv* would be divergent, contradicting the hypothesis
of (3). Therefore M is finitely connected. If ßA contained an A-periodic vector
v, then v would be parabolic and ultimately minimizing by Propositions 3.4
and 3.6. By choosing a vector v* E 2g asymptotic to v we would obtain a
divergent geodesic y,«, contradicting the hypothesis of (3). This proves that (3)
implies (1) and shows that (1), (2) and (3) are equivalent.

We prove that (2) implies (4). Since ßg consists of unit vectors it suffices to
show that the image \i(üg) is compact in M. In the proof that (2) implies (3)
we showed that there exists a compact subset A of M such that y,/ G A i or all
t in R and all v in üg. It is not difficult to show that /x(ßg) is a closed subset
of M since ß is a closed subset of SM. Therefore /i(ß.) is compact since it is
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a closed subset of A. We have shown that (2) implies (4) and since (4)
obviously implies (3) the proof of the theorem is complete.

As a corollary we obtain

Proposition 3.8. Let M be finitely connected and noncompact, and let
ßA — SM. Then ßA contains h-periodic vectors.

Proof. Proposition 3.2 implies that L(D) — //(oo) since ßA = SM. There-
fore ß„ = SM by Proposition 1.9 and Lemma 3.5 of [5]. If ßA contained no h-
periodic vectors, then ß = SM would be compact by the preceding result.
This can happen only if M is compact, contrary to our assumption.

We conclude this section by characterizing the surfaces described in the
preceding result in a more classical way. The proof is not difficult, but we omit
it since the result is not used.

Proposition 3.9. The following statements are equivalent.
(1) M is noncompact and finitely connected and ßA = SM.
(2) For some point p in H the fundamental domain Rpfor D is noncompact and

its boundary points in //(oo) are fixed points of parabolic isometries and finite in
number.

(3) For every point p in H the fundamental domain R has the properties of (2).

By a boundary point of R in //(oo) we mean a point x in //(oo) that is a
limit of a sequence of points in R . In the terminology of §4 of [4] these
surfaces have finitely many ends, all of them parabolic. If M has Gaussian
curvature K < —c2 < 0, then M has finite area if it satisfies any of the
conditions above.

4. Applications. We begin by investigating the existence of dense orbits of
the horocycle flow {ht} in ßA. Clearly we must assume that itx (M) is not infinite
cyclic for in that case ßA is empty or consists entirely of periodic vectors.

Theorem 4.1. If ßA = S M then {h,} has a dense orbit in ßA. In general
suppose that ßA contains nonperiodic vectors and {ht} has no dense orbit in ßA.
Then there exists a positive number c such that the period of every g-periodic vector
is an integer multiple of c.

As a consequence we obtain

Corollary 4.2. Let SM contain g-periodic vectors vx, v2 with periods cx, c2
such that cx/c2 is irrational. Then ßA is nonempty and{ht) has a dense orbit in ßA.

We believe that the exceptional case in Theorem 4.1 does not occur and that
{zz,} has a dense orbit in ßA whenever L(D) is an infinite set. By Proposition
8.9F of [10] there exist infinitely many inequivalent periodic geodesies in this
case.
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16 PATRICK EBERLEIN

To prove the corollary it suffices to show that L(D) must have at least three
points, for then üg Q fiA admits g-periodic vectors (which are not A-periodic)
by Proposition 2.7 of [5] and Proposition 2.15 of [4]. If L(D) were a single
point, then there would be no periodic geodesies by Proposition 2.15 of [4], for
example. If L(D) consisted of two points, then all g-periods would be integer
multiples of à smallest period since D is infinite cyclic (Theorem 2.18 of [4]).

We now prove the theorem. If ßA = SM then L(D) = //(oo) by Proposi-
tion 3.2 and hence iïg = SM by Proposition 1.9 and Lemma 3.5 of [5]. The
result is now a reformulation of Theorem 5.2 of [7]. The terminology of [7] is
different from that used here; for a uniform Visibility manifold M of arbitrary
dimension and a vector v E SM we constructed in [7] a strong stable set
IV" (v), which is precisely the horocycle orbit h(v) if M is two dimensional.

In the case that ßA = SM we shall need the following result, which is
contained in the proof of Theorem 5.5 of [7] beginning with the second
paragraph.

Lemma 4.1. Let v E Qhbe not almost minimizing and let c > 0 be the period
of some g-periodic vector. Then for every vector w E ßA there exists a number d
with 0 < d < c such that gdw E h(v).

We now complete the proof of Theorem 4.1. Let A0 denote the additive
subgroup of R generated by the periods of all g-periodic vectors. The closure
of A0 in R, denoted by A, is also an additive subgroup of R, and it is easy to
see that either A — R or A consists of integer multiples of some positive
number c. In the latter case all g-periods are integer multiples of c, so it suffices
to prove the theorem by showing that if A = R, then the horocycle flow has
a dense orbit in ßA.

Let v E *ßA be a vector that is not almost minimizing; that is, d(yv0,yvt) — t
-*— oo as / -» +oo. For example, any vector v that is g-periodic is not almost
minimizing. We shall show that regardless of the nature of A, if c' > 0 is any
element of A, then for any vector v* E ßA there exists a number d with
0 < d < c' such that gdv* lies in the closure of the horocycle orbit of v, h(v).
If A = R then A contains arbitrarily small positive numbers c', and it follows
that any vector v E ßA that is not almost minimizing has a dense orbit in ßA.

We may prove the assertion above in the case that c' > 0 lies in An since
An is dense in A. An consists of finite sums 2,=i tn¡w¡, where zzi,- is an arbitrary
integer and vv(- > 0 is the period of some vector v¡ that is g-periodic. We note
that v¡ is not almost minimizing. Replacing v¡ by a suitable translate gtv¡ we
may further assume that vx E h(v) and vi+l E h(v¡) for every z > 1 by Lemma
4.1. Let v* E ßA be arbitrary. Then gtv* E h(vk) for some number / by
Lemma 4.1. Choose an integer n such that nc' < / < (n + l)c'. Since g,v*
E h(vk) it follows that
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gt-nmkwkV* e g-nmkwkKvk) = h(g_nnXkWkVk) - h(vk).

Now h(vk) Ç h(vk_x) since vk G h(vk_x). Therefore

gt-nmkwk-nmk_xwk_xv* E g-nmk.xwk.xh(vk-X) = A(g_„mA1 „^ l^_,) = A(^_,).

Continuing in this fashion we see that gt_nc.v* = gt-nC^mw)^ G n(v). We
have proved the desired result since 0 < t — nc' < c' and t/* G ßA was
arbitrary.

Classification of vectors with dense orbits in fiA.

Theorem 4.3. Suppose that \ht) has a dense orbit in ßA. Then v E ßA has a
dense h-orbit if and only ifv is not almost minimizing.

Proof. This is Theorem 5.5 of [7],
In Theorem 2.3 of [15] Hedlund shows that if M has Gaussian curvature -1,

if ßA = SM and if v E SM is not almost minimizing, then v has a dense
horocycle orbit in SM. He does not remark that the condition that v be not
almost minimizing is also necessary. The necessity of this condition was also
recently observed in [20]. One can show that v E SM is not almost minimizing
if and only if for any lift v* E SH of v the horocycles at x = y,*(°°) have the
following property: given a point/? in H, a positive number R and a horocycle
L at x, there exists an isometry <p in D such that the open disc BR(p) lies inside
<p(L). Hedlund's result is stated in terms of this formulation of the almost
minimizing property.

