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§ 1. Introduction 

This paper presents theorems which establish the existence of horseshoes and 

Arnold diffusion for nearly integrable Hamiltonian systems associated with Lie 

groups. The methods are based on our two previous papers, Holmes and Marsden 
[1982a], [1982b). The two main examples treated here are as follows: 

1. A simplified model of the rigid body with attachments. This system has 
horseshoes (with one attachment) and Arnold diffusion (with two or more 

attachments) . 
2. A rigid body under gravity, close to a symmetric (Lagrange) top. This sys­

tem is shown to have horseshoes (and hence is not integrable). 

The main new feature here is the presence of Lie groups. Both the symmetry 
groups and the basic phase spaces involve Lie groups and our perturbation meth­

ods must be modified to take this into account. As in our previous work, the 

results hinge on reduction together with a method of Melnikov. This is used to 

analyze the perturbation of a homoclinic orbit in an integrable Hamiltonian sys­

tem. In the first example the unperturbed system is the free rigid body which has 

a homoclinic orbit lying on a sphere. This sphere arises as the coadjoint orbit for 
the rotation group SO (3), and the computation of Poisson brackets needed in the 

Melnikov theory is most easily done using the (Kirillov, Arnold, Kostant and 

Souriau) theory of coadjqint orbits and the Lie-Poisson bracket on the dual of a 
Lie algebra. This theory is-reviewed in Section 2. Reduction in the sense of Mars­

den and Weinstein [1974] shows that the phase space for a rigid body under grav­
ity is T* S2, the cotangent bundle of a sphere. This and its connection with Euler 

angles and coadjoint orbits in the Euclidean group is explained in Section 3. This 

section thus sets up the basic phase spaces needed in the analysis of our second 

example. 

Section 4 develops the Melnikov theory when the phase space is a product of 

the dual of a Lie algebra and a set of action angles variables. This is applied to 
a model problem based on the rigid body with attachments in Section 5. 

Section 6 develops the Melnikov theory for systems on a phase space where 

the unperturbed system admits an Sl symmetry and has a homo clinic orbit in the 
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reduced phase space. This generalization does not assume the original phase space 
is a product. This generalization is needed for and is applied to the nearly sym­

metric heavy top in Section 7. It is also needed for a full treatment of the rigid 
body with attachments given by Koiller [1982]. 

The two examples presented here were selected because of their physical in­

terest and because they provide good models for how the Melnikov theory must 

be modified for systems with topologically nontrivial phase spaces. 
The presence of horseshoes in the motion of a nearly symmetry heavy top im­

plies, among other things, that the dynamics is complex and cannot be captured 

by averaging methods (cf. Akulenko, Leshchenko and Chernousko [1979]), that 

the dynamics has periodic orbits of arbitrarily high period embedded in an in­

variant Cantor set and that the system admits no additional analytic integrals. The 

latter fact is consistent with known classical results, but the existence of horse­
shoes is a stronger and, we think, more significant assertion. Ziglin [1981] re­

cently outlined a general nonintegrability theorem that includes the nonstandard 

rigid body cases but his proof proceeds along different lines and does not seem 

to yield horseshoes. Some numerical work for the heavy top is given in Galgoni, 

Giorgilli and Strelcyn [1981]. 
We expect that dissipative and forcing terms added to these systems can be 

dealt with along the lines of Holmes and Marsden [1982a] 

Acknowledgements. We thank Allan Kaufman, Jair Koiller, Tudor Ratiu, 

Steve Smale, Shlomo Sternberg, and Alan Weinstein for motivation and several 

useful comments. 

§2. Hamiltonian Systems on Lie Groups and Semi-Direct Products 

Since the basic paper of Arnold [1966] Lie groups have played an important 

role in the construction of phase spaces and the symmetry properties of some 

important mechanical systems. For systems such as the rigid body one wishes to 

realize the classical Euler equations as Hamiltonian equations on an appropriate 
phase space to apply Hamiltonian perturbation techniques. For a rigid body free 

to rotate about its center of mass, the basic phase space is T* SO (3) which is 

conveniently parametrized by the Euler angles (<\>,1\1,0) and the corresponding con­

jugate momenta (Pq,'P<1J,Pe). However the SO(3) symmetry of the problem enables 
one to reduce this three degree of freedom problem to a one degree of freedom 

system whose phase space is a sphere in body-angular momentum space. 

For purposes of this paper we are interested mostly in the Poisson bracket struc­

ture since it is this which directly enters the Melnikov theory. In what follows 

we describe the Poisson structure associated with a Lie group and its connection 

with coadjoint orbits. (For the same theory with emphasis on the symplectic ge­
ometry,see Abraham and Marsden [1978, Chapter 4].) Proofs may be readily 

supplied by referring to the preceding reference, to Arnold [1978] and to Guil­

lemin and Sternberg [1980]. 
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(a) Generalities on Lie-Poisson structures. Let G be a Lie group and 9 its 

Lie algebra. For~, 1] E g, [~,1]] denotes the Lie bracket of ~ and 1]. Let g* denote 

the dual space of g. For F: g* ~ R, and the variable in g* denoted by I-L, define 

SF jSj.L : g* ~ 9 by 

(2.1) DF(I-L)' v = (v, ::), 
where < , ) denotes the pairing between g* and g; and DF(I-L): g* ~ R is the 

usual (Frechet) derivative. It is understood that SF jSI-L is evaluated at the point I-L. 

The Lie-Poisson bracket of two functions F, G: g* ~ R is defined by 

(2.2) {{F,G}}(I-L) = - (I-L' [::' :~]). 
This bracket makes the smooth functions from g* to R into a Lie algebra. (The 

only nonobvious condition is Jacobi's identity.) The bracket (2.2) was introduced 

(for finite-dimensional Lie algebras) by Lie in 1887 in Volume 2 of his treatise 

on transformation groups . [We thank Alan Weinstein for pointing out the history 

of this bracket.] 

Next we describe the relationship between the Lie-Poisson bracket and coad­
joint orbits. For g E G, let Adg : 9 ~ 9 be the adjoint representation (the linear­
ization of the map Ig : h ~ ghg -1 at h = identity) and Adi-1 : g* ~ g* the coadjoint 

representation. For I-Lo E g*, let {J = {Adi-1 I-Lo: g E G} be the orbit of I-Lo. A theo­

rem of Kirillov, Kostant and Souriau states that {J is a symplectic manifold. We 

now describe the symplectic structure. For I-L E {J, tangent vectors to {J at I-L have 

the following form: let ~ E 9 and define ~(I-L) E g* by 1] ~ <1-L,[~,1]]). Then 
~(I-L) is tangent to {J at I-L. The formula 

(2.3) 

defines a symplectic form on {J. Formulas (2.2) and (2.3) are related as follows: 

for F, G: g* ~ R, 

(2.4) {{F,G}}I{J = {FI{J,GI{J}~j, 

where { }{j is the Poisson bracket computed from the symplectic structure (2.3) 

on {J. 

If H: g* ~ R is a given Hamiltonian, there is a unique vector field XH on g* 

such that any function F: g* ~ R which evolves along the flow of XH satisfies 

(2.5) F = {{F,H}}. 

Explicit equations of motion for j.L E g* can be computed directly from (2.5) and 

(2.2) in examples, without the computation of coadjoint orbits, by letting F be 

coordinate functions on g*. The equations so obtained are thus 

(2.6) 
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The vector field XH is necessarily tangent to the coadjoint orbits; thus if f.L(0) E 

(I), then f.L(t) E (I) as well. Furthermore, XHI(I) = X Hlo where X Hlo is the Hamil­

tonian vector field on (I) computed from H using the symplectic structure (2.3). 

As we shall see in the next sections, the classical Euler equations for a rigid 

body (with or without gravity) can be expressed in the form (2.5). 

Remark. In Arnold [1966] and Ebin and Marsden [1970] it is shown that the 

equations of an incompressible fluid also fall into this class using the group 9b vo1 

of volume preserving diffeomorphisms of space. For compressible flow, the ap­

propriate group is the semi-direct product of diffeomorphisms and functions. (The 

reason semi-direct products are relevant is explained abstractly below.) When ap­

propriately coupled to the electromagnetic field, equations (2.5) also include the 

equations of plasma physics and magnetohydrodynamics (see Marsden and Wein­
stein [1982]). 

