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1. Introduction

This paper concerns Hamiltonian and non-Hamiltonian perturbations of

integrable two degree of freedom Hamiltonian systems which contain homo-

clinic and periodic orbits. Our main example concerns perturbations of the

uncoupled system consisting of the simple pendulum and the harmonic oscilla-

tor. We show that small coupling perturbations with, possibly, the addition

of positive and negative damping breaks the integrability by introducing

horseshoes into the dynamics.

We begin with an unperturbed n + 1 degree of freedom Hamiltonian in
canonical coordinates q = (q1 q), p = (Pl ..." pn), x, y of the

form

H0(q,p,x,y) = F(q,p) + G(x,y) (1.1)

Starting in §3, we will assume n = 1, but for some of the development n

can be arbitrary. Allowing x and y to be multidimensional will be the

subject of another publication.

We shall assume that G admits action-angle variables; i.e. there is

a canonical change of coordinates to (e,I) such that e is 27r periodic,

1 > 0 and G becomes a function of I alone; we write G(I) for this

function and assume that

G(O) = 0, 1(1) G'(I) > 0 for I > 0 (1.2)

Note that (1.2) implies the existence of G .

The equations of motion are

q = 1;

i i a Pi =  3__.,i = n (1.3)

6 =(1), I= 0 (1.4)
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We shall assume that the system (1.3) contains a homoclinic orbit (j(t -to),

F(t - t0 )) joining a saddle point (qo, pO) to itself. Of course

(1.4) contains the 2w-periodic orbits 6(t) = 80 + to(I0), I(t) = 10.

Thus, for the system (1.3)-(1.4), we have orbits which are the products

of the homoclinic orbits and the periodic orbits. (See Figure 1.) [The

case in which F has a heteroclinic orbit may be treated by similar methods.]

(qt-to), (t-to))

F-system G-system

Figure 1. The unperturbed system.

Our principal example in this paper is the pendulum-oscillator Hamil-

tonian

H0(4,v,x,y) = 1 2 22 (1.5)

H~~~ ~ (V'Y) V Cos + f.(y + w x

which takes the form (1.1). Action-angle variables for the oscillator are

x = - sin e, y = cos e, so that

H O(,v,e,I) = F(0,v) + G()

where F(0,v) = 2 cos (1.6)(I6

and G(1) wI,

The Hamiltonian system associated with F possesses the two homoclinic

orbits
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= ±2 arctan[sinh(t -t)]) (1.7)

v(t) ±2 sech(t - t0).

We deal with Hamiltonian perturbations of (1.1) in Sections 2, 3 and

4. We assume that our perturbed Hamiltonian depends on a small parameter

e in the form

Hc(q,p,6,1)= F(q,p) + G(I) + eH1 (q,p,9,1), (1.8)

where H1 is smooth and 27 periodic in e. We shall show that a Poincard

map associated with HE contains Smale horseshoes on each energy surface

for E small and H satisfying certain conditions.

The equations of motion corresponding to H6 are

i F 3 ' - q E H. i =1, ...
_ q~ (I .9)

3HI S = -E aH ne = (1) + - 1 -- -.

Our method for finding horseshoes involves the Melnikov function tech-

nique that has been used in Melnikov [1963], Arnold [1964], Holmes [1979,

. 1980], Holmes and Marsden [1981] and Greenspan and Holmes [1981] to show

a' the existence of transverse intersections of stable and unstable manifolds

and hence the existence of horseshoes. The Melnikov technique is used after

the system has been reduced to a non-autonomous single degree of freedom

system (as in Whittaker [1959] Ch. 12, and Birkhoff [1966], Ch. VI, §3).

-4 In particular, in Section 4 we prove that the pendulum-oscillator (1.6)

develops a horseshoe on each energy surface near the value H = l, when

it is perturbed using the coupling term

-'*1
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H1 ( ,v,x,y) = I(x -€)2 (1.10)

Churchill [1980] suggested the possibility of this approach but did not

examine any specific examples. Section 5 concerns the more delicate case

in which (1.4) is given an additional non-Hamiltonian perturbation. We

prove that at least one of the horseshoes persists under this perturba-

tion provided there is a suitable energy transfer mechanism. In Section 6

we apply this theory to the pendulum oscillator example once more.

In another paper (Holmes and Marsden [1981b]) we use these methods

to address the question of nearly integrable multidegree of freedom systems

and Arnold diffusion (cf. Arnold [1964]). Holmes and Marsden [1981c] treats

Hamiltonian systems with symmetry in which (part of) the phase space is

the coadjoint orbit of a Lie group. This provides a natural framework in

which to consider non-integrable pertrubations of rigid bodies.

In many examples of physical interest, such as weakly nonlinear prob-

lems, the unperturbed system H = F(p,q) + G(I) does not possess a homo-

clinic orbit, but some averaged system, after truncation, does have homo-

clinic orbits (cf McGeehee and Meyer [1974]). In such cases the Melnikov

function, computed with the use of second order terms normally neglected

in averaging, is typically exponentially small and conclusions on the in-

tersections of manifolds do not immediately follow without a careful study

of the errors. The elastic pendulum in the limit of a very stiff rod, with

linearized frequency uV/ and Hamiltonian

H -cos o + wi -cF-7, sin1j cos €, (1.11)

also falls into this class. The study of such systems is planned
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for a future publication. The problems of the

motion of four point vortices treated by Ziglin [1980] and the motion of

charged particles in the earth's magnetic field (see Braun [1981]) possess

related difficulties.

