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Abstract. Recently we discovered a new geometry on submanifolds in
hyperbolic n-space which is called horospherical geometry. Unfortunately this
geometry is not invariant under the hyperbolic motions (it is invariant under
the canonical action of SO(n)), but it has quite interesting features. For ex-
ample, the flatness in this geometry is a hyperbolic invariant and the total
curvatures are topological invariants. In this paper, we investigate the horo-

spherical flat surfaces (flat surfaces in the sense of horospherical geometry) in
hyperbolic 3-space. Especially, we give a generic classification of singularities
of such surfaces. As a consequence, we can say that such a class of surfaces
has quite a rich geometric structure.

1. Introduction.

In this paper we investigate a special class of surfaces in hyperbolic 3-space

which are called horospherical flat surfaces. In the previous theory of surfaces in

hyperbolic space, there appeared two kinds of curvatures. One is called the extrin-

sic Gauss curvature Ke and another is the intrinsic Gauss curvature KI (cf., [1],

[12]). The intrinsic Gauss curvature is nothing but the Gauss curvature defined

by the induced Riemannian metric on the surface. The relation between these

curvatures is known that Ke = KI +1. In [14] we defined a curvature Kh called a

hyperbolic curvature of the surface by using the hyperbolic Gauss indicatrix which

is defined by a slightly modified definition of the hyperbolic Gauss map in [5],

[9], [24], [25]. This curvature is an extrinsic hyperbolic invariant because we have

the relation Kh = 2 − 2H + KI , where H is the mean curvature of the surface.

We remark that Kobayashi [24], [25] had already defined the notion of hyperbolic

Gauss curvature under a different framework and studied some basic properties

of it from the view point of the theory of Fourier transformations. We also de-

fined another curvature K̃h called the horospherical Gauss curvature in [21]. The
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horospherical Gauss curvature K̃h is defined for surfaces in the model of hyper-

bolic space in Minkowski space and it seems that this curvature depends on the

choice of the model space. Nevertheless, we can show that it is independent of

the choice of the model of hyperbolic space (cf., Section 3). Unfortunately, the

horospherical Gauss curvature is not a hyperbolic invariant. However it has very

interesting properties. For example, it describes the contact of surfaces with horo-

spheres as a local property. As global properties of this curvature, we showed

that the Gauss-Bonnet type theorem [21] and the Chern-Lashof type theorem [6]

hold. We call the geometry related to this curvature the horospherical geome-

try ([6], [14], [16], [17], [18], [19], [20], [21]). By a direct consequence of the

definition, Kh(p) = 0 if and only if K̃h(p) = 0, so that the horospherical flat-

ness is a hyperbolic invariant. Moreover, there is an important class of surfaces

called linear Weingarten surfaces which satisfy the relation aKI + b(2H − 2) = 0

((a, b) 6= (0, 0)). In [12], the Weierstrass-Bryant type representation formulas for

such surfaces with a + b 6= 0 (called, a linear Weingarten surface of Bryant type)

was shown. This class of surfaces contains flat surfaces (i.e., a 6= 0, b = 0) and

CMC-1 (constant mean curvature one) surfaces (a = 0, b 6= 0). In the celebrated

paper [5], Bryant showed the Weierstrass type representation formula for CMC-1

surfaces in hyperbolic space. This is the reason why the class of the surface with

a+ b 6= 0 is called of Bryant type. By using such representation formula, there are

a lot of results on such surfaces. We only refer [12], [26], [27], [32], [33] here. The

horospherical flat surface is one of the linear Weingarten surfaces. It is, however,

the exceptional case (a linear Weingarten surface of non-Bryant type: a + b = 0).

There are no Weierstrass-Bryant type representation formula for such surfaces so

far as we know. Therefore the horospherical flat surfaces are also very important

subjects in the hyperbolic geometry.

On the other hand, a horocyclic surface is defined to be a one-parameter

family of horocycles (cf., Section 4). We call each horocycle a generating horocycle.

We can show that a horospherical flat surface is (at least locally) parametrized

as a horocyclic surface (cf., Theorem 4.4). Therefore, the main subject in this

paper is the horospherical flat horocyclic surfaces. In Euclidean space, surfaces

with the vanishing Gauss curvature are developable surfaces which belong to a

special class of ruled surfaces [15]. Therefore, horocyclic surfaces are one of the

analogous notions with ruled surfaces in hyperbolic space. In this paper, we study

geometric properties and singularities of horospherical flat horocyclic surfaces.

Comparing them with ruled surfaces, the situation is quite different. For example,

the singularities of ruled surface are at most one point on each ruling in generic.

However, the singularities of horocyclic surfaces are at most two points on each

generating horocycle in generic. Sometimes they meet or one of them tends to

infinity (approaching to the end).
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For any smooth curve A : I −→ SO0(3, 1) in the Lorentzian group, we can

define a parametrization FA of horocyclic surface M = Image FA in hyperbolic

space (it is written by F(γ,a1,a2) in Section 5). We can easily show that C = A′A−1

is a smooth curve in the Lie algebra so(3, 1) of SO0(3, 1). We can also obtain the

curve A in SO0(3, 1) with initial data A(t0) = A0 from C by the existence theorem

of the linear ordinary differential equations. In this sense, C(t) is a hyperbolic

invariant of horocyclic surfaces. We remark that C(t) is a matrix of the following

form:

C(t) =




0 c1(t) c2(t) c3(t)

c1(t) 0 c4(t) c5(t)

c2(t) −c4(t) 0 c6(t)

c3(t) −c5(t) −c6(t) 0


 .

In Section 5 we show that a horocyclic surface ImageFA is horospherical flat if

and only if c2(t) = c1(t) − c4(t) = 0. We have a local classification theorem

of horospherical flat horocyclic surfaces (cf., Theorem 5.5) which is analogous to

the classical classification theorem on developable surfaces in Euclidean space (cf.,

[7], [15], [34]). However, the situation is quite different from the classification of

developable surfaces in R3. It has been known as the Hartman-Nirenberg theo-

rem [13] that complete non-singular developable surfaces are cylindrical surfaces.

Shiohama and Takagi [31] showed that a complete orientable surface with a con-

stant principal curvature in Euclidean space is either totally umbilic or else um-

bilically free. Moreover, they showed that such surfaces are only sphere or tube of

a space curve if the principal curvature is positive. Such a surface is one of the ex-

amples of circular surfaces [22]. However, there are several examples of complete

non-singular horospherical flat horocyclic surfaces. As one of the consequences of

the classification, we give an example of the surface with a constant principal cur-

vature which is not umbilically free (Example 5.6). This gives a concrete example

of the surface in ([1, Example 2.1]) which gives a counter example of the hyper-

bolic version of the theorem of Shiohama and Takagi [31], [38]. We can show that

a horospherical flat surface with curve singularities is parametrized by FA which

satisfies the equations c2(t) = c1(t) − c4(t) = c3(t) = 0. Therefore we may regard

that the space of (parametrizations of) horospherical flat horocyclic surfaces with

curve singularities is C∞(I, hfσ(3, 1)), where

hfσ(3, 1) =





C =




0 c1 c2 c3

c1 0 c4 c5

c2 −c4 0 c6

c3 −c5 −c6 0


 ∈ so(3, 1)

∣∣∣ c2 = c1 − c4 = c3 = 0





.
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One of the main results in this paper is a generic classification of singularities

of horospherical flat horocyclic surfaces with curve singularities. We say that a

singular point (s, t) of FA is the cuspidal edge (respectively swallowtail, cuspidal

cross cap and cuspidal beaks) if the germ of the surface FA(R × I) at FA(s, t)

is (locally) diffeomorphic to CE = {(x1, x2, x3)|x1
2 = x2

3} (respectively, SW =

{(x1, x2, x3)|x1 = 3u4 + u2v, x2 = 4u3 + 2uv, x3 = v}, CCR = {(x1, x2, x3) ∈

R3 | x1 = u, x2 = uv3, x3 = v2} and CBK = {(x1, x2, x3)|x1 = v, x2 = −2u3 +

v2u, x3 = 3u4 − v2u2}).

The cuspidal edge. The swallowtail. The cuspidal cross cap. The cuspidal beaks.

Figure 1.

Our classification theorem is summarized as follows (cf., Theorem 6.2):

Theorem 1.1. There exists an open and dense subset O ⊂ C∞(I, hfσ(3, 1))

such that the following properties hold : For any C ∈ O, the germ of the correspond-

ing horospherical flat tangent horospherical surface FA(R × I) at a singular point

is diffeomorphic to the cuspidal edge, the swallowtail, the cuspidal cross cap or

the cuspidal beaks. Moreover, on each generating horocycle, we have the following

cases:

(1) There are two singular points, both of which are the cuspidal edges.

(2) There are two singular points, one of which is the cuspidal edge another is the

swallowtail.

(3) There is only one singular point which is the cuspidal cross cap.

(4) There is only one singular point which is the cuspidal beaks.

We remark that generic singularities of developable surfaces are the cuspidal

edge, the swallowtail or the cuspidal cross cap (cf., [15]). In the Beltrami-Klein

ball model of hyperbolic space, a plane is a Euclidian plane and a geodesic is a

Euclidean line. Therefore we can show that a surface with Ke ≡ 0 (we call it an

extrinsic flat surface) is diffeomorphic to a developable surface in the Euclidean

sense in the Beltrami-Klein ball model, so that generic singularities of extrinsic

flat surfaces are the same as those of developable surfaces. On the other hand, the

cuspidal beaks appear as one of the generic bifurcations of Legendrian singularities
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(i.e., wave fronts) [37]. However, the cuspidal beaks of horospherical flat tangent

horocyclic surfaces do not bifurcate under the small perturbation of surfaces in

the space of horospherical flat tangent horocyclic surfaces. The cuspidal cross cap

and the cuspidal beaks are non-generic singularities of general wave fronts. It has

been known [26] that generic singularities of flat fronts (KI ≡ 0) are the cuspidal

edge or the swallowtail. Therefore horospherical flat surfaces have complicated

and interesting singularities compared with other two flat surfaces (i.e., Ke ≡ 0,

KI ≡ 0). We give the exact recognition conditions for the above singularities of

horospherical flat horocyclic surfaces in terms of the invariant C(t) in Theorem

6.2. We can easily show that such the recognition conditions are generic as an

application of the ordinary jet-transversality theorem of Thom. Moreover, we have

a nice duality relation between horospherical flat tangent horocyclic surfaces and

a special class of surfaces in the lightcone (these are called hyperbolic flat tangent

lightcone circular surfaces). The critical curve of the dual surface in the lightcone

draws the shape of the end of the horospherical flat tangent horocyclic surface. We

give a generic classification of hyperbolic flat tangent lightcone circular surfaces in

Section 8 (cf., Theorem 8.2). Actually the classification list is the same as that in

Theorem 6.2. In general the end of horospherical flat horocyclic surface is a point

or a curve in ideal boundary if we adopt the Poincaré ball as a model space. In

Section 8, we show that the germ of a horospherical flat tangent surface is cuspidal

cross cap if and only if the corresponding germ of the end is the ordinary cusp

(cf., Corollary 8.2). Here, the ordinary cusp is a plane curve germ diffeomorphic

to C = {(x1, x2) | x2
1 = x3

2} (cf., Figure 2).

Figure 2. ordinary cusp. Figure 3. cross cap.

In Appendix A, we give criteria for the recognition of the cuspidal beaks or

the cuspidal lips of parametrized surfaces as a byproduct of the proof for Theorem

6.2. Such criteria might be very useful for the study of singular surfaces arising

in several areas. We briefly describe a generic classification of singularities for

general horocyclic surfaces in Appendix B. As a consequence, any singular point

for generic general horocyclic surface is locally diffeomorphic to the cross cap which

is the image of (x1, x2) 7→ (x2
1, x2, x1x2) (cf., Figure 3). This result indicates that

the singularities of horospherical flat horocyclic surfaces are quite different from
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those of general horocyclic surfaces.

All maps considered here are of class C∞ unless otherwise stated.

2. Differential geometry in hyperbolic space.

We outline in this section the differential geometry of curves and sur-

faces in hyperbolic 3-space which are developed in the previous papers [14],

[16]. We adopt the Lorentzian model of the hyperbolic 3-space. Let R4 =

{(x0, x1, x2, x3) | xi ∈ R (i = 0, 1, 2, 3)} be a 4-dimensional vector space. For

any x = (x0, x1, x2, x3), y = (y0, y1, y2, y3) ∈ R4, the pseudo scalar product of

x and y is defined by 〈x,y〉 = −x0y0 +
∑3

i=1 xiyi. We call (R4, 〈, 〉) Minkowski

space. We write R4
1 instead of (R4, 〈, 〉). We say that a non-zero vector x ∈ R4

1 is

spacelike, lightlike or timelike if 〈x,x〉 > 0, 〈x,x〉 = 0 or 〈x,x〉 < 0 respectively.

For a vector v ∈ R4
1 and a real number c, we define the hyperplane with pseudo

normal v by HP (v, c) = {x ∈ R4
1 | 〈x,v〉 = c}. We call HP (v, c) a spacelike hy-

perplane, a timelike hyperplane or a lightlike hyperplane if v is timelike, spacelike

or lightlike respectively.

We now define hyperbolic 3-space by H3
+(−1) = {x ∈ R4

1 | 〈x,x〉 = −1,

x0 ≥ 1} and de Sitter 3-space by S3
1 = {x ∈ R4

1 | 〈x,x〉 = 1}.

For any x1,x2,x3 ∈ R4
1, we define a vector x1 ∧ x2 ∧ x3 by

x1 ∧ x2 ∧ x3 =

∣∣∣∣∣∣∣∣∣∣

−e0 e1 e2 e3

x1
0 x1

1 x1
2 x1

3

x2
0 x2

1 x2
2 x2

3

x3
0 x3

1 x3
2 x3

3

∣∣∣∣∣∣∣∣∣∣

,

where e0, e1, e2, e3 is the canonical basis of R4
1 and xi = (xi

0, x
i
1, x

i
2, x

i
3). We can

easily show that 〈x,x1 ∧ x2 ∧ x3〉 = det(x x1 x2 x3), so that x1 ∧ x2 ∧ x3 is

pseudo orthogonal to any xi (i = 1, 2, 3).

We also define a set LC∗
+ = {x = (x0, x1, x2, x3) ∈ R4

1 | x0 > 0, 〈x,x〉 = 0},

which is called the future lightcone at the origin. We have three kinds of surfaces

in H3
+(−1) which are given by intersections of H3

+(−1) and hyperplanes in R4
1. A

surface H3
+(−1)∩HP (v, c) is called a sphere, an equidistant surface or a horosphere

if H(v, c) is spacelike, timelike or lightlike respectively. Especially we write a

horosphere as HS2(v, c) = H3
+(−1) ∩ HP (v, c). If we consider a lightlike vector

v0 = −v/c, we have HS2(v, c) = HS2(v0,−1). We call v0 the polar vector of

HS2(v0,−1).

We now construct the extrinsic differential geometry on curves in H3
+(−1) (cf.,

[16]). Let γ : I −→ H3
+(−1) be a regular curve. Since H3

+(−1) is a Riemannian
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manifold, we can reparametrize γ by the arc-length. Hence, we may assume that

γ(s) is a unit speed curve. So we have the tangent vector t(s) = γ′(s) with

‖t(s)‖ = 1. In the case when 〈t′(s), t′(s)〉 6= −1, we have a unit vector n(s) =

(t′(s) − γ(s))/(‖t′(s) − γ(s)‖). Moreover, define e(s) = γ(s) ∧ t(s) ∧ n(s). Then

we have a pseudo orthonormal frame {γ(s), t(s),n(s), e(s)} of R4
1 along γ. By

standard arguments, under the assumption that 〈t′(s), t′(s)〉 6= −1, we have the

following Frenet-Serre type formulae:





γ′(s) = t(s)

t′(s) = κh(s)n(s) + γ(s)

n′(s) = −κh(s)t(s) + τh(s)e(s)

e′(s) = −τh(s)n(s)

, (1)

where κh(s) = ‖t′(s) − γ(s)‖ and τh(s) = −det(γ(s),γ′(s),γ′′(s),γ′′′(s))
(κh(s))2 .

We can easily show that the condition 〈t′(s), t′(s)〉 6= −1 is equivalent to the

condition κh(s) 6= 0. We can show that the curve γ(s) satisfies the condition

κh(s) ≡ 0 if and only if there exists a lightlike vector c such that γ(s) − c is

a geodesic. Such a curve is called an equidistant curve. Moreover γ is called a

horocycle if κh(s) ≡ 1 and τh(s) ≡ 0. We can study many properties of hyperbolic

space curves by using this fundamental equation.

On the other hand, we give a brief review on the extrinsic differential geometry

on surfaces in H3
+(−1) due to our previous paper [14]. Let x : U −→ H3

+(−1)

be a regular surface (i.e., an embedding), where U ⊂ R2 is an open subset. We

denote that M = x(U) and identify M with U through the embedding x. Define

a vector

e(u) =
x(u) ∧ xu1

(u) ∧ xu2
(u)

‖x(u) ∧ xu1
(u) ∧ xu2

(u)‖
.

Then we have 〈e,xui
〉 ≡ 〈e,x〉 ≡ 0, 〈e, e〉 ≡ 1, where xui

= ∂x/∂ui. Therefore

we have a mapping

E : U −→ S3
1

by E(u) = e(u) which is called the de Sitter Gauss image of x. Since x(u) ∈

H3
+(−1), e(u) ∈ S3

1 and 〈x(u), e(u)〉 = 0, we can show that x(u) ± e(u) ∈ LC∗
+.

We define a map

L± : U −→ LC∗

+
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by L±(u) = x(u)±e(u) which is called the lightcone Gauss image of x. We called

L± the hyperbolic Gauss indicatrix of x in [14]. We change the name of the map

L± as the above to avoid the confusion. We have shown that DvL± ∈ TpM for

any p = x(u0) ∈ M and v ∈ TpM , where Dv denotes the covariant derivative with

respect to the tangent vector v. It is easy to show that the surface x(U) = M

is a part of a horosphere if and only if one of the lightcone Gauss images L± is

constant.

Under the identification of U and M , the derivative dx(u0) can be identified

with the identity mapping 1TpM on the tangent space TpM , where p = x(u0).