For the rigid body free to rotate about a fixed point, the basic phase space one 

starts with is T*SO(3), irrespective of whether gravity is present. In the absence 

of gravity, reduction by SO (3) leads naturally to the Lie-Poisson structure for the 

Lie algebra of SO(3). However when gravity is present, reduction by Sl leads to 

the Lie-Poisson structure for the Lie algebra of the Euclidean group; i.e. the semi­
direct product SO (3) x R3. Proofs of assertions made in the following may be 

found in one or more of Abraham and Marsden [1978], Guillemin and Sternberg 

[1980] and Ratiu and van Moerbeke [1982]. 

(b) Lie-Poisson structures for reduction by a subgroup. [The heavy rigid 

top is done two separate ways in Section 7, namely in terms of Euler angles and 

in terms of the Lie-Poisson bracket. Those who wish only to read the Euler angle 

proof may omit the rest of this section and the third part (c) of the next section.] 

Let G be a Lie group and T* G its cotangent bundle. Let v E g* and let 

Gv = {g E G: Ad:-lv = v} be the isotropy subgroup of v. Now G v acts on G by 

left translation and hence on T*G. This action has an Ad*-equivariant momentum 
map 

r:T*G~ g~ 

where gv is the Lie algebra of Gv • In fact, for <Xg E T:G and ~ E gv, 

(2.7) 

where Rg : G ~ G denotes right translation by g and < , ) denotes the pairings 

between g; and gv or T"; G and TgG as appropriate. 

Now let f.L E g* and ii E g; be its restriction to gv' We shall henceforth make 
the (generic) assumption that Gv is abelian. [Sternberg and Ratiu have pointed 

out that this assumption is not necessary; however it is true in cases of interest 

in this paper, so we shall not attempt to explain the general case here; see Ratiu 

[1982], Guillemin and Sternberg [1982] and Marsden, Ratiu and Weinstein [1982].] 

Then the reduced space of T*G relative to the action of Gv is 
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(2.8) 

Let « , » be a left invariant metric on G and K: T* G -» R the corresponding 

kinetic energy function: K(ag ) = (1/2) «ag,a g ». Let afC be the one form on G 
defined at g E G by minimizing K over the affine space of a g such that 

J"(a g ) = ti· 

Remark. If Gv = Sl and ~ E gv is the element corresponding to ti via « , » 

i.e. «~,T]» = ti(T]) for alIT] E gv, then for v E TgG, 

9) () «T R t. » «~,W 
(2. afC g ·V = e g""V • «Adg-I~,Adg-lm 

The function K(afC(g» = VfC(g) is called the amended potential. 

The map a q ~ a q - afC induces a symplectic diffeomorphism of P,,-,v with 

T*(G/Gv ) by Theorem 4.3.3 of Abraham and Marsden [1978]. 

Remark. In general, the symplectic form on T* (G /G v ) is the canonical one 

plus a "magnetic" field OfC' (See Kummer [1981] for the interpretation of the 

class of OfC as a Chern class.) For the examples in this paper OfC #- 0. It is clear 

that afC #- ° and it is necessary to use it to form the amended potential. If this is 

added to the standard potential for the heavy top, we recover the effective poten­

tial. As we shall see below, this agrees with that in standard texts (Goldstein 

[1980, formula 5-60, page 215]) and is a special case of Theorem 4.5.6 of Abra­

ham and Marsden [1978]. 

Now consider the semi-direct product G X g of G with the additive group g 

with G acting on g by the adjoint action. For v E g*, let 

(2.10) r:Gxg-»R 

r(g,~) = <v,Adg~), 

i.e. j(g,.) = Adiv. Writen(g) = r(g,~). From the identity 

(2.11) r(g11g,~) =r(g,Adgl~) 

we see that G x g acts on T*G by 

(2.12) 

where tdf~ is fiber translation in T* G by the differential of n. The action (2.12) 

is symplectic and has an Ad*-equivariant momentum map 

AV: T* G -» g* X g* 

given by 

(2.13) 

we shall write m = (TeLg-l)*ag and v = Adi v. (See Abraham and Marsden 
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[1978, Exercise 4.2C] and Guillemin and Sternberg [1980].) We note that the 
adjoint action of G x g on g x g is 

(2.14) 

and that the Lie bracket on g x g is 

(2.15) 

One can check directly from (2.14) and (2.12) that AV is equivariant. (The 
identity 

is useful in verifying this.) 
Observe that N is invariant under the left action of Gv ; i.e. for h E Gv 

(2.16) 

Thus, AV induces a map 

AV:P""v~ g* x g*. 

One can check that AV is a diffeomorphism of P""v onto the orbit O",,v' 

2.1 Theorem. AV:P""v~ O""v is a symplectic diffeomorphism. 

Remarks. 1. This result is due to Ratiu [1981], [1982]' The proof we give is 
motivated by Guillemin and Sternberg [1980]. 

2. For the Lagrange top, 2.1 can be proved by a direct, but messy, calculation 
which we outline in the next section. 

3. See Guillemin and Sternberg [1982] for an alternative proof using Propo­
sition 1.2 of Kazhdan, Kostant and Sternberg [1978]. 

4. The result may be generalized to the case where g x g is replaced by a 
semidirect product g x V. See Ratiu [1982], Guillemin and Sternberg [1982], and 
Marsden, Ratiu and Weinstein [1982] for details. 

Proof of Theorem 2.1. Since the symplectic form on P ""V is induced from the 
canonical symplectic structure on T*G and that on O""v is determined by the Lie­
Poisson bracket, it suffices to show that AV commutes with Poisson brackets. This, 
however, is a general fact about Ad*-equivariant momentum maps and collective 
Hamiltonians proved in the next two lemmas. 

2.2 Lemma. Let]: P ~ f* be an Ad*-equivariant momentum map for the 

right action of a Lie group K on the symplectic manifold P. Let F: f* ~ R. Then 

the Hamiltonian vector field XFoJ for the (collective) Hamiltonian Fa]: P ~ R is 
given at x E P by 

(2.17) 
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where SF jS/J- E f is evaluated at /J- = J(x) and ~p stands for the vector field on 

P generated by the Lie algebra element ~. 

Proof. By the chain rule and definition of the functional derivative, 

d(FoJ)' Vx = dF(IL)' dJ(x)' Vx 

= \ dJ(x)' V_o ::) 

where Vx E TxP and /J- = J(x) as above. By definition of a momentum map, 

where w is the symplectic form. Thus 

d(Fo]), Vx = Wx ( (~:) p,Vx ) 

which means XFoJ = (SF jS/J-)p. o 
2.3 Lemma. Under the assumptions of the preceding lemma, if F,G: f* -7 

R, then 

(2.18) 

Proof. 

(2.19) 

{FoJ,GoJ} = {{F,G}}oJ. 

by definition of Poisson brackets on P and the preceding lemma. On the other 

hand, the Lie-Poisson bracket is 

(2.20) {{F,G}}(/J-) = -\J(X),[::, ~~J). 

Moreover, Ad*-equivariance gives (Abraham and Marsden [1978, Corollary 4.2.9]) 

(2.21) \J(X), [::,::J) = -{ \J(X),::),\J(X),::)}, 

in which IL is fixed and x is variable. There is a minus sign here since J is gen­

erated by a right action. Holding SF jS/J- fixed, 
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so (i(x),8F/8fl-) generates the same Hamiltonian vector field as FaJ, as in 2.2. 
Thus, substitution of (2.21) in (2.20) yields (2.19). 0 

Remarks. As we shall see, the heavy rigid top Hamiltonian is a collective 
Hamiltonian for P. This is compatible with the reduction picture: a Hamiltonian 

system on the reduced space P,,-,v can be written in the form 

(2.22) F = {{F,H}} 

where H is written in terms of the variables (m,v) E g* x g*. 

§3. The Rigid Body 

This section is divided into three parts. The first part explains how to write the 

equations of a rigid body free to rotate about its center of mass in Lie-Poisson 
form (2.5). The second part recalls the Euler angle formulation of the heavy top 

and the third part puts it into Lie-Poisson form giving the explicit relationships 

with Euler angles. [The third part may be omitted if desired since we give two 
proofs of our main result for the heavy top, one using only Euler angles and the 

other using the Lie-Poisson bracket.] 