We expect that the methods developed here will be applicable to a num-

ber of Hamiltonian systems exhibiting complex dynamics. Two examples that

seem to involve homoclinic phenomena are the Henon-Heiles system (see

Churchill, Pecelli and Rod [1979]) and the mixmaster model in cosmology

(Barrow [1981]). The results in §5 should also enable one to deal with

nearby systems with forcing and dissipative terms.

For other papers in which horseshoes are found in two dimensional

mappings by very different techniques, see Devaney and Nitecki [1979] and

Tresser, Coullet and Arnoedo [1979].

Acknowledgements. A number of helpful comments were kindly supplied

by Allan Kaufman, David Rod, and Alan Weinstein.

4.

d
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2. The Reduction Method

We now recall how to reduce the n +1 degree of freedom system (1.9)

to an n degree of freedom non-autonomous system. This is a special case

of the general reduction procedure by which a Hamiltonian system with

symmetry is reduced to another Hamiltonian system with fewer degrees of

freedom. The standard reference is Whittaker [1959, Ch. 12]; see also

Birkhoff [1966] and Churchill [1980]. The case of concern in this paper

is the symmetry of time translations,with energy being the corresponding

conserved quantity. The procedure is also a special case of that of Marsden

and Weinstein [1974] in the context of time-dependent mechanics, as in

Abraham and Marsden [1978, §5.1].

Energy is conserved for (1.9), so we consider the equation

Hc(q,p,9,I) = h . (2.1)

Now tH ( = ) + e -, On any compact subset of (q,p,O,I) space not

containing I = 0, we can choose e small enough so that H > 0, since

,(I) > 0 for I 0, by assumption. Thus, in such a region, we can solve

(2.1) for I to obtain

I = LE(q,p,O,h) (2.2)

0
Now define L and L by writing

L:(q,p,e,h) = LO(q,p,h) + EL (q,peh)+ O(F2) * (2.3)

2.1 Proposition. We have

L0 (qp,h) = 1- (h - F(q,p)) (2.4)

Zip
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and L (q,p,e,h) = - (q,p,0, L0(g,p,h)) (2.5)• ~(L0(q,p,h))'o.

Proof. Substituting (2.2) into (2.1) gives

F(q,p) + G(L0 + EL1 + 0(E 2)) + EH (q,p,e,L0 + EL1 + 0(E2))= h

i.e. [F(q,p) + G(L0) h] + Q(L0 )(eL 1 )+ sH (q,p,e,L0)= (E2)

The E0  and E1  terms of this expression give (2.4) and (2.5). U

Having passed to the level set HE = h and thereby eliminated I, we

now eliminate thevariable conjugate to H, namely t. (In reduction, an

even number of variables is always eliminated). Since 92(I) > 0 and HE

is not explicitly t-dependent, and e is (for small E) an increasing func-

tion of t, we can eliminate t by inverting e = e(t) and expressing

q and p as functions of 0. We write qi' dq ide and p! dp./de,

i=l, ...,n - so that

q _= _ ,-@P i

and (2.6)

3H /ME

= 7T/ a:

However, implicit differentiation of (2.1) gives

HE  DH 07
+ I 1

;q 3q

and aHE aH5 ;L' 0. (2.7)

; i 3;
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Substituting (2.7) into (2.6) we get

q - ai

and '! (2.8)

and Pj =q

1 ai

Using (2.3), this becomes
i1' -L 2~t

q - a + O(2),

(2.9)

Pi + + (2)

Since L0  depends only on (q,p), but Ll depends on q,p and e, the

system (2.9) has the form of a 2-periodically perturbed n degree of

freedom Hamiltonian system. For n = 1, (2.9) becomes a forced oscillator

equation. This is exactly the situation which occurs in our pendulum-oscilla-

tor problem.

-i
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3. Melnikov's Method: The Existence of Horseshoes

For n = 1, the system (2.9) is in the form analyzed by Melnikov

[1963], Holmes [1979, 1980] and Greenspan and Holmes [1981]. [For (e,7)

vectorial or n > 2, analogous technique were developed by Arnold [1964]

and Holmes and Marsden [1981b] and will be the concern of a subsequent

paper.]

For c = 0, the system (2.9) reduces to (1.2) and thus also contains

a homoclinic orbit. The Melnikov method involves integration of the

Poisson bracket {L ,L }  around the homoclinic orbit of the unperturbed

system. Let us first use (2.4) and (2.5) to express {L0,Ll I in terms

of {F,H I.