This means that

dL±(u0) = 1TpM ± dE(u0).

We call the linear transformation S±
p = −dL±(u0) : TpM −→ TpM the hyperbolic

shape operator of M = x(U) at p = x(u0). We also call Ap = −dE(u0) : TpM −→

TpM the de Sitter shape operator of M = x(U) at p = x(u0). We denote the

eigenvalues of S±
p by κ̄±

i (p) (i = 1, 2) and the eigenvalues of Ap by κi(p). By

the relation S±
p = −1TpM ± Ap, S±

p and Ap have same eigenvectors and relations

κ̄±

i (p) = −1 ± κi(p). We call κ̄±

i (p) hyperbolic principal curvatures and κi(p) de

Sitter principal curvatures (or, simply call principal curvatures) of M = x(U) at

p = x(u0). We now describe the geometric meaning of the hyperbolic principal

curvatures. Let γ(s) = x(u1(s), u2(s)) be a unit speed curve on M = x(U) with

p = γ(s0). We consider the hyperbolic curvature vector k(s) = t′(s) − γ(s) and

the de Sitter normal curvature

κ±

n (s0) =
〈
k(s0),L

±(u1(s0), u2(s0))
〉

=
〈
t′(s0),L

±(u1(s0), u2(s0))
〉

+ 1

of γ(s) at p = γ(s0). We can show that the de Sitter normal curvature depends

only on the point p and the unit tangent vector of M at p analogous to the

Euclidean case. Therefore we have the maximum and the minimum of the de

Sitter normal curvature at p ∈ M . We can also show that the de Sitter principal

curvatures ±κi(p) are equal to the maximum or the minimum of the de Sitter

normal curvature at p. Then we have the following hyperbolic Rodoriges type

formula: If γ(s) = x(u1(s), u2(s)) is a line of curvature, then κ±
n (s) is one of the

de Sitter principal curvatures at γ(s), so that we have

−
dL±

ds
(u1(s), u2(s)) =

(
κ±

n (s) − 1
)dx

ds
(u1(s), u2(s)).

According to the above observations, we define κ̄±
n (s) = κ±

n (s) − 1 and call it the
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hyperbolic normal curvature of γ(s).

The hyperbolic Gauss curvature of M = x(U) at p = x(u0) is defined to be

K±

h (u0) = detS±

p = κ̄±

1 (p)κ̄±

2 (p).

The hyperbolic mean curvature of M = x(U) at p = x(u0) is defined to be

H±

h (u0) =
1

2
Trace S±

p =
κ̄±

1 (p) + κ̄±

2 (p)

2
.

The extrinsic (de Sitter) Gauss curvature is defined to be

Ke(u0) = detAp = κ1(p)κ2(p)

and the de Sitter mean curvature is

Hd(u0) =
1

2
Trace Ap =

κ1(p) + κ2(p)

2
.

We remark that the de Sitter mean curvature is actually the mean curvature of M .

Therefore we denote it H instead of Hd. We clearly have that H±

h (u) = ±H(u)−1.

We say that a point u ∈ U or p = x(u) is an umbilical point if κ1(p) = κ2(p).

Since the eigenvectors of S±
p and Ap are the same, the above condition is equivalent

to the condition κ̄±

1 (p) = κ̄±

2 (p). We say that M = x(U) is totally umbilical if all

points on M are umbilical. In [8], Cecil and Ryan have characterized totally

umbilical submanifolds by using three different functions on hyperbolic space.

The following classification theorem of totally umbilical surfaces is well-known

(cf., [17]):

Proposition 2.1. Suppose that M = x(U) is totally umbilical. Then κ(p)

is a constant κ. Under this condition, we have the following classification:

1) Suppose that κ2 6= 1.

a) If κ 6= 0 and κ2 < 1, then M is a part of an equidistant surface.

b) If κ 6= 0 and κ2 > 1, then M is a part of a sphere.

c) If κ = 0, then M is a part of a plane.

2) If κ2 = 1, then M is a part of a horosphere.

By definition, κ2 = 1 if and only if one of κ̄± is 0. Therefore, a horosphere is a

totally umbilical surface of κ̄± is 0.

We establish next the hyperbolic (respectively, de Sitter) version of the Wein-
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garten formula. Since xui
(i = 1, 2) are spacelike vectors, we have the Rieman-

nian metric (hyperbolic first fundamental form) given by ds2 =
∑2

i=1 gijduiduj

on M = x(U), where gij(u) = 〈xui
(u),xuj

(u)〉 and the hyperbolic (respectively,

de Sitter) second fundamental invariant defined by h̄±

ij(u) = 〈−L±
ui

(u),xuj
(u)〉

(respectively, hij(u) = −〈eui
(u),xuj

(u)〉) for any u ∈ U . They satisfy the relation

h̄±

ij(u) = −gij(u) ± hij(u). In [14], [21] the following proposition was shown.

Proposition 2.2. Under the above notations, we have the following formu-

lae:

(1) L±

ui
= −

2∑

j=1

(
h̄±

)j

i
xuj

(The hyperbolic Weingarten formula),

(2) Eui
= −

2∑

j=1

(
hj

i

)
xuj

(The de Sitter Weingarten formula),

where
(
(h̄±)j

i

)
= (h̄±

ik)(gkj), (hj
i ) = (hik)(gkj) and (gkj) = (gkj)

−1.

As a corollary of the above proposition, we have an explicit expression of the

hyperbolic (respectively, de Sitter) Gauss curvature in terms of the Riemannian

metric and the hyperbolic (respectively, de Sitter) second fundamental invariant.

Corollary 2.3. Under the same notations as in the above proposition, we

have the following formulae:

K±

h =
det

(
h̄±

ij

)

det
(
gαβ

) , Ke =
det

(
hij

)

det
(
gαβ

) .

We now consider the Riemannian curvature tensor

Rℓ
ijk =

∂

∂uk

{
ℓ

i j

}
−

∂

∂uj

{
ℓ

i k

}
+

∑

m

{
m

i j

}{
ℓ

m k

}
−

∑

m

{
m

i k

}{
ℓ

m j

}
.

We also consider the tensor Rijkℓ =
∑

m gimRm
jkℓ. Standard calculations, analo-

gous to those used in the study of the classical differential geometry on surfaces

in Euclidean space, lead to the following:

Proposition 2.4. Under the above notations, we have

Ke = −
R1212

g
+ 1,
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where g = g11g22 − g12g21.

We remark that −R1212/g is the intrinsic Gaussian curvature of the surface. It is

denoted by KI . Since κ̄±

i = −1 ± κi, we deduce the above formula as follows:

Proposition 2.5. The following relation holds:

K±

h = 1 ∓ 2H + Ke = 2 ∓ 2H + KI .

3. The horospherical geometry in hyperbolic space.

In the previous section we reviewed the properties of lightcone Gauss images

and hyperbolic Gauss curvatures. We now consider the notion of hyperbolic Gauss

maps introduced by Bryant [5] and Epstein [9] as follows: If x = (x0, x1, x2, x3)

is a non-zero lightlike vector, then x0 6= 0. Therefore we have

x̃ =

(
1,

x1

x0
,
x2

x0
,
x3

x0

)
∈ S2

+ =
{
x = (x0, x1, x2, x3) ∈ LC∗

+ | x0 = 1
}
.

We call S2
+ the lightcone sphere. We define a map

L̃± : U −→ S2
+

by L̃±(u) = L̃±(u) and call it the hyperbolic Gauss map of x. Let TpM be the

tangent space of M at p and NpM be the pseudo-normal space of TpM in TpR
4
1.

We have the decomposition TpR
4
1 = TpM⊕NpM , so that we also have the Whitney

sum TR4
1 = TM ⊕NM . Therefore we have the canonical projection Π : TR4

1 −→

TM . It follows that we have a linear transformation Πp ◦dL̃±(u) : TpM −→ TpM

for p = x(u) by the identification of U and x(U) = M via x. We have the following

Proposition [21]:

Proposition 3.1. Under the above notation we have the following horo-

spherical Weingarten formula:

Πp ◦ L̃±

ui
= −

2∑

j=1

1

ℓ±0 (u)

(
h̄±

)j

i
xuj

,

where L±(u) = (ℓ±0 (u), ℓ±1 (u), ℓ±2 (u), ℓ±3 (u)).

We call the linear transformation S̃±
p = −Πp ◦ dL̃± the horospherical shape
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operator of M = x(U). We also define the horospherical principal curvatures

κ̃±

i (p) (i = 1, 2) as eigenvalues of S̃±
p . By the above proposition, we have

κ̃±

i (p) = (1/ℓ±0 (p))κ̄±

i (p). The horospherical Gauss curvature of x(U) = M is

defined to be

K̃±

h (u) = det S̃±

p = κ̃±

1 (p)κ̃±

2 (p).

It follows that we have the following relation between the horospherical Gauss

curvature and the hyperbolic Gauss curvature:

K̃±

h (u) =

(
1

ℓ±0 (u)

)2

K±

h (u).

We say that a point u ∈ U or p = x(u) is a horo-umbilical point if S̃±
p =

κ̃±(p)1TpM . By the above proposition, p is a horo-umbilical point if and only if it

is an umbilical point. We say that M = x(U) is totally horo-umbilical if all points

on M are horo-umbilical as usual.

We remark that κ̃±(p) is not invariant under hyperbolic motions but it is an

SO(3)-invariant. However, we can make sense a point with vanishing horospherical

principal curvature as a notion of the hyperbolic differential geometry [21].

Proposition 3.2. For a point p = x(u), κ̃±

i (p) is invariant under hyperbolic

motions if and only if κ̃±

i (p) = 0.

Corollary 3.3. If M = x(U) is totally horo-umbilical and κ̃±(p) =

(1/ℓ±0 (p))κ̄± is a hyperbolic invariant, then M is a part of a horosphere (i.e.,

κ̃± ≡ 0).

We now show that the notion of horospherical curvatures is independent of

the choice of the model of hyperbolic space. For the purpose, we introduce a

smooth function on the unit tangent sphere bundle of hyperbolic space which plays

the principal role of the horospherical geometry. Let SO0(3, 1) be the identity

component of the matrix group

SO(3, 1) =
{
g ∈ GL(4,R) | gI3,1

tg = I3,1

}
,

where

I3,1 =

(
−1 0
t0 I3

)
∈ GL(4,R).
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It is well-known that SO0(3, 1) transitively acts on H3
+(−1) and the isotropic group

at p = (1, 0, 0, 0) is SO(3) which is naturally embedded in SO0(3, 1). Moreover

the action induces isometries on H3
+(−1).

On the other hand, we consider a submanifold ∆ = {(v,w) | 〈v,w〉 = 0}

of H3
+(−1) × S3

1 and the canonical projection π̄ : ∆ −→ H3
+(−1). Let π :

S(TH3
+(−1)) −→ H3

+(−1) be the unit tangent sphere bundle over H3
+(−1). For

any v ∈ H3
+(−1), we have the local (global) coordinates (v1, v2, v3) of H3

+(−1)

such that v = (
√

v2
1 + v2

2 + v2
3 + 1, v1, v2, v3). We can represent the tangent vector

w =
∑3

i=1 wi∂/∂vi ∈ TvH3
+(−1) by

w =

(
1

v0

3∑

i=1

wivi, w1, w2, w3

)

as a vector in Minkowski 4-space. Then 〈w,v〉 = (−(1/v0)
∑3

i=1 wivi)v0 +∑3
i=1 wivi = 0. Therefore w ∈ S(TvH3

+(−1)) if and only if 〈w,w〉 = 1 and

〈v,w〉 = 0. These conditions are equivalent to the condition (v,w) ∈ ∆. This

means that we can canonically identify π : S(TH3
+(−1)) −→ H3

+(−1) with

π̄ : ∆ −→ H3
+(−1). Moreover, the linear action of SO0(3, 1) on R4

1 induces

the canonical action on ∆ (i.e., g(v,w) = (gv, gw) for any g ∈ SO0(3, 1)). For

any (v,w) ∈ ∆, the first component of v ± w is given by

v0 ± w0 =
√

v2
1 + v2

2 + v2
3 + 1 ±

1√
v2
1 + v2

2 + v2
3 + 1

3∑

i=1

viwi,

so that it can be considered as a function on the unit tangent bundle S(TH3
+(−1)).

We now define a function

N
±

h : ∆ −→ R;N ±

h (v,w) =
1

v0 ± w0
.

We call N
±

h a horospherical normalization function on H3
+(−1). Since v2

1 + v2
2 +

v2
3 + 1 and

∑3
i=1 viwi are SO(3)-invariant functions, N

±

h is an SO(3)-invariant

function. Therefore, N
±

h can be considered as a function on the unit tangent

sphere bundle over hyperbolic space SO0(3, 1)/SO(3) which is independent of the

choice of the model space.

For any embedding x : U −→ H3
+(−1), we have the unit normal vector field

E = e : U −→ S3
1 , so that (x(u), e(u)) ∈ ∆ for any u ∈ U . It follows that

K̃±

h (u) = N
±

h (x(u), e(u))2K±

h (u).
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The right hand side of the above equality is independent of the choice of the model

space.

In the last part of this section we review a global property of the horospherical

Gauss curvature. Let M be a closed orientable 2-dimensional manifold and f :

M −→ H3
+(−1) an immersion. Consider the unit normal E of f(M) in H3

+(−1).

Then we define the lightcone Gauss image in the global

L± : M −→ LC∗

+

by L±(p) = f(p) ± E(p).

The global hyperbolic Gauss curvature function Kh : M −→ R is then defined

in the usual way in terms of the global lightcone Gauss image L. We also define

the hyperbolic Gauss map in the global

L̃± : M −→ S2
+

by L̃±(p) = L̃±(p).

We now define a global horospherical Gauss curvature function

K̃
±

h : M −→ R

by K̃
±

h (p) = N
±

h (f(p),E(p))2K ±

h (p). In [21] we have shown the following Gauss-

Bonnet type theorem.

Theorem 3.4. If M is a closed orientable 2-dimensional surface in hyper-

bolic 3-space, then

1

2π

∫

M

K̃
±

h daM = χ(M)

where χ(M) is the Euler characteristic of M , daM is the area form of M .

We remark that we showed the Gauss-Bonnet type theorem for general even

dimensional closed hypersurfaces in hyperbolic n-space [21]. Moreover, we defined

the notion of horospherical Lipschitz-Killing curvature of submanifold of hyper-

bolic n-space and showed the Chern-Lashof type inequality for totally absolute

horospherical curvatures in [6].
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4. Horo-flat surfaces.

In this section we consider surfaces with vanishing horospherical (hyperbolic)

Gauss curvature. At each point of the surface, we have two different directed light-

cone Gauss images L±. Since the arguments corresponding to the both directions

are the similar, we only consider L+ = x+e here. We simply write L = L+. The

other corresponding notations are also written in the similar way (i.e. κ̄, Kh, Nh,

K̃h etc). We say that a surface M = x(U) is a horospherical flat surface (briefly,

horo-flat surface) if K̃h(p) = 0 at any point p ∈ M . By definition, K̃h(p) = 0

if and only if Kh(p) = 0. One of the typical horo-flat surfaces is the horosphere

which is the totally umbilical surface with the vanishing horospherical curvature.

By Proposition 2.5, a horo-flat surface is a linear Weingarten surface of non-Bryant

(non-elliptic) type in the terminology of [12]. In this case the surface does not

have the Weierstrass-Bryant type parametrization. If we suppose that a surface is

umbilically free, then we have the following expression: Let x : U −→ H3
+(−1) be

a flat horospherical surface without umbilical points, where U ⊂ R2 is a neighbor-

hood around the origin. In this case, we have two lines of curvature at each point

and one of which corresponds to the vanishing hyperbolic principal curvature. We

may assume that both the u-curve and the v-curve are the lines of curvature for the

coordinate system (u, v) ∈ U . Moreover, we assume that the u-curve corresponds

to the vanishing hyperbolic principal curvature. By the hyperbolic Weingarten

formula (Proposition 2.2), we have

Lu(u, v) = 0, Lv(u, v) = −κ̄(u, v)xv(u, v),

where κ̄(u, v) 6= 0. It follows that L(0, v) = L(u, v). We define a function F :

H3
+(−1) × (−ε, ε) −→ R by

F (X, v) = 〈L(0, v),X〉 + 1,

for sufficiently small ε > 0. For any fixed v ∈ (−ε, ε), we have a horosphere

HS2(L(0, v),−1), so that F = 0 define a one-parameter family of horospheres.

We have the following proposition.

Proposition 4.1. The surface M = x(U) is the envelope of the family of

horospheres defined by F = 0.

Proof. The envelope defined by F = 0 is the surface (might be singular)

satisfying the condition F = Fv = 0. Here we have

Fv(X, v) = 〈Lv(0, v),X〉 = −κ̄(0, v)〈xv(0, v),X〉.
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We now consider the function H(u, v) = F (x(u, v), v). Then

H(0, v) = F (x(0, v), v) = 〈L(0, v),x(0, v)〉 + 1 = −1 + 1 = 0.

We also have Hu(u, v) = 〈L(0, v),xu(u, v)〉. Since L(0, v) = L(u, v), we have

Hu(u, v) = 〈L(u, v),xu(u, v)〉 = 0. It follows that H(u, v) = H(0, v) = 0.

On the other hand, we consider a function Fv(x(u, v), v). By the same reason

as the above arguments, we have Lv(u, v) = Lv(0, v), so that

Fv(x(u, v), v) = 〈Lv(0, v),x(u, v)〉 = 〈Lv(u, v),x(u, v)〉

= −κ̄(u, v)〈xv(u, v),x(u, v)〉.

Since 〈x(u, v),x(u, v)〉 = −1, we have 〈xv(u, v),x(u, v)〉 = 0, so that

Fv(x(u, v), v) = 0. Therefore x(u, v) satisfies the condition

F (x(u, v), v) = Fv(x(u, v), v) = 0.

This means that M = x(U) is the envelope of the family of horospheres defined

by F = 0. ¤

On the other hand, we consider a surface x : I × J −→ H3
+(−1) defined by

x(s, v) = x(0, v) + s
xu(0, v)

‖xu(0, v)‖
+

s2

2
L(0, v),

where I, J ⊂ R are open intervals. We have the following proposition.