(a) The free rigid body. The free rigid body is a left invariant Hamiltonian 

system on T*SO(3), where SO(3) is the group of proper orthogonal linear trans­
formations of R3 to itself. By general facts about reduction we know that the 

equations of motion must be in the form (2.5); this is true of any left invariant 

Hamiltonian system on a Lie group G. For the free rigid body we can bypass the 

Euler angle description (the relevant formulas are given in Table 1 below). 

The Lie algebra so(3) of SO (3) consists of the set of 3 x 3 skew symmetric 
matrices. We identify so(3) with R3 by identifying 

(3.1) v = (p,q,r) E R3 with v = [ ~ 
-q 

-r 

o 
p 

~] E so(3). 

The Lie bracket corresponds to the cross product in the sense that 

(3.2) [v,w] = (v x w)'. 

We denote elements of so(3)* by m; these will also be identified with elements 
of R3. Elements m E so(3)* represent the body angular momentum of the rigid 

body and are related to the angular velocity w by 

(3.3) i = 1, 2, 3 

where Ii are the moments of inertia. As usual, the moment of inertia tensor has 

been diagonalized and we assume 11 2: 12 2: 13 , The standard Euler equations 

(Goldstein [1980, page 205]) written in terms of mare 
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(3.4) 

Taking the Hamiltonian to be 

(3.5) 

· 12 - 13 
ml =--m2m3 

1213 

· 13 - II 
m2=--mlm3 

1113 

· II - 12 
m3=--mlm2' 

1112 

1 3 2 

H(m) = - L mj 
2 j=l Ij 

we see by a simple calculation that (3.4) are equivalent to 

(3.6) F = {{F,H}} 

281 

where {{ , }} is the Lie-Poisson bracket. In the present case this bracket becomes 

(3.7) {{F,G}}(m) = -m' ('VF x 'VG) 

for F, G functions of m. 

The fact that the equations (3.6) must preserve coadjoint orbits amounts in this 

case to the fact that 

(3.8) 

is an (obvious) constant of the motion for (3.4). In terms of coadjoint orbits, 

equations (3.4) are Hamiltonian on each sphere in m-space with Hamiltonian func­

tion (3.5). [The coadjoint orbits are spheres because the coadjoint action of SO(3) 

on m space is just by rotations. The coadjoint orbit symplectic structure is pro­
portional to the area element as a simple calculation shows.] 

The flow lines are given by intersecting the ellipsoids H = constant with the 

spheres. For distinct moments of inertia the flow on the sphere has saddle points 
at (O,±€,O) and centers at (±€,O,o), (O,O,±€). The saddles are connected by four 

heteroclinic orbits, as indicated in Figure 1. 

The orbits are, of course, explicitly known in terms of elliptic functions. The 
orbits of the most interest to us are the heteroclinic orbits which are given as 

follows. These four orbits lie in the invariant planes 

where 
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FIGURE 1. The spherical phase space of the rigid body for fixed total angular momentum C = 

Ym; + m~ + m~;/l > 12 > 13, 

3.1 Theorem. The heteroclinic orbits for the free rigid body are given by 

mt (t) = ±C I al sech( -yal a3 Ct), 
\j -a2 

(3.9) m;(t) = ±C tanh(-Yala3Ct), 

m; (t) = ±C I a3 sech( -~ Ct), 
\j -a2 

for m3 = +(Ya3/at)mt and by 

(3.10) mt (t) = mt (-t), mi (t) == m; (-t), m3 (t) = -m; (-t) 

for m3 = -(Ya3/al) mi' 

This may be checked by direct computation or by consulting one of the classical 
texts. 

(b) The heavy top: Euler angle description. We now recall the traditional 
Euler angle description of the heavy top and shall locate homoclinic orbits for the 
symmetric (Lagrange) top. The Euler angle description is more familiar but in 
some respects the Lie-Poisson description is simpler. For this reason we shall 
present both. 

Given a rotation A E SO (3) we let the corresponding Euler angles be denoted 
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( b) 

FIGURE 2. The heavy rigid body, illustrating space (x,y,z) and body (1,2,3) coordinates, and the 
Euler angles (<j>,tJi,e). 
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(<I>,t)J,e) using the conventions of Goldstein [1980]; see Figure 2(a). The corre­

sponding conjugate momenta are denoted Pq,' PtiJ' Pa so that C<I>,t)J,e,pq,'PtiJ,Pa) 
coordinatize T*SO(3). 

We let m denote the angular momentum in the body and let v = A -I k where 

k is the unit vector along the spatial z-axis. We assume the center of mass is at 
(O,O,C) when A is the identity. The vectors (m,v) are expressed in the body co­

ordinate system; see Figure 2(b). 

The Hamiltonian is 

(3.11) 

1 3 Z 

H(m,v) = - 2: mj + MgCV3 

2 j=1 I j 

where M is the total mass. When written in terms of Euler angles, this becomes 

1 {[(pq, - PtiJ cos e)sin t)J + Pa sin e cos t)J]Z 
(3.12) H =-

2 II sinze 

[CPa - PtiJ cos e)cos t)J - Pa sin e sin t)J]Z P!} 
+ Z + - + MgC cos e. 

Iz sin e 13 

I~ T~ble l.below we summarize the relationships among m, v, <1>, t)J, e, Pq,' PtiJ' 
Pa, <1>, t)J and e for convenient reference, but in this subsection we shall take (3.12), 

or equivalently the Lagrangian 

(3.13) 
II . . I z . . 

L = - (<I> sin e sin t)J + e cos t)J)2 + - (<I> sin e cos t)J - e sin t)J)z 
2 2 

13 . . 
+ - (<I> cos e + t)J)2 - MgC cos e 

2 

as our starting point, and work exclusively in terms of Euler angles. 

The Hamiltonian (3.12) is invariant under rotations about the z-axis; i.e. <I> is 

a cyclic variable, so Pq, is a constant of the motion. In other terms, the momen­

tum map for this Sl action is J(<I>,t)J,e,pq,'PtiJ,Pa) = pq,. The reduced space 
rl(pq,)/Sl is parametrized by (t)J,e,ptiJ,Pa). In fact this reduced space is iden­
tifiable with T*Sz, the cotangent bundle of the two sphere on which (t)J,e,ptiJ,Pa) 

are canonical coordinates. As we shall see below, (t)J,e) is a system of spherical 

coordinates for this sphere. The equations of motion for t)J, e are thus just Ham­

ilton's equations for (3.12) with Pq, held constant. 

Remarks 1. The SI reduction here is in accord with the general fact that re­

ducing T*Q by Sl gives T*(Q/SI); here Q = SO(3) and SO(3)/SI = SZ. 

2. The two sphere obtained here is not to be confused with the sphere for the 

free rigid body shown in Figure 1. 

For the symmetric top (i.e., for II = I z), t)J is also a cyclic variable and PtiJ is 
constant as well. In fact these two SI symmetries commute, so we have a two-
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torus (T2) symmetry, which makes the system completely integrable. The reduced 

system has one degree of freedom, namely (6,po). The reduced space is no longer 

a manifold, but has a boundary at 6 = 0, 7T; i.e. it is T* [O,'IT]. These singularities 

in the reduced space correspond to the fact that the level set p$ = constant is 

singular at 6 = 0, 7T. [This is a special case of a general fact about singularities 

in level sets of momentum maps; see Arms, Marsden and Moncrief [1981]'] 

With II = 12 , (3.12) becomes 

1 p2 
H = . 2 {(p", - p$ cos 6)2 + p~ sin26} + ~ + Mg€ cos 6 

211 sm 6 13 
(3.14) 

= ~ + Mg€ cos 6 + '" - p$ + p$ 
2 ( (p cos 6)2 2) 

211 211 sin
2
6 13 

which shows the amended potential explicitly. 

Remark. In these coordinates, the abstract formula (2.9) for the one forms 

(XfL associated with the <\>, ~-reductions gives the closed one forms p",dp", and 

p$dp$ respectively. Interestingly, this means that the corresponding "magnetic 

term" is singular, being supported at the two singular points ~ = ° and 7T. 

