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ABSTRACT

The typical hospital Length of Stay (LOS) distribution is known to be right-skewed, to considerably
vary across Diagnosis Related Groups (DRG), and to contain markedly high values, in significant
proportions. These very long stays are often considered outliers, and thin-tailed statistical distributions
are assumed. Moreover, modeling is typically performed by Diagnosis Related Group (DRG) and is
consequently based on small empirical samples, thus justifying the previous assumption. However,
resource consumption and planning occur at the level of medical specialty departments covering
multiple DRG, and when considered at this decision-making scale, extreme LOS values represent a
significant component of the distribution of LOS (the right tail) that determines many of its statistical
properties.

Through a study of 46, 364 electronic health records over four medical specialty departments (Pe-
diatrics, Obstetrics/Gynecology, Surgery, and Rehabilitation Medicine) in the largest hospital in
Thailand (Siriraj Hospital in Bangkok), we show that the distribution of LOS exhibits a tail behavior
that is consistent with a subexponential distribution. We analyze some empirical properties of such a
distribution that are of relevance to cost and resource planning, notably the concentration of resource
consumption among a minority of admissions/patients, an increasing residual LOS, where the longer a
patient has been admitted, the longer they would, counter-intuitively, be expected to remain admitted,
and a slow convergence of the Law of Large Numbers, making empirical estimates of moments (e.g.
mean, variance) unreliable. Consequently, we propose a novel Beta-Geometric model that shows a
good fit with observed data and reproduces these empirical properties of LOS. Finally, we use our
findings to make practical recommendations regarding the pricing and management of LOS.

Keywords: Length of Stay, Statistical Modeling, Extreme Value Theory, Beta-Geometric Distribu-
tion.
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1 Introduction

In a global healthcare sector that is gradually but steadily shifting from a fee-for-service to value-based care agreements,
Length of Stay (LOS) is a useful indicator of resource utilization and cost-efficiency, and has been likened to a currency
for healthcare decision-making [1, 2]. Because expenses are largely fixed in the first few days following admission, the
marginal value of a bed is determined by the alternate use that the healthcare provider would have made of it (i.e. its
opportunity cost) [2]. This value may be neglectable for low-utilization healthcare units. However, for high-demand
hospitals operating close to capacity, the opportunity cost of long LOS can be significant. This is the case for Siriraj
Hospital, the oldest and largest hospital in Thailand. Siriraj being an affordable, yet very reputed healthcare provider in
the country, its specialty departments typically operate at full capacity, with long waiting lists for admissions that can
in some cases take several months. In such circumstances, a patient with a stay of n days virtually translates into the
inability to admit n patients with an LOS of 1 day.

The average or median LOS are commonly used indicators to gauge the efficiency of a healthcare facility, and reduced
LOS is associated with improved patient outcomes, decreased risks of developing healthcare-acquired infections (HAI),
and a fairer access to healthcare.

As a precursor to the construction of indicators and benchmarking, understanding the statistical properties of LOS, at
the relevant scale of the healthcare unit, is crucial for decision-making.

In this study, 46, 364 electronic health records over four medical specialty departments were analyzed, with a focus
on the tail properties of the distribution of LOS, and their managerial consequences. The remainder of this paper is
organized as follows. In Section 2, we conduct a detailed review of the related literature and classify extant studies
based on their sample sizes, underlying statistical models, scope, and treatment of outliers. Section 3 describes our data
and presents basic descriptive statistics for LOS in the four considered specialty departments. Section 4 defines the
theoretical framework of this paper, which consists in various methods from the Extreme Value Theory toolbox and
the Beta-Geometric model we propose for LOS. Section 5 presents our results and Section 7 further elucidates their
implications for profit margins and resource management. Finally, Section 8 concludes this paper with general remarks
concerning our statistical analysis and its limitations.

2 Related Work

The typical Length of Stay (LOS) distribution is known to be right-skewed, to considerably vary across Diagnosis
Related Groups (DRG) [7], and to contain markedly high values, in significant proportions. These characteristics make
the use of thin-tailed models and least-squares inference methods based on the Gauss-Markov theorem [4] hard to
justify. Moreover, they make the calculation of averages less reliable and representative of the typical observation [5].
Extant works on the statistical modelling of LOS attempt to circumvent these difficulties, with the following solutions,
which are reviewed in this section:

1. Using different models of LOS for different DRG in a care unit.

2. Trimming or discarding outliers.

3. Using different models for short and long stays (i.e. mixtures of distributions).

4. Relying on heavy-tailed models.

Moreover, the typical statistical study of LOS either uses relatively small empirical datasets (often as a result of point
1.), which may artifically make point 2. appear justified, or simulated data with embedded assumptions regarding the
distribution. Lastly, it seldom distinguishes measures of LOS per patient, from LOS per admission. This point could
have its importance in analyzing the effect of readmissions (i.e. admissions within 30 days of discharge) or multiple
admissions (admission after more than 30 days of discharge) on resource consumption.
Table 1 summarizes the characteristics of the main references for statistical models of LOS in the literature.