Proposition 4.2. The surface M = x(I × J) is the envelope of the family

of horospheres defined by F = 0.

Proof. We remind that L(u, v) = x(u, v) + e(u, v) and e(u, v) is the unit

spacelike normal of M = x(U) at x(u, v). Since 〈x(u, v),x(u, v)〉 = −1, we have

〈x(u, v),xu(u, v)〉 = 0. It follows that

〈
L(0, v),x(0, v) + s

xu(0, v)

‖xu(0, v)‖
+

s2

2
L(0, v)

〉
= −1,

so that F (x(s, v), v) = 0. Since Lv(0, v) = −κ̄(0, v)xv(0, v), we have
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〈
Lv(0, v),x(0, v) + s

xu(0, v)

‖xu(0, v)‖
+

s2

2
L(0, v)

〉
= −

sκ̄(0, v)

‖xu(0, v)‖
〈xv(0, v),xu(0, v)〉.

Since both the u-curve and the v-curve are the lines of curvature,

〈xv(0, v),xu(0, v)〉 = 0. This means that Fv(x(s, v), v) = 0. This completes the

proof. ¤

By Propositions 4.1 and 4.2, a horo-flat surface can be reparametrized (at

least locally) by

x(s, v) = x(0, v) + s
xu(0, v)

‖xu(0, v)‖
+

s2

2
L(0, v).

We now consider the meaning of the above parametrization. If we fix v = v0, we

denote that

a0 = x(0, v0), a1 =
xu(0, v0)

‖xu(0, v0)‖
, a2 = e(0, v0).

Then we have a curve

γ(s) = a0 + sa1 +
s2

2
(a0 + a2).

Since γ′(s) = a1 + s(a0 + a2), we have 〈γ′(s),γ′(s)〉 = 〈a1,a1〉 = 1. Therefore

γ(s) has the unit speed. This means that t(s) = a1 + s(a0 + a2). Moreover,

t′(s) = a0 + a2, so that 〈t′(s), t′(s)〉 = 0 6= −1. We also have

t′(s) − γ(s) = a2 − sa1 −
s2

2
(a0 + a2).

Therefore we have 〈t′(s)−γ(s), t′(s)−γ(s)〉 = 1 which is equivalent to the condition

that κh(s) = 1. Moreover γ′′′(s) = 0 implies τh(s) = 0. Therefore γ(s) is a

horocycle. Since γ(0) = a0, γ′(0) = a1, γ′′(0) = a0 + a2, we have the unique

solution of the natural equation κh(s) = 1, τh(s) = 0 under the above initial data.

Therefore we have the following proposition.

Proposition 4.3. For any a0 ∈ H3
+(−1) and a1,a2 ∈ S3

1 such that 〈ai,aj〉

= 0, the unique horocycle with the initial conditions

γ(0) = a0, γ′(0) = a1, γ′′(0) = a0 + a2
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is given by

γ(s) = a0 + sa1 +
s2

2
(a0 + a2).

Therefore the horo-flat surface is given by the one-parameter family of horo-

cycles. We say that a surface is a horocyclic surface if it is locally parametrized by

one-parameter families of horocycles around any point. Eventually we have shown

the following theorem.

Theorem 4.4. If M ⊂ H3
+(−1) is an umbilically free horo-flat surface, it

is a horocyclic surface. Moreover, each horocycle is the line of curvature with the

vanishing hyperbolic principal curvature.

Proof. The first part of the theorem is a simple corollary of Proposition

4.3. For the second part, we assume that M = x(U) and both u-curve and

v-curve are the lines of curvature which satisfy Lu(u, v) = 0 and Lv(u, v) =

−κ̄(u, v)xv(u, v). We now consider the parametrization

x(s, v) = x(0, v) + s
xu(0, v)

‖xu(0, v)‖
+

s2

2
L(0, v)

of M = x(U). By a straightforward calculation, we have

xs(s, v) =
xu(0, v)

‖xu(0, v)‖
+ sL(0, v),

xv(s, v) = xv(0, v) + s

(
xuv(0, v)

‖xu(0, v)‖
−

2〈xu(0, v),xuv(0, v)〉

‖xu(0, v)‖2
xu(0, v)

)
+

s2

2
Lv(0, v).

Since 〈L(0, v),xu(0, v)〉 = 0, we have 〈Lv(0, v),xu(0, v)〉 + 〈L(0, v),xuv(0, v)〉 =

0. By the assumption that v-curve is the line of curvature with Lv(0, v) =

−κ̄(0, v)xv(0, v), we have 〈Lv(0, v),xu(0, v)〉 = −κ̄(0, v)〈xv(0, v),xu(0, v)〉 = 0.

Therefore we have 〈L(0, v),xuv(0, v)〉 = 0. Since L(0, v) is the lightlike normal

vector of M = x(U) at x(0, v), we have 〈L(0, v),xs(s, v)〉 = 〈L(0, v),xv(s, v)〉 = 0.

This means that L(0, v) is the lightlike normal of M = x(U) at x(s, v). Therefore

we have the lightlike normal L which is constant along the s-curve. Since the s-

curve is a horocycle, it is the line of curvature with vanishing hyperbolic principal

curvature. ¤

We remark that horo-flat surfaces are surfaces with one of the (de Sitter)

principal curvatures constantly equal to one. The behavior of these surfaces in



Horospherical flat surfaces 807

the regular case is studied in [30]. It is known that these surfaces are foliated by

horocycles. However, we present here an explicit parametrization of the surface

for our purpose.

In the last part of this section we define the end of a surface (or a curve). Let

D3 be the unit ball in R3 with the Poincaré metric. We consider the stereographic

projection P : H3
+(−1) −→ D3 defined by

P (x) = −e0 +
x + e0

1 − 〈x, e0〉
=

1

1 + x0
(0, x1, x2, x3),

where e0 = (1, 0, 0, 0) and x = (x0, x1, x2, x3). This projection gives the canonical

isometry between H3
+(−1) and D3. Therefore, the ideal boundary of H3

+(−1) is

identified with the boundary S2 of D3 in R3. Moerover, we consider the canonical

projection π : R4
1 −→ R3 defined by π(x0, x1, x2, x3) = (x1, x2, x3). Under this

projection S2
+ is identified with S2, so that S2

+ is the ideal boundary of H3
+(−1).

Let M ⊂ H3
+(−1) be a surface or a curve. We say that a point y ∈ S2 is an end

point of M if O ∩ P (M) 6= ∅ for any open neighborhood O of x in R3. The set of

all end points of M is called the end of M . For a horocycle

γ(s) = a0 + sa1 +
s2

2
ℓ,

we can easily show that

lim
s→∞

P ◦ γ(s) = π ◦ ℓ̃,

where ℓ = a0 +a2. Under the above identification, {ℓ̃} is the end of the horocycle

γ(s).

5. Horocyclic surfaces.

In this section we study general properties of horocyclic surfaces. Let γ :

I −→ H3
+(−1) be a smooth map and ai : I −→ S3

1 (i = 1, 2) be smooth mappings

from an open interval I with 〈γ(t),ai(t)〉 = 〈a1(t),a2(t)〉 = 0. We define a unit

spacelike vector a3(t) = γ(t)∧a1(t)∧a2(t), so that we have a pseudo-orthonormal

frame {γ,a1,a2,a3} of R4
1. We now define a mapping

F(γ,a1,a2) : R × I −→ H3
+(−1)

by
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F(γ,a1,a2)(s, t) = γ(t) + sa1(t) +
s2

2
ℓ(t),

where ℓ(t) = γ(t)+a2(t). By Proposition 4.3, we have a horocycle F(γ,a1,a2)(s, t0)

for any fixed t = t0. We call F(γ,a1,a2) (or the image of it) a horocyclic surface.

We also call a1(t) the first directrix and a2(t) the second directrix. Each horocycle

F(γ,a1,a2)(s, t0) is called a generating horocycle. It follows from the arguments

in the last part of Section 4 that the end of F(γ,a1,a2) is the image of ℓ̃(t) =

˜γ(t) + a2(t) in S2
+. By using the above pseudo-orthonormal frame, we define the

following fundamental invariants:

c1(t) = 〈γ′(t),a1(t)〉 = −〈γ(t),a′

1(t)〉, c4(t) = 〈a′

1(t),a2(t)〉 = −〈a1(t),a
′

2(t)〉,

c2(t) = 〈γ′(t),a2(t)〉 = −〈γ(t),a′

2(t)〉, c5(t) = 〈a′

1(t),a3(t)〉 = −〈a1(t),a
′

3(t)〉,

c3(t) = 〈γ′(t),a3(t)〉 = −〈γ(t),a′

3(t)〉, c6(t) = 〈a′

2(t),a3(t)〉 = −〈a2(t),a
′

3(t)〉.

We can show that the following fundamental differential equations for the horo-

cyclic surface:





γ′(t) = c1(t)a1(t) + c2(t)a2(t) + c3(t)a3(t)

a′
1(t) = c1(t)γ(t) + c4(t)a2(t) + c5(t)a3(t)

a′
2(t) = c2(t)γ(t) − c4(t)a1(t) + c6(t)a3(t)

a′
3(t) = c3(t)γ(t) − c5(t)a1(t) − c6(t)a2(t).

It can be written in the following form:




γ′(t)

a′
1(t)

a′
2(t)

a′
3(t)


 =




0 c1(t) c2(t) c3(t)

c1(t) 0 c4(t) c5(t)

c2(t) −c4(t) 0 c6(t)

c3(t) −c5(t) −c6(t) 0







γ(t)

a1(t)

a2(t)

a3(t)


 .

We remark that

C(t) =




0 c1(t) c2(t) c3(t)

c1(t) 0 c4(t) c5(t)

c2(t) −c4(t) 0 c6(t)

c3(t) −c5(t) −c6(t) 0


 ∈ so(3, 1),
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where so(3, 1) is the Lie algebra of the Lorentzian group SO0(3, 1). If

{γ(t),a1(t),a2(t),a3(t)} is a pseudo-orthonormal frame field as the above, the

4× 4-matrix determined by the frame defines a smooth curve A : I −→ SO0(3, 1).

Therefore we have the relation that A′(t) = C(t)A(t). For the converse, let A :

I −→ SO0(3, 1) be a smooth curve. Then we can show that A′(t)A(t)−1 ∈ so(3, 1).

Moreover, for any smooth curve C : I −→ so(3, 1), we apply the existence theo-

rem on the linear systems of ordinary differential equations, so that there exists a

unique curve A : I −→ SO0(3, 1) such that C(t) = A′(t)A(t)−1 with an initial data

A(t0) ∈ SO0(3, 1). Therefore, a smooth curve C : I −→ so(3, 1) might be identified

with a horocyclic surface in H3
+(−1). Let C : I −→ so(3, 1) be a smooth curve with

C(t) = A′(t)A(t)−1 and B ∈ SO0(3, 1), then we have C(t) = (A(t)B)′(A(t)B)−1.

This means that the curve C : I −→ so(3, 1) is a hyperbolic invariant of the

pseudo-orthonormal frame {γ(t),a1(t),a2(t),a3(t)}, so that it is a hyperbolic in-

variant of the corresponding horocyclic surface. We write FA instead of F(γ,a1,a2)

for a change.

Let C∞(I, so(3, 1)) be the space of smooth curves into so(3, 1) equipped with

Whitney C∞-topology. By the above arguments, we may regard C∞(I, so(3, 1))

as the space of horocyclic surfaces, where I is an open interval or the unit circle.

On the other hand, we consider the singularities of horocyclic surfaces. Let

F(γ,a1,a2) : R × I −→ H3
+(−1) be a horocyclic surface defined by

F(γ,a1,a2)(s, t) = γ(t) + sa1(t) +
s2

2
ℓ(t), (2)

where ℓ(t) = γ(t)+a2(t). For any curve γ̄(t) = γ(t)+ s(t)a1(t)+ (s(t)2/2)ℓ(t) on

the horocyclic surface F(γ,a1,a2), we define ā1(t) = a1(t) + s(t)ℓ(t), ā2(t) = ℓ(t)−

γ̄(t). We can show that 〈ā1(t), ā1(t)〉 = 〈ā2(t), ā2(t)〉 = 1 and 〈ā1(t), ā2(t)〉 =

〈ā1(t), γ̄(t)〉 = 〈ā2(t), γ̄(t)〉 = 0. By a straightforward calculation, we have

F(γ,a1,a2)(s, t) = γ̄(t) + (s − s(t))ā1(t) +
(s − s(t))2

2
ℓ(t).

Therefore, if we have a parameter transformation defined by

T = t, S = s − s(t), (3)

we have F(γ,a1,a2)(s, t) = F(γ̄,ā1,ā2)(S, T ). It follows that γ̄(t) is the curve on the

horocyclic surface F(γ,a1,a2)(s, t) = F(γ̄,ā1,ā2)(S, T ) defined by the equation S = 0.

We call the parameter transformation (3) an adapted parameter transformation.

By straightforward calculations, we have the following relations:
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



c̄1(t) = c1(t) +
s(t)2

2
(c4(t) − c1(t)) + s(t)c2(t) + s′(t),

c̄2(t) = c2(t) + s(t)(c4(t) − c1(t)),

c̄3(t) =

(
1 +

s(t)2

2

)
c3(t) + s(t)c5(t) +

s(t)2

2
c6(t),

c̄4(t) = c4(t) +
s(t)2

2
(c4(t) − c1(t)) + s(t)c2(t) + s′(t),

c̄5(t) = c5(t) + s(t)(c3(t) + c6(t)),

c̄6(t) =

(
1 −

s(t)2

2

)
c6(t) − s(t)c5(t) −

s(t)2

2
c3(t).

(4)

It follows that we have c̄1(t)−c̄4(t) = c1(t)−c4(t). Moreover, we have the following

property:

c̄1(t) − c̄4(t) = c̄2(t) = 0 if and only if c1(t) − c4(t) = c2(t) = 0. (5)

Proposition 5.1. Let F(γ,a1,a2) be a parameterization of a horocyclic sur-

face of the form

F(γ,a1,a2)(s, t) = γ(t) + sa1(t) +
s2

2
ℓ(t)

such that c1(t)− c4(t) never vanishes. Then Image F(γ,a1,a2) has a reparametriza-

tion of the form

F̄(γ̄,ā1,ā2)(s, t) = γ̄(t) + sā1(t) +
s2

2
ℓ(t),

where c2(t) = 〈γ̄′, ā2〉 = 0.

Proof. Let γ̄, ā1 and ā2 be as those of the previous notations, that is,

γ̄(t) = γ(t) + s(t)a1(t) +
s(t)2

2
ℓ(t),

ā1(t) = a1(t) + s(t)ℓ(t), ā2(t) = ℓ(t) − γ̄(t).

Since 〈γ̄(t), γ̄(t)〉 = −1, we have 〈γ̄′(t), γ̄(t)〉 = 0 and hence 〈γ̄′, ā2〉 =

〈γ̄′(t), ℓ(t) − γ̄(t)〉 = 〈γ̄′(t), ℓ(t)〉. Taking the derivative of γ̄, we obtain γ̄′(t) =

γ′(t) + s′(t)a1(t) + s(t)a′
1(t) + s(t)s′(t)ℓ(t) + (s2(t)/2)ℓ′(t). We define s(t) by
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s(t) =
c2(t)

c1(t) − c4(t)
.

By the second formula of (2), we have c2(t) = 0.

Now define F(γ̄,ā1,ā2)(S, T ) = F(γ̄,ā1,ā2)(s− s(t), t), where S = s− s(t), T = t.

Then

F(γ̄,ā1,ā2)(S, T ) = γ̄(t) + (s − s(t))ā1(t) + ((s − s(t))2/2)ℓ(t)

= γ(t) + sa1(t) + (s2/2)ℓ(t),

so that F(γ̄,ā1,ā2) and F(γ,a1,a2) have the same image. ¤

The curve γ̄ is called the striction curve of F if 〈γ̄′(t), ā2(t)〉 = 0. By

Proposition 5.1, we have the unique striction curve under the condition that

c1(t) − c4(t) 6= 0. Then it is given by the equation S = 0 after the above

adapted parameter transformation. In the case when c1(t) − c4(t) = 0, there

exist striction curves if and only if c2(t) = 0. In the case when c1(t) − c4(t) 6= 0

or c1(t) − c4(t) = c2(t) = 0, we may assume that γ(t) is the striction curve of

F(γ,a1,a2)(s, t) which is given by s = 0 by an adapted parameter transformation.

We can specify the place where the singularities of the horocyclic surface are lo-

cated. By a straightforward calculation, we have

∂F(γ,a1,a2)

∂s
(s, t) = a1(t) + sℓ(t) = sγ(t) + a1(t) + sa2(t),

∂F(γ,a1,a2)

∂t
(s, t) = γ′(t) + sa′

1(t) +
s2

2
ℓ′(t)

=

(
sc1(t) +

s2

2
c2(t)

)
γ(t) +

((
1 +

s2

2

)
c1(t) −

s2

2
c4(t)

)
a1(t)

+

((
1 +

s2

2

)
c2(t) + sc4(t)

)
a2(t)

+

((
1 +

s2

2

)
c3(t) + sc5(t) +

s2

2
c6(t)

)
a3(t).

It follows that (s, t) is a singular point of F(γ,a1,a2)(s, t) if and only if

c2(t) + s(c4(t) − c1(t)) = 0,

(
1 +

s2

2

)
c3(t) + sc5(t) +

s2

2
c6(t) = 0. (6)
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By the relations (4), (s(t), t) is a singular point of F(γ,a1,a2) if and only if c̄2(t) =

c̄3(t) = 0 for the adapted parameter transformation T = t, S = s−s(t). The above

condition is equivalent to the condition that S = 0 is a singular point. Then we

have the following proposition.

Proposition 5.2. Let F(γ,a1,a2) be a horocyclic surface with the striction

curve γ and c1(t) − c4(t) 6= 0. If x0 = F(γ,a1,a2)(s0, t0) is a singular value of the

horocyclic surface F(γ,a1,a2), then s0 = 0, namely, x0 is located on the image of γ

such that a1(t0) is tangent to γ at t0 under the condition γ′(t0) 6= 0.