Corollary 4.3. Let M be noncompact and finitely connected, and let
ßA = SM. Then every orbit of{ht) is either dense in S M or periodic. Moreover,
periodic orbits exist.

Hedlund proved an equivalent formulation of this result in Theorem 2.6 of
[15] for the case that M has Gaussian curvature —1. The fact that his
formulation is equivalent follows from Proposition 3.9.

Proof of the corollary. Every almost minimizing vector v determines a
divergent geodesic yu. Consequently if v is not A-periodic, then v is nondiver-
gent by Proposition 3.6, and thus v is not almost minimizing. There exists a
dense A-orbit in SM by Theorem 4.1, and therefore every A-orbit in SM is
either dense in SM or periodic by the previous result. The existence of periodic
orbits is a consequence of Proposition 3.8.

Minimal sets. If [<pt) is any complete flow on a space X, then a closed subset
A of X is minimal if it is invariant under {<pt} and if the {tp,} orbit of every point
a in A is dense in A. A periodic orbit is the simplest example of a minimal set.

Proposition 4.4. IfA C S M is a minimal set for the horocycle flow, then for
any number t the set gt(A) is another minimal set.
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Proof. The orbit h(gtv) = gth(v) is dense in gt(A) if and only if h(v) is
dense in A. Therefore A is a minimal set if and only if g¡(A) is a minimal set.

Theorem 4.5. The horocycle flow {ht} is minimal in SM if and only if M is
compact. //{A,} is minimal in ßA, then M admits a nonempty, compact, totally
convex set. If M admits a nonempty, compact, totally convex set and if ßA is
nonempty, then the orbit closure h(v) is a minimal subset of ßA for every v E ßA.
Moreover there exists a positive number c such that if A, B are any two minimal
subsets o/ßA, not necessarily distinct, then gd(A) = B for some positive number
d < c.In addition {g,} is a suspension flow in ß over h(v) n tigfor any v E SI .

It follows immediately that if M admits a nonempty, compact, totally convex set
and {A,} has a dense orbit in ßA, then {A,} is minimal in ßA.

Proof. The first statement of the theorem is Theorem 6.1 of [7]. The proof
of that result must be modified; the proof given here is simpler although
identical in outline. If M is compact, then ß = SM since SM has finite
measure relative to the natural Riemannian measure that is invariant under
the geodesic flow. Therefore ßA = SM by Theorem 3.3, and there is a dense
A-orbit in SM by Theorem 4.1. Every vector v E SM is not almost minimizing
since M is compact, and hence h(v) = SM for all tz E SM by Theorem 4.3.
Conversely suppose that {A,} is minimal in SM. Note that fiA is nonempty;
since S M = uh(v) U ah(v) U h(v) for every v E SM, either uh(v) or ah(v) is
nonempty. In fact, ßA = SM for if v E ßA then SM = h(v) Q ßA. If M were
noncompact then for any point p in M there would exist a minimizing geodesic
ray starting at p. The A-orbit of v = y'(0) would not be dense in SM by
Theorem 4.3, which contradicts the minimality assumption. Therefore M is
compact.

Suppose now that ßA is nonempty and that (A,} is minimal in ßA. Then ßA
contains no A-periodic vectors since it never consists of a single periodic orbit
(Theorem 3.3). We assert that M is finitely connected. If this were false, then
ßA would contain a minimizing vector that is not parabolic by Proposition 4.3
of [4]. Therefore h(v) would not be dense in ßA by Theorem 4.3, a contradic-
tion. Thus, M is finitely connected, and by Theorem 3.7, M admits a
nonempty, compact, totally convex set.

Next, assume that M admits a nonempty, compact, totally convex set.
Proposition 3.2 and Lemma 6.3b of [4] show that the geodesic ray y is
nondivergent on [0, oo) for every v E ßA. Therefore any vector v E ßA is not
almost minimizing. Hence if v and w are any two vectors in ßA, then
gdw E h(v) for some number d by Lemma 4.1. Since ßg is compact an
application of Zorn's lemma shows that ßA = A(ßg) contains some minimal
set A. Let v be a vector in A, and let w be any vector in ßA. Then gdw E h(v)
for some number d, which implies that w E g_d(A). The set g_d(A) is minimal
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by Proposition 4.4 and since w was arbitrary this proves that every vector in
ßA lies in a minimal subset. Hence h(w) is a minimal subset for every w E ßA.
Now let A and B be any two minimal sets, possibly the same, and let w E A
and v E B be given. Choose a number d such that gdw G h(v) = B. The
minimal sets gd(A) and B must be equal since they intersect.

Define a number c to be a period if gc(A) = A for some minimal set A. It
follows that gc(B) = B for any minimal set B since J5 = gd(A) for some
number ¿/. If c is a positive period, then ones sees immediately that for any two
minimal subsets A and B in ßA, gd(A) — B for some number d with 0 < d
< c. The set A* of periods of the minimal subsets of ßA forms a closed
additive subgroup of R. If A* — R, then clearly the horocycle flow is minimal
in ßA, while if A* is an additive cyclic group generated by some positive
number c, then c is the smallest positive period for the minimal subsets of ßA.
We remark that if c' > 0 is the period of a vector v that is g-periodic, then
c' E A*. If B = h(v), then the minimal sets B and g¿(B) both contain v and
hence must be equal. Finally it is clear that {g,} is a suspension flow in ß over
h(v) n Üg for any v E tig if {A,} has no dense orbit.

If M does not admit a compact, totally convex set, then the minimal sets are
entirely different.

Proposition 4.6. Suppose that ßA contains an almost minimizing vector. Then
every minimal subset A of ßA consists entirely of almost minimizing vectors.

Corollary 4.7. Let M be finitely connected, and suppose that ßA contains
vectors periodic relative to the horocycle flow. Then the only minimal subsets o/ßA
are the periodic orbits.

Proof of the corollary. This result says that the minimal subsets of ßA
are of the simplest possible type. Note that if ßA contains no periodic vectors,
then M admits a compact, totally convex set by Theorem 3.7. A vector v E ßA
is almost minimizing if and only if it is parabolic, hence periodic, by
Propositions 3.4 and 3.6. The corollary now follows from Proposition 4.6.

Remark. In Corollary 4.3 we actually proved the stronger result that if M
is noncompact and finitely connected and if ßA = SM, then the only closed
sets invariant under the horocycle flow are SM and unions of periodic orbits.

Before proving Proposition 4.6 we shall need the following result.

Lemma 4.6. Let v E ßA be almost minimizing. Then h(v) contains only almost
minimizing vectors.

Proof. Let v E ßA be almost minimizing. Then clearly hs(v) is almost
minimizing for any number s since the geodesies with initial velocities hs(v) are
asymptotic to y,. It suffices to show that uh(v) and ah(v) contain only almost
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minimizing vectors since h(v) = <¿„(v) U aA(iz) U A(iz). We shall consider
only the w-limit case.