3.1 Proposition. Holding 0 and h fixed, we have

0  = 1 ({LO, L }  [ 0(LO)2 {F,H} (3.1)

Proof. Using (2.4), we have

3L0  G- 1 c and 3L (G -

i ~ ~ =( ) -1' F

api

while (2.5) gives

3L1  1 aHl 3HI + LO} + 1I HI, _LO

,q -(L ) q [SI(L )q'

1n I M ~3H a 2;L0~i 1 OW~2 aLOand 3*JL ap [sO(L 0)2)p
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Thus,

L0aL1  L0 L.A.1 1 _ 1L 0 i~

q Ip i  @pi aq
1 

-(L 0 ) [a i 1i I api a(L ) ap J

aF aH 1  a3H _O 1 Hl W 2L_ 1
ap I aq Q-(L aq

(G'.L [ F 3H1  aF DH1

Q(L ) a Pi i aq "

But (G-)' = I/a(L ) and so we obtain (3.1).E

The cancellations that occur to yield (3.1) reflect the general fact

that the Poisson brackets before and after reduction correspond. Similarly,

if K is a function of (q,p) we obtain the formula

{K,L 11 = _ 1 {K,HI},- I HI{K,F} (3.2)

Thus, if K is a first integral for F, then (3.2) becomes

{K,L {K,H I}  (3.3)

In particular, in the multidegree of freedom case in which all but the

first of the n variables (q,p) are in action angle form so that

{Pk' F} = 0, k = 2, ..., n then with K= Pk' (3.2b) becomes

{Pk9 L I Q ' Pk'I , H l H' (3.4)

Qaqk

Relations of this type are useful in the study of perturbations of inte-

1gable'systems when n > 2. - -
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In connection with the identities (3.1)-(3.4) the following observa-

tion is useful. Along an orbit for the unperturbed system, F is con-

stant, so if h > F, L0 will not vanish and - I will be a finite
(L )

constant. Thus, on such an orbit, {L ,LI} will differ only by a multi-

plicative constant from {F,H1}.

We are now ready to state our main result for Hamiltonian perturba-

tions in case n = 1.

3.2 Theorem. Consider a two degree of freedom Hamiltonian system of the

form

HO(q,p,1,T) : F(q,p) + G(1) + EH I(q~p,,) , (3.5)

and assume that F contains a homoclinic orbit (q(t - t0 ), p(t - to))

connecting a hyperbolic saddle to itself (or to another hyperbolic saddle

point). Suppose Q(I) = G'(I) > 0 for I > 0. Let hI = F(q,p) be the

energy of the homoclinic orbit and let h > hI and to = G-1 (h - hl) be

constants. Let {F,H }(t - t0 ) denote the Poisson bracket of F(q,p) and
H (q,p . evaluated at q(t - to ) and p(t - to). Define

M(tO) = J {F,Hl}(t - to ) dt (3.6)

and assume that M(tO ) has simple zeros and maxima and minima of 0(1).

Then for e > 0 sufficiently small the Hamiltonian system corresponding

to (3.5) has a Smale horseshoe in its dynamics on the energy surface

H6 = h.

This result follows from our previous development (the reduction and

Proposition 3.1) and the Melnikov theory given in the references at the

V.
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beginning of this section. Equation (3.6) can also be obtained from the

evolution equation for F along the unperturbed orbit

F = {F,H I} , (3.7)

cf. Arnold [1964].

For our analysis in §5 we shall need some facts about the construc-

truction of the horseshoe, so we collect them here. First we pick an

energy surface Hc = h > hI and consider the Poincard map P O^ :ZO -0 Zeo

(which we just denote PE below) associated witn the periodically per-

turbed system,(2.9). Here Z = {(q,p,e)O = e E [0,2 7 ]} is a global

cross section for the flow of (2.9). By hypothesis, for c = 0 P has

an invariant manifold filled with a continuous family of (nontraverse)

homoclinic orbits. If M~tO ) has simple zerosthen this manifold breaks

into a countable set of homoclinic orbits: the generic case found in

advanced classical mechanics texts (cf Arnold and Avez [1967], Abraham

and Marsden [1978]); see Figure 2a. For more details on homoclinic orbits

of maps see Moser [1973] or Newhouse [1980]. Here we merely note that

the Smale-Birkhoff homoclinic theorem asserts the existence, near any

transverse homoclinic point, of a zero dihensional invariant Cantor set

N
A or! which some power of the map, P N, is homeomorphic to a shift on two

symbols. Since PNIA possesses a dense orbit, it follows (Moser [1973])

that (3.5) possesses no analytic second integral.

To construct the horsloe one takes a small rectangle, R, partially

bounded by pieces of the stable and unstable manifolds and containing a

transverse homoclinic point. Integersil, Z2 can be chosen such that the

forward and backward images P k(R) , P-'(R) lie in a neighborhood U
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of the saddle point, x. The linearized map DPE(x) can then be used to

approximate the motions in U and it can be shown that there are an integer

N < - and two disjoint 'horizontal' strips Hi C P k(R) = B whose images

under pN are disjoint 'vertical' strips Vi C B (Figure 2). The map

PN:H Vi  is the horseshoe.

X. II ,

L _

(a) The perturbed homoclinic
orbit

W n (x

V1  V2

H1

. v (x)

HI
B

(b) Horizontal and vertical strips

Figure 2.

.n1 T - " I _  :
- ' "____-_--_--_l__________-
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To obtain estimates necessary to prove hyperbolicity of A, one needs

to find certain sector bundles which are mapped into themselves by DPN. In

our case this implies that the choice of N is related to C , the pertur-

bation strengthsinee the angle between the tangent vectors of the manifold

at a (transverse) homoclinic point is 0(e) (M(tO) measures the O(E) com-

ponent of the distance between the perturbed manifolds). In Appendix B we

show that N - tn(l/e). Thus, for each e > 0 sufficiently small and each

h > hl, there is an invariant set Ah near every transverse homoclinic

point in each energy surface H =h (cf. Figure 4, below). However as C

gets smaller, N must be increased. This dependence of N on e plays an

important role in our discussions of dissipative perturbations on §5.