3.2 Theorem. If 0< P < 2YMgfII and if p", = p$ = lib, the reduced La­

grange top system in (6,po) space has a hyperbolic saddle point at 6 = 0, Po = 
° and a homoclinic orbit connecting it to itself given by 

(3.15) cos 6 = 1 - 'Y sech2 (~ t), 
where 13 = 2 Mg€jII and'Y = 2 - b

2
jl3. 

Remarks 1. A top with ° < p$ < 2YMgfII for which the vertically spinning 
state is unstable .(a saddle) is called a slow top. 

2. For p", = p$ note that the potential in (3.14) does not have a singularity at 

e = 0, 7T, so these endpoints do not cause difficulties. 

3. Note that ° < 'Y < 2. 

The theorem is most easily checked by using the energy equation (3.14); the 

homoclinic orbit has energy H = Mg€ + P~j213; cf. Goldstein [1980, pages 215, 

216] and Figure 3. 

(c) The heavy top: Lie-Poisson description. The abstract theory in the pre­

ceding section guarantees that the reduced space T*S2 for the heavy top is sym­

plectically diffeomorphic to a coadjoint orbit in the semi-direct product SO (3) X 

R3; i.e. in the Euclidean group E3. The Lie algebra is denoted e3. 

The mapping that gives this diffeomorphism is just the map 

(3.16) 
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8 

(b) 

( O) 

( b) 

( C) 

(c) 

FIGURE 3. Motions of the top a) steady precession (8 = constant) b) precession and nutation 

(8mm :s e :s 8m,,) c) homoclinic orbit (8mm :s 8 < 0). 

where m is the angular momentum in the body and v is the orientation of gravity 
as viewed from the body. Table 1 below summarizes the explicit formulas relating 

these quantities. Table 2 summarizes the relationships between the "Euler angle" 

spaces and the coadjoint spaces. 

The Lie-Poisson bracket for functions of (m,v) is given by (2.2) and (2.15), 

which in this case becomes 

The assertions of the general theory can be checked by hand in this case. First 

of all, it is easily seen that the Lie-Poisson bracket equation F = {{F,H}} with H 
given by (3.11) and the bracket by (3.17) yield the equations 

{

rill = alm2m3 - Mg.£ V2 

~2 = a2mlm3 + Mg.£ VI 

m3 = a3mlm2 

(3.18) 



(3.19) 
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=-----
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"3=-----· 
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A slightly tedious, though straightforward computation shows that these are equiv­
alent to the Hamiltonian equations for (3.12). In fact, if F, G are functions of 

(m, v) and (m, v) are then written out in terms of the Euler variables then an explicit 

computation shows that 

(3.20) {{F,G}}(m,v) = {F,Gh,,,, 

where { , h,,,, denotes the bracket computed for the e, ~ variables (i.e. holding 
P4> constant). This is the content of Theorem 2.1 for this special case. 

TABLE I-Formulas Relating Euler Variables and Lie-Poisson Variables 

for the Heavy Top 

ml = [(p", - p", cos e) sin ~ + Pe sin e cos ~]/sin e = II (<i> sin e sin ~ + e cos ~) 

m2 = [(p", - P", cos e) cos ~ - Pe sin e sin ~]/sin e = I 2(<i> sin e cos ~ - e sin ~) 

m3 = P", = I 3(<i> cos e + ~) 

V I = sin e sin ~ 
V2 = sin e cos ~ 

V3 = cos e 

P", = m' v = II (<i> sin e sin ~ + e cos ~) sin e sin ~ 

P4> = + I 2(<i> sin e cos ~ - e sin ~) sin e cos ~ + I 3(<i> sin e + ~) cos e 

P", = m3 = I 3(<i> cos e + ~) 

Pe = (V2 ml - vlm2)/~ = II(<i> sin e sin ~ + e cos ~)cos ~ 
Pe = - I 2(<i> sin e cos ~ - e sin ~)sin ~ 
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TABLE 2-The Relationship Among the Spaces and Variables 

Euler Angles Lie-Poisson 

Variables Space Space Variables 

(<!>,ljI,e,p""p""Pe) T*SO(3) er (m,v) 

1 reduce by I 

S I : <!> cyclic 
1 restriction 

(ljI,e,p""Pe) T*S2 q>adjoint orbit Ilvll = 1, m' v = P", 

j If I, ~ I" l reduction 
Lagrange 

reduction 

(e,Pe) T*[O,1T] (coadjoint orbit)/SI V2ml - vlmz, V3 

The equations (3.18) and (3.19) have II vii and m' vas constants of the motion. 
This just reflects (a) the conservation law p", = constant and (b) the preservation 
of the coadjoint orbit by the Lie-Poisson equations. The conditions Ilvll = 1 and 
m . v = p", = constant also give the explicit identification of the coadjoint orbit 

with T* S2. Indeed, Ilvll = 1 describes the unit sphere SZ and m . v = p", specifies 
m as a linear functional on the unit normal to S2, leaving m restricted to TvS2 

free. Thus m determines, by restriction, an element of T;Sz. Finally observe that 
the equations for v in Table 1 show that e, ljI are spherical-type coordinates on 
S2 (ljI has been rotated by 1T/2 from standard conventions on spherical coordi­
nates). 

Finally we discuss the Lagrange top in the Lie-Poisson picture. For II = I z the 
invariance is rotation about the 3-axis. This SI action corresponds to the SI action 
of rotation through ljI in the Euler angle picture, as is easily seen. Also, the mo­

mentum map can be directly checked to be just m3' 

The following is a general property of reduction, but it may also be checked 
explicitly in this case. 

3.3 Lemma. IfF and G are functions of (m,v) which are rotationally invar­

iant, then 

(3.21) {{F,G}} = {{F,G}}m3~const 

i.e. the full Lie-Poisson bracket is the same as if it were computed holding m3 

constant. 

With Ilvll = 1, m' v = p"" any rotationally invariant function of (m, v) can in 
fact be expressed as a function of V2ml - Vlm2 and V3' These variables are a 
convenient representation of the coadjoint space reduced by the SI action. Brack­

ets of functions of these variables may be computed by Lemma 3.3. Again, one 
can check by hand that for such functions 

(3.22) {{F,G}} = {F,Gh 



where 
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aF ac ac aF 
{F,C}e = -- ---; 

a6 ape a6 ape 

i.e. the canonical bracket holding Pq" p", constant. 

The homoclinic orbit now is described very simply as follows: 
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3.4 Theorem. For ° < m3 < 2VMg€ II and m' v = m3, the reduced system 
for the heavy top has a hyperbolic saddle point at 

and a homoclinic orbit connecting it to itself given by 

(3.23) 
{ 

V3 = 1 - 'Y sech2 (V; t) 
v2m l - Vlm2 = -Ilvd= -1 16 sm 6] 

and 

where [3, 'Yare as in Theorem 3.2 with P", = m3' 

This can be checked directly (using the energy equation and the evolution equa­

tions). Of course it corresponds to (3.15). 

§4. Transversal Intersections of Invariant Manifolds for KKS Variables 
Coupled to Action Angle Variables 

We now develop an extension of the Melnikov-Amold theory (Melnikov [1963], 

Arnold [1964], Holmes [1980]) which applies to systems described by a set of m 

Lie-Poisson variables fL = (fLlo" .,fLm) E g* and a set of n action angles (61 ,!1), 

... , (6n'!n). This theory will then be applied to the free rigid body with attach­

ments in the next section. For the heavy top, a more sophisticated version is 

needed for systems whose variables do not decompose so cleanly. This is the 

subject of Section 6. 