Suppose that v* E uh(v), and let sn -* +00 be a sequence such that
vn = hs v -» v*. Let V(p,x) and V(q,y) be lifts to SH of v and 1/* respective-
ly. Then there exists a sequence <pn Ç D such that (<p„)* V(ßsn,x) -» V(q,y),
where ß is the positively oriented unit speed parametrization of L(p,x) that
starts at p. Note, i>„ = tt* F()ßjn,x). There exists a number A > 0 such that
^(V'XO) — ? ^ ~A f°r all / > 0 since f is almost minimizing. It suffices to
prove that given a number e > 0 there exists an integer N > 0 such that

d(%„°'%j) ~t>-(A + d(p,q) + e)

for all zz > A and all / > 0. If this is established, then it will follow by
continuity that d(yv*0,yv, t) - t > -(A + d(p,q)) for all / > 0 since vn -* v*.
This will prove that v* is almost minimizing.

Let e > 0 be given. It follows by continuity of the vector function V that

d(<P„ßsn,q) = d(ßsn,<f>~xq) -> 0   and   <p„x -*y

as zz -» 00 since (tp„)# V(ßs„,x) = K(<p„)8jfl,9„x) -» V(q,y). Choose W > 0
so large that d(ßsn,tp~xq) < e for n > A, and let/be the Busemann function
at x such that L(p,x) — f~x(0). We note that L(ßsn,x) = L(p,x) for every zi
since ßsn E L(p,x). It follows by the discussion at the end of §1 that
f((pp) > —A for all <p E D since d(yvt,yv0) - t > -A for all / > 0. Given an
element <p E Z) we observe that for n > A,

/(<p)3i„) = /(ç#g -/(w;'p) +/(w;1/»).

> -\f(<pßs„) -/(«w;V)l - ^ > -d(q>ßs„,W;xp) - A

= -d(ßsn,<fnx p) -A>-(A+ d(p,q) + s)

since d(ßsn,<p„~xp)<!d(ßsn,<p-xq) + d(<p;xq,<p-]p)<d(p,q) + e. It fol-
lows that d(yvJ,yv0) - t > -(A + d(p,q) + e) for all zz > N and all / > 0
since we have shown that/(<¡p/?.yn) > -(A + d(p, q) + e) for all zz > A and all
q> E D. This completes the proof of the lemma.

Proof of Proposition 4.6. Let A Q ßA be a minimal subset for the
horocycle flow. Suppose that A contains a vector v that is not almost
minimizing. By hypothesis ßA contains a vector w that is almost minimizing.
For some number d, gdw E A(iz) = A by Lemma 4.1. We know that h(gdw)
= A since the horocycle flow is minimal in A, but the lemma above says that
v cannot be in h(gdw) since gdw is almost minimizing. This contradiction
shows that A contains only almost minimizing vectors.
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If M is infinitely connected we do not know what the minimal sets of ßA
actually look like aside from the fact that they contain only almost minimizing
vectors. We believe that in the infinitely connected case there exist vectors
v E ßA such that ah(v) and wh(v) are both empty, and in this case the orbit
h(v) would be a minimal set.

The next result shows that the compact minimal sets of ßA are particularly
simple.

Proposition 4.8. Let A Q ßA be a nonempty compact minimal set for the
horocycle flow. Then either M is compact and A = SM or M is noncompact and
A is a periodic orbit.

Proof. We first dispose of the case that L(D) contains one point or two. If
L(D) is a single point, then every orbit in ßA is periodic by Theorem 3.3. That
result also excludes the possibility that L(D) has exactly two points, for ßA
would be empty in this case. We may therefore assume that L(D) is an infinite
set. If M is compact, then {A,} is minimal in SM by Theorem 4.5, and
A = SM.

We now suppose that M is noncompact, and we show first that ßA is
noncompact. If L(D) = //(oo), then let y be any geodesic in M that is
minimizing on [0, oo). By Propositions 1.9 and 3.2 the velocity vectors y'(i) lie
in ßA for all t > 0, which shows that ßA is noncompact in this case. If L(D) is
an infinite proper subset of //(oo) let y be a geodesic of H such that
y(oo) G L(D) and y(-oo) G 0(D). If w = (n ° y)'(0) then the vectors g_nw
lie in ßA for all positive integers n. If some subsequence of these vectors
converged to a vector w* in ßA, then we could find a sequence tpn Q D and a
number R > 0 such that d(<pnp,y(-n)) < R for all n, where/? = y(0). Hence
<pnp would converge to y(-oo), contradicting the fact that y(-oo) G 0(D).
The vectors g_nw therefore have no cluster point and ßA is noncompact.

We show next that any vector v in A is almost minimizing. Suppose that this
is false for some v in A and let a number c > 0 be chosen as in the statement
of Lemma 4.1. Since ßA is noncompact we can find a vector w in ßA such that
gtw E ßA — A for all |/| < c. This contradicts the conclusion of Lemma 4.1
and the fact that h(v) Q A. Hence v is almost minimizing.

We now show that any v E A is A-periodic, which will complete the proof.
Let v G A be given, and let V(p, x) G SH be a lift of v. Let ß be the canonical
unit speed parametrization of L(p,x). Since the orbit h(v) is contained in the
compact set A there exists a number R > 0 and a sequence <p„ ç D such that
d(%P,ß(n)) < R for each positive integer n. Let \f/x,..., ifrk be those elements
in D such that d(p,\p¡p) < 2R + 1, and let G be the subgroup of D generated
by \j/x, ..., y¡/k. We show inductively that each element <p„ lies in G. Clearly
<Pi G G since d(p,<pxp) < d(p,ß(l)) + d(ß(l),<pxp) < R + 1. Suppose that
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<p„ G D. Then

¿(P,<Pnl Vn+lP) - ¿(<P,,+ lA<Pn/?) < d(<pn+xp,ß(n + 1))

+ d(ß(n + l),ß(n)) + d(ß(n),%p) < 2R + 1

since ¿S has unit speed. Hence %¡xyn+x = tfc f°r some 1 <y < k, and
therefore tpn+x = <pn\pj G G.

We now complete the proof. The surface M* — H/G is finitely connected
since G is finitely generated. Since v is almost minimizing in SM the discussion
in §1 shows that there exists a number c > 0 such that/(<p/?) > /(/?) - c for
all tp E D, where / is a fixed Busemann function at x. In particular /(rp/?)
> /(/?) - c for all rp G G Q D. This implies that v* = (&)„, V(p,x) is almost
minimizing in SM*, where £: // -» A/* is the projection map. By hypothesis
d(<pnp,ß(n)) < /? for each « and hence limn_x<pnp = lim„_i00^(«) = j8(oo)
= x by Proposition 2.13 of [4]. Therefore x E L(G) since each <p„ lies in G.
The vector t?* consequently lies in ßA C SA/*, and by Proposition 3.6 there
exists a parabolic element rp G G such that yx = x. By Proposition 3.4 the
vector v E SM is A-periodic. This completes the proof.

Topological mixing. A complete flow {rp,} on a topological space X is
topologically mixing if for any two open sets O, U of X there exists a number
T = 7/(0, Í/) > 0 such that rp^O) l~l U ¥= 0 for |j| > 7". In the discussion
below we assume that M is a Visibility surface with K < 0. The basic result
of this section is

Theorem 4.9. Let M be a complete Visibility surface with K < 0 such that
<nx(M) is not infinite cyclic. Let A Q ilh be an orbit closure h(z), z E ßA.
Suppose that ßA contains a compact minimal set. Then for any two open sets O,
U of ßA that intersect A there exists a number T = T(0, U) > 0 such that
hs(0) n U # CO for \s\ > T.