Proof. If γ′(t0) = 0, then F(γ,a1,a2)(0, t0) is only singular value on

F(γ,a1,a2)(s, t0) (s ∈ R). Therefore we assume that γ(t) is a unit speed curve.

Since c2 is identically zero and c1(t) − c4(t) 6= 0, we conclude that if (s0, t0) is a

singular point of F(γ,a1,a2), then s0 = 0 and hence x0 is located in image of γ. More

precisely, singular set is given by the set {(0, t0) | c2(t0) = c3(t0) = 0}. Therefore

γ′(t0) is pseudo-orthogonal to a2(t0),a3(t0) and γ(t0), so that it is tangent to

a1(t0). ¤

On the other hand, by Theorem 4.4, a horo-flat surface is a horocyclic surface

F(γ,a1,a2)(s, t) with the lightlike normal vector ℓ(t) around a non-umbilical point.

In this case, each horocycle F(γ,a1,a2)(s, t0) is a line of curvature. However, at

an umbilical point, any direction is a principal direction, so that the tangent

direction of the horocycle is also a principal direction. Suppose that ℓ(t) is a

lightlike normal vector field on F(γ,a1,a2)(s, t). This means that L̃(s, t) = ℓ̃(t). It

follows that L̃s(s, t) = ℓ̃s(t) = 0. Therefore, the tangent component Πp ◦ L̃s(s, t)

of L̃s(s, t) is always zero. By Proposition 3.1, the horocyclic surface F(γ,a1,a2)(s, t)

is horo-flat if ℓ(t) is a lightlike normal of the surface. We have shown the following

proposition.

Proposition 5.3. An umbilically free horo-flat surface is (at least locally)

a horocyclic surface F(γ,a1,a2)(s, t) with the lightlike normal vector field ℓ(t). Con-

versely, if F(γ,a1,a2)(s, t) is a horocyclic surface and ℓ(t) is a lightlike normal vec-

tor field at any (s, t), then it is a horo-flat surface. In this case each horocycle

F(γ,a1,a2)(s, t0) is a line of curvature.

We now calculate that

∂F(γ,a1,a2)

∂s
(s, t) = a1(t) + sℓ(t),

∂F(γ,a1,a2)

∂t
(s, t) = γ′(t) + sa′

1(t) +
s2

2
ℓ′(t).

Since 〈ℓ(t), ℓ(t)〉 = 〈ℓ(t), ℓ′(t)〉 = 〈ℓ(t),a1(t)〉 = 0, ℓ(t) is a lightlike normal at any

(s, t) if and only if c2(t) + s(c4(t)− c1(t)) = 0. This condition is equivalent to the
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condition that c2(t) = c4(t) − c1(t) = 0. By the property (5), this condition is

invariant under an adapted parameter transformation. Thus, we say that F(γ,a1,a2)

(or, Image F(γ,a1,a2)) is a horo-flat horocyclic surface if c2(t) = c4(t) − c1(t) = 0

for any t. We also have the following proposition.

Proposition 5.4. Let F(γ,a1,a2) be a horocyclic surface with c2(t) = 0.

If a horocycle F(γ,a1,a2)(s, t0) for each t0 is one of the lines of curvature, then

F(γ,a1,a2) is horo-flat. Moreover, ℓ(t0) is the lightlike normal along the horocycle

F(γ,a1,a2)(s, t0).

Proof. For any t0, we consider the horocycle

σ(s) = F(γ,a1,a2)(s, t0) = γ(t0) + sa1(t0) +
s2

2
ℓ(t0).

Since σ(s) is a unit speed curve on the horocyclic surface F(γ,a1,a2)(s, t), t(s) =

a1(t0)+ sℓ(t0), so that we have the curvature vector k(s) = t′(s)−σ(s) = ℓ(t0)−

σ(s). Let L(s, t) be the lightcone Gauss image of F(γ,a1,a2)(s, t). Since σ(s) is

a horocycle, κh ≡ 1 and τh ≡ 0. It follows that k(s) = n(s) is the hyperbolic

curvature vector of σ(s). Therefore the hyperbolic normal curvature of σ(s) is

κ̄n(s) = 〈n(s),L(s, t0)〉 − 1.

On the other hand, σ(s) is a line of curvature. Then we have

−Ls(s, t0) = κ̄n(s)
∂F(γ,a1,a2)

∂s
(s, t0) = κ̄n(s)(a1(t0) + sℓ(t0)).

Therefore we have

∂

∂s
〈n(s),L(s, t0)〉 =

∂

∂s
(〈ℓ(t0),L(s, t0)〉 + 1)

= −κ̄n(s)〈a1(t0) + sℓ(t0), ℓ(t0)〉 = 0.

It follows that κ̄n(s) = 〈n(s),L(s, t0)〉 − 1 is constant. Since

∂F(γ,a1,a2)

∂s
(0, t0) = a1(t0),

∂F(γ,a1,a2)

∂t
(0, t0) = γ′(t0) and c2(t) = 0,

we have

〈
ℓ(t0),

∂F(γ,a1,a2)

∂s
(0, t0)

〉
=

〈
ℓ(t0),

∂F(γ,a1,a2)

∂t
(0, t0)

〉
= 0.
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This means that ℓ(t0) is the lightlike normal of F(γ,a1,a2)(s, t) at (0, t0). If nec-

essary, we adopt −a2(t) instead of a2(t), L(0, t0) and ℓ(t0) are parallel, so that

κ̄n(s) = 〈n(0),L(0, t0)〉 − 1 = 〈ℓ(t0),L(0, t0)〉 + 1 − 1 = 0. Moreover, we have

Ls(s, t0) = 0, then L(s, t0) is parallel to ℓ(t0). This completes the proof. ¤

We now consider the space of horo-flat horocyclic surfaces. Remember that

C∞(I, so(3, 1)) is the space of horocyclic surfaces. We consider a linear subspace

of so(3, 1) defined by

hf(3, 1) =





C =




0 c1 c2 c3

c1 0 c4 c5

c2 −c4 0 c6

c3 −c5 −c6 0


 ∈ so(3, 1)

∣∣∣ c2 = c1 − c4 = 0





By the definition of horo-flat horocyclic surfaces, the space of horo-flat horocyclic

surfaces is defined to be the space C∞(I, hf(3, 1)) with Whitney C∞-topology.

For a horo-flat horocyclic surface F(γ,a1,a2), the singular points (s, t) are given

by the condition that

σC(s, t) = (c3(t) + c6(t))s
2 + 2c5(t)s + 2c3(t) = 0.

Therefore the horo-flat horocyclic surface has singularities at (s, t) if and only if the

above quadratic equation has real roots. Under the condition that c3(t)+c6(t) 6= 0,

this condition is equivalent to the condition

δC(t) = c2
5(t) − 2c3(t)(c3(t) + c6(t)) ≥ 0.

By this inequality, the horo-flat horocyclic surface F(γ,a1,a2) is non-singular if and

only if c3(t) 6= 0 and

{
c5(t0) = 0 if there exists t0 ∈ I such that c3(t0) + c6(t0) = 0,

δC(t) < 0 if c3(t) + c6(t) 6= 0.
(7)

We now consider a horo-flat horocyclic suface F(γ,a1,a2) with singularities.

We start to give a rough classification of singular points. It follows from the

above arguments that (s0, t0) is a singular point of F(γ,a1,a2) if one of the following

conditions holds:

(1) c3(t0) = 0 and c6(t0)s
2
0 + 2c5(t0)s0 = 0.

(2) c3(t0) 6= 0 and
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(a) c3(t0) + c6(t0) = 0, c5(t0) 6= 0 and s0 = −c3(t0)/c5(t0).

(b) c3(t0)+c6(t0) 6= 0, δC(t0) ≥ 0 and (c3(t0)+c6(t0))s
2
0+2c5(t0)s0+2c3(t0) =

0.

In the case (2), we consider the adapted parameter transformation

T = t, S = s − s0,

so that T = t0, S = 0 is the singular point and c3(t0) = 0. Therefore we may only

consider the case (1) without the loss of generality. Under the condition c3(t0) = 0,

we have the following rough classification:

(α) (s0, t0) is a horocyclic singular point if c5(t0) = c6(t0) = 0. In this case all

points on the horocycle though (s0, t0) are singularities.

(β) (s0, t0) is a single singular point if c5(t0) 6= 0 and c6(t0) = 0. In this case

s0 = 0 is the only singular point on the horocycle through (s0, t0).

(γ) (s0, t0) is a double singular point if c5(t0) = 0 and c6(t0) 6= 0. In this case

s0 = 0 is the only singular point on the horocycle through (s0, t0).

(δ) (s0, t0) is a separated singular point if c5(t0) 6= 0 and c6(t0) 6= 0. In this

case s0 = 0 and −2c5(t0)/c6(t0) are singular points on the horocycle through

(s0, t0).

The horocyclic singular points appear as the horocycle through (s0, t0), so that

these are non-isolated. We consider the single singular point. Since c5(t0) 6= 0,

c5(t) 6= 0 for any t in a neighborhood of t0. For any neighborhood U of t0, if

there exists a point t1 ∈ U such that c3(t1) + c6(t1) 6= 0, then δC(t1) > 0 because

δC(t0) = c2
5(t0) > 0. This means that (s1, t1) is the separated singular point.

Therefore, (s0, t0) is non-isolated. Moreover, if c3(t) + c6(t) = 0 near by t0, (s, t)

are singular points for s = −c3(t)/c5(t). In this case (s0, t0) is also non-isolated.

Suppose that (0, t0) is the double singular point. Since c3(t0)+c6(t0) = c6(t0) 6= 0,

c3(t) + c6(t) 6= 0 for sufficiently near by t0. If δC(t) < 0 for t 6= t0, then (0, t0)

is isolated. Otherwise, for any neighborhood U of t0, there exists a point t1 ∈ U

such that δC(t1) ≥ 0, so that (0, t0) is non-isolated. It is clear that the separated

singular point is non-isolated.

By the arguments in the previous paragraph, we now consider a rough clas-

sification of horo-flat horocyclic surfaces. We say that F(γ,a1,a2) is a horo-flat

horocyclic surface with an isolated singular point if c3(t) + c6(t) 6= 0 and there is a

point t0 ∈ I such that δC(t0) = 0 and δC(t) < 0 for any t ∈ I \ {t0}. In this case

the isolated singular point (s0, t0) is the double singular point. By the adapted

parameter transformation, we may assume c3(t0) = 0 and s0 = 0. Therefore,

the horo-flat horocyclic surface with an isolated singular point has a parametriza-

tion F(γ,a1,a2) with c3(t0) = c5(t0) = 0, c3(t) + c6(t) 6= 0 and δC(t) < 0 for any
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t ∈ I \ {t0}.

We consider a horo-flat horocyclic surface with non-isolated singularities.

There are some possibilities for the existence of pathological situations in gen-

eral. For example, if there is a singular point such that it is the limit of the other

discrete singularities, then such a point is non-isolated but the situation is very

complicated. In order to avoid such a situation, we consider the case when the

set of singular points is a union of curves in the parameter space I × R. In this

case, F(γ,a1,a2) has at most two branches of singularities except at the horocyclic

singular points. However such branches can pass through the horocyclic singular

points. We suppose that one of the branches of the singularities is given by

γ̄(t) = γ(t) + s(t)a1(t) +
s(t)2

2
ℓ(t),

where s = s(t) is one of the solutions of the quadratic equation σC(s, t) = 0 for

any t. In this case we can reparametrize the horocyclic surface by ā1(t), ā2(t)

and S = s − s(t), T = t, by the adapted parameter transformation, so that one

of the branches of the singularities is located on the curve S = 0. Therefore,

we may assume that one of the branches of singularities are located on γ(t).

In this case, such singularities satisfy the condition c3(t) = 0. Moreover, the

condition c3(t) = 0 is also satisfied at the horocyclic singular points. Therefore,

we assume that c3(t) = 0 for any t ∈ I. It follows that γ′(t) is parallel to a1(t) if

γ′(t) 6= 0. Moreover, another branch of the singularities is given by the equation

2c5(t) + sc6(t) = 0. If c6(t) 6= 0, we denote that

γ♯(t) = γ(t) + s(t)a1(t) +
s(t)2

2
ℓ(t),

where s(t) = −2c5(t)/c6(t). If c6(t) = 0, we have a unique end point ℓ̃(t) =

constant = ℓ̃. In this case γ is a curve on a horosphere and ImageF(γ,a1,a2) is a

subset of the horosphere.

We call F(γ,a1,a2) a generalized horo-cone if γ(t) is constant, a′
1(t) = c5(t)a3(t)

and a′
2(t) = c6(t)a3(t). This condition is equivalent to the condition that

c1(t) = c2(t) = c3(t) = c4(t) = 0. Note that a generalized horo-cone is horo-flat.

Comparing with developable surfaces in Euclidean 3-space, the notion of generalize

horo-cones is the analogous notion of conical surfaces. However, the class of gen-

eralized horo-cones contains several different surfaces. We say that a generalized

horo-cone F(γ,a1,a2) is a horo-cone with a single vertex if c5(t) = 0 and there are no

subinterval J ⊂ I such that c6|J ≡ 0. In other words, a horocyclic surface F(γ,a1,a2)

is a horo-cone with a single vertex if c1(t) = c2(t) = c3(t) = c4(t) = c5(t) = 0
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and there are no subinterval J ⊂ I such that c6|J ≡ 0. In this case, both of γ(t)

and γ♯(t) are constant and γ = γ♯. A generalized horo-cone F(γ,a1,a2) is called a

horo-cone with two vertices if both of γ(t) and γ♯(t) are constant and γ 6= γ♯. By

the calculation of the derivative of γ♯(t), the above condition is equivalent to the

condition that c1(t) = c2(t) = c3(t) = c4(t) = 0, there are no subinterval J ⊂ I

such that c5|J ≡ 0 and there exists a real number λ such that c5(t) = λc6(t). If the

condition c1(t) = c2(t) = c3(t) = c4(t) = c6(t) = 0 and there are no subinterval

J ⊂ I such that c5|J ≡ 0, then a2(t) is constant. It follows that the image of the

generalized horo-cone F(γ,a1,a2) is a part of a horosphere (i.e., we call it a conical

horosphere). We simply call F(γ,a1,a2) a horo-cone if it is one of the above three

cases. We can draw the pictures of horo-cones in the Poincaré ball (Figure 4).

Conical horosphere. Horo-cone with a single vertex. Horo-cone with two vertices.

Half cut of horo-cone with a single vertex. Half cut of horo-cone with two vertices.

Half cut of horo-cone with a shifted single
vertex.

Half cut of horo-cone with shifted two
vertices.

Figure 4.

We say that a generalized horo-cone F(γ,a1,a2) is a semi-horo-cone if γ♯(t) is

not constant on I. This condition is equivalent to the conditions that c1(t) =

c2(t) = c3(t) = c4(t) = 0, there are no subinterval J ⊂ I such that c5|J ≡ 0 or

c6|J ≡ 0 and c5(t)/c6(t) is not a constant on {t ∈ I | c6(t) 6= 0}. We remark
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that if c6(t0) = 0, then s(t) = −2c5(t)/c6(t) tends to ∞ as t −→ t0. Moreover,

we have ℓ′(t0) = c6(t0)a3(t0) = 0, so that ℓ̃′(t0) = 0. This means that the end

ℓ̃(t) of F(γ,a1,a2) has a singular point at t0. Therefore, we say that semi-horo-cone

F(γ,a1,a2) is a semi-horo-cone with singular end if there are zero points of c6(t).

Otherwise, F(γ,a1,a2) is called a semi-horo-cone with regular end. Of course, we

also call F(γ,a1,a2) a semi-horo-cone if γ(t) is not constant and γ♯(t) is constant. In

this case, however, by a suitable adapted parameter transformation, we have the

condition that γ(t) is constant. The condition that γ(t) is not constant is given

by c1(t) 6= 0. We can also write the condition that γ♯ is constant in terms of the

basic invariant C(t). However it is rather a complicated condition, so that we omit

the description here.

Finally, we say that F(γ,a1,a2) is a horo-flat tangent horocyclic surface if both

of γ and γ♯ are not constant or γ is not constant and c6(t) = 0. In the last

case, the end is an isolated point and F(γ,a1,a2) is a subset of the horosphere (a one

parameter family of horocycles which are tangent to γ on a horosphere). The above

conditons are equivalent to the conditions that c2(t) = c3(t) = c1(t) − c4(t) = 0,

there are no subinterval J ⊂ I such that c1|J ≡ 0 and γ♯(t) is moving or the set of

singular points is equal to s = 0 except the horocyclic singular points (i.e., γ♯(t)

cannot exist in H3
+(−1) anymore).

By the above arguments, we also consider the linear subspace of so(3, 1) de-

fined by

hfσ(3, 1) =





C =




0 c1 c2 c3

c1 0 c4 c5

c2 −c4 0 c6

c3 −c5 −c6 0


 ∈ so(3, 1)

∣∣∣ c2 = c1 − c4 = c3 = 0





.

In order to avoid some pathological situation, we consider the space

C∞(I, hfσ(3, 1)) with Whitney C∞-topology. We call it a space of horo-flat horo-

cyclic surfaces with curve singularities. In this terminology, one of the branches

of the singularities of the horo-flat surface is always located on the image of γ.

On the other hand, we now consider a local classification of non-singular

horo-flat horocyclic surfaces. Let M ⊂ H3
+(−1) be a surface patch (i.e., the

image of an embedding from an open domain in R2). We say that M is a horo-

flat horocyclic surface patch if there exists a smooth curve A : I −→ SO0(3, 1)

with C(t) = A′(t)A−1(t) ∈ hf(3, 1) and ImageFA ⊃ M , where FA = F(γ,a1,a2) :

R × I −→ H3
+(−1) is a horo-flat horocyclic surface corresponding to A. We call

FA a complete parametrization of M . If we have another complete parametrization

FA of M by an adapted parameter transformation T = t, S = s− s(t), we call FA

an adapted reparametrization.
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Theorem 5.5. Let M be a horo-flat horocyclic surface patch whose complete

parametrization is a horo-flat horocyclic surfaces with curve singularities. Then

M is an open subset of the regular part of one of the following horocyclic surfaces:

(1) A generalized horo-cone.