1

b.I °
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4. Example: The Coupled Pendulum-Oscillator

We now apply Theorem 3.2 to the Hamiltonian (1.4) with Hl  given by

(1.10), and the homoclinic orbit for F given by (1.7). In terms of the

variables (¢,v,O,I), we have

2

F(4,v) = 2 2 cos 0 (4.1)

uand (,v,2,I) = 1 sin e- (4.2)

Thus

{F,H1 } = -vO+ 2-I v sin e (4.3)

The energy of the homoclinic orbit (1.7) is hI = 1, so we let h > 1 and

let £0 = I (h - 1). Thus (3.6) gives

CO

M(to) -f0 {4 sech(t - t0 )arctan[sinh(t - to)]

2/2(h 7-17 sech(t - to ) sin(tw)} dt *

The first term is odd and so vanishes, leaving

M(to) = 22(h 1 ) sech(t - to ) sin(tw) dt (4.4)

This is evaluated by the method of residues as in Holmes [1979], yielding

M(t = ±2Tr/2(h - 1) sech( !1 sin t. (4.5)

Since M(t0 ) has simple zeros and is independent of e we conclude that,

for F > 0 sufficiently small, the conditions of Theorem 3.2 are satisfied

and we have horseshoes in the Poincare map associated with the pendulum-

.9
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oscillator on each energy surface h > 1, where

2 _cos + WI + j sine-@ = h.

Thus, we have proved:

4.1 Theorem. The Hamiltonian system with energy function

y 1 2 2(2 2

H(,vxy)= - - cos 0 + (y + wx2) + (x4(x

has horseshoes in its dynamics on each energy surface H > 1, for e suffi-

ciently small, and hence possesses no analytic second integral.
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5. Non-Hamiltonian Perturbations

We now wish to consider perturbations under which the total energy H

is not conserved. In many physical problems one system produces energy which

is subsequently absorbed by a second system, so that the coupled systems

can achieve a 'dynamic equilibrium' in which (in a suitably time-averaged

sense) energy is preserved. This often manifests itself in the presence of

negative damping in one system and positive damping in the other. We will

take an integrable Hamiltonian system which possesses continuous families of

non-transverse homoclinic orbits, add a Hamiltonian perturbation HF, as

before, which breaks these manifolds to give transverse homoclinic orbits,

and then add dissipative effects which cause a net drift in the energy H

for perturbed orbits lying near the homoclinic manifold. Under suitable

hypotheses, such dissipative perturbations can leavc invariant isolated pieces

of the continuous family Ah of horseshoes discussed in Section 3. For

simplicity we shall restrict our discussion to two degree of freedom systems

(n = 1).

The Hamiltonian system (1.9) is modified to include dissipative terms

as follows:

4~ = aF +

1ap aH
-F 

E: aF + ey2f 2

@Hl  (5.1)

- e = (I) + a + g

= 2 a + E629 2

where F, Q = G' and Hl are as in the previous sections and fi' gi

are functions of (q,p,I,8), 2r periodic in e. Specific hypotheses on
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fi, gi and on the dissipation parameters yi, 6i will be stated subsequently.

The energy function H = HE = F(q,p) + G(I) + cH (q,p,I,O) is no longer

conserved, and our earlier equation (2.1) which was used to eliminate I is

now replaced by

r f H + M E  
+ H

H = Vl -- fl + f 1 g 62 g
3qI Y p 2 1 -e 91 ,2 11 92'

= y YI - f1 + 2 f2 + SI(I)6 2g23+ 
0( 2) (5.2)

= ch(p,q,I) + 0(E2)

Note that when yi = 6i = 0, (5.2) gives H = 0 and (5.1) becomes (1.9) with

conservation of energy.

The five equations (5.1-2) are redundant and we can eliminate the

variable I by regarding I as a function of p, q, e and H; i.e. by

solving H = H implicitly for I but remembering that H is a variable

with its own evolution equation (5.2). From (2.2-5) we have

I = LO(q,p,H) + eL1(q,p,O,H) + O(s2) (5.3)

where

L = F (H - F(q,p)), (5.4)

and

L I -HI(qp,6oL O(gpH)) (5.5)

= o(L0(q,p,H))

As before, we have

q' = q/6, p' = /e, (5.6)

and from the implicit equation H5 (q,pe,LE) = H we obtain

:9i
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E---- -+ H = 0, etc.,
ap Ht ap

so that 3q - + Ey f

becomes

+ E~1  +
-' ' FBH. f+ 6 +/[)

f2~ 12 _/-P p ' lgl)

0L 1a~ Ylfl 0L 6l0.19012
3L0  (aLl 1 3i9 L~ 2a_ p [ PF" a p •

A similar computation for p' and use of (5.2) yields the three dimensional

system

, 3LO (3L' Ylf 'I KLO 1- 1

"- " 2p a p j + o(Cv ,

p, OL + FBL y2f2 DL0 '1g1
. +- E[ + 0(3l2)  (5.7a,b,c)

H' -ES 6 2 -Ylfl -Ify 2 f j + 0(E2).