The action angle variables can be those associated with motion near an elliptic 

fixed point in a one degree of freedom system. For example, our methods apply 

to the system obtained by coupling two rigid bodies if we examine the motion 

near a homo clinic orbit in one (such as an orbit connecting (O,€,o) to (O,-€,o) 

in Figure 1) and a small periodic orbit in the other (such as an orbit near (€ ,0,0) 

in Figure 1). The coupled system then will have horseshoes under the conditions 

of Theorem 4.3 below. (We believe that this applies, in particular, to the five 

mode truncation of the Euler equations for an ideal fluid on a two-torus, which 

consists of two sets of overlapping and coupled rigid body equations; note that 

for g = so(3) and n = 1, we have five variables in the set (fL,6,!).) For simplicity, 

however, we have chosen a rigid body with attachments to work out in detail 

since the action angle variables are more explicit and it is easy to add on additional 

ones. 
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We assume that our Hamiltonian takes the form 
n 

= HO(fJ-,I], ... ,In) + eH I (fJ-,8,I) + O(e 2) 

where fJ- = (fJ-I'" ·,fJ-m) E g*, the dual space of a Lie algebra g and 8 = 
(8 1, ••• ,8n), I = (I], ... ,In) with 8i a 21T-periodic variable. We assume that the sys­
tem associated with F has a homoclinic (or heteroclinic) orbit t1 (t) E g*. The 
oscillator frequencies 

(4.2) 
aGo 

fl.(I) =_l 

] 1 aI. 
1 

are assumed to be positive. 

As in Holmes and Marsden [1982a], [1982b] we can solve the equation 

(4.3) H
E
(fJ-,8,I) = h 

for In in the form 

(4.4) 

where 

(4.5) LO(fJ-,I], ... ,In-],h)=G;;I(h-F(fJ-)- % GP)) 

and 

(4.6) LI (fJ-,e l , ... ,en,II,., . ,In-I,h) 

HI (fJ-,ej, ... ,en,II,' .. ,In-I, L ° (fJ-'/]', .. ,In-j,h» 

fln (LO (fJ-,Ij, ... ,In-I ,h» 

In addition, we eliminate t in favor of the new 'time' en and write' for d/den. 

4.1 Proposition. Hamilton's equation/or (4.1), namely 

{

Iii = {{fJ-i,HE}}, i = I, ... , k 

(4.7) . aHE. aH E 

8j =---ai' I j =- ae.' j=I, ... ,n, 
1 1 

(where {{ , }} denotes the Lie-Poisson bracket in the fJ--variables) become 

fJ-: = -{{fJ-i,LE}}, i = I, ... , k 

(4.8) aL' aL' 
e'= --

1 aI.' 
1 

1'=-
1 ae.' 

1 

j= I, ... ,n-I. 
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Proof. Implicit differentiation of (4.3) gives 

'6H E aH E '6U 
-+--=0. 

'61J- a1n 'OIJ-

It follows that for a function K(IJ-), 

/ ['OK 'OHE]) / ['OK aH
E 
'6U]) 

{{K,HEH(IJ-) = -\IJ-, 'OIJ-' 'OIJ- = \IJ-, 'OIJ-' a1n '61J-

and so {{K,HEH/(aHE/aln) = -{{K,UH. However then, 
. . 

K K 
K' = .,-- = = -{{K UH. 

a aHE/aI ' n n 

The second set of equations in (4.8) follows in the same way. D 

Using U = LO + ELI + 0(E2) we see that (4.8) has the form of a periodically 

perturbed system. Next we relate the reduced and nonreduced brackets. 

4.2 Proposition. We have 

Proof. From (4.5), 

and 

D 

Let us now give a special case of the general result, suitable for two degree of 
freedom systems. 

4.3 Theorem. Suppose!1 (t) is a homoclinic (or heteroclinic) orbit for F, which 

lies on a coadjoint orbit in g* of dimension 2. Furthermore, suppose n = 1. 



292 P. J. HOLMES & J. E. MARSDEN 

Let it = F(fi) be the energy of the homoclinic orbit and let h > it and eO = 
G-'(h - it) be constants. Let {{F,H'}}(t,eo) denote the Lie-Poisson bracket of 

F(f.1) and H'(f.1,O(eo)t + eO,eo) evaluated at fi(t). Let 

(4.10) M(eo) = _1-0 f'" {{F,H'}}(t,eo)dt 
On(e) -'" 

and assume M(eo) has simple zeros. Then for € > ° sufficiently small, the Ham­

iltonian system (4.1) contains transverse homoclinic orbits and hence Smale 

horseshoes on the energy surface H' = h. 

Proof. By reduction, it suffices to check that the Melnikov function for the 

reduced, forced system on the coadjoint orbit containing fi has simple zeros. This 

involves only a generalization of the one degree of freedom Melnikov theory for 
forced oscillations to two-dimensional symplectic manifolds. The standard proof 

(see Holmes [1980] and Greenspan and Holmes [1981]) carries over directly. The 

Melnikov function for the reduced system is 

(4.11) M(eo) = {",' {{LO,L' }}de 

since the Lie-Poisson bracket coincides with the Poisson bracket on coadjoint or­
bits. Using (4.9) and dejdt = 0, 

M(eo) = f'" ~ {{F,H' }}dt. 
-'" 0 

Finally, note that 0 = O(eo) is constant on the homoclinic orbit, so the theorem 

follows. D 

To deal with the situation in which n ;:0:: 2, we introduce the following conditions 
on the Hamiltonian (4.1). 

(HI) F contains a homo- (or hetero-) clinic orbit fi E g* with energy h. The 

coadjoint orbit containing fi is assumed to be two-dimensional. The sad­

dle points for fi are denoted f.1± (they could be coincident). 

(H2) OJ(Ij) = G;(Ij ) > 0, j = 1, ... , n. 

To explain the remaining conditions some discussion is needed. 
For € = 0, note that the Hamiltonian system for LO has two (n - I)-parameter 

families of invariant (n - I)-dimensional tori T±(h" ... ,hn-,) given by 

{

f.1 = f.1± 

Gj~) = hj = constant (i.e.lj = ej = ? t (h) _ 
ej OJ(e)en+ej(O) (mod 21T), } I, ... ,n l. 

(4.12) 

(Correspondingly, the system for HO has two n-parameter families of invariant 

tori T ± (h" . .. ,hn ).) Henceforth we write the (phase) constants of integration ej(O) 

as eJ,j = 1, ... , n - 1, n. 
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The tori T:± (hb . .. ,hn- 1) are connected by the n-dimensional homoclinic man­
ifold defined by 

(4.13) 

j= 1, ... ,n-1, 

where the phase constant e~ associated with the 'reduced' degree of freedom ap­

pears explicitly. This manifold consists of the coincident stable and unstable man­

ifolds of the tori T:±(hl ,. •• ,hn-d; i.e. 

given by (4.13). 

For £ ¥- ° the system (4.7) possesses a Poincare map P E from (a piece of) 

(f.L,e b ... ,en-I,!b .. . '!n-d space to itself where en goes through an increment of 
271", starting at some fixed value e~, (which will be suppressed in the notation). 

Below, when we refer to transverse intersection of stable and unstable manifolds, 
we mean so for this Poincare map. 

(H3) Assume that the constants G/lj ) = hj' j = I, ... , n are chosen so that 

the unperturbed frequencies a 1 (II)' ... , a 1 (In) satisfy the nondegeneracy 

conditions (i.e. a;(Ij) ¥- O,j = 1, .. . ,n - 1) and the nonresonance con-

ditions of the KAM theorem. (cf. Arnold [I 978, Appendix 8]). 

This condition ensures that the tori T:± (hb . .. ,hn- 1) perturb to invariant tori 

TE:±(hb ... ,hn- I ) for P E with £ sufficiently small. 

Let h > it, h = it + 2:;'=1 hj where hj > 0 and the unperturbed homoclinic man­

ifold be filled with an n-parameter family of orbits given by 

(f.L,e1,·· .,en'!I,.··'!n) = (!i(t),a1(II)t + e~, .. . ,nn(ln)t + e~,Ib .. ·,In). 

Pick one such orbit and let {{F,Hl}} denote the Lie-Poisson bracket of F(f.L) and 

H
1
(f.L,e b ... ,en'!h ... '!n) evaluated on this orbit. Similarly, let {IbHI} = 

-aH1jaek> k == 1, ... , n - 1 be evaluated on this orbit. Define the Melnikov 

Vector, M(eo) = (M], ... ,Mn-l,Mn), by 

Mk(e~, ... ,e~,h,hl,h2' ... ,hn-d = J:oo {h,H
1
}dt, k = 1, ... , n - I 

(4.14) 

° ° _ I foo I Mn(e l , .. . ,em h,h),h2, ... ,hn - 1) - - {{F,H }}dt. 
an -00 

(We note that hn = h - it - 2:;:11 
hj; In and hn do not explicitly enter the cal­

culations, since In is eliminated by the reduction process; we also note that these 

integrals need not be absolutely convergent, but we do require conditional con­

vergence for M k , with appropriately chosen limits of integration (to suppress spu­

rious oscillatory terms corresponding to motion on the torus.) 
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(H4) Assume that the multiply 2'IT-periodic Melnikov vector M: Rn 
~ R n (which 

is independent of c) has at least one transversal zero; i.e. there is a point 
(a?, .. . ,a~)for which 

M(a?, .. . ,a~) = 0 

but 

det[DM(a?, .. . ,a~)] ¥ 0, 

where DM is the n X n matrix of partial derivatives of MJ, ... , Mn with 

respect to a?, ... , a~, the initial phases of the orbit. 