(2) A horo-flat tangent horocyclic surface.

(3) A glue of the above two surfaces.

Proof. We consider a complete parametrization F(γ,a1,a2) of the horo-flat

horocyclic surface patch. Since F(γ,a1,a2) is horospherical flat, we have c2(t) =

c4(t) − c1(t) ≡ 0.

We now assume that F(γ,a1,a2) has curve singularities. If γ is a constant unit

vector, we have γ′ ≡ 0, so that the above conditions for horo-flatness are reduced

to c4(t) = 〈a′
1(t),a2(t)〉 = 0. Moreover, we have the conditions that c1(t) =

c2(t) = c3(t) = 0. Therefore we have the conditions that a′
1(t) = c5(t)a3(t),

a′
2(t) = c6(t)a3(t). This means that F(γ,a1,a2) is a generalized horo-cone.

We suppose that γ is not constant. It means that c2(t) = c1(t) − c4(t) =

c3(t) = 0 and there are no subinterval J ⊂ I such that c1|J ≡ 0. If c6(t) = 0 on

a subinterval J ⊂ I, then we restrict the parameter space on R × J , so that we

may assume that c6(t) = 0 on I because we consider the glue of surfaces. In this

case, γ is a curve on a horosphere and F(γ,a1,a2) satisfies one of the conditons for

horo-flat tangent horocyclic surfaces.

Therefore we have the condition that there are no subinterval J ⊂ I such

that c6|J ≡ 0. If there is a subinterval J ⊂ I such that γ♯(t) is constant on J , we

restrict the parameter space on R×J , so that we have a semi-horo-cone on R×J .

Therefore, we may assume that there are no subinterval J ⊂ I such that γ♯(t) is

constant on J . This is also one of the conditions for horo-flat tangent horocyclic

surfaces. This completes the proof. ¤

By the above proof, we can show the following proposition. We now consider

the class of horo-flat horocyclic surfaces with regular points. For example if c3(t) =

c5(t) = c6(t) = 0, then any points are singular points. It is actually a horocycle.

Proposition 5.6. Let F(γ,a1,a2) : R × I −→ H3
+(−1) be a horo-flat horo-

cyclic surface with regular points. Then there exists an open subset O of I such

that F (R×O) is an open and dense subset of Image F(γ,a1,a2) such that F (R×O)

is a union of the images of the following horo-flat horocyclic surfaces:

(1) A regular horo-flat horocyclic surface.

(2) A generalized horo-cone.

(3) A horo-flat tangent horocyclic surface.
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In Euclidean space, complete non-singular developable surfaces are cylindrical

surfaces [13]. However, there are various kinds of horo-flat horocyclic surfaces

even if these are regular surfaces. Suppose that F(γ,a1,a2) is a non-singular horo-

flat horocyclic surface. We remember that F(γ,a1,a2) is non-singular if and only if

c3(t) 6= 0 and

{
c5(t0) = 0 if there exists t0 ∈ I such that c3(t0) + c6(t0) = 0,

δC(t) < 0 if c3(t) + c6(t) 6= 0.

We say that F(γ,a1,a2) is a regular horocylindrical surface if c1(t) = c2(t) = c4(t) =

c5(t) = 0 and c3(t)(c3(t)+c6(t)) > 0. This condition is equivalent to the condition

that a1(t) is constant and F(γ,a1,a2) is non-singular horo-flat horocyclic surface.

Moreover, a1(t) is constant and c3(t) + c6(t) = 0 if and only if ℓ(t) is constant,

so that F(γ,a1,a2) is a part of a horosphere. We also say that F(γ,a1,a2) is a sec-

ondary regular horocylindrical surface if c1(t) = c2(t) = c4(t) = c6(t) = 0 and

δC(t) = c2
5(t)−2c2

3(t) < 0. This condition is equivalent to the condition that a2(t)

is constant and F(γ,a1,a2) is non-singular horo-flat horocyclic surface. Of course

if we remove the condition that F(γ,a1,a2) is non-singular we simply say it is a

horocylindrical surface or a secondary horocylindrical surface respectively. We can

analyze the situation as follows: We define a subspace r(3, 1) ⊂ hf(3, 1) by

r(3, 1) =
{
C ∈ hf(3, 1) | c3 + c6 = c5 = 0, c3 6= 0

}

∪
{
C ∈ hf(3, 1) | c3 6= 0, c3 + c6 6= 0, c2

5 − 2c3(c3 + c6) < 0
}
.

We also define subspaces r1(3, 1) and r2(3, 1) of r(3, 1) by

r1(3, 1) =
{
C ∈ r(3, 1) | c1 = c2 = c4 = c5 = 0, c3(c3 + c6) > 0

}
,

r2(3, 1) =
{
C ∈ r(3, 1) | c1 = c2 = c4 = c6 = 0, c2

5 − 2c2
3 < 0

}
.

For any C ∈ C∞(I, hf(3, 1)), the corresponding horo-flat horocyclic surface FA is

horocylindrical if C(I) ⊂ r1(3, 1) and secondary horocylindrical if C(I) ⊂ r2(3, 1)

respectively. However, r1(3, 1) ∪ r2(3, 1) is a thin set in r(3, 1), so that there are

a lot of non-singular horo-flat horocyclic surfaces which are neither horocylindri-

cal nor secondary horocylindrical. We call such a horo-flat horocyclic surface a

regular horocylindrical surface of general type. We give some interesting examples

of regular horocylindrical surfaces and secondary regular horocylindrical surfaces

which suggest that the situation is quite different form the developable surfaces in

Euclidean space.
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Example 5.7. Consider a regular horocylindrical surface F(γ,a1,a2). Suppose

that γ(t) is a unit speed curve with κh(t) 6= 0. Then we have the Frenet-type

frame {γ(t), t(t),n(t), e(t)} given in Section 2. By definition, we have γ′(t) 6= 0

and a′
2(t) = −c1(t)a1(t) + c6(t)a3(t). Suppose that a1(t) = a1 is constant. It

follows that c1(t) ≡ 0, so that 〈t(t),a1〉 = 0. Taking a derivative of this equation,

we have

0 = 〈t′(t),a1〉 = 〈κh(t)n(t) + γ(t),a1〉 = κh(t)〈n(t),a1〉.

Therefore, we have 〈n(t),a1〉 = 0. Since 〈γ(t),a1〉 = 〈t(t),a1〉 = 0 and 〈a1,a1〉 =

1, we have a1 = ±e(t). It follows that τh(t) ≡ 0. This means that γ(t) is a

hyperbolic plane curve. If necessary, under a suitable parameter change, we can

choose a1 = e and a2(t) = ±n(t). We say that

F(γ,e,±n)(s, t) = γ(t) + se +
s2

2
(γ(t) ± n(t))

is a binormal horocyclic surface of a hyperbolic plane curve γ. By a straightforward

calculation we have

∂F(γ,e,±n)

∂t
(s, t) =

{
1 +

s2

2
(1 ∓ κh)

}
t(t),

∂F(γ,e,±n)

∂s
(s, t) = e + s(γ(t) ± n(t)).

Therefore the first fundamental form is given by

Ih = ds2 +
(
1 +

s2(1 ∓ κh(t))

2

)2
dt2.

Here, ℓ(t) = γ(t)±n(t) is the lightlike normal vector field along the surface. Then

we have

−ℓ′(t) = −(1 ∓ κh(t))t(t) =
−1 ± κh(t)

2 + s2(1 ∓ κh(t))

2

∂F(γ,e,±n)

∂t
(s, t)

=
−2 ± 2κh(t)

2 + s2(1 ∓ κh(t))

∂F(γ,e,±n)

∂t
(s, t)

It follows that the de Sitter principal curvatures are
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1 and 1 −
2 ∓ 2κh(t)

2 + s2(1 ∓ κh(t))
.

Since κh(t) > 0, F(γ,e,−n) is always umbilically free. We can draw the pictures of

such surfaces in the Poincaré ball (cf., Figure 5).

Horo-torus Banana Croissant

(‚: circle, a1 = constant) (‚: equidistant curve, (‚: horocycle,

a1 = constant) a1 = constant)

Figure 5.

However, F(γ,e,n) has umbilical points where κh(t) = 1. This gives a concrete

example of the surface with a constant principal curvature which is not umbilically

free ([1, Example 2.1]). We can draw a horocylindrical surface which has umbilical

points along the horocycle through (0, 0, 0) in Figure 6.

Figure 6. Hips (κh(0) = 1 of ‚, a1 = constant).

If κh ≡ 1 (i.e., γ(t) is a horocycle), then F(γ,e,n) is totally umbilical (i.e., a

horosphere).

Example 5.8. Suppose that a2(t) = a2 is constant. By the similar calcula-

tion as the case Example 5.7, we have a2 = ±e, so that τh(t) ≡ 0. Therefore, γ(t)

is a hyperbolic plane curve and a1(t) = ±n(t). We can also choose a1(t) = n(t).

We say that

F(γ,n,±e)(s, t) = γ(t) + sn(t) +
s2

2
(γ(t) ± e)

a principal normal horocyclic surface of a hyperbolic plane curve γ. In this case
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we have

∂F(γ,n,±e)

∂t
(s, t) =

{
1 − κh(t) +

s2

2

}
t(t),

∂F(γ,n,±e)

∂s
(s, t) = n(t) + s(γ(t) ± e).

Therefore the first fundamental form is given by

Ih = ds2 +
(2 − 2κh(t)s + s2)2

4
dt2.

Here, ℓ(t) = γ(t) ± e is the lightlike normal vector field along the surface. For a

hyperbolic plane curve γ(t) with κ2
h(t) < 2, we have

−ℓ′(t) =
−2

s2 − 2κh(t)s + 2

∂F(γ,n,±e)

∂t
(s, t).

In this case the surface is non-singular and always umbilically free.

In the last part of this section, we consider the singular horo-flat horocyclic

surfaces. By the jet-transversality theorem of Thom [2], [28], there exists an open

dense set O ⊂ C∞(I, hf(3, 1)) such that for any C ∈ O, it satisfies the condition

that (δC(t), δ′C(t)) 6= (0, 0). If FA is a horo-flat horocyclic surface with an isolated

singular point, there exists t0 ∈ I such that δC(t0) = δ′C(t0) = 0, so that C /∈ O.

This means that the set of horo-flat horocyclic surfaces with an isolated singular

point is not generic in the space horo-flat horocyclic surfaces. By the similar

arguments as the above, we can also show that the set of generalized horo-cones

is not generic in the space of horo-flat horocyclic surfaces. Therefore, we are

interested in horo-flat tangent horocyclic surfaces as horo-flat horocyclic surfaces

with singularities.

6. Singularities of horo-flat horocyclic surfaces.

In this section we stick to the study of the generic singularities of horo-flat

horocyclic surfaces. A horo-flat tangent horocyclic surface is a horocyclic surface

F(γ,a1,a2) which satisfies c2(t) = c4(t)− c1(t) = c3(t) = 0 (see Section 5). Then the

space of horo-flat horocyclic surfaces with curve singularities is C∞(I, hfσ(3, 1))

with the Whitney C∞-topology. In this space the condition c5(t) = 0 is a codi-

mension one condition (in the sufficiently higher order jet space Jℓ(I, hfσ(3, 1)).

Therefore, we cannot generically avoid the points where c5(t) = 0. Two branches

of the singularities meet at such points. This fact suggests us the situation is quite

different from the singularities of general wavefront sets or tangent developables
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in Euclidean space.

In order to study the singularities of horo-flat tangent horocyclic surfaces,

we need the criteria for singularities of wavefronts. Since H3
+(−1) is a Rieman-

nian manifold, we consider the unit tangent sphere bundle π : S(TH3
+(−1)) −→

H3
+(−1) which can be identified with the unit cotangent sphere bundle π̃ :

S(T ∗H3
+(−1)) −→ H3

+(−1) with the canonical contact structure. Let U2 ⊂ R2

be an open set. A map f : U2 −→ H3
+(−1) is called a frontal map (respec-

tively, front) if there exists an isotropic map (respectively, Legendrian immersion)

Lf : U2 −→ S(TH3
+(−1)) with respect to the canonical contact structure such

that π ◦ Lf = f . In this case we say that Lf is the Legendrian lift of f . Here, we

identify S(TH3
+(−1)) with ∆ ⊂ H3

+(−1) × S3
1 , where S3

1 is the de Sitter 3-space

and ∆ = {(v,w) ∈ H3
+(−1) × S3

1 | 〈v,w〉 = 0} (see Sections 2 and 3). Under this

identification, we denote Lf as Lf = (f, ν) : U2 → H3
+(−1) × S3

1 . See [22] for

detail.

Let f(u, v) : U2 −→ H3
+(−1) be a frontal map. We define a function λ(u, v)

by

f(u, v) ∧ fu(u, v) ∧ fv(u, v) = λ(u, v)ν(u, v),

where fu = ∂f/∂u and fv = ∂f/∂v. We call λ(u, v) a signed area density function

of f . We remark that p = (u, v) is a singular point of f if and only if λ(u, v) = 0.

A singular point p ∈ U of f is said to be non-degenerate if the derivative dλ

does not vanish at p. By the implicit function theorem, the singular set S(f) is

parameterized by a regular curve ξ(t) : (−ε, ε) −→ U in a neighborhood of a non-

degenerate singular point p. Since p is non-degenerate, any ξ(t) is non-degenerate

for sufficiently small ε. Then there exists a unique direction η(t) ∈ Tξ(t)U up to

scalar multiplications such that df(η(t)) = 0 for each t. We call ξ′(t) the singular

direction and η(t) the null-direction. Then we have the following criterion in order

to recognize that the singularities are the cuspidal edge, the swallowtail or the

cuspidal cross cap.

Proposition 6.1 ([26], [11]). Let f : U2 −→ H3
+(−1) be a frontal map and

(f, ν) the Legendrian lift of f . Let p be a non-degenerate singular point of f , ξ a

regular curve passing through ξ(0) = p such that Image ξ is the singular set of f

and η a vector field of null-direction along ξ. We set

ϕ(t) := det
(
ξ̃,

(
ξ̃
)′

, Df
η (ν ◦ ξ), ν ◦ ξ

)
(t) and ψ(t) := det(ξ′, η)(t)

where ξ̃ = f ◦ ξ, Df is the canonical covariant derivative along a map f induced

from the Levi-Civita connection on H3
+(−1) and ′ = d/dt. Then



Horospherical flat surfaces 825

(a) p is a cuspidal edge (that is, f at p is A -equivalent to cuspidal edge) if and

only if (f, ν) is an immersion and ψ(0) 6= 0, this means the null direction and

the singular direction are transversal.

(b) p is a swallowtail if and only if (f, ν) is an immersion, ψ(0) = 0 and ψ′(0) 6= 0.

(c) p is a cuspidal cross cap if and only if ψ(0) 6= 0, ϕ(0) = 0 and ϕ′(0) 6= 0.

We remark that ϕ(0) 6= 0 if and only if (f, ν) is a Legendrian immersion germ

at p when ξ̃′(0) 6= 0. We use this criterion to characterize the cuspidal edge,

the swallowtail and the cuspidal cross cap of a horo-flat horocyclic surface. For

F = F(γ,a1,a2), we define

ν(s, t) := −a2(t) + sa1(t) +
s2

2
(γ(t) + a2(t)). (8)

We can easily show that (F(γ,a1,a2), ν) gives the Legendrian lift, this means that

F is a frontal map. It follows from the condition (6) that the singular set of F is

{(s, t) | s(c5(t) + sc6(t)/2) = 0}. By the straightforward calculations, we have

Ft(s, t) = sc1(t)γ(t) + c1(t)a1(t) + sc1(t)a2(t) +

(
sc5(t) +

s2c6(t)

2

)
a3(t),

Fs(s, t) = sγ(t) + a1(t) + sa2(t),

νt(s, t) = sc1(t)γ(t) + c1(t)a1(t) + sc1(t)a2(t)

+

(
− c6(t) + sc5(t) +

s2c6(t)

2

)
a3(t),

νs(s, t) = sγ(t) + a1(t) + sa2(t),

λ(s, t) = −s

(
c5(t) +

sc6(t)

2

)
.

(9)

Therefore the singular point (0, t) (respectively, {(s, t) | c5(t) = −sc6(t)/2}) is

non-degenerate if and only if c5(t) 6= 0 (respectively, c6(t) 6= 0). In both cases, we

can show that the condition c6(t) 6= 0 is equivalent to the condition that (F, ν) is

a Legendrian immersion. Firstly we consider a singular point (0, t). We can see

that singular direction is (0, 1) and the null direction is (c1(t),−1). Then we can

detect the functions ϕ and ψ in Proposition 6.1 as follows:

ϕ(t) = c1(t)c6(t) and ψ(t) = c1(t).

Secondly we assume that c6(t) 6= 0 and consider a singular point (−2c5(t)/c6(t), t).
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By (9), we have

ψ(t) = c1(t) −

(
2c5(t)

c6(t)

)′

.

By the above arguments, we have the following theorem except the assertion (B).

Theorem 6.2. Let F(γ,a1,a2) be a horo-flat tangent horocyclic surface with

singularities along γ.

(A) Suppose that c5(t0) 6= 0 and c6(t0) 6= 0, then both the points (0, t0) and

(−s(t0), t0) are singularities, where s(t) = 2c5(t)/c6(t). In this case we have

the following :

(1) The point (0, t0) is the cuspidal edge if and only if c1(t0) 6= 0.

(2) The point (0, t0) is the swallowtail if and only if c1(t0) = 0 and c′1(t0) 6= 0.

(3) The point (−s(t0), t0) is the cuspidal edge if and only if (c1 − s′)(t0) 6= 0.

(4) The point (−s(t0), t0) is the swallowtail if and only if

(c1 − s′)(t0) = 0 and (c1 − s′)′(t0) 6= 0.

(B) Suppose that c5(t0) = 0 and c6(t0) 6= 0, then s(t0) = 0, so that (0, t0) =

(−s(t0), t0) is a singular point. In this case, the point (0, t0) is the cuspidal

beaks if and only if c′5(t0) 6= 0, c1(t0) 6= 0 and (c1 − s′)(t0) 6= 0.