The result above is not an assertion of topological mixing since the sets O,
U are open in ßA, not in A. This restriction is necessary, however, for the set
A might be a periodic orbit, for example, a case in which {A,} restricted to A
is not topologically mixing. As corollaries we obtain the following two results.

Theorem 4.10. Let M be a complete Visibility surface with K < 0 such that
•nx (M ) is not infinite cyclic. Let {A,} admit both a dense orbit in ßA and a periodic
orbit in ßA. Then {A,} ¿s topologically mixing in ßA.

Theorem 4.11. Let M be a complete Visibility surface with K < 0 such that
K # 0 and ßA = SM. If irx(M) is finitely generated, then {A,} is topologically
mixing in SM. In particular i/ M is a compact orientable surSace with negative
Euler characteristic and curvature K < 0, then {A,} is topologically mixing in SM.
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Before proving Theorem 4.9 we establish the two corollaries. Theorem 4.10
is an immediate consequence of Theorem 4.9. Consider Theorem 4.11, and let
M be as given there. (In fact, the condition that ßA = SM actually implies that
K & 0, but we omit the details.) If M is compact, then the flow {A,} is minimal
on the compact set S M by Theorem 4.5 above. The topological mixing of {A,}
in SM now follows from Theorem 4.9. If M is noncompact, then SM admits
A-periodic vectors by Proposition 3.8. It follows by Theorem 4.9 that {A,} is
topologically mixing in SM since each periodic orbit is a compact minimal set
and {A,} has a dense orbit in S M by Theorem 4.1. Finally let M be compact
and orientable with curvature K < 0 and negative Euler characteristic. M is a
Visibility surface by Theorem 5.1 of [5], and K # 0 by the Gauss-Bonnet
theorem. Now ß = SM since SM is compact and the geodesic flow preserves
a natural measure arising from a differential form. By Theorem 3.3, ßA = SM,
which reduces us to a case already considered. This completes the proof of
Theorem 4.11.

The proof of Theorem 4.9 uses some rather technical preliminary results.
We merely state them here and give the proofs in Appendix II. In each case
we assume that irx(M) is not infinite cyclic.

Lemma 4.9a. Suppose that {ht} admits a compact minimal set B C ßA. Then
{v E ßA : h(v) is a compact minimal set) is a dense subset of ßA.

Lemma 4.9b. Let B Q ühbe a compact minimal set, and let O be an open
subset of ßA that meets B. Then there exists a number J0 > 0 such that ifJQR
is any open interval of length > j0, then for-any point x E B, hj(x) = {A,(x): /
E J} intersects O.

An arc of an orbit A(x) is a set o = hj(x) = (A,(x): t E J), where / Q R is
an interval, either bounded or unbounded. The parametrized length of o is
defined to be the length of J and is denoted by L(o).

Lemma 4.9c Let B C ßA be a compact minimal set, and let numbers e > 0
andsQ > 0 be given. Then there exists a number T = T(e,s0,B) > 0 such that
for any x E B and any arc o Q h(x) of parametrized length > T we have
L(g-tO)~ L(o)  > Sn.

We are now ready to prove Theorem 4.9. Let A = h(zj Q fiA be given. Let
O, U be open subsets of ßA that intersect A. Choose xx = h, z E O D A and
x2 = hhz E U n A. Choose a number e > 0 and open sets O* C O and
U* C U such that x, E O*, x2 E U* and gt(0*) Q O, g,(U*) Q U for all
|/| < e. Since Arx, = x2, where r = /2 - /,, we can choose O* to be still
smaller if necessary so that hr(0*) C U*. Since {A,} admits a compact
minimal set in ßA, Lemma 4.9a allows us to choose kêO'so that B = h(v)
is a compact minimal set in ßA. Choose s0 > 0 as in Lemma 4.9b to
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correspond to B and U*. The set gt(B) is a compact minimal set by
Proposition 4.4. Choose T = T(e,s0,ge(B)) > 0 as in Lemma 4.9c to corre-
spond to e, ¿Q and ge(B).

We assert that for all |i| > T, hs(0) D U is nonempty. Let C be the curve
{gt(v)'• 0 < r < e}. Then C ç O and it suffices to show that hs(C) n U is
nonempty. This idea and the technique for proving it are due to Brian Marcus,
who used it to prove topological mixing in the case that M is compact with
negative Gaussian curvature [18]. Let a number s with |i| > 7" be given. For
simplicity we consider only the case that s > T. Let v* = gtv, and let
a Q h(v*) be the arc (ht(v*): 0 < t < s}. The arc g_eo Q h(v) consists of
[h,(v): 0 < t < s*), where h^(v) = g~x hs(v*). Now s* > s + s0 by Lemma
4.9c and the choice of T. The interval a* = (ht(v): s < / < s*) is a subarc of
g_err of parametrized length > sQ, and by Lemma 4.9b, o* meets Í/*. The
curve hs(C) joins A^t/) to Af(i;*). To prove that A5(C) D U is nonempty it
suffices by choice of U* to show that each point q of a* is of the form gu(q*)
for some u G [-£,0] and some point q* E hs(C).

Define a map tj: [0,e] -> h(v) by t\(t) = (gj~Xhsgt)(v). The set 7j[0,e] is
contained in h(v) since gt carries A-orbits into A-orbits. Now tj(0) = hs(v) and
i\(e) = h¿t(v), and hence tj[0,e] contains o* Q h(v). Let ? £ «* be given and
choose /0 G [0,e] such that q = tj(í0). Then q — g_,0(?*), where

q* = (Aiftb)(tO G A,(C).

This completes the proof of Theorem 4.9.

5. Appendix I. In this section we prove the results stated in §2. The first
result defines the distance along a horocycle relative to a fixed point on it.

Proposition 2.1. Let L(p,x) be an arbitrary horocycle in H. Then there exists
a unique Cx unit speed curve ß: R -» L(p, x) which is a diffeomorphism o/R onto
L(p,x) such that ß(0) = /? and the pair {V(p,x),ß'(ff)) is positively oriented.

Remark. L(p,x) =/-1(0) where / is the C1 Busemann function q
-* a(p,x,q), and hence L(p,x) is a closed C1 submanifold of H. Recall that
the horocycle L(q,x) ={r£ #:/(/■) =/(?)}. Since (grad/)(?) = -V(q,x)
by Proposition 1.12, it follows that V(q,x) is a perpendicular unit vector field
on L(q,x) for any q in H.

We prove the proposition in a series of lemmas. The parametrization ß of
L(/?, x) defined above will be referred to as the positively oriented unit speed
parametrization oj L(p,x) starting at p.

Lemma 2.1a. Let ßx: I -» L(p,x) andß2:1 -» L(p,x) be two Cx unit speed
curves defined on an open interval I. ///?', (r0) = ß'2(t0)Sor some number t0 in H,
then ßx = ß2 in I.
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Proof. Let /0 = {/ E /: fix(i) = ß'2(t)}. By assumption, /0 is nonempty,
and clearly In is a closed subset of /. Since / is connected it suffices to prove
that /0 is open in /.