Here is the result for n 2: 2. 

4.4 Theorem. If conditions (H1)-(H4) hold for the system (4.1), then, for £ 

sufficiently small, the perturbed stable and unstable manifolds W S (TE.± ), and W U (T
E
+ ) 

of the perturbed tori T
E
.± intersect transversely. 

The theorem follows from the arguments of Holmes and Marsden [1982b] in 

the present context. We also refer the reader to that paper for a discussion of how 

this yields Arnold diffusion and for related references. 

There is a similar result when the coadjoint orbit is higher dimensional i.e. of 

dimension 2M, M > 1, but the system for F on g* is completely integrable, say 
with integrals 

where F2 , ••• , F M are associated with action angle variables. Now a result similar 
to 4.4 holds if the Melnikov vector is enlarged by replacing the function 

~ foo {{F,Hl}}dt 
On -00 

by the vector 

1 foo 1 
- {{Fi,H }}dt, 
On -00 

i = 1, ... , m. 

It would be of interest to apply such a generalization to the Toda lattice and related 

completely integrable systems. 

§s. An Example Based on the Rigid Body with Attachments 

In this section we consider a model problem based on the rigid body in the 

absence of gravity with attachments which spin freely about axes coincident with 

one of the bodies' principal axes (Figure 4). The full Hamiltonian for this problem 
is quite complicated and involves cross coupling terms. These terms lead to a 
major modification in the "unperturbed" homoclinic orbits, which still exist for 

the integrable case, occurring when the attachment preserves S 1 symmetry about 
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its axis. It is therefore necessary to recompute these homoclinic orbits. Moreover, 

the presence of coupling terms in the unperturbed Hamiltonian necessitates the 

use of the methods developed in Section 6 below. Therefore, in order to present 

a conceptually simple example, we will omit such terms so that our model prob­

lem has the simple product structure described in Section 4. For full details on 

the physical rigid body problem, see Koiller [1982]; also see Hubert [1980] for 

a practical example involving attitude control in spacecraft. 

Our model problem has the Hamiltonian 

where Ij and lj are related to moments of inertia of the body and its attachment 

and (e,l) play the role of action angle variables for the attachment. Since the 

unperturbed system is a product flow on (S2) x (R X S'), the product of the 

coadjoint orbit of SO(3) with the (I,e) cylinder, we can use (3.9) to write the 

homoclinic orbits for an energy level 

1 (£2 e) 
H

O 

= h ="2 12 + 1, ' 

where £2 = mi + m~ + m~ and k is a constant, as 

(5.2) 

m, = ±£ I a, sech(-~£ t) -y -a2 

m2 = ±£ tanh( -Ya,a3£ t) 

m3 = ±£ I a3 sech(-~£ t) -y -a2 

I = k (constant) 

k 
e = - t + eO. 

1, 

To show that transverse homoclinic orbits occur for E¥-O we need only show 

that the Melnikov function 

(5.3) M(eo) = _1_ foo {{F,H'}} dt, 
fl(l) -00 

has simple zeros, all other conditions of Theorem 4.3 being immediately satisfied. 

Note that we must set k > 0, so that I> 0 for the unperturbed system and hence 

the inversion of HE = h goes through. The Lie-Poisson bracket is given by (3.6): 



296 

(5.4) 

P. J. HOLMES & J. E. MARSDEN 

2 

I 
I 
I 
I 
I 

-----,'---- - --1---+--/ 
I 

/ If ,12,13 I 

/ 
3 

FIGURE 4. 

_ (a j a2 cos
2
8 a3 sin

2
8) 

- 2 + 2 + 2 mjm2m3· 
Ij 12 13 

Noting that on any homoclinic orbit, mj and m3 are even while m2 is odd, it 

follows that the constant term (aJli)mjm2m3 vanishes in the Melnikov integral 
and we are left with 

° 1 f'" (a2 
2 a3. 2 ) M(8 ) = -- mjm2m3 2 cos 8 + 2 sm 8 d8, 

(kll j ) -00 12 13 

(5.5) 

Inserting the expressions for the homo clinic orbits, we get 

lj (a2 a3) foo (e3~) (5.6) M(8°) = - 2 - 2 sech2(-Ya jal t) 
2k 12 13 -00 -a2 

tanh(-~e t) cos 2(~ t + 80
) dt, 

= c[r~ sech2(-~e t) tanh(-~e t) Sine;:) dtJ sin 28
0

, 

where 
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The integral of (5.6) may be evaluated by the method of residues to obtain 

(5.7) 
2'ITk2 (k'IT) 

M(So) = C· 2 3 cosech sin 2So, 
JI(-Valal) -~e J I 

which has simple zeros. We therefore have 

5.1 Theorem. The simplified model for a free rigid body with a single slightly 

asymmetrical freely rotating attachment on one of its principal axes possesses 
transverse heteroclinic orbits and hence Smale horseshoes in a suitably chosen 

cross section of the constant energy surface with k > O. 

This implies that the rigid body equations with an additional attachment are 

nonintegrable. More precisely, if we make a Markov partition of the invariant 

sphere consisting of the four open regions filled with periodic motions in the 
unperturbed case (Figure 1), then the dynamics of the perturbed Poincare map are 

conjugate to the sub shift of finite type on these four symbols. To see this we 

sketch the homoclinic structure on the sphere in Figure 5, identifying one of the 

centers (in region A) with the point at infinity. It is clear that orbits starting near 
the manifold on the 'boundary' of regions 2 and 3 can be selected such that they 

pass either from region 2 ~ 2 or 2 ~ 3 or 3 ~ 2 or 3 ~ 3. Similarly on the 

border of l,2 orbits can be found passing from 1 ~ 1, 1 ~ 2, 2 ~ 1 or 2 ~ 2. 

Continuing in this way we find the transition matrix. 

[

1 1 

1 1 
A = [aij] = 0 1 

1 0 

o 
1 

1 

1 

where aij = 1 if there is an orbit from region i to region j and aij = 0 if there is 
no such orbit. 

4 

2 

3 

FIGURE 5. The homoclinic structure of the perturbed manifold W'(O,±f,O), WU(O,±f,O) on the 

sphere. 
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If two or more attachments are added to the free rigid body then Arnold dif­

fusion may take place. Taking a system with two identical attachments on axis 
1, each free to rotate independently, with momenta I, J and angles e, <1>, we have 

the Hamiltonian 

In this case the Melnikov vector consists of the pair of functions 

M1(!t,<I>°) = F"", {I,Hl}dt 

f
'" 1 

M 2 (eo,<I>0) = -- {{F,Hl}}, 
-00 o.2 (k) 

where {I ,H I} = - aH 1 /de is the usual canonical Poisson bracket and 0.2 = J / J 2. 

Computations similar to those above (cf. Holmes and Marsden [1982b, §4]) show 
that 

(5.10) 
Ml = C1 sin 2eo 

M2 = C2 sin 2eo + C3 sin 2<1>° 

where the Cj are nonzero constants depending on I, J, J[, and the choice of total 

energy and energy in each 'mode' (E = £2/212 + kT!2J1 + kU2J1 ). Thus M has 
simple (transverse) zeros for eO = m'IT, <1>0 = n'IT, m, n E Z. Since n; (l) = 

1( J1 #- 0, all the conditions (Hl)-(H4) of Theorem 4.4 hold. Therefore, sim­

plified model for the rigid body with two attachments as specified exhibits Arnold 

diffusion. The existence of a transition chain of two-tori connected by heteroclinic 
orbits, (see Holmes and Marsden [1982b, §3] for a discussion) implies that an­

gular momentum can be transferred back and forth between the two spinning at­
tachments in a chaotic manner. 