(C) Suppose that c5(t0) 6= 0 and c6(t0) = 0, then the point (0, t0) is the cuspidal

cross cap if and only if c1(t0) 6= 0 and c′6(t0) 6= 0. In this case, γ(t0) is the

only singular point on the generating horocycle F(γ,a1,a2)(s, t0).

For the proof of the assertion (B), we need some more arguments and they

will be given in Section 7. The following proposition asserts that the conditions in

the above theorem is generic in the space of horo-flat tangent horocyclic surfaces,

so that the proof of Theorem 1.1 is completed.

Proposition 6.3. There exists an open dense subset O ⊂ C∞(I, hfσ(3, 1))

such that any C(t) ∈ O satisfies the following conditions:

(1) The set of the points t0 ∈ I with c1(t0) = 0, c′1(t0) 6= 0, c5(t0) 6= 0 and

c6(t0) 6= 0 is discrete.

(2) The set {t0 ∈ I | c1(t0) = 0} ∩ {t0 | c′1(t0) = 0, c5(t0) = 0 or c6(t0) = 0} is

empty.

(3) The set of the points t0 ∈ I with (c1−s′)(t0) = 0, (c1−s′)′(t0) 6= 0, c5(t0) 6= 0

and c6(t0) 6= 0 is discrete.

(4) The set {t0 ∈ I | (c1 − s′)(t0) = 0} ∩ {t0 | (c1 − s′)′(t0) = 0, c5(t0) =
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0 or c6(t0) = 0} is empty.

(5) The set of the points t0 ∈ I with c5(t0) = 0, c′5(t0) 6= 0, c6(t0) 6= 0, c1(t0) 6= 0

and (c1 − s′)(t0) 6= 0 is discrete.

(6) The set {t0 ∈ I | c5(t0) = 0} ∩ {t0 | c′5(t0) = 0, c6(t0) = 0, c1(t0) =

0 or (c1 − s′)(t0) = 0} is empty.

(7) The set of the points t0 ∈ I with c6(t0) = 0, c′6(t0) 6= 0, c5(t0) 6= 0 and

c1(t0) 6= 0 is discrete.

(8) The set {t0 ∈ I | c6(t0) = 0} ∩ {t0 | c′6(t0) = 0, c5(t0) = 0 or c1(t0) = 0} is

empty.

For the proof of the above proposition, we only remark that either the sub-

manifolds corresponding to the conditions (1),(3),(5),(7) are codimension one or

the conditions (2),(4),(6),(8) are codimension two in J1(I, hfσ(3, 1)). Therefore

the assertion of the proposition follows from the jet-transversality theorem [2],

[28]. Moreover, by the similar arguments of the above proposition we have the

following corollary.

Corollary 6.4. There exists an open dense subset O ′ ⊂ C∞(I, hfσ(3, 1))

such that any C(t) ∈ O ′ satisfies the following conditions:

(1) C(t) satisfies the all conditions in Proposition 6.3.

(2) The set of the points t0 ∈ I with c1(t0) = 0 and (c1 − s′)(t0) = 0 is empty.

Corollary 6.4 asserts that there are no point t0 ∈ I such that both of two

singularities on the generating horocycle through t0 are swallowtails in generic.

7. The cuspidal beaks.

In this section we give a proof of the assertion (B) in Theorem 6.2. For the

purpose, we start to give a brief review on the theory of Legendrian singularities

due to Arnol’d-Zakalyukin [2], [36], [37]. Here we only consider local properties,

we consider Rn instead of any n-dimensional manifold. Let π : PT ∗(Rn) −→ Rn

be the projective cotangent bundle over Rn. The total space is a contact manifold

equipped with the canonical contact structure K on PT ∗(Rn). An immersion i :

L → PT ∗(Rn) is said to be a Legendrian immersion if dimL = n and diq(TqL) ⊂

Ki(q) for any q ∈ L. We also call the map π ◦ i the Legendrian map and the set

W (i) = image π ◦ i the wave front of i. Moreover, i (or, the image of i) is called

the Legendrian lift of W (i). We remark that each fiber of π : PT ∗(Rn) −→ Rn

is a Legendrian submanifold. We say that a smooth fiber bundle π : E −→ M is

a Legendrian fibration if E is a contact manifold and each fiber is a Legendrian

submanifold. It is known that all Legendrian fibrations of a fixed dimension are

locally fiber preserving contact diffeomorphic ([2, Part III]). Therefore we only
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consider π : PT ∗(Rn) −→ Rn here.

The main tool of the theory of Legendrian singularities is the notion of gener-

ating families. Let F : (Rk × Rn,0) −→ (R,0) be a function germ which we call

an unfolding of f(q) = F (q, 0). We say that F is a Morse family of hypersurfaces

if the mapping

∆∗F =

(
F,

∂F

∂q1
, . . . ,

∂F

∂qk

)
: (Rk × Rn,0) −→ (R × Rk,0)

is non-singular, where (q, x) = (q1, . . . , qk, x1, . . . , xn) ∈ (Rk×Rn,0). In this case

we have a smooth (n − 1)-dimensional submanifold

Σ∗(F ) =

{
(q, x) ∈ (Rk × Rn,0) | F (q, x) =

∂F

∂q1
(q, x) = · · · =

∂F

∂qk

(q, x) = 0

}

and the map germ ΦF : (Σ∗(F ),0) −→ PT ∗Rn defined by

ΦF (q, x) =

(
x,

[
∂F

∂x1
(q, x) : · · · :

∂F

∂xn

(q, x)

])

is a Legendrian immersion germ. The fundamental result of Arnol’d-Zakalyukin

[2], [36] asserts that all Legendrian submanifold germs in PT ∗Rn are constructed

by the above method. We call F a generating family of ΦF (Σ∗(F )). Therefore the

wave front of ΦF (Σ∗(F )) is

W (ΦF ) =

{
x ∈ Rn | ∃q ∈ Rk such that

F (q, x) =
∂F

∂q1
(q, x) = · · · =

∂F

∂qk

(q, x) = 0

}
.

We also write DF = W (ΦF ) and call it the discriminant set of F .

We now introduce an equivalence relation among Legendrian submanifold

germs. Let i : (L, p) ⊂ (PT ∗Rn, p) and i′ : (L′, p′) ⊂ (PT ∗Rn, p′) be Legendrian

submanifold germs. Then we say that i and i′ are Legendrian equivalent if there

exists a contact diffeomorphism germ H : (PT ∗Rn, p) −→ (PT ∗Rn, p′) such that

H preserves fibers of π and that H(L) = L′.

Since the Legendrian lift i : (L, p) ⊂ (PT ∗Rn, p) is uniquely determined on

the regular part of the wave front W (i), we have the following simple but significant

property of Legendrian immersion germs:
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Proposition 7.1. Let i : (L, p) ⊂ (PT ∗Rn, p) and i′ : (L′, p′) ⊂

(PT ∗Rn, p′) be Legendrian immersion germs such that the representative of both

the regular sets of the projections π ◦ i and π ◦ i′ are dense. Then i and i′ are Leg-

endrian equivalent if and only if wave front sets W (i) and W (i′) are diffeomorphic

as set germs.

This result has been firstly pointed out by Zakalyukin [37]. The assumption in

the above proposition is a generic condition for i and i′.

We can interpret the Legendrian equivalence by using the notion of generating

families. We denote by En the local ring of function germs (Rn,0) −→ R with

the unique maximal ideal Mn = {h ∈ En | h(0) = 0}. Let F, G : (Rk ×Rn,0) −→

(R, 0) be function germs. We say that F and G are P -K -equivalent if there exists

a diffeomorphism germ Ψ : (Rk × Rn,0) −→ (Rk × Rn,0) of the form Ψ(q, x) =

(ψ1(q, x), ψ2(x)) for (q, x) ∈ (Rk × Rn,0) such that Ψ∗(〈F 〉Ek+n
) = 〈G〉Ek+n

.

Here Ψ∗ : Ek+n −→ Ek+n is the pull back R-algebra isomorphism defined by

Ψ∗(h) = h ◦ Ψ.

Let F : (Rk × Rn,0) −→ (R,0) be a function germ. We say that F is a K -

versal unfolding of f = F |Rk×{0} if for any unfolding G : (Rk×Rm,0) −→ (R,0)

of f (i.e., G(q,0) = f(q)), there exists a map germ φ : (Rm,0) −→ (Rn,0)

such that φ∗F and G are P -K -equivalent, where φ∗F (q, u) = F (q, φ(u)). For an

unfolding F (t, x) of a function f(t) of one-variable, we have the following useful

criterion on the K -versal unfoldings in (cf., [4, 6.10]): We say that f has an Ar-

singularity at t0 if f (p)(t0) = 0 for all 1 ≤ p ≤ r, and f (r+1)(t0) 6= 0. We have the

following lemma.

Lemma 7.2. Let F be an unfolding of f and f(t) has an Ar-singularity

(r ≥ 1) at t0. We denote the (r − 1)-jet of the partial derivative ∂F/∂xi at t0 by

j(r−1)

(
∂F

∂xi

(t, x0)

)
(t0) =

r−1∑

j=0

αji(t − t0)
j

for i = 1, . . . , n. Then F is a K -versal unfolding if and only if the r × n matrix

of coefficients (αji) has rank r (r ≤ n).

It follows from the above lemma that the function germ defined by

tr+1 + x1t
r−1 + x2t

r−2 + · · · + xr−1t + xr

is a K -versal unfolding of f(t) = tr+1. One of the main results in the theory of

Legendrian singularities is the following theorem:
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Theorem 7.3. Let F, G : (Rk × Rn,0) −→ (R, 0) be Morse families of

hypersurfaces. Then ΦF and ΦG are Legendrian equivalent if and only if F and

G are P -K -equivalent.

Since F, G are function germs on the common space germ (Rk ×Rn,0), we do no

need the notion of stably P -K -equivalences under this situation (cf., [2], [36]). As

a corollary of Proposition 7.1 and Theorem 7.3, we have the following proposition.

Proposition 7.4. Let F, G : (Rk × Rn,0) −→ (R, 0) be Morse families of

hypersurfaces. Suppose that both regular sets of the representative of projections

π ◦ ΦF , π ◦ ΦG are dense. Then (W (ΦF ), 0) and (W (ΦG), 0) are diffeomorphic as

set germs if and only if F and G are P -K -equivalent.

On the other hand, Zakalyukin gave a generic classification of one-parameter

bifurcations of wave fronts [37]. Here we apply his idea to recognize the cuspidal

beaks. We now consider the special case when k = 1, n = 3. Let F : (R ×

R3, 0) −→ (R, 0) be an unfolding of f(t) = F (t, 0) such that f(t) is the A3-type.

Let F̃ : (R × R4, 0) −→ (R, 0) be an unfolding of f(t) defined by F̃ (t, v, u) =

F (t, v) + ut2. Since f(t) is the A3-type, f(t) is K -equivalent to t4 (cf., [4],

[28]). Therefore we assume that f(t) = t4. Since t4 + x1t
2 + x2t + x3 is a K -

versal unfolding of f(t), there exists a map germ φ : (R3, 0) −→ (R3, 0) such

that F (t, v) is P -K -equivalent to t4 + φ1(v)t2 + φ2(v)t + φ3(v), where φ(v) =

(φ1(v), φ2(v), φ3(v)), so that we assume that F (t, v) = t4 + φ1(v)t2 + φ2(v)t +

φ3(v). Then we have the following proposition.

Proposition 7.5. Let F : (R × R3, 0) −→ (R, 0) be an unfolding of an

A3-type germ f(t). Then F̃ (t, v, u) is a K -versal unfolding of f(t) if and only if

F (t, v) is a Morse family of hypersurfaces.

Proof. Since both notions are invariant under the P -K -equivalence, we

may assume that F (t, v) = t4 + φ1(v)t2 + φ2(v)t + φ3(v). Suppose that F (t, v) is

a Morse family of hypersurfaces. This means that

∆∗(F ) =

(
F,

∂F

∂t

)
: (R × R3, 0) −→ (R2, 0)

is regular at 0, so that the rank of the Jacobian matrix of ∆∗(F ),

J∆∗F (0) =




0
∂φ3

∂v1
(0)

∂φ3

∂v2
(0)

∂φ3

∂v3
(0)

0
∂φ2

∂v1
(0)

∂φ2

∂v2
(0)

∂φ2

∂v3
(0)



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is two.

On the other hand, we have ∂F̃/∂vi = (∂φ1/∂vi)t
2 + (∂φ2/∂vi)t + ∂φ3/∂vi

and ∂F̃/∂u = t2. Therefore we have

j2

(
∂F̃

∂vi

(t, 0)

)
(0) =

∂φ3

∂vi

(0) +
∂φ2

∂vi

(0)t +
∂φ1

∂vi

(0)t2, (i = 1, 2, 3)

j2

(
∂F̃

∂u
(t, 0)

)
(0) = t2

By Lemma 7.2, F̃ is K -versal if and only if the rank of




∂φ3

∂v1
(0)

∂φ3

∂v2
(0)

∂φ3

∂v3
(0) 0

∂φ2

∂v1
(0)

∂φ2

∂v2
(0)

∂φ2

∂v3
(0) 0

∂φ1

∂v1
(0)

∂φ1

∂v2
(0)

∂φ1

∂v3
(0) 1




is three. This condition is equivalent to the condition that the rank of J∆∗(F )(0)

is two. ¤

We now assume that F is a Morse family of hypersurfaces, so that the rank

of J∆∗(F )(0) is two. Therefore the map germ φ̃ : (R3, 0) −→ (R2, 0) defined by

φ̃(v) = (φ2(v), φ3(v)) is a submersion germ. Without the loss of generality, by

the implicit function theorem, there exists a diffeomorphism germ ψ : (R3, 0) −→

(R3, 0) such that φ̃ ◦ ψ(v) = (v2, v3). Therefore we have

ψ∗F (t, v) = t4 + φ̃1(v)t2 + v2t + v3,

for a function germ φ̃1 : (R3, 0) −→ (R, 0). If (∂φ̃1/∂v1)(0) 6= 0, then ψ∗F (t, v)

is K -versal, so that F is already K -versal. Suppose that (∂φ̃1/∂v1)(0) = 0, then

ψ̃∗F (t, v, u) = ψ∗F (t, v) + ut2 is a K -versal deformation of f(t) = t4 such that

ψ∗F (t, v) is P -K -equivalent to F . Suppose that φ̃1(v1, 0, 0) has the Morse type

singularity at the origin (i.e., (∂2φ̃1/∂v2
1)(0) 6= 0). By the parametrized Morse

lemma, there exists a diffeomorphism germ σ : (R3,0) −→ (R3,0) such that

φ̃1 ◦ σ(v) = g(v2, v3) ± v2
1 . It follows that

σ∗ψ∗F (t, v) = t4 +
(
g(v2, v3) ± v2

1

)
t2 + v2t + v3.
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We now write that F (t, v) = σ∗ψ∗F (t, v). We also define an unfolding H(t, v) by

H(t, v) = t4 ± v2
1t2 + v2t + v3.

Consider a K -versal unfolding G : (R × R3,0) −→ (R, 0) defined by

G(t, v2, v3, u) = t4 + ut2 + v2t + v3.

We also consider a K -versal unfolding G : (R × R4,0) −→ (R, 0) defined by

G(t, v1, v2, v3, u) = G(t, v2, v3, u). Then we have DG = R × DG. We now define a

function germ τ : (R3,0) −→ (R, 0) by τ(v2, v3, u) = u − g(v2, v3). We need the

following key lemma ([37, Theorem 1.4]).

Lemma 7.6. Let F : (R×Rk,0) −→ (R, 0) be a K -versal unfolding defined

by

F (t, u) = tk+1 + u1t
k−1 + u2t

k−2 + · · · + uk

and σ : (Rk,0) −→ (R, 0) a function germ with ∂σ/∂u1(0) > 0. Then there

exists a diffeomorphism germ Φ : (Rk,0) −→ (Rk,0) such that Φ(DF ) = DF and

σ ◦ Φ(u1, . . . , uk) = u1.

We remark that Zakalyukin has shown this lemma for much more general

situation than the above case. However, we only need the above simple case in

this paper.

We apply the above lemma to G and τ . Then there exists a diffeomorphism

germ Φ : (R3,0) −→ (R3,0) such that Φ(DG) = (DG) and τ ◦ Φ(v2, v3, u) = u.

On the other hand, we define an unfolding Gg : (R × R4,0) −→ (R, 0) by

Gg(t, v1, v2, v3, u) = t4 +
(
u + g(v2, v3) ± v2

1

)
t2 + v2t + v3.

Let Ψ : (R4,0) −→ (R4,0) be a diffeomorphism germ defined by

Ψ(v1, v2, v3, u) =
(
v1, v2, v3, u − g(v2, v3) ∓ v2

1

)
.

Then we have

Ψ∗Gg(t, v1, v2, v3, u) = Gg(t, Ψ(v1, v2, v3, u)) = G(t, v1, v2, v3, u)

and π ◦ Ψ(v1, v2, v3, u) = u − g(v2, v3) ∓ v2
1 , where π(v1, v2, v3, u) = u. We denote
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that

τ̃(v1, v2, v3, u) = u − g(v2, v3) ± v2
1 .

Then we have (1R × Φ)(DG) = DG and τ̃ ◦ (1R × Φ)(v1, v2, v3, u) = u ± v2
1 .

We also define a diffeomorphism germ Θ : (R4,0) −→ (R4,0) by

Θ(t, v1, v2, v3, u) =
(
t, v1, v2, v3, u ± v2

1

)
.

Then we have Θ∗G = H, where

H(t, v1, v2, v3, u) = t4 +
(
u ± v2

1

)
t2 + v2t + v3.

It follows that Θ(DH) = DG and π ◦ Θ−1(t, v1, v2, v3, u) = u ± v2
1 . Therefore, we

have a diffeomorphism Φ̃ : (R4,0) −→ (R4,0) defined by Φ̃ = Ψ ◦ (1R × Φ) ◦ Θ.