Let s E In. Since /?, and ß2 are nonsingular at s, there exists a neighborhood
U of ßx(s) = ß2(s) in L(p,x) and intervals /,, J2 in / containing s such that
ßx : Jx -» U and ß2: /2 -+ Í/ are C1 diffeomorphisms. The map

p = )521 °ßx:Jx-»J2

is therefore a C1 diffeomorphism, and hence /?,(/) = jS2(pO f°r all * m 4-
Differentiating we obtain the relation ß\ (t) = p'(i)ß'2(pt) in Jx. Since ßx and ß2
are both unit speed curves \p'(t)\ = 1 in Tj, and since p(s) = í and p'(s) — 1,
it follows that p(t) = t'mJx. Therefore ßx = ß2 in Jx, and this proves that /0 is
open in /.

Lemma 2.1b. There exists a one-one Cx unit speed curve ß: R -» L(p,x) such
that ß(0) = /» azz¿ (F(/z,x),/}'(0)} is positively oriented.

Note that the lemma does not assert that ß(R) = L(p,x).
Proof. Since L(p,x) is a closed C1 submanifold of H of dimension one,

there exist an e > 0 and a C1 map ß: (-e, e) -* L(/z, x) such that ¿8(0) = p and
j8 is a diffeomorphism of (-e,e) onto its image, an open subset of L(p,x). By
reparametrizing ß we may assume that ß has unit speed and that {V(p,x),
ß'(0)} is positively oriented. Now let J0 be the union of all open intervals J
containing zero for which there exists a C1 unit speed curve ßy. J -* L(p,x)
such that ßj(0) = p and {V(p,x),ß'j(0)} is positively oriented. The interval /0
is nonempty and equals (—A,B) for some positive extended real numbers A,
B. Since ß'j(0) is the same for all intervals /, the previous lemma implies that
any two of the maps ßj agree on the intersection of their domains. We
therefore obtain a well-defined C1 unit speed curve ß: J0 -» L(p,x) such that
ß(0) = p and {V(p,x),ß'(0)} is positively oriented. We assert that J0 = R. If
this were false, then either A or B, say B for convenience, would be finite. Let
/„ be a sequence in J0 converging to B. The points /?(/„) have distance < /„
from/> = ß(0) since ß is a unit speed curve, and therefore we may assume that
/?'(/„) converges to a unit vector v at a point q by passing to a subsequence.
The vector v is tangent to L(p,x) at q since the vectors ß'(tn) are tangent to
L(p,x) and L(p,x) is a closed subset of //. The pair {V(q,x),v} is positively
oriented since the pairs {V(ßtn,x),ß'(tn)} are positively oriented for each zz.
There exists an open interval / containing B and a C1 unit speed diffeomor-
phism j8: /-» L(p,x) such that )S(/) is an open set of L(p,x) containing
q = ß(B) and ß'(B) = v. Let /* be an open subinterval of / containing B
whose closure is also contained in /. Since /?(/*) is a neighborhood of q in
L(p,x), ß(tn) E ß(I*) for sufficiently large zz. Choose numbers /* in /* such
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that ß(tn) = ß(t*). The numbers t* converge to B since ß is one-one on /.
Note that ß'(t„) = ß'(t*) since these are both unit vectors tangent to L(p,x)
at the same point and having the property that the orthogonal pairs

{V(ßtn,x),ß'(tn))   and   {V(~ßt*,x),ß'(t*)}

are positively oriented. The previous lemma implies that ß(t) = ß(t + t„- t*)
in [t*,B). Because this is true for all n the difference tn - t* must be constant,
and this difference must be zero since both sequences tn and t* converge to B.
Therefore ß agrees with ß on some interval (tQ, B), and this implies that ß may
be extended to (-A,B + e) for a small number e > 0. This contradicts the
maximality of J0 = (-A,B) and shows that J0 must be R. The fact that ß is
one-one follows from the next result and the fact that ß(t) and ß(-s) lie on
opposite sides of ypx for any positive numbers s, t.

Lemma 2.1c. Let I be an open interval containing zero, and let ß: I -* L(p,x)
be a Cx nonsingular map with ß(0) = p. Then the derivative of the function
t -* d(ß0,ßt) is defined and positive for any ty 0 in I. Moreover if I contains
[0, oo ), then

d(ßO,ßt) -» oo   <w/-»oo.

Proof. Let f(t) = d(ßO,ßt). By Lemma 2.3 of [4] it follows that j'(i)
= -(ß'(t), V(ßt,p)) for all / > 0, where /? = ß(0). If J'(t0) were zero for
some t0 > 0, then V(ßt0,p) and V(ßt0,x) would be collinear because Propo-
sition 1.12 implies that

mtoWiß^x) = -(jo js)'('ö) - o.
where/is the Busemann function q -* a(p,x,q) whose zero level set is L(p,x).
Therefore ß(tQ) must lie on both L(p, x) and ypx, which implies that ß(t0) = /?.
Since ß'(0) ¥= 0, ß(t) # p for small numbers t > 0. Therefore there is a
smallest positive t for which/'(0 = 0, and we may assume that /„ is this value.
Since /(0) = 0 and /(/) > 0 for 0 < t < f0, it follows that /'(/) > 0 for
0</</0. This contradicts the fact that ß(t0) = p, and therefore we
conclude that/'(0 > 0 for all / > 0 in /. _

Suppose now that / contains [0, oo). For any r > 0 let Br(p) denote the
closed ball of radius r and center/? = ß(0). Since/'(O = ~(ß'(t), V(ßt,p))
> 0, an argument similar to that of the previous paragraph implies that there
exist numbers Ô, and 82 such that

0 < 5, < * (V(ßt,p), V(ßt,x)) < Ô2 < m

for any / > 0 such that ß(t) E Br(p). Therefore J'(t) > 5 > 0 for some
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8 > 0 and any / > 0 such that ß(t) E Br(p). It follows that ß(t) leaves Br(p)
forever after a time interval of length at most r/8. Since r > 0 is arbitrary this
shows that /(/) -* oo as / -* +00.

Lemma 2.Id. Let /?: R -» L(p,x) be any Cx unit speed curve. Then ß(R)
= L(p,x).

Proof. The previous result implies that ß(R) is a closed subset of L(p,x).
Also ß(R) is an open subset of L(p,x) since ß is a nonsingular map of one
dimensional manifolds. It suffices therefore to prove that L(p,x) is connected.
By Proposition 3.4 of [10] there exists a homeomorphism \p: H -* L(p,x) X R,
where L(p, x) X R has the product topology. Since H and R are connected and
L(p,x) X R has the product topology, it follows that L(p,x) is connected.

We now complete the proof of Proposition 2.1. The lemmas have shown
that there exists a C1 bijective unit speed map ß: R -» L(p,x) such that
ß(0) = p and {V(p,x),ß'(0)} is positively oriented. Clearly ß is a diffeomor-
phism. The uniqueness of ß follows from Lemma 2.1a.

We now define the horocycle flow in SH.
Definition 2.2. Let / E R and v E SH be given. Define A0 to be the

identity map on SH. If / ¥= 0 and x = x(oo) define h,(v) — V(ßt,x), where
ß is the positively oriented unit speed parametrization starting at p = p(v) of
the horocycle in H determined by v, namely {q E H: B(v,q) = 0}.

The map B: SH X H -» R is defined in §1.

Proposition 2.3. For any numbers s, t in R, ht+s — ht ° hs.