Equations (5.7a,b,c) constitute the system we now study, with the dependent

variables q, p,. H and the independent time-like variable e. For yi

= 0 (5.7) reduce t.o (2.9), as expected.

To deal conveniently with the slow variable H compared with the

fast variables (q,p) we use a slight modification of the usual averaging

theorem in which the 0(e) term in the right hand side of (5.7c) is re-

placed by its 8-average

-. 9=
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EliE ;(62g2 - L0- - p '

--2( K~ 1  -- 2 ) (5.8)

1 2i

where an overbar denotes the time average i t 0  ( ) d6. The modified

averaging procedure is discussed in Appendix A. Its use is not essential,

but it makes calculations somewhat easier. Retaining the same notation

for the averaged variables, our reduced system is now (5.7a,b) plus

H' = eh(q,p,H) + 0(E 2 ). (5.9)

Let 6 = (Y1,Y2,61,62) denote the dissipation coefficients in our

system. Also, let P,6 = P denote the Poincar6 map associated withe
, 6 $6 e

system (5.7a,b) ard (5.9). Thus, P maps (an open subset of) IR3  to

IR3  and is given by advancing the independent variable e by 2
IT, with

starting value eO .

Let us assume that the homoclinic orbit (q{e), p-(e)) for F has

energy = h1  and joins a hyperbolic saddle point (q, j) to itself. (The

case of a heteroclinic orbit is similar). Thus, for each value of H >
hI , (q,p,H) is a fixed point fcr P00 Let C denote this curve

0OO* 0,0

of fixed points. Since we are assuming (-q-) is a hyperbolic fixed point
e0

for F, c0 ,0  is a hyperbolic invariant manifold for P0 ,0 with H

restricted to an interval, say hI < H0 <H <H. Since hyperbolic manifolds

are preserved under perturbation, we have:

5.1 Lemma. For 6 bounded and c sufficiently small, there are invariant

curves c 0 close to c for P 0 Moreover, the stable and unstable
Cr6 0,0 6e,, -

manifolds of C denoted wS(c and WU(c', ) are C close" to those

of c0 0 and each is two dimensional. (See Figure 3).
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wS(cCo ) : U(co,o )

WU (c E,

p LI

FigreV

CooC o

HH

£E ,

E 0, O6 0

Figure 3

Notice that if 6 0 then c ,0  is still a curve of fixed points by

conservation of energy and we recover the situation of §3. For 6 f 0,

points on c 0 can "drift" under iteration of P 8o since energy is not

conserved. However, they will stay on c 0 (until or if H leaves the inter-
-a

'4 val [H 0 ,Hl].)

For 6 = 0, suppose Theorem 3.1 is used to show that W (c) inter-

sects WU(c ) transversely. This persists for 6 sufficiently small, by

. the stability of transversal intersections under perturbation. Because of

potential drift in the H variable, this alone does not permit us to con-

clude the existence of horseshoes for 6 0. Rather, we must control H.

The crucial hypothesis that enables this to be done will be given next.

a
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Let N be an integer fixed so that (PeO)N has a horseshoe, as

described following Theorem 3.2. Thus, N is large enough so that (P E,o)

maps 2 horizontal strips in B back around to two vertical strips in B

again, where B is a rectangle lying in a neighborhood U of the saddle-

point (Figure 2).

Let TrN  -t 7TN/ D -

AH = E - dO = E J hdt (5.1)

where h is given by (5.8) and h, Q are evaluated on the homoclinic orbit

(q(e), p(6)) at an energy value H. (Recall that Q is constant on this

orbit). From (5.9) we see that AH represents the approximate change in

energy in following a point starting near the homoclinic orbit for N iter-

ates; i.e. for a total e-time 27rN. For N large but finite P ,, maps

points in the horizontal strips in rectangle B in Figure 2 back to the

vertical strips in rectangle B after N iterates. Thus AH represents

the leading term in the energy change while going from B back to B. Of

course AH is a function of H and depends on E, 6 and N. Strictly

speaking, (5.10) should be evaluated on trajectories just inside the homo-

clinic orbit, but as we show in Appendix B, as c - 0, N - and the hori-

zontal and vertical strips Hi, Vi C B must be taken closer and closer to the

homoclinic orbit. Thus, since we only need AH to leading order in what

follows, evaluation on the homoclinic orbit is sufficient,

Now we state our basic energy-transfer condition:

Condition (H). Assume there isa value Hc > 1 of H at which AH given

by (5.10) changes sign transversely, i.e.

-.
II
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AH<0 if H<H

AH > 0 if H > Hc 9

and
d ( 0.
d (AH)H = H

c

Under this condition and e sufficiently small, we have

5.2 Lemma. There is a smooth function H(q,p) defined on the rectangle B

such that if (q,p) E B then (P 0 )N(qpH(qp)) has the form ~

H(q,p)).