2.1 Scale of modeling

According to Ickowicz et al. [14], Diagnosis Related Groups (DRG) have been partly created to have a form of
homogeneity in resource consumption of services and costs closely related to LOS. Models of LOS at the DRG level can
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Reference Dataset size (N) Model By DRG Outliers

[10] 3, 472 Gaussian No Separated
[5] 4, 758, 347 (in 5 countries) Log-normal, Weibull, Gamma Yes (478 DRG) No
[7] 560 Mixture of Gaussian Yes Trimmed
[14] Simulated Mixture of continuous and discrete Yes No
[15] 340 Log-Normal No (ICU) No
[16] Unknown (in 1 hospital) Mixture of thin and heavy-tailed Yes (5 DRG) No
[17] 137 + 469 Mixture of Exponential and heavy-tailed Yes (1 DRG) No
[18] 53, 965 Gaussian No Trimmed
[19] 101, 766 (in 136 hospitals) Heavy-tailed compounds No (diabetes) No
[2] 1901 (in 2 hospitals) Markov chain No No

This paper 46, 364 (in 1 hospital) Beta-Geometric No No

Table 1: Characteristics of extant statistical models of LOS

be valuable for understanding the specific determinants of LOS, seen as a proxy for the severity of a patient’s condition,
and are often used with a predictive intent. Association with independent variables of a demographic, lifestyle, or
medical nature is often favored and is used to predict an individual’s expected LOS.

However, this approach results in smaller samples by design, which can make very high LOS values indeed appear as
neglectable outliers. Moreover, there exist more than 467 different DRG, and combining even excellent LOS models
for different DRG is non-trivial and does not necessarily yield valid models for resource management at the level
of a care unit covering multiple DRG, due to the complex non-linear nature of healthcare systems [20]. Thus, this
approach transfers the modeling difficulty towards re-aggregating results (e.g. averages or medians per DRG, linear
regression forecasts) at a scale that can inform decision-making. A task as simple as estimating the variance, coefficient
of variationn, and kurtosis of LOS at the level of a care unit, based on the distribution of LOS by DRG is a non-trivial
problem, even when all distributions are known to be Gaussian [6], which is far from being the case for LOS. Besides,
the non-transitivity of (Pearson’s) correlation [21] makes associative inference on the parts not necessarily scalable to
the whole.

Ickowicz et al. [14] note that the "heterogeneity of LOS poses a problem for statistical analysis, limiting the use
of inference techniques based on normality assumptions since a large number of DRGs must be analyzed routinely,
automatic procedures are needed for conveniently treating skewness" and add that "the main issue is that the assumption
of heterogeneous sub-populations would be more appropriate than single DRG populations". Their proposed solution is
the use a mixture of probability distributions. The same point has been made by Atienza et al. [16], who conclude that
"the assumption of heterogeneous sub-populations would be more appropriate than single DRG populations".

2.2 Treatment of outliers

Grubbs [23] defines outliers as observations that "appears to deviate markedly from other members of the sample in
which it occurs".

For the positive random variable that is LOS, outliers are conventionally considered to be admissions or patients with a
remarkably high LOS. Under Gaussian assumptions, empirical Length of Stay (LOS) datasets are commonly described
as containing outliers.

Perhaps as a side-effect of the small samples sizes typically considered in the above studies, the notion that high-LOS
admissions are outliers appears founded. Indeed, in their application using empirical data, [7] consider N = 560
observations clustered within 21 hospitals, with the numbers of patients ranging from 3 to 196 per hospital.

However, what are considered outliers for individual DRG may be statistically very significant in the study of LOS
as a whole. Trimming/discarding outliers from the parts may discard important statistical information about the tail
properties of LOS. Lee et al [7] transparently note that the use of trimming methods for outliers limits the usefulness of
the models, they add "if the goal of the analysis is plan or hospital comparison, uniform trimming of LOS across all
hospitals might be inappropriate in the contexts of quality improvement and performance assessment".

Ad et al. [10] is typical of such a modeling approach, which the authors remark in [11] is not of their own design but
a more than 30 years old standard risk model of the Society of Thoracic Surgeons [12]. High LOS admissions are
known to have a prominent financial impact. This point is stated by [31], which proposes a method that notably serves
at "detecting outliers".
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Lee et al. [7] recommend relying on median rather than mean estimates in the analysis of LOS, because the latter
approach is more "robust to high-LOS outliers". However, the robustness of the method is, circularly, gauged on
Gaussian simulated data with Bernoulli noise.

Trimming outliers, that is separating data into normal and high-LOS is commonly performed. Thus, the question of
how to define thresholds for what is considered long or short LOS is important from an operational and financial point
of view and at the center of many studies. In [9], the threshold for what is considered long LOS is set at 7 days or
as the top 2% of LOS values which has been qualified as “somewhat arbitrary but has been applied by others in the
analysis of administrative data” [7, 8]. "The objective of trimming coupled with transformation is to minimize the
effects of extreme outliers and to attain the normality assumption on the LOS distribution" [7], as well as "to minimize
the effects of extreme outliers and to avoid analytical problems" [9]. Leung et al. suggest trimming LOS observations at
the threshold of 7 days.

The 68%− 95%− 99.7% rule is also commonly used [5], and outliers are defined as observations that lay at a distance
of more than three standard deviations from the mean, thus assuming a Gaussian distribution of LOS.

Two important points of the present article are that the notion of outliers does not apply to the type of heavy-tailed
distribution that we suggest LOS belongs to, and that these so-called outliers or tail observations contain valuable
statistical information. The heavier the tail of a distribution, the more statistical information it contains relative to the
body [57]. Using large datasets covering four medical specialties, we notably show, that the observations considered
outliers in thin-tailed models are in fact too numerous to be that, and that they have a significant impact on resource
consumption and revenue.

2.3 Use of mixture distributions

A mixture distribution is the probability distribution of a random variable that is sampled from two or more different
probability distribution functions (PDF) [6]. The PDF of the mixture random variable is often a weighted sum of the
PDFs of the mixed random variables. We distinguish mixture distributions from compound distributions, the latter
being distributions whose parameters are themselves random variables [30].

The problem with mixture probabilities may be overfitting, especially with the small sample sizes that are typically
considered. As noted in [11], this is an important pitfall in modeling LOS.

Atienza et