Proof. Let v E SH be given, and let w = hs(v). Let p and q be the points
of tangency of v and w respectively, and let x = y,(oo) = 1^,(00). Then
L(p,x) = L(q,x) by Proposition 1.12 since both horocycles contain the point
q. Let ß: R -» L(p, x) denote the positively oriented unit speed parametriza-
tion of L(p, x) starting at p. If we define a(u) = ß(s + u) for all u in R, then
it is easy to see that a is the positively oriented unit speed parametrization of
L(p, x) = L(q, x) starting at q. Finally,

A,(V) - h,(w) - V(cxt,x) = V(ß(s + t),x) = A/+».

Define the usual flow map A: SH x R -* S H given by h(v,t) = h,(v).

Proposition 2.4. If SHXR is given the product topology, then the map
A: S// X R -» S H is continuous.

It is convenient for the proof to introduce the "canonical" parametrization
o of a horocycle L(p,x) that starts at p. Let a(0) = p. For / > 0 let a(/) be the
unique point of L(p,x) that lies to the left of y at a distance / from p. If
/ < 0, let o(/) be the unique point of L(p,x) that lies to the right of y„x at a
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distance |/| from/z. The map a: R -» L(p,x) exists and is onto by Lemma 2.1c.
The proof of Proposition 2.4 consists of a series of lemmas.

Lemma 2.4a. The map a: R -> L(p,x) starting at p is C and nonsingular at
any value t =£ 0.

Proof. It suffices to consider the case where / > 0 since the definition of a
depends upon the orientation of //. Given / > 0, we may choose a C
diffeomorphism p: (—e,e) -» L(p,x), where p(-e,e) is a neighborhood of
a(t) = p(0) in L(p,x). Let k(s) = d(p,ps). Since p'(s) is orthogonal to V(ps,x)
for all s, k'(0) = -<p'(0), V(p(0),p)) # 0 by Lemma 2.3 of [4] and the fact
that p, a(t) and x are not collinear. Therefore, k is nonsingular on some
neighborhood of s = 0, and for some 8 > 0, k: (-8,8) -* (a,b) is a diffeo-
morphism where / = A:(0) is a point in (a,b). If g: (a,b) -* (-8,8) is the
inverse of k, then ä = p°g is aC1 nonsingular curve defined on (a,b). By
definition, à(t) = p(0) = a(t) and d(p,âs) = í for all s in (a,b). Therefore
à = a in (a, A) and this proves that a is C1 and nonsingular at /.

Lemma 2.4b. Let vn be a sequence of unit vectors in H that converge to a unit
vector v. Let pn andp be the points of tangency ofvn and v, and let an and a be the
canonicalparametrizations starting atpn andp of the horocycles determined by vn
and v respectively. Let tn be a sequence of numbers converging to a number / # 0.
TAeVZ

<('») "* a'W as " -* °°-

Proof. We again consider only the case where / > 0. We show first
that a„(/„) -» a(t) as zz -» oo. Since d(pn,antn) = t„, the sequence «„(/„) is
bounded in //. If q is a cluster point, then an(tn) -» q by passing to a
subsequence. The hypothesis implies that B(vn,antn) = 0 for all n. Therefore
B(v, q) = 0 and d(p, q) = / by continuity. Now q lies to the left of -^ since the
orientation of the pair {v, V(p,q)} equals the positive orientation of the pair
{vn, V(pn,antn)} for sufficiently large n. Thus q = a(t), and since q was an
arbitrary cluster point of an(tn) it follows that an(tn) -* a(t).

To show that a'n(tn) -* a'(t) we shall need to show first that ||a„(/„)|| is a
bounded sequence of real numbers. Let wn = a„(/„)/||a„(/n)||, and let wn
converge to a unit vector w at a(t) by passing to a subsequence. Since
s = d(pn,a„s) for all s > 0 and all n, by differentiating both sides we obtain
the equation

1 = -(a'n(s), V(a„s,p„)\

In particular
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1 = -<an(tn),V(antn,pn)} = -||a;(^)||<%,K(a^„,/?„)>.

If ||añ('«)ll were unbounded, then (w, V(at,p)/ would equal zero for reasons
of continuity. However, (w, V(at,x)} =■ 0 since (wn,V(antn,xn)} = 0 for
every n, where x = Y,(oo) and xn = y, (oo). Since a(t) is distinct from p it
cannot lie on both L(p,x) and y x, which yields a contradiction. Therefore
||a„(f„)|| is bounded and a'n(tn) has a cluster point w* at a(t). By continuity it
follows that (w*,V(at,x)) = 0 and 1 = -<w*, V(at,p)} since (a'„(tn),
V(antn,xn)y = 0 and 1 = -«(/„), V(ant„,pn)} for every n. Now <a'(f),
V(at,x)} = 0, and 1 = -(a'(t), V(at,pj) as one sees by differentiating the
equation t = d(p, at). Therefore it follows that w* = a'(t), and since w* was
an arbitrary cluster point of a'n(tn) we conclude that a'n(tn) -* a'(t) as n -* oo.

Lemma 2.4c. Let vn, v, pn, p, an and abe as in the statement oj the previous
lemma. IJ sn is any sequence of nonzero numbers that converges to zero, then
KWII -* ias n -* °°-

Proof. Let sn be a sequence of nonzero numbers that converges to zero. We
may assume without loss of generality that every sn is positive since the
definition of the canonical parametrization an depends upon the orientation of
//. Differentiating the equation / = d(pn,ant), which holds for t > 0 and all
n, we obtain the equation

1 - -«(/),Viant>Pky> = -\\a'n(t)\\™s9n(t),

where 9n(i), measured between 0 and it, is the angle subtended by a'n(t) and
V(ant,pn). Thus ||a„(i)|| > I and 9n(t) > ir/2 for all n and all t > 0. Suppose
that llañCOII ̂  I > 1 for some number tj and all n by passing to a
subsequence. Now

V(ansn>xn) = hs*V(Pn>xn)

for some s* > 0, where xn = % (oo), and therefore

V(Pn>xn) = h-st V(ansn>xn)>

which implies that pn lies to the right of -^ s    . Therefore

# = < (V(ansn,pn), V(ansn,xn))

= W - < K(sn), V(ansn,xn)) = 9n(sn) - v/2.

Since ||a;(i„)|| > tj > 1, there exists a number 8 > 0 such that m/2 < 9n(sn)
< w - 8, and consequently 0 < 9* < tt/2 - 5 for every n.

Consider the circle Cn of radius 1 with center p'n = ^, x (1) that passes
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through ansn. Let on be the unit speed geodesic such that o-„(0) = a„(s„) and
o„(s„) = p„. The fact that 0* < 77/2 - 8 implies that an initial segment of an
of length en lies within the circle Cn. Since the centers p'n of Cn are a bounded
sequence in H and the radii equal 1, one may choose an e > 0 such that
e„ > « > 0 for all zz. The interior of Cn is contained in the interior of the
horocycle L(ansn,xn) = L(pn,xn) for all n, and consequently o„(0,e] lies
inside L(ansn,xn) for all zz. This contradicts the fact ihatpn = on(s„) lies on
L(ansn,xn) and sn -* 0 as n -» 00. This contradiction proves that ||afl(i„)||
-» 1 as zz -» 00.