Remark. An amusing corollary for the case of a single attachment is that there 

are configurations of the Euler elastica for which the sequence of loops above and 
below the mean level can be prescribed in advance. (For example the loops can 

be coded by the binary expansion of an irrational number.) This follows from the 
above calculations as modified by Koiller [1982], and the remarkable fact that the 

elastica equations have the form of the equations of a rigid body with an attach­

ment; see Love [1927, page 400]. 
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§6. Melnikov Theory for Systems with SI Symmetry 

We now develop a version of the Melnikov theory that applies to perturbations 

of a two degree of freedom system with an SI symmetry. We have chosen this 

context with applications to the motion of a nearly symmetric heavy top in mind. 

The key new feature is that the unperturbed system is no longer assumed to be 

a product system consisting of variables with a homoclinic orbit and action angle 
variables. Rather, this product structure is generalized to the assumption of an SI 

reduction. 
Roughly speaking, our unperturbed Hamiltonian HO no longer can be split as 

HO(q,p,l) = F(q,p) + G(l) 

so that the frequency function n = aHo/aI now may depend on (p,q). This is in 

fact the situation for the nearly symmetric heavy top. 
Let us start with a four-dimensional symplectic manifold P, whose points are 

denoted x. Suppose SI acts on P by canonical transformations and has an Ad*­

equivariant momentum map J: P -7 R. Let the reduced space be denoted 

PfJ. = r 1
(tJ,)/sl 

(see Marsden and Weinstein [1974]). 

For the heavy top, P = T*S2 and SI consists of rotations about the axis of 

symmetry. To keep the notation consistent, we shall use IjJ for the angle on SI. 

Motivated by this example, we allow P fJ. to have isolated singularities, but in this 

case we demand that the constructions carried out below make sense at the sin­

gular points. For the heavy top this causes no difficulties. 

Let points in the reduced space be denoted u E P fJ.. Thus, u consists of an SI 

orbit in P, lying in the level set r 1(tJ,). Choosing a slice (cross section) for this 

action, IjJ parametrizes the point on the orbit and of course the value of J labels 

the surface r 1
(tJ,). Thus, we write points x as 

(6.1) x == (u,IjJ,J). 

See Figure 6. 

p 

=fL 

FIGURE 6. 
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In this notation, a function of x is Sl invariant if and only if it can be expressed 

as a function of u and J alone. Such functions induce functions on P fl.' the reduced 

space, and have well-defined Poisson brackets on P fl.' In fact, the Poisson bracket 

of two such functions is just that function induced on P fl. by their Poisson bracket 

on P. Of course any Sl invariant Hamiltonian on P gives a completely integrable 

system, the integrals being J and H, or equivalently H for the reduced one degree 

of freedom system. 

Now assume that we start with an Sl invariant Hamiltonian HO(u,J) and we 

perturb it by a general Hamiltonian. Thus, write 

(6.2) 

Now we must generalize the procedure of Holmes and Marsden [1982a] to this 
context. 

We begin by letting 

(6.3) 
aHO 

O(u,J) = - (u,J), 
aJ 

and assuming 0 is positive, so that W(u,J) is invertible in the J-variable. For E 

small 

(6.4) HE(u,lji,J) = h 

can be solved for J. Write H~(J) = HO(u,J) and (H~)-l for its inverse in the J­

variable. 

6.1 Proposition. J = V (u,lji,h) = LO(u,h) + ELI (u,lji,h) + O(E2) where 

(6.5) LO(u,h) = (H~)-l(h), 

and 

(6.6) 
1 -H

1 
(u,lji,L\u,h» 

L (u ,I. h) - ------
,'+', - O(u,Lo(u,h» 

Proof. (6.4) reads 

i.e. 

i.e. 

Comparing powers of E gives the result. o 

As in Marsden [1981, Lecture 4] we can arrange things so that lji and J are 

conjugate variables. Thus, under the dynamics of HE, we have 
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(6.7) 
. BHE 

tlJ = {tlJ,H
E
} = -. 

BJ 

Now we change time variables from t to tlJ and write ' for d / dtlJ. Thus, for a 

given function F(u), 

(6.8) F /BH
E 

F' = ~ = {F,HE} ai' 

However, from (6.4) and properties of the Poisson bracket, 

{F(u),HE(u,tlJ,L'(u,tlJ,h))} = 0 

so 

(6.9) 
BHE 

{F,HE} + B1 {F,L'} = O. 

Comparing (6.8) and (6.9), results in 

(6.10) 

Thus, (6.10) is in the form of a periodically forced Hamiltonian system on the 

reduced phase space. The brackets in (6.10) are taken in the u-variable alone. 

Thus, we have: 

6.2 Proposition. The evolution ofu as afunction oftlJ is a tlJ-dependent Ham­

iltonian system in the reduced phase space. The equations of evolution are given 

by (6.10). 

Now suppose that the reduced system for E = 0 has a homoclinic orbit. To 

detect the presence of transverse homoclinic orbits for E ¥= 0 we must integrate 
{L() ,Ll} around this orbit. In examples, L() and Ll and their bracket can be laborious 

to compute. It will save some effort if we relate {LO,LI} to HO and HI. 

6.3 Proposition. 

(6.11) 

where 0 is evaluated at u, J and the brackets are taken with respect to u, holding 

l)J, J fixed. 

Remarks 1. Formula (6.11) is a generalization of (3.1) of Holmes and Mars­

den [1982a). In the latter case 0 was independent of u. 

2. The above development does not depend on the dimension of P. 

Proof of 6.3. Given F(u), we first compute {LO,F}. From (6.5), 

HO(u,Lo(u,h)) = h, so 
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Thus 

(6.12) 

Next, from (6.6) we obtain 

{

HI} 1 aH
I 

HI an 
(6.13) {G,LI} = - G,- - -- {G,LO} + -- {G,LO}. 

n n aJ n2 aJ 

Taking G = LO in (6.13), the last two terms vanish, so 

{LO,L
I
} = -{LO,:}. 

By (6.12) this gives the stated result. o 
Assembling these results as we did in Section 4, we obtain the following. 

6.4. Theorem. Consider a two degree of freedom Hamiltonian system on a 

symplectic manifold P with an 51 symmetry and a Hamiltonian of the form (6.2). 

Assume that J is chosen and fixed so that the reduced system HO(u,J) has a homo­

clinic (or heteroclinic) orbit ii(t) in the reduced space P J.L and so n(ii(t),J) > O. 

Let 

(6.14) t/J(t) = L n(ii(t),]) dt + t/J0 

and let {H°,Hljn}(t,t/J°) denote the u-Poisson bracket evaluated at ii(t), t/J(t) and 

J. Let 

(6.15) 

and assume M(t/J°) has simple zeros as a function of t/J0. Then for c sufficiently 

small, the system (6.2) has transverse homoclinic (or heteroclinic) orbits, and 

hence Smale horseshoes on the energy sUlface HE = h, where h = HO(ii,J). 

6.5 Example. A simple introductory example in which n is not constant on 
the homoclinic orbit is provided by a slightly asymmetric central force problem 

(6.16) 

2 2 

HE(r,e,PnPe) = Pr + VCr) + Pe2 + c sin me 
2 2r 

def 

= HO(r,PnPe) + cHI (r,e,Pe,Pr)' 

Here r, e are the usual planar polar coordinates and VCr) is a potential function 
with a single maximum, so that, for suitable values of Pe ¥- 0 the effective po­
tential VCr) + p~j2r2 has a minimum at r _ and a maximum at r + with r _ < 
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r + and V([) + p~/2r2 ~ 00 as r ~ O. Thus H
O has a homoclinic orbit 

(f(t),Pr(t),6(t) + 6o,Pe), where f(t)~ r_, Pr(t)~ 0 as t ~ ±oo, f(O) < r_, 

Pr(O) = 0, J = Pe = constant ¥- 0 and 

e(t) = L a (t)dt; a = Pe/;:2(t) , 

where a = aHo / aPe is evaluated on the homoclinic orbit. We therefore have 

(6.17) {HO,HI/a} = aH
o 
~ (HI) _ aH°!.. (HI) 

or aPr a aPr or a 

= -Pr(;: sinm6), 

and so the Melnikov function obtained by integrating around the homoclinic orbit 

is 

(6.18) 
2 Joo -

M(6o) = - ~ f(t)fir(t) sin m(6(t) + 6o)dt 
Pe -00 . 