Proof. Since the exact energy change differs from (5.11) by O(E2), persis-

tence of transversality guarantees that condition (H) is also true for

the exact energy change for c sufficiently small. For 6 = 0, the surface

H = constant = Hc  is preserved by (P0)N For 6 0 the surface

is preserved and contracting to first order in c. By persistence of hyper-

bolic invariant manifolds, there is a nearby surface exactly invariant under

0
(P 0) N; this surface is the graph of H.0

Thus, we have identified a surface, say Ec near H = Hc such that

*0 N
(P , maps c  to E

Now we wish to show that there is a horseshoe in this surface Ec . By

the arguments in Holmes and Marsden [1981, Appendix A], we must check that

WS(ca, ) and Wu(ceo ) continue to intersect transversally, for 6 0.

C To do this, we form the Melnikov function at energy value Hc for the

system (5.7) and (5.8).

If M(t0) is given by (3.6), then, using Proposition 3.1, the Melnikov

function for (5.7a) and (5.7b) is given by

Jln
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M6 (to) -12 _) + Ji . K f 0- YlflJ dt.

(Note that the 62f2  term cancels out). Thus, using (5.41, we get

5.3 Lemma:

M6 (to) = '  IM '  l f l 3p -q Y2 2](t - to) dt (5.11)

We will assume that 6 is chosen such that M (to) continues to have simple

zeros.

In Appendix B we discuss the relationship between N and c. As c

gets smaller, the number of iterates required of the Poincare map to guarantee

a horseshoe gets larger. It is shown that:

5.4 Lemma: We have

N = L + 2a 2nLMH , (5.12)

where a and e are constants, L is a fixed integer and M(Hc) is the

supremum of M(to) over to; (the dependence of M on Hc is made explicit

in (5.12)).

This result applies to the case of ilamiltonian perturbations (S = 0). When

6 t 0 there isan analogous result N = N(E,6) in which a = a(6) and M(Hc)

is replaced by M6 (Hc). However, in our application we set 6 = to be

O (l ) , so that c6 = E< for E << 1 and theeffects of 6 in (5.12)

can be ignored, cf. Appendix B.

From (5.11)we obtain a condition on the size of Y, and Y2; if M(tO)

has simple zeros and oscillates with an amplitude M(Hc), then (5.11) gives

us conditions of the form

ROM 
-.
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cIly < M(HC) (5.13)

c2Y2 < M(HC )

which must be satisfied for M to still have simple zeros.

We summarize our findings as follows:

5.5 Theorem. Suppose that N, Hc and 6 can be chosen so that conditions

(H), (5.12) and (5.13) all hold. Then some iterate (P0oo6 )N of the Poincard

map of the reduced system (5.7) has, for e sufficiently small, a horseshoe

in its dynamics; the horseshoe lies near the homoclinic orbit in the (q,p)

variables and near the (non-invariant) energy surface H = Hc.

,Il
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6. Example: The Oscillator-Pendulum with Positive and Negative Damping

We now wish to show that for c sufficiently small the pendulum-oscilla-

tor system considered in §4,

= v, = -sin + E(x -

v Y2 = -W2 
X + E - p

continues to have a horseshoe when dissipation is included. Specifically,

we add negative damping (-6) to the oscillator so that it drives the pendulum,

which now has positive damping (y):

v : -sin @ + c(x - E) - cyv

(6.1)

= x + E(4 - x) + e¢y ,

In action-angle variables, (6.1) becomes

v =-sin + e[1 sin e - - cyv

(6.2)

= + E: sin - sie 6 sin 6 cos e

- /T sine - aw Cos 0 + E621 cos 2 e•N 7

Note that 6 > 0 represents damping while 6 > 0 represents negative damping

(energy production). The energy evolution equation (5.2) is

._I; H = Sy - yv2 ),

or 2

H' = - ( 26wI cos2e - yv ) + O(¢2 ). (6.3)
W

9-jqj
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where the dependent variable is now e. Using

I LO(4,v,H) = 1 (H - (v2/2 - cos (6.4)
W

from (2.4), (6.3) becomes

H' = [6(H + cos 0 - v2/2)(I + cos 26) - yv2] + 0(E2). (6.5)

Although we do not need them explicitly in the calculations to follow, we also

give the reduced evolution equations for p, v:

+ L if v fO v(sin 6 sin 2e + 6 sin acos ej} + 0(E2)

v = s[ n + -( sin si(26 s 6 _ -y sin e cos e +

+ (/-A- sin e - wo - yv)l] + 0(62), (6.6a,b)

where A H + cos -v2/2. Equations (6.5a,b) and (6.5) correspond to

(5.7a,b,c).

We now average (6.5). The transformation ( ,v,H) - (o,vH) is given

by (0,v,H) = (o,v,H + Eu(O,v,HRo)), where

+ At 1 + l -s-----j (H + cos 2/2) cos 26,

(6.7)

From (A.8). This is satisfied if we take

u (H + cos - v2/2) sin 28, (6.8)

and then (6.5) becomes, dropping the overbars,

H'= 6-c (H + cos ¢ - v2/2) - yv2] + 0(C2 ) . (6.9)

Mil
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We now check condition (H). Inserting the unperturbed solution (1.7) we

have H + o ()_v(t)2 /2 -=H - 1 and (6.9) becomes

H' = - [6(H - 1) -4y sech2fr.) + Q(E:2)

or = E[6(H - 1) - 4y sech 2t] + Q(C2), (6.10)