One could end the proof of the lemma here, but the assertion that the
numbers en are bounded below by some e > 0 requires more justification. If
gn(t) = d(ont,p'„), then

8"n(t) =-Wn(t\\{l)rV„y = ±k„(ont),

where Wn = V( ,p'n) is the inward normal vector field for all circles with center
p'n, and kn(q) denotes the geodesic curvature at q of the circle with center p„
that passes through q. Let the Gaussian curvature be bounded below by -c2
on a compact set C containing all circles with center p'n and radius < 2. A
standard comparison technique shows that the geodesic curvatures of any
circle with center p'n and radius < 2 are not greater than the geodesic
curvatures of a circle of equal radius in the hyperbolic plane with curvature
-c2. Since d(p'n,ansn) = 1, it follows that ^„(o-,,/)! < c • coth(c/2) = B for
0 < / < \ and all zz. Thus \g"n(i)\ < B for 0 < / < ¿ and all n. Now

8n(0) - -Wn(0),Wn(on0)) = -(V(ttnsn,pn),V(a„sn,p'n)y

= -cosf£ < -cos(tt/2 - 8) = -a < 0.

Therefore g'n(t) < 0 for 0 < / < e = o/B, and this implies that on(t) lies
inside Cn for 0 < / < e.

Lemma 2.4d. Let vn be a sequence of unit vectors in H that converges to a unit
vector v, and let tn be a sequence of numbers that converges to a number t. Then
ßn(tn) -» /J(f), where ßn and ß are the positively oriented unit speedparametriza-
tions starting at pn = u(fn) and p = n(v) of the horocycles determined by vn and
v respectively.

Proof. Since d(ßntn,ßnt) < |/„ — /| it suffices to prove tnatßn(t) -* ß(t) as
zz -» 00. This result is trivial if / = 0, and as usual it suffices to consider only
the case where / > 0. Let otn and a be the canonical parametrizations starting
at pn = n(vn) and p = p(v) of the horocycles determined by vn and v
respectively. Choose numbers /* > 0 and /* > 0 such that ßn(t) = an(t*)
and ß(t) = a(t*). By Lemma 2.4b it suffices to show that /*-»/* as n -> 00.
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Since t* = d(pn,ßnt) < t there exists a cluster point s* of the sequence {/*}
and by passing to a subsequence we may further assume that tj -* s . As
e > 0 tends to zero, the length of an between e and t* tends to the length of
ßn between 0 and /, namely t, for any fixed n. Therefore

t = }^ft"\Wn(u)\\du
for each fixed n, and similarly

Í- lim/'*||o'(i.)||<fo.
£-»0+ Jt

Although a'n(0) and a'(0) do not exist we may define ||a;(0)|| = lk(0)|| = 1
and the resulting functions u -* \\a'n(u)\\ and u -» ||o'(«)|| are continuous at
m = 0 by virtue of the preceding lemma. Fixing n, the bounded convergence
theorem implies that

t = ff \WM\du,
where the integrand is defined everywhere in [0,t*]. Similarly t
= Jq* ||a'(«)|| du. We will conclude the proof by showing that f¿" \\a'n(u)\\ du
converges to Jq \\a'(u)\\du. This will show that s* = t*, and since s* is an
arbitrary cluster point of t* it will show that /*->/* as n -* oo. Let
/,(«) = ||an(w)||9Cr0,*](w) oe defined on [0,t], where % denotes a characteristic
function, and let f(u) = ||a'(w)||9C[0jJ*](") be defined on the same interval.
Now/,(m) -»/(«) for m G [0,t] since t* -* s* and a'n(u) -* a'(u) for u # 0 by
Lemma 2.4b. If /? > 1 is an upper bound for ||a'(«)|| on [0,/], then ||an(«)||
< R + 1 for m G [0, t] and all sufficiently large n; one observes that for any
sequence sn in [0, /] that converges to a number s, either ||a„(j„)|| -* \\a'(s)\\ by
Lemma 2.4b if 5 > 0 or ||a„(s„)|| -* 1 by Lemma 2.4c if s = 0. Therefore

jf \\a'M\du=fQJMdu^fQJ{u)du=£ \\a'(u)\\du

by the bounded convergence theorem. This completes the proof of the lemma.
We now complete the proof of Proposition 2.4. Let (vn, tn) be a sequence in

SHxR that converges to a point (v, t). We show that h(vn,tn) -* h(v, t). Let ßn
and ß be the positively oriented unit speed parametrizations starting at
Pn — mOO and/? = p(v) of the horocycles determined by vn and v respectively.
Then h(vn,tn) = V(ßnt„,xn), where xn = Xi¡(oo), and h(v,t) - V(ßt,x),
where x = x(oo). Now xn -+ x since vn -+ v and j8wi„ -> ¿8/ by the previous
lemma. Therefore h(vn, tn) -* h(v, t) by the continuity of the vector function V.
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6. Appendix II. In this section we prove the supporting results of Theorem
4.9.

Proof of Lemma 4.9a. Let B Q ßA be a compact minimal set. If B is a
periodic orbit, then the result follows from Proposition 3.5. If B = ßA == SM
and M is compact, then the result follows from Theorem 4.5. By Proposition
4.8 these are the only cases that arise for B. One can also construct a direct
proof analogous to Proposition 3.5.

Proof of Lemma 4.9b. Suppose that the lemma is false. Then for some
compact minimal set B C ßA and some open subset O of ßA that meets B,
there exist a divergent sequence of positive numbers /„ and a sequence of
vectors vn in B such that O n {h,(vn): -/„ </</„} is empty for each integer
n. Passing to a subsequence we let vn converge to a vector v in B. By continuity
the entire orbit h(v) is disjoint from O, but this contradicts the fact that A(tz)
is'dense in B since B is minimal.

Proof of Lemma 4.9c. Suppose that the lemma is false for some compact
minimal set B Q ßA and some numbers e > 0 and sn > 0. Using Sublemmas
A and B (stated and proved below) we shall show that there exists v* in B such
that L(g_co) = L(o) for any segment o Q h(v*). Assume for the moment that
this has been established. Let v = V(p, x) be a lift of v* for suitable
p E H, x E //(oo).

We assert that the curvature at every point inside the horocycle L(p,x) is
zero. Every point inside L(p,x) is of the form p(gU()ht v) for a suitable u0 > 0
and i0 E R. Let 5 be any segment of A(z7) that contains A, v, and let
L(s) = L(gsb). From the discussion above we see that L(-e) = L(0). By
Sublemma B it follows that K = 0 for all points p(guw), u > 0, w E 5, and
in particular for u(g„0A, v). Therefore K = 0 inside L(p,x).

By Sublemma A, L(p, x) is a geodesic o of //. Therefore if y E //(oo) is a
point such that •£ (x,y) < m/2, then the curvature is zero on y^fO, oo). In
particular, the point x E //(oo) has a neighborhood U in the cone topology
(see [10]) such that K = 0 in U n //. However, x E L(D) by Proposition 3.2
since v* E ßA. Since K is not identically zero in H and x E L(D) we may
choose a sequence <p„ ç: Z> and a point q E H such that ATfa) < 0 and
<pBgr -» x in the cone topology. For large n, <p„q E t/ and K(<pnq) = Ä"fa)
< 0, a contradiction. This will complete the proof of Lemma 4.9c.

Assuming that Lemma 4.9c is false for some compact minimal set B and
some numbers e > 0 and s0 > 0 we now establish the existence of v* in B
such that L(g_to) = L(a) for any segment a £ h(v*). By hypothesis we can
find a sequence of horocycle segments on Q h(v„), vn E B, such that L(on)
-* +00 and L(g_eo-„) < L(on) + s0 for every zz. By changing vn if necessary we
may further assume that on = {ht(vn): -/„</< /„}, where 2/„ = L(on).
From Sublemma B it follows that for any positive number / and all /„ > / we
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have

Ug-eon[-t„,-t\) > L(on[-tn,-t\)   and   L(g_eon[t,t„]) > L(on[t,t„]).