= - ~ [Joo f(t)Pr(t) sin me(t)dt· cos m60 

Pe -00 

+ L"'oo f(t) Pr(t) cos me (t) dt . sin m60 J. 

Since f is even and Pn 6 are odd, the second integral is identically zero and we 
obtain 

(6.19) 

which has simple zeros if A = -(2/Pe)f':oof(t)Pr(t) sin me (t)dt is nonzero. Almost 
all choices of VCr) will satisfy this condition, and hence the asymmetric problem 
will be nonintegrable. 

We note that this nonintegrability arises from two factors: the presence of the 
coupled frequency term p~/2r2 in the unperturbed Hamiltonian, and the angular 
dependence of the perturbation, sin m6. Models similar to this have been used in 

the description of barred and spiral galaxies, in which nonintegrability and the 
presence of 'ergodic' orbits is related to the escape of stars from the system (cf. 

Contopoulos [1981] and references therein). 

§7. Example: The Motion of a Nearly Symmetric Heavy Top 

We now show that Theorem 6.4 implies: 

7.1 Theorem. If 11/13 is sufficiently large, 12 = II + E and E is sufficiently 

small, E ¥- 0, then the Hamiltonian systemfor heavy top (see 3.I1 and 3.12) has 
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transverse homoclinic orbits in the Poincare map for the ljJ-variable on energy 

surfaces close to the homoclinic orbit described in 3.2 or 3.4. 

7.2 Corollary. The heavy top close to the symmetric top has no analytic in­

tegrals other than the energy and angular momentum about the vertical axis. 

Remarks 1. As we have already discussed, this corollary has recently been 

obtained by Ziglin [1980], but by rather different methods. Moreover, our result 

7.1 shows the existence of 'chaotic' orbits. 

2. 11//3 being large can be replaced by 0 < "y < 1 and the integral 7.13 below 

being nonzero. This integral is nonzero for most values of M, 13, 11, 13, as we 

shall show. 

We shall prove Theorem 7.1 in the Euler angle representation first and then 

sketch how the proof can be alternatively obtained using the Lie-Poisson descrip­

tion. 

In (3.12) let 12 = 11 + E. This gives 

(7.1) 

and 

(7.2) 

HO = ~ {(P<l> - PIjJ cos 0)2 + p~ + p~} + MgC cos 0 

2 11 sin
2
0 11 13 

1 HI = - 2. 2 «P<l> - PIjJ cos O)cos IjJ - Pa sin 0 sin 1jJ)2. 
2/1 sm 0 

Note that HO is the Hamiltonian for the symmetric top and so has a homoclinic 

orbit given by (3.15). 

Since IjJ and PIjJ are conjugate variables and J = PIjJ' we have from (6.3), 

(7.3) PIjJ (P<l> - PIjJ cos 0) o = - - 2' cos O. 
13 11 sin 0 

On the homoclinic orbit, P<l> = PIjJ = constant == lib, so (7.3) becomes 

(7.4) o = b (~ - 1 :o::s 0) . 
7.3. Lemma. With P<l> = PIjJ = lib, 13 = 2 MgC/lb 

• b . Pa 
<!> = and 0 =-

1 + cos 0 11 ' 

we have 

(7.5) { HI} 1 
HO,- = - (A(O) sin 21jJ + B(O)cos 21jJ + C(O)) 

o a,p. 0(0) 
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where 

and 

Proof. The computations are slightly tedious but straightforward. We write 

(7.6) {
Hi} 1 Hi 

HO - = - {HO Hi} - - {HO O} 
'0 0' 0 2

" 

aHa aHi aHa aHi 

{HO,H i }=-----, 
ae aPe aPe ae 

° aH
o an 

{H ,n} = - ape as' 
and compute that 

and 

aHO ( . 2 • 13.) - = -Ii <I> sm e - - sm e , 
ae 2 

aHo . 
-=e 
aPe 

aHi. <he 
- = -<1>2 sin e cos21jJ + - sin 21jJ, 
ae 2 

{HO,H
i

} = ~ [ (<h2 - ~) sin
2
e - e2

] sin 21jJ 

. . l3e 
+ e<l>2sin e cos 21jJ - - sin e(cos 21jJ - 1), 

an <h2 . 
-=-sme 
ae b ' 

e<h2 
{H0,n} = -- sin e. 

b 

4 
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Substituting these expressions into (7.6) and simplifying yields (7.5). 0 

The Melnikov function is given by 

(7.7) M(tjJ°) = L"'oo {HO, ~] dt 

where the integral is evaluated along the homoclinic orbit 

(7.8) ( ~t) cos 0 = 1 - "I sech2 -2- , 

(see (3.15» and where 

(7.9) tjJ(t) = L n(t)dt + tjJ0 = ~(t) + tjJ0 

and 

(7.10) 

Note that if 0 < "I < 1, or if 11/13 is sufficiently large, net) > O. Substituting 
(7.5) and (7.9) into (7.7) yields 

(7.11) M(tjJ°) = [J~", * (A (0) sin 2~ + B(O) cos 2~)dt] cos 2tjJ° 

+ [{Coo * (A (0) cos 2~ - B(O) sin 2~)dt] sin 2tjJ° 

+ Joo ~C(O)dt. 
-00 n 

The first, second and fifth terms are odd functions of t and so we obtain the 
following 

7.4 Lemma. 

(7.12) M(tjJ°) = [Joo _1_ (A(O) cos 2~ - B(O) sin 2~)dt] sin 2tjJ° 
-00 ncO) 

Now we observe that at t = 0, A = b3'Y2/4(2 - "I) > 0 and B = O. It follows 

that for IJI3 sufficiently large, the portion of the integral from the first term near 
t = 0 dominates and so the integral must be a nonzero number. Thus M(tjJ°) has 
simple zeros and the theorem is proved. 0 
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Remark. For any given b, /3, 110 13 (with 'Y = 2 - b
2
//3 and b2 < 2/3,b,/3 > 

0) one needs only the condition that 

(7.13) foe ..!.. (A(e) cos 2$ - B(e) sin 2$)dt 
_oe O 

be nonzero. Since we cannot evaluate (7.13) analytically, it does not seem so 
simple to decide exactly when (7.13) vanishes. However, since it is nonzero for 
11/13 large, it follows that (7.13) can vanish for at most a finite set of values of 
b, /3, 110 13 as it is analytic. Thus, we can be sure of transverse homoclinic orbits 
for generic M, 110 13 , b, if 0 < 'Y < 1. [See Kopell and Washburn [1982] for a 
related use of analyticity.] 

Finally, we indicate how the same computations can be done using the Lie­
Poisson formalism. This actually makes the computations slightly easier, but the 
final result is the same. 

Again, letting 12 = II + E in H = (l/2) 2:;=1 mJ /Ij + MgC v3, we have 

(7.14) 

and 

2 

HI = _ m 2 

2n' (7.15) 

Next, observe that \jJ and m3 are conjugate variables, where tan \jJ = VI/Vb so if 

m'v = lIb = m3, we have 

(7.16) o = {{\jJ,HO}} = b (!:. - --'2-) 
13 1 + V3 

which agrees with (7.4). To compute {{HO,HI/O}} we write (see Lemma 3.3) HI 

as a function ofthe reduced variables V2ml - Vlm2 and V3 and compute the bracket 
holding \jJ and m3 fixed. This is done by writing 

2 1 . 2 
m2 = --2 [(m'v - m3v3) cos \jJ - (mlv2 - m2v l ) sm \jJ] . 

1 - V3 

(7.17) 

Setting m'v = m3 = lIb and using this expression to evaluate 'ilmHI, 'ilvHI in 
the Lie-Poisson brackets (3.16) we can compute {{HO,HI/O}}. (Note that, since 
HO is Sl invariant we need not substitute for ml or m2 in that expression.) Finally, 

using Table 1 we can express the Lie-Poisson bracket in terms of the Euler angles 
and obtain precisely the expression (7.11) derived earlier. Then the proof may be 

completed as it was using Euler angles. 
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