By the above arguments, we have Φ̃(DH) = DGg
and π ◦ Φ̃ = π. By Proposition

7.4, there exists a diffeomorphism germ Ψ̃ : (R4,0) −→ (R4,0) of the form

Ψ̃(t, v1, v2, v3, u) =
(
ψ0(t, v1, v2, v3, u), ψ1(v1, v2, v3, u),

ψ2(v1, v2, v3, u), ψ3(v1, v2, v3, u), ψ4(u)
)

such that Ψ̃∗(〈H〉E1+4
) = 〈Gg〉E1+4

. If we restrict the above relation on u = 0,

then σ∗ψ∗F is P -K -equivalent to H. This means that F is P -K -equivalent to

H.

On the other hand, for ψ∗F (t, v) = t4 + φ̃1(v)t2 +v2t+v3, Σ∗(ψ
∗F ) is defined

by the equations:

{
h1(t, v) = t4 + φ̃1(v)t2 + v2t + v3 = 0

h2(t, v) = 4t3 + 2φ̃1(v)t + v2 = 0.

We now consider a function germ ρ : (Σ∗(ψ
∗F ), 0) −→ R defined by

ρ(t, v1) =
∂2ψ∗F

∂t2

∣∣∣∣
Σ∗(ψ∗F )

= 12t2 + 2φ̃1(v),

where (t, v) ∈ Σ∗(ψ
∗F ). Differentiating both functions hi(t, v) = 0 (i = 1, 2) with

respect to t and v1, we have
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∂vi

∂t
(0) =

∂2vi

∂t2
(0) =

∂2vi

∂t∂v1
(0) = 0 (i = 2, 3).

Here, we use the fact (∂φ̃1/∂v1)(0) = 0. It follows that

Hess(ρ)(0) =




24 0

0
∂2φ̃1

∂v2
1

(0)


 ,

where Hess(ρ)(0) is a Hessian matrix of ρ at 0. Therefore, φ̃1(v1, 0, 0) has the

Morse type singularity at 0 if and only if ρ(t, v1) has the Morse type singularity

at 0. We have almost completed the proof of the following recognition lemma.

Lemma 7.7 (Recognition lemma for the cuspidal beaks or the cuspidal lips).

Let F : (R × R3, 0) −→ (R, 0) be a Morse family of hypersurfaces such that

f(t) = F (t, 0) is the A3-type germ. If the function germ (∂2F/∂t2)|Σ∗(F ) has the

Morse type singularity at 0 ∈ Σ∗(F ), then F (t, v) is P -K -equivalent to

t4 ± v2
1t2 + v2t + v3.

Proof. By the previous arguments, it is enough to show the following fact:

Suppose that F, G : (R×Rn, 0) −→ (R, 0) are the Morse families of hypersurfaces.

If F and G are P -K -equivalent, then (∂2F/∂t2)|Σ∗(F ) has the Morse type singu-

larity at the origin if and only if (∂2G/∂t2)|Σ∗(G) has the Morse type singularity

at the origin. This fact follows from definition and straightforward calculations.

¤

In order to apply the above lemma to our situation, we now consider a family

of functions H : I × H3
+(−1) −→ R defined by

H(t, v) = 〈ℓ(t),v〉 + 1,

where ℓ(t) = γ(t) + a2(t). Firstly we consider the derivatives of H(t, v) with

respect to t. We assume that c6(t0) 6= 0. Since ℓ′(t) = c6(t)a3(t), the discriminant

set DH of H is the horo-flat horocyclic surface

F(γ,a1,a2)(s, t) = γ(t) + sa1(t) +
s2

2
ℓ(t)

around t0. Suppose that v0 = γ(t0), then we have
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∂H

∂t
(t0,v0) = 0,

∂2H

∂t2
(t0,v0) = 0,

∂3H

∂t3
(t0,v0) = c5(t0)c6(t0)c1(t0),

and

∂4H

∂t4
(t0,v0) = c5(t0)

(
c′1(t0)c6(t0) + 3c1(t0)c

′

6(t0)
)

+ c6(t0)c1(t0)
(
2c′5(t0) − c6(t0)c1(t0)

)
.

By the above calculations, if we assume that c5(t0) = 0, c6(t0) 6= 0, c′5(t0) 6= 0,

c1(t0) 6= 0 and (c1 − s′)(t0) 6= 0, then hv0(t) = H(t, v0) has an A4-singularity at

t0.

We now define a 4-dimensional unfolding H̃ : I × H3
+(−1) × R −→ R by

H̃(t, v, u) = H(t, v) + u(t − t0)
2 = 〈ℓ(t),v〉 + u(t − t0)

2 + 1.

Here we consider that H̃ is a germ at (t0,v0, 0).

Lemma 7.8. We assume that c5(t0) = 0, c6(t0) 6= 0, c′5(t0) 6= 0, c1(t0) 6= 0

and (c1 − s)′(t0) 6= 0, then H̃ is a K -versal deformation of hv0 .

Proof. Since the curve C(t) ∈ so(3, 1) is a hyperbolic invariant, we as-

sume that γ(t0) = (1, 0, 0, 0) by a suitable hyperbolic transformation. More-

over, we assume that t0 = 0 by a parameter transformation. In this case

H̃(t, v, u) = 〈ℓ(t),v〉 + ut2. If we denote that v = (v0, v1, v2, v3) and ℓ(t) =

(ℓ0(t), ℓ1(t), ℓ2(t), ℓ3(t)), we have

H̃(t, v, u) = −ℓ0(t)v0 + ℓ1(t)v1 + ℓ2(t)v2 + ℓ3(t)v3 + ut2 + 1.

We adopt the local coordinate of H3
+(−1) by v = (

√
v2
1 + v2

2 + v2
3 + 1, v1, v2, v3),

so that we have (∂H̃/∂vi)(t, v, u) = −ℓ0(t)(vi/v0) + ℓi(t), (i = 1, 2, 3). Since

v0 = γ(0) = (1, 0, 0, 0), we have

j2

(
∂H̃

∂v1
(t, v0, 0)

)
(0) = ℓ1(0) + ℓ′1(0)t +

1

2
ℓ′′1(0)t2,

j2

(
∂H̃

∂v2
(t, v0, 0)

)
(0) = ℓ2(0) + ℓ′2(0)t +

1

2
ℓ′′2(0)t2,

j2

(
∂H̃

∂v3
(t, v0, 0)

)
(0) = ℓ3(0) + ℓ′3(0)t +

1

2
ℓ′′3(0)t2,
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j2

(
∂H̃

∂u
(t, v0, 0)

)
(0) = t2.

It is enough to show that

rank




ℓ1(0) ℓ′1(0) ℓ′′1(0)

ℓ2(0) ℓ′2(0) ℓ′′2(0)

ℓ3(0) ℓ′3(0) ℓ′′3(0)

0 0 1




= rank




0 0 1

ℓ1(0) ℓ′1(0) 0

ℓ2(0) ℓ′2(0) 0

ℓ3(0) ℓ′3(0) 0




= 3.

Since 〈ℓ(t), ℓ(t)〉 = 〈ℓ(t), ℓ′(t)〉 = 0, we have

ℓ0 =
ℓ21
ℓ0

+
ℓ22
ℓ0

+
ℓ23
ℓ0

, ℓ′0 =
ℓ1ℓ

′
1

ℓ0
+

ℓ2ℓ
′
2

ℓ0
+

ℓ3ℓ
′
3

ℓ0
.

It follows that the rank of the last matrix has the same value as the rank of




ℓ0(0) ℓ′0(0) 1

ℓ1(0) ℓ′1(0) 0

ℓ2(0) ℓ′2(0) 0

ℓ3(0) ℓ′3(0) 0




.

Here, ℓ(t) = γ(t) + a2(t), then ℓ(0) = γ(0) + a2(0) and ℓ′(0) = c6(0)a3(0).

Remember that {γ,a1,a2,a3} is a pseudo-orthonormal frame at any t. Therefore

ℓ(0), ℓ′(0),γ(0) are linearly independent under the condition c6(t0) 6= 0. Hence

the rank of the above matrix is three. This completes the proof. ¤

By Proposition 7.5, H is a Morse family of hypersurfaces. We can give the

proof of the assertion (B) in Theorem 6.2.

Proof of Theorem 6.2, (B). Since H̃ is a K -versal deformation and H

is a Morse family of hypersurfaces, we now calculate ρ = (∂2H/∂t2)|Σ∗(H). Since

Σ∗(H) is the horo-flat horocyclic surface corresponding to C(t) ∈ so(3, 1), we have

∂2H

∂t2
(t, s) =

〈
ℓ′′(t),γ(t) + sa1(t) +

s2

2
ℓ(t)

〉

=

〈
− c5(t)c6(t)a1(t) − c6(t)

2a2(t) + c′6(t)a3(t),γ(t) + sa1(t) +
s2

2
ℓ(t)

〉
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= −sc5(t)c6(t) −
s2

2
c6(t)

2.

The Hessian matrix of ρ(s, t) = −sc5(t)c6(t) −
s2

2 c6(t)
2 at (0, t0) is

Hess(ρ)(0, t0) =

(
−c2

6(t0) −c′6(t0)c5(t0) − c6(t0)c
′
5(t0)

−c′6(t0)c5(t0) − c6(t0)c
′
5(t0) 0

)
.

Since c5(t0) = 0, c′5(t0) 6= 0 and c6(t0) 6= 0, we have det Hess(ρ)(0, t0) 6= 0. By

Lemma 6.3, H is P -K -equivalent to t4 ± v2
1t2 + v2t + v3. The singular set of

F(γ,a1,a2) is given by ρ(s, t) = 0. Therefore it consists of two curves transversally

intersect at (0, t0). Therefore the normal form t4−v2
1t2 +v2t+v3 is the generating

family of the corresponding Legendrian lift. It is nothing but the cuspidal beaks.

¤

8. Duality between H3
+(−1) and LC∗

+.

In this section we consider Legendrian dualities between curves and surfaces in

H3
+(−1) or LC∗

+. In [23] we have established the duality between pseudo-spheres

in Minkowski space. Although there are four dual relations, we only consider the

following double fibration:

(a) H3(−1) × LC∗
+ ⊃ ∆2 = {(v,w) | 〈v,w〉 = −1},

(b) π21 : ∆2 −→ H3(−1), π22 : ∆2 −→ LC∗
+,

(c) θ21 = 〈dv,w〉|∆2, θ22 = 〈v, dw〉|∆2.

Here, π21(v,w) = v, π22(v,w) = w, 〈dv,w〉 = −w0dv0 +
∑3

i=1 widvi and

〈v, dw〉 = −v0dw0 +
∑3

i=1 vidwi. We remark that θ−1
21 (0) and θ−1

22 (0) define the

same tangent hyperplane field over ∆2 which is denoted by K2. In [23] we have

shown that (∆2,K2) is a contact manifold such that each fibration π2i (i = 1, 2)

is a Legendrian fibration. We say that smooth mappings f : U −→ H3
+(−1)

and g : U −→ LC∗
+ are the dual relative to (∆2,K2) if there exists a mapping

L(f,g) : U −→ ∆2 such that π21 ◦ L(f,g) = f , π22 ◦ L(f,g) = g and L ∗

(f,g)θ21 = 0

(i.e., integrable with respect to K2). If a mapping f : U −→ H3
+(−1) is an im-

mersion (i.e., regular surface), we always have the dual of f which is the lightcone

Gauss image L of f .

For any pseudo-orthonormal frame {γ(t),a1(t),a2(t),a3(t)}, we have the hy-

perbolic invariant C : I −→ so(3, 1) defined in Section 5. We now define a surface

L(γ,a2,a3) : [0, 2π) × I −→ LC∗

+

by
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L(γ,a2,a3)(θ, t) = γ(t) + cos θa2(t) + sin θa3(t).

We call L(γ,a2,a3)(θ, t) a lightcone circular surface with respect to C : I −→ so(3, 1).

For any fixed t0 ∈ I, we have a circle γ(t0) + cos θa2(t0) + sin θa3(t0) through

ℓ(t0) = γ(t0) + a2(t0). We call it a generating circle. We have

∂L(γ,a2,a3)

∂θ
= − sin θa2(t) + cos θa3(t),

∂L(γ,a2,a3)

∂t
= γ′(t) + cos θa′

2(t) + sin θa′

3(t).

Therefore, γ(t) is a (hyperbolic) normal at any regular point (θ, t) if and only if

0 =

〈
∂L(γ,a2,a3)

∂t
(θ, t),γ(t)

〉
= − cos θc2(t) − sin θc3(t)

for any θ, which is equivalent to the condition

c2(t) = c3(t) = 0.

Therefore, the regular part of the surface L(γ,a2,a3)(θ, t) is flat with respect to

the hyperbolic normal if and only if c2(t) = c3(t) = 0. We call the surface

L(γ,a2,a3)(θ, t) a hyperbolic-flat lightcone circular surface in the sense of [23]. If

c2(t) = c3(t) = 0, we have

∂L(γ,a2,a3)

∂t
= (c1(t)−c4(t) cos θ−c5(t) sin θ)a1(t)−c6(t) sin θa2(t)+c6(t) cos θa3(t).

It follows that (θ, t) is a singular point if and only if

c1(t) − c4(t) cos θ − c5(t) sin θ = 0.

Therefore, (0, t) is always singular if and only if c1(t) − c4(t) = 0. In this case,

ℓ′(t) = c6(t)a3(t) and the generating circle is tangent to ℓ(t). We call L(γ,a2,a3) a

hyperbolic-flat tangent lightcone circular surface if c2(t) = c3(t) = c1(t)−c4(t) = 0.

However, the condition c2(t) = c1(t)− c4(t) = 0 means that the horocyclic surface

F(γ,a1,a2)(s, t) is horo-flat. Moreover, the condition c2(t) = c1(t)−c4(t) = c3(t) = 0

is equivalent to the condition that F(γ,a1,a2)(s, t) is a horo-flat tangent horocyclic

surface such that one of the branches of singularities is located on the set (0, t).
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Therefore we have shown the following proposition.

Proposition 8.1. For any C : I −→ hfσ(3, 1), we have the following :

(1) The horocyclic surface F(γ,a1,a2)(s, t) is a horo-flat tangent horocyclic surface

such that one of the branches of the singularities is located on the set s = 0

whose image is γ(t).

(2) The lightcone circular surface L(γ,a2,a3)(θ, t) is a hyperbolic-flat tangent light-

cone circular surface such that one of the branches of the singularities is located

on the set θ = 0 whose image is ℓ(t) = γ(t) + a2(t).

We can show that 〈F(γ,a1,a2)(s, t), ℓ(t)〉 = 〈γ(t), L(γ,a2,a3)(θ, t)〉 = −1, so that

we have two well defined mappings

L(F(γ,a1,a2),ℓ) : J × I −→ ∆2,

L(γ,L(γ,a2,a3)) : [0, 2π) × I −→ ∆2.

Since ℓ(t) (respectively, γ(t)) is the normal of F(γ,a1,a2)(s, t) (respectively,

L(γ,a2,a3)(θ, t)), L(F(γ,a1,a2),ℓ) (respectively, L(γ,L(γ,a2,a3))) is an integrable map-

ping with respect to K2. Therefore F(γ,a1,a2)(s, t) (respectively, L(γ,a2,a3)(θ, t))

and ℓ(t) (respectively, γ(t)) are the dual relative to (∆2,K2).

On the other hand, S2
+ is corresponding to the ideal boundary of the Poincaré

ball model (or, the Bertlami-Klein model). If we consider ℓ̃ : I −→ S2
+, then

we can interpret that the image of ℓ̃ is the set of end points of the horo-flat

horocyclic surface F(γ,a1,a2)(s, t). We call ℓ̃ the end curve of F(γ,a1,a2). Therefore

the singularities of the lightcone circular surface are also an important subject

in both of horospherical and hyperbolic geometry. We can show the following

theorem.

Theorem 8.2. Let L(γ,a2,a3) be a hyperbolic-flat tangent lightcone circular

surface with c2(t) = c3(t) = c1(t) − c4(t) = 0.

(A) Suppose that c5(t0) 6= 0 and c1(t0) 6= 0, then both the points (0, t0) and

(σ(t0), t0) are the different singularities, where σ(t) is given by the relation

c1(t)(1 − cos σ(t)) = c5(t) sin σ(t). In this case we have the following :

(1) The point (0, t0) is the cuspidal edge if and only if c6(t0) 6= 0.

(2) The point (0, t0) is the swallowtail if and only if c6(t0) = 0 and c′6(t0) 6= 0.

(3) The point (σ(t0), t0) is the cuspidal edge if and only if (σ′ + c6)(t0) 6= 0.

(4) The point (σ(t0), t0) is the swallowtail if and only if

(σ′ + c6)(t0) = 0 and (σ′ + c6)
′(t0) 6= 0.
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(B) Suppose that c5(t0) = 0 and c1(t0) 6= 0. Then σ(t0) = 0, so that (0, t0) =

(σ(t0), t0) is a singular point. In this case, the point (0, t0) is the cuspidal

beaks if and only if c′5(t0) 6= 0, c6(t0) 6= 0 and (σ′ + c6)(t0) 6= 0.

(C) Suppose that c5(t0) 6= 0, c1(t0) = 0 and c′1(t0) 6= 0. Then we have the

followings:

(1) The point (0, t0) is the cuspidal cross cap if and only if c6(t0) 6= 0.

(2) The point (σ(t0), t0) is the cuspidal cross cap if and only if (σ′+c6)(t0) 6=

0.

Proof. For the proof of the assertions (A) and (C), we apply the criterion

in Proposition 6.1. By the previous calculation, {(0, t), (σ(t), t) | t ∈ I} is the

singular set of L(γ,a2,a3). Since c2 = c3 = 0, as shown above,

(γ, L(γ,a2,a3)) : [0, 2π) × I −→ H3(−1) × LC∗

+

is an isotropic map. Furthermore, if c1(t0) 6= 0 then (L, γ) is a Legendrian immer-

sion near (σ(t0), t0).

Since the area density function is

λL(θ, t) = det(L,Lθ, Lt, γ),

λL
θ does not vanish near (σ(t0), t0) if c5(t0) 6= 0. We have the singular direc-

tion (−λL
t , λL

θ ) = (σ′(t), 1) and the null direction (−c6(t), 1) on (σ(t), t). So

two functions ϕL and ψL in Proposition 6.1 are ϕL(t) = c1(t)(σ
′(t) + c6(t)) and

ψL(t) = σ′(t) + c6(t) on (σ(t), t). Then we get the assertion (A) by Proposition

6.1 (a) and (b). Also we get assertion (C) by Proposition 6.1 (c). One can get

easily the case of (0, t) by the similar argument.