We conclude that

Hg-eo„[-t,t]) < L(on[-t,t\) + s0

for ail / > 0 and all sufficiently large n.
Since B is compact we may let vn converge to v in B by passing to a

subsequence. Let a(t) denote ht(v) for all t in R. The inequality displayed
above and continuity imply that for every t > 0 we have

Hg-A-t'*]) < £(°K'D + so-
By Sublemma B the function <p(/) = L(g_co[-t,t]) - L(a[-t,t]) is nonnega-
tive and nondecreasing in t for t > 0. Therefore there exists lim^^ <p(t) = A
< Sq. Choose a divergent sequence of numbers Tn > 0 such that for all
s > t > Tn we have 0 < rp(s) - rp(r) < l/n. It follows that for any s > Tn we
have

l/n > <p(s) - rp(r„) > L(g_eo[Tn,s]) - L(o[T„,s}).

Now let o*(t) = ö(/ + 2Tn). It follows from the discussion above that

0 < L(g_eo*[-Tn,T„]) - L(o*[-Tn,Tn]) < l/n.

We see from the inequality above and Sublemma B that for any / > 0 we have

0 < L(g_Eo*[-t,t]) - L(o*[-t,t}) < l/n

for all n so large that t < Tn. Now let v* = o*(0) converge to v* in B by
passing to a subsequence. It follows by continuity that for every / > 0

L(g_eo*[-t,t]) = L(o*[-t,t]),

where o*(t) = h((v*). If a is any segment in h(v*) then by Sublemma B we
have L(g_Eo) > L(o). It now follows from the equality above that L(g_co)
= L(o).

We conclude Lemma 4.9c with the statements and proofs of Sublemmas A
andB.

Sublemma A. Let x G //(oo) and p E H be given, and suppose that each
point inside L(p,x) has zero Gaussian curvature. Then L(p,x) is a geodesic of H.

Proof. Let y be the unit speed geodesic, unique up to orientation, that is
perpendicular to y   at p. By Lemma 2.Id in Appendix I, it suffices to prove
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that y(R) Q L(p,x) to conclude that y(R) = L(p,x). For any number / # 0,
<£p (yt,x) = it/2 and this implies that d(yt,ypxs) — s > 0 for all s > 0 by the
law of cosines [10, p. 47]. Hence f(yt) > 0 for all / E R, where / is the
Busemann function at x such that f(p) = 0. To show that f(yt) < 0 for all
/ E R it suffices to show that (/ ° o)(s) < 0 for any s > 0 and any geodesic
o such that <£ (o'(0), V(p,x)) < 7r/2. Suppose that this is false for some such
geodesic a. Now (/ ° o)(s) < 0 for small positive values of s since

(/°a)'(0) = <o'(0),-n/>,*)><0
by Proposition 1.12. Let s0 > 0 be the first positive value for which/© a is
zero. The segment a[0,s0] lies on or inside L(p,x), and therefore for any / > 0
the points on or inside the geodesic triangle with vertices p, o(sn) and y / have
Gaussian curvature zero. Therefore the sum of the interior angles equals it. It
follows that

^as0 (P'x) = K™ <os0 (P'Vpx1) " » - <p (°s0,x) > it/2

since <, (os0,x) < n/2 and ^ xt(p, os0) -> 0 as / -» oo. On the other hand,
(/ o o)(s) < 0 for 0 < s < í0 and therefore

0 < (/• o)'(s0) = (o'(s0),-V(os0,x)y.

This implies that -£5J (p,x) < it/2, a contradiction that completes the proof.

Sublemma B. Let M be a complete surface with K < 0. Let v E S M be given
and let a C h(v) be an arc of parametrized length a > 0. For each number s let
L(s) be the parametrized length of the arc gs(o) Q gsh(v) = h(gsv). Then L(s) is
nonincreasing in s. Moreover if K is negative at some point u(gM w), u E R, w
E o, then L(s) is strictly decreasing on any interval [s', u], where s' < u.

Proof. Recall that u: SM -> M is the projection map. Since the horocycle
flow in SM is induced from that in SH it suffices to prove the result in SH.
Note that the parametrized length of the arc o Q h(v) is just the length of ¡i(o)
in Af or H. Let p, x be those points such that v = V(p,x), and let
a(t), 0 < / < a, be a nonsingular parametrization of o. Define r: R X [0, a]
-* H by r(s, t) = yt(s), where y, = y^ x. Let/be the Busemann function at x
that is zero on p(o). The s-parameter curves are unit speed geodesies belonging
to x, and the /-parameter curves are parametrizations of arcs of horocycles at
x. Hence the s and / parameter curves are orthogonal. Let rs(s,t) and r¡(s,t)
denote r^(d/ds)(s,t) and r^(d/dt)(s,t) respectively. The vector field Y,(s,t)
= rt(s, t) is a Jacobi vector field on the unit speed geodesic y¡: s -* r(s, t) since
all j-parameter curves are geodesies. By [16] or our own unpublished work /is
a C2 convex function. This means that (/ ° y)"(/) > 0 for any number / and
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any geodesic y, or alternatively that < Vw grad/, w> > 0 for any vector w. Note
that (grad/)(r(j,/)) = -rs(s,t) since grad f(q) = -V(q,x) for any q E H by
Proposition 1.12. Henee (Vr¡rs,rt)(s,t) < 0 for all s, t. In particular,

d/ds(Yt(s),Yt(s)) = 2<yr¡rt,rt}(s,t) = 2<yrrs,rt/(s,t) < 0.

This implies thatX*. 0 = II 5,(011 is nonincreasing in s for each / G [0,d\. The
parametrized length of gso equals the length of p(gso): t -* r(s,t). Hence

L(s) = f° \\rt(s,t)\\dt = f°y(s,t)dt
since y(s, t) is never zero. It is now clear that L(s) is nonincreasing in s.

Suppose now that A!"is negative at p(guw) for some u E R and some w E o.
We may write gu w — rs(u, tQ) for some /0 G [0,a]. We show that L(s) is strictly
monotone decreasing on [s', u] for any number s' < u. Assume that this is false
and choose numbers s' < sx < s2 < u such that L(sx) = L(s2). It is well
known that y(s, t) satisfies the Jacobi equation

(d2y/ds2)(s,t) + K(s,t)y(s,t) = 0

where K(s, t) is the Gaussian curvature at r(s, t). Since L(s) is nonincreasing it
follows that L(s) = L(sx ) for all s E [sx,s2], which implies that y(s, t) = y(sx, t)
for allí G [jp^andallf G [0, a]. In particular for j > sx, (dy/ds)(s,tQ) > 0
since

(dy/ds)(sx,t0) = 0   and   (d2y/ds2)(s,t0) = -K(s,t0)y(s,t0) > 0.

Therefore y(s, tQ) = y(sx, /0) for all s > sx since (dy/ds)(s, t0) < 0 for all s by
the discussion above. From the Jacobi equation above and the fact that^(i, t0)
is never zero we conclude that K(s, t0) = 0 for s > íi . This contradicts the
fact that K(u, t0) < 0 and proves that L is strictly monotone decreasing on
[s',u].
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