Hence AH Cf= / [6(H -1) - 4y sech t] dt~

27rN/w

2r6(H - 1) -y tahLrl(6.11)
W w

and so condition (H) is satisfied if we have

8w tanh(TrN/j(
Hc = 1+ 2irN 1 I- Y-N 6 N large) .(6.12)

We next compute the Melnikov function M (6,.) (to) from (5.11). From

Section 4 and (3.1) we have

M ±o I-! 21T.'2(H - 1 ) sech[T- snw
MW2 snwt .(.3

Using F =v 2/2 - cos 4, ylf1  - 0, and *62f2 = -tv in (5.11), the second

term of M0 Y) (to) is

40 -tv(v d t f (2 sech(t -t0)2dt
00~ ~ ~ W2-V 2 _oW

Thus we obtain

M(6  (to) +±tr/(H-1 y
(6,Y)-L21Tr,/2TP---71sech[-wiJ sin w to y

def M(H) sin w to + Bw2 a(.4

To compute our verification of the hypotheses of Theorem 5.5, we note

that, for M6(t0) to have simple zeros, we require
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M(H) > SY/W
2

or H - I 8y2  def C 2  (6.15)or Hc - >2 sech2(,T/2)

while for satisfaction of condition (H) we have

Hc - 1 8wy def C -y (6.16)c 2ITN6 2 N6

We also have the relationship

N = N(c) = L +2a.n(// c A-T) (6.17)

from (5.12), where the remaining constants in M(6 ,y)(t O) are accumulated into

6. From (6.16) and (6.17) we have

(Hc - l)[ L + 2a tn(B/ --)A 1)] = C2y/6 • (6.18)

To satisfy (6.15) and (6.18) simultaneously we pick y and 6 to be of

the same order in e, say y=F-Py, 6 = 0; p > O. Then (6.18) may be

rewritten as

(Hc - 1)[1 + C3 kn(B/evHc - 1)] = C4 . (6.19)

A simple exercise in calculus shows that,for e small (6.19) has a unique

solution Hc  near Hc = 1 and for any fixed a, 0 < a < 2,

Hc - > a (6.20)

for small F; "how small" depends on how close G is to 0.

(Proof. Rewrite (6.19) as

~'*1
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Ie 1e/C3 e-C4/ 3xt

where x = Hc - 1. By considering the graphs of y = cv/ and y = O(x)

one sees that for small e, (6.19) has a unique small solution x(e) - 0

as E - 0. Moreover, as vanishes to all orders at x = 0, O(x) < xp

for p > 1/2 and x small. It follows that x(E) is larger than the

solution of e/ = xp for small E; i.e. x(e) > e2/(2p-1) for small e.

Let a = 2/(2p-l).U)

Picking a < 211, (6.15) is now easily satisfied, since

Hc - 1 > c e > Cie y (6.21)

for E sufficiently small. For example, we can take 1j = 1/2, since then

the damping perturbations E(EI6), e(ell) appear at O(e3/2 ) and the O(c2

terms ignored in our computations do not affect the results. Thus, we have

proved:

6.1 Theorem. The system (6.1) has a horseshoe in its dynamics provided

we choose ey = 3/2y and ES = 3 / 2 T and c sufficiently small.

* Of course it is possible to vary the orders of 6 and y with some

latitude and still maintain the hypotheses. Specifically, 6.1 remains valid

if wechoose y= EYy and 6 ,O0<pj<v < 1, v O.

m70 -.-
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Conclusions

In this paper we have developed applicable techniques for establishing

the existence of chaotic dynamics in the sense of the presence of a horse-

shoe for both Hamiltonian and non-Hamiltonian perturbations of systems with

two degrees of freedom containing homoclinic orbits and periodic orbits.

While horseshoes are not strange attractors, they are often visible and

behave like them in numerical experiments (perhaps due to small background

noise); cf. Franks [1981]. Arnold diffusion is a higher dimensional manifes-

tation of the same phenomenon and is certainly seen in many examples (see,

for instance Lieberman [1980]).

For conservative perturbations the method is a straightforward combina-

tion of a classical reduction scheme with a method of Melnikov. For non-

conservative perturbations a delicate energy balance argument is needed to

ensure that at least one horseshoe survives near the energy balance point.

Near other points there is a "ghost horseshoe" which decays because of energy

drift. If the dissipation terms all contribute to energy loss then, while

no invariant set remains near the homoclinic orbit (since H decreases on

all orbits), the manifolds WfS(c1 6 ) wu(cj 5 ) continue to intersect and

the resulting ghost horseshoes would give rise to complicated dynamics on

finite time intervals, as orbits move through the energy band.

The results are shown to apply to typical perturbations of the pendulum-

oscillator system, thereby showing that this classical example has complex

dynamics and, in particular, is non-integrable.
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Appendix A. A Modified Averaging Theorem

For the basic averaging theorem see Hale [1969]. Here we consider a

system of the form

x : f(x) + Eg(x,y,t),
(A.i)

= eh(x,y,t), 0 < E << 1,

where x = x(t) and y y(t) are the fast and slow variables, the functions

f, g, h are sufficiently smooth and the latter two are T-periodic in t.