On the other hand, for the proof of (B), we also apply the criterion in Lemma

6.3. For the purpose, we consider a family of functions F : I × LC∗
+ −→ R

defined by F (t, v) = 〈γ(t),v〉+1. We may suppose that t0 = 0, γ(0) = (1, 0, 0, 0),

a1(0) = (0, 1, 0, 0), a2(0, 0, 1, 0) and a3(0) = (0, 0, 0, 1) by a suitable hyperbolic

motion, so that ℓ(0) = (1, 0, 1, 0). By straightforward calculations, we can show

that

∂F

∂t
(0, ℓ(0)) = 0,

∂2F

∂t2
(0, ℓ(0)) = 0,

∂3F

∂t3
(0, ℓ(0)) = 0,

and

∂4F

∂t4
(0, ℓ(0)) = −c2

1(0)c2
6(0) − 2c1(0)c′5(0)c6(0).
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We remark that (σ′ + c6)(0) 6= 0 if and only if c1(0)c6(0) + 2c′5(0) 6= 0. Therefore

f(t) = F (t, 0) is the A4-type germ if and only if c5(0) = 0, c1(0) 6= 0, c6(0) 6= 0

and (σ′ + c6)(0) 6= 0.

We consider F̃ (t, v, u) = F (t, v) + ut2, so that

F̃ (t, v, u) = −γ0(t)v0 + γ1(t)v1 + γ2(t)v2 + γ3(t)v3 + 1 + ut2,

where γ(t) = (γ0(t), γ1(t), γ2(t), γ3(t)). We take the local coordinate of LC∗
+ which

is given by v = (
√

v2
1 + v2

2 + v2
3 , v1, v2, v3). Since v0 = ℓ(0) = (1, 0, 1, 0), we have

j2

(
∂F̃

∂v1
(t, v0, 0)

)
(0) = γ1(0) + γ′

1(0)t +
1

2
γ′′

1 (0)t2,

j2

(
∂F̃

∂v2
(t, v0, 0)

)
(0) = (−γ0(0) + γ2(0)) +

(
− γ′

0(0) + γ′

2(0)
)
t

+
1

2

(
− γ′′

0 (0) + γ′′

2 (0)
)
t2,

j2

(
∂F̃

∂v3
(t, v0, 0)

)
(0) = γ3(0) + γ′

3(0)t +
1

2
γ′′

3 (0)t2,

j2

(
∂F̃

∂u
(t, v0, 0)

)
(0) = t2.

It is enough to show that

rank




γ1(0) γ′
1(0) γ′′

1 (0)

−γ0(0) + γ2(0) −γ′
0(0) + γ′

2(0) −γ′′
0 (0) + γ′′

2 (0)

γ3(0) γ′
3(0) γ′′

3 (0)

0 0 1




= 3.

Since γ′(0) = c1(0)a1(0) and γ′′(0) = c′1(0)a1(0)+c2
1(0)ℓ(0), the rank of the above

matrix is equal to the rank of the following matrix:




0 c1(0) c′1(0)

−1 0 0
0 0 0
0 0 1



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which is equal to 3 if and only if c1(0) 6= 0. By Proposition 7.5, F is a Morse

family of hypersurfaces. By a direct calculation, we have

∂2F

∂t2
|Σ∗(F ) =

〈
γ′′(t),γ(t) + cos θa2(t) + sin θa3(t)

〉

= −c2
1(t) + c2

1(t) cos θ + c1(t)c5(t) sin θ.

We now calculate the Hessian matrix of ρ(θ, t) = −c2
1(t) + c2

1(t) cos θ +

c1(t)c5(t) sin θ, so that we have

Hess(ρ)(0, 0) =

(
0 c1(0)c′5(0)

c1(0)c′5(0) −c2
1(0)

)
.

This matrix is regular if and only if c1(0)c′5(0) 6= 0, so that (∂2F/∂t2)|Σ∗(F ) is a

Morse function germ at 0. We can easily show that ρ(θ, t) = 0 defines a transversal

curve at (0, 0) in (θ, t)-plane. This means that the point (0, t0) = (σ(t0), t0) is the

cuspidal beaks. ¤

We now compare the results in Theorems 6.2 and 8.2.

Corollary 8.3. Let F(γ,a1,a2) be a horo-flat tangent horocyclic surface.

Then the germ of the surface at (0, t0) is the cuspidal cross cap if c5(t0) 6= 0,

c6(t0) = 0, c′6(t0) 6= 0 and c1(t0) 6= 0. In this case the germ of the end curve

ℓ̃ : I −→ S2
+ at t0 is the ordinary cusp.

Proof. Since F(γ,a1,a2) is a horo-flat tangent horocyclic surface, L(γ,a2,a3) is

a hyperbolic-flat tangent lightcone circular surface. By Theorem 6.2, (C), the germ

of F(γ,a1,a2) at (0, t0) is the cuspidal cross cap if c5(t0) 6= 0, c6(t0) = 0, c′6(t0) 6= 0

and c1(t0) 6= 0. On the other hand, the germ of L(γ,a2,a3) is the swallowtail at (0, t0)

by Theorem 8.2, (A). Since π22 : ∆2 −→ LC∗
+ is a Legendrian fibration and the

germ of L(γ,a2,a3) has a Legendrian lift into ∆2, L(γ,a2,a3) is a wavefront in LC∗
+.

By the general theory of Legendrian and Lagrangian singularities [2], L̃(γ,a2,a3)

can be regarded as a Lagrangian map. By the relation between wavefronts and

caustics, the germ of L(γ,a2,a3) is the swallowtail if and only if the caustics (critical

value set) of L̃(γ,a2,a3) is the ordinary cusp. Here, the critical value set is the image

of the end curve ℓ̃. This completes the proof. ¤



Horospherical flat surfaces 843

A. Criteria for cuspidal beaks and cuspidal lips.

In this appendix, we shall state criteria for the recognition of the cuspidal

beaks or the cuspidal lips as a corollary of arguments in Section 7. Let Lf =

(f, [ν]) : (U2, p) −→ (PT ∗(R3), (f(p), [ν(p)])) be a Legendrian immersion germ.

Assume that p is a singular point of f with corank one. Then one can get a

non-zero vector field η on U such that q ∈ S(f) implies dfq(ηq) = 0. We call this

vector field a null vector field of Lf . Let λ be the signed area density function as

in Section 6. We have the following criteria for the cuspidal beaks or the cuspidal

lips.

Theorem A.1. Let Lf = (f, [ν]) : (U2, p) −→ (PT ∗(R3), (f(p), [ν(p)])) be

a Legendrian immersion germ and p is a singular point of f with corank one.

Then following (A) and (A′) (respectively, (B) and (B′)) are equivalent.

(A) f at p is A -equivalent to the cuspidal beaks.

(A′) λ has a Morse type singularity of index one at p and ∇η∇ηλ(p) 6= 0. Here,

∇ is the canonical covariant derivative induced by the Levi-Civita connection

on R3.

(B) f at p is A -equivalent to the cuspidal lips.

(B′) λ has a Morse type singularity of index zero or two at p.

Here, the cuspidal lips is a germ of surface diffeomorphic to CLP = {(x1, x2, x3) |

x1 = v, x2 = 2u3 + v2u, x3 = 3u4 + u2v2}.

Proof. Obviously the conditions are independent of both of the coordinates

and ν. Firstly we take the coordinates (u, v) of U centered at p and (X, Y, Z) of

R3 centered at f(p) satisfying:

• The null vector field η is always ∂v.

• f(u, v) = (f1(u, v), f2(u, v), u) and (f1)u = (f2)u = (f1)uu = (f2)uu = 0 at

(0, 0).

• ν(0, 0) = (1, 0, 0).

Here (f1)u denotes ∂f1/∂u, for example. Under these coordinates, we show that

(A′) (respectively, (B′)) implies (A) (respectively, (B)).

We consider a family of plane curves Γu(v) = Γ(u, v) = (f1(u, v), f2(u, v), u)

in the plane Πu = {(X, Y, Z)|Z = u} and show that these are fronts near p. Denote

ν = (ν1, ν2, ν3) and put

[Nu(v)] = [N(u, v)] = [(ν1(u, v), ν2(u, v), 0)].

Then [Nu(v)] is well-defined near p. We put γ(u, v) = (f1(u, v), f2(u, v)) and
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n(u, v) = (ν1(u, v), ν2(u, v)). Then, since (γ′(u, v) · n(u, v)) ≡ 0, (γ, [n]) is an

isotropic map for all u, where ′ denotes ∂/∂v and ( · ) is the canonical inner

product of R3. Since ν′
3(0) = 0, we have n′(0) 6= 0. This implies that for each u

near 0, (γ, [n]) is a Legendrian immersion germ.

We define two functions Ψ : R × R3 −→ R and ψ : R −→ R as follows:

Ψ(v, X1, X2, Z) = ν1(Z, v)(X1 − f1(Z, v)) + ν2(Z, v)(X2 − f2(Z, v)),

ψ(v) = Ψ(v, 0, 0, 0).

Then we have W (Ψ) = f(U). Hence by Lemma 7.7 and the arguments in Section

7, it is sufficient to prove that ψ has an A3-singularity, Ψ is a Morse family and

∂2Ψ/∂v2|Σ∗(Ψ) has a Morse type singularity with prescribed index at p. In the

following context, we put Z = u.

Lemma A.2. It holds that f ′ = fuu = f ′
u = f ′′ = 0 and γ′ = γuu = γ′

u =

γ′′ = 0 at (0, 0).

Proof. Since ∂v is the null vector field, we have f ′(0, 0) = 0. It follows

that γ′(0, 0) = 0. By the conditions on the coordinates of U and R3, we have

fuu(0, 0) = 0. Thus γuu(0, 0) = 0. Since (0, 0) is a critical point of λ, we have

det(fu, f ′
u, ν)(0, 0) = λu(0, 0) = 0. Hence f ′

u(0, 0) ∈ span {fu(0, 0), ν(0, 0)}. On

the other hand, (f ′
u · fu) (0, 0) = 0 and (f ′

u · ν) (0, 0) = − (f ′ · νu) (0, 0) = 0. It

follows that f ′
u(0, 0) = 0. This means that γ′

u(0, 0) = 0. We can get f ′′(0, 0) = 0

and γ′′(0, 0) = 0 by the same arguments on the above. ¤

First, we show 0 is an A3-singularity of ψ. Differentiating (γ′ · n) = 0 and by

Lemma A.2, we have (γ′′′ · n) (0, 0) = 0 and (γ′′′′ · n) (0, 0) = −3 (γ′′′ · n′) (0, 0).

By these formulae and Lemma A.2, we have

ψ′(0) = ψ′′(0) = ψ′′′(0) = 0 and ψ′′′′(0) = − (γ′′′ · n′) (0, 0). (10)

Since (γ′′′ · n) (0, 0) = 0, ψ′′′′(0, 0) 6= 0 if and only if γ′′′(0, 0) 6= 0.

Now, we assume (A′). Then ∇η∇ηλ(p) 6= 0 if and only if λ′′(p) 6= 0, because

the null vector field is ∂v. Since f ′(0, 0) = f ′′(0, 0) = 0, det(fu, f ′′′, ν)(0, 0) 6= 0,

particularly f ′′′(0, 0) 6= 0. By the definition of γ, clearly this implies γ′′′(0, 0) 6= 0.

On the other hand, we assume (B′). Then detHess λ > 0, so that we have

λ′′(p) 6= 0. By the same argument as the case (A′), we have γ′′′(0, 0) 6= 0. There-

fore ψ has an A3-singularity at 0.

Second, we prove that Ψ is a Morse family. It is sufficient to prove the matrix
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(
ΨX1

(0) ΨX2
(0)

ΨX1v(0) ΨX2v(0)

)
=

(
ν1(0, 0) ν2(0, 0)

ν′
1(0, 0) ν′

2(0, 0)

)

is regular. Since vectors n(0, 0), n′(0, 0) are linearly independent, the matrix is

regular.

Third, we prove that Hess (∂2Ψ/∂v2|Σ∗(Ψ))(0, 0) is non-degenerate if and only

if Hess λ(p) is non-degenerate and the indices of the both matrices are the same,

under the identification of index 0 and 2. We write X = (X1, X2). Since

(γ′ · n) ≡ 0, the condition (v, X1, X2, u) ∈ Σ∗(Ψ) is equivalent to the condition

((X − γ) · n) = ((X − γ) · n′) = 0. This is equivalent to X − γ = 0, that is

Σ∗(Ψ) = {(v, γ(u, v), u)}. Hence

λ̄(u, v) :=
∂2Ψ

∂v2

∣∣∣∣
Σ∗(Ψ)

(u, v) = 2 (−γ′ · n′) (u, v) + (−γ′′ · n) (u, v). (11)

Lemma A.3. The following holds at (0, 0) :

(γ′′

uu · n) = − (γ′

uu · n′) − 2 (γ′′

u · nu) and (γ′′′

u · n) = −2 (γ′′

u · n′) − (γ′′′ · nu) .

Proof. Differentiate (γ′ · n) ≡ 0 and use Lemma A.2. ¤

By Lemmata A.2 and A.3, we have λ̄uu = − (γ′
uu · n′). λ̄′

u = − (γ′′
u · n′) at

(0, 0). By the equation (10), λ̄′′ = − (γ′′′ · n′) at (0, 0). By the definition of γ, we

get (γ′
uu · n′) (0, 0) = (f ′

uu · n′) (0, 0) and so on. Moreover since N ′(0, 0) ⊥ ν(0, 0)

and N ′(0, 0) ⊥ fu(0, 0), there exists a non zero k ∈ R such that N ′(0, 0) =

kfu(0, 0) × ν(0, 0). Hence − (γ′
uu · n′) (0, 0) = k det(fu, f ′

uu, ν)(0, 0) and the other

same formulas hold. Since we have f ′(0, 0) = f ′
u(0, 0) = f ′′(0, 0) = 0,

Hess λ̄(0, 0) =

(
− (γ′

uu · n′) − (γ′′
u · n′)

− (γ′′
u · n′) − (γ′′′ · n′)

)
(0, 0)

=

(
k det(fu, f ′

uu, ν) k det(fu, f ′′
u , ν)

k det(fu, f ′′
u , ν) k det(fu, f ′′′, ν)

)
(0, 0) = Hess kλ(p).

This implies that Hess (∂2Ψ/∂v2|Σ∗(Ψ))(0, 0) is non-degenerate if and only if

Hess λ(p) is non-degenerate and the indices of the both matrices are the same,

under the identification of index 0 and 2.

The inverse part is obvious since the canonical forms of the cuspidal beaks

and the cuspidal lips satisfy the condition and it is independent of the choice of
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coordinates and ν. ¤

We now remark on the proofs of Proposition 6.2 (B) and 8.2 (B). For the

Proposition 6.2 (B), since the signed area density function of F(γ,a1,a2) is −s(c5 +

sc6/2), the condition c′5(t0) 6= 0 is given by detHess λ 6= 0 and the conditions

c1(t0) 6= 0 and (c1 − s′)(t0) 6= 0 are given by ∇η∇ηλ 6= 0. For Proposition 8.2 (B),

since the signed area density function of L(γ,a2,a3) is −c1 + c1 cos θ + c5 sin θ, the

condition c′5(t0) 6= 0 is given by the condition det Hessλ 6= 0 and the conditions

c6(t0) 6= 0 and (c6 + σ′)(t0) 6= 0 are given by ∇η∇ηλ 6= 0. Therefore we can also

give the proofs as applications of Theorem A.1. We also remark that Theorem A.1

might be very useful for the recognitions of the cuspidal beaks and the cuspidal

lips on explicitly parametrized surfaces. We will apply this to various situation in

elsewhere.

B. Singularities of general horocyclic surfaces.

In this appendix we consider singularities of general horocyclic surfaces. Let

F = F(γ,a1,a2) be a general horocyclic surface. By the jet-transversality theorem,

there is no point t0 ∈ I with c2(t0) = c4(t0) − c1(t0) = 0 for a generic C(t) ∈

C∞(I, so(3, 1)). If c4(t0) − c1(t0) = 0 and c2(t0) 6= 0 then F is non-singular at

(s, t0). Therefore we assume that c4(t0)− c1(t0) 6= 0. Suppose (s0, t0) is a singular

point of F . By the equations (6), we have s0 = c2(t0)/(c4(t0) − c1(t0)) and

(
1 +

s2
0

2

)
c3(t0) + s0c5(t0) +

s2
0

2
c6(t0) = 0. (12)

Then dF ((c1 + s2/2(c1 − c4))(∂/∂s) − ∂/∂t)(s0, t0) = 0. By the characterization

of the cross cap (the singular point of semi-regular mapping in [35]), (12) and

det
(
F, Ftt(c1 + s2/2(c1 − c4))

2 − 2Fts(c1 + s2/2(c1 − c4)) + Fss,

Ftt(c1 + s2/2(c1 − c4)) − Fts, Ft

)
(s0, t0) 6= 0,

are satisfied if and only if (s0, t0) is the cross cap. Suppose that γ is the striction

curve. By definition, c2 ≡ 0, so that s(t0) = 0. Moreover, by (12), we have

c3(t0) = 0. By a straightforward calculation, this condition is equivalent to the

condition

{
c1

(
− c2

1c5 + c′5 + c4c6 + c3
1

(
c′4c5 − c4c

′

5 − c2
4c6 − c2

5c6

))}
(t0) 6= 0. (13)
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We remark that the condition (13) is a generic condition in C∞(I, so(3, 1)).

Therefore we have the following theorem.

Theorem B.1. There exists an open dense subset O ⊂ C∞(I, so(3, 1)) such

that the germ of the horocyclic surface FA at any point (s0, t0) is an immersion

or the cross cap for any C ∈ O. Here, A(t) ∈ SO0(3, 1) is the smooth curve

corresponding to C(t) ∈ so(3, 1).

We remark that the above theorem and Theorem 1.1 describe how singularities of

horo-flat horocyclic surfaces are different from those of general horocyclic surfaces.
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