• Al. Proposition. There exists a near identity time dependent change of co-

ordinates (x,y) + (x,z) under which (A.l) becomes

= f(x) + Eg(x,z,t) + 0(E 2)

(A.2)

z =eWF(x,z) + O( 2

where :_ h(x,y,t) dt is the t-average of h.

Proof. As in the usual averaging theorem, we set

y = z + Eu(x,z,t) . (A.3)

Differentiating (A.3) with respect to time, we obtain

= + E6 + ED Xui + EDzUZ , where () = / (A.4)

Using (A.l), (A.2) and (A.4):

(Id - Du)i y - e6 - ED x u= e[h(x,z + u,t) (A.5)

- Cu(x,z + cu,t) - Dxuf(x)]
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We can write

h(x,z,t) = h(x,z) + h(x,z,t) , (A.6)

where h is T-periodic in t and for zero mean. From (A.5-6) we have

(Id - ED zu)z = E[h(x,z) + h(x,z,t) - 6(x,z,t) - D u(xzt)f(x)]

+ 0( 2) (A.7)

Thus, if we set

u+ D uf(x) = h(x,z,t) , (A.8)
at x

we have, from (A.7)

:E(x'z) + o( 2) (A.9)

and, using (A.2) in (A.l)

X f(x) + Eg(x,z,t) + 0(r2) (A.l0)

It remains only to check that the linear partial differential equation

(A.8) admits a solution u = u(x,z,t). However, (A.8) has the solution

u(x(t),z,t) = u(x,z,O) + f h(x(s),z,s) ds (A.11)

where x(t) satisfies x(O) = x and x = f(x). U

Most of the usual averaging results go through; in particular, solu-

tions (x(t), z(t)) of(.2) remain witkin 0(E2 ) of those of (A.1) for times

of O(I/E). Since we wish only to integrate for times of O(N) = 0(tn(l/€))

(eqs. (5.10)(5.12)) the averaged equation may be used in computations. Note

that the transformation u(x,z,t) is not in general T-periodic, since solu-

tions of (A.8) depend upon the (nonperiodic) flow x(t) of x = f(x). One

must therefore be careful in inferring the existence of T-periodic solutions

of (A.l) corresponding to fixed points of (A.2), as in the usual averaging

theorem.

7M .... ...
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Appendix B. The Iteration Number: Proof of Lemma 5.4

In this appendix we derive a relationship between N, the number of
,eo 60 ,

iterates of the Poincar6 map P necessary to guarantee that F = (P )

e 0 ,

the sub- and superscripts on P 0 .

Let x be the (perturbed) saddle point of P and y a transverse

homoclinic point lying outside a ball B (x) of radius p about x. The

Melnikov theory tells us that the maximum distance between the manifoldsnear

Y is

d max = 1KM(HC)  + (C
2

where M(H c ) = sup M(to) and K, is a constant.
t0e[0,T)

We next need a basic result from dynamical systems theory, the "lambda-

lemma" (Palis [1969], Newhouse [1980]), which enables us to make our choices

of horizontal and vertical strips in the horseshoe map more precise:

B.l Lemma. Let x be a hyperbolic saddle point of a Cr diffeomorphism

P and D C Wu(x) an open disc in its unstable manifold. Let A be a disc

of dim(WU(x)) meeting WS(x) transversely at a point y. Then U pn(,)

n >0
contains discs arbitrarily Cr close to D1. -

This result implies that, if y E WU(x) ffi WS(x) is a transverse homo-

clinic point, then WU(x) and WS(x) accumulate on themselves, giving us

the structure of Figure B.l. We assume that the map is orientation preser-

ving, as are the Poincard maps occurring in the application of this paper.
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We pick a rectangle R bounded by pieces of Ws(x), Wu(x) as shown.

Since i is fixed independent of E, there are fixed inteaers Ll. L2

such that P (R), PL(R) C: B 11(x) and the 'height' and 'width' of

P L (R) and P_ L(R) are cK3M(H:C), F£K4M(Hc) respectively. Once in B Ijthe

dynamics is dominated by the linearized map, which, working in suitable co-

ordinates, we can take to be

To obtain the horseshoe structure P -U2 N2)(R) fl P LIN (R) as shown, we

require further iteration numbers N~ N N(E) such that

[N1

X FK3 M(Hc) K5P~

L kJ K4M(H) K

or NM(E czn( i/EMv(Hc)) i =1, 2; (B.2)

Thus the total number of iterates is N = l+ L2+ N1 + N2  or

N =N(c) =L + 2ctkn( /cM(Hc)). (B.3)

*where L is a fixed integer and ct6 are constants.

When 5 0 M(H ) should be replaced by M6(Hc) and X, -t by

A+ K ,Y + K86 leading to

=i a(6)Z.n(~i/EM 6(Hc)) ,(B.4)
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R

cK K4M(H Hc

c K2M (H H

\B,(x)

P 1 (R)

Figure B.1. The Iteration Number
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where 
a() = / + K7 J

= 1/in + [K 7A ry 6 + 0(62)

= a + K 96 + 0(62) (B.5)

and K9  is a positive constant. Thus N(s,6) > N(e) in general. However,

in our application we take 6 of order el, j > 0 (for example e1/2) and

thus c6 = el+16, say, and the dependence of N on 6 is weaker than its

dependence on e, and hence can effectively be ignored in thelimit E 0.

I'

p-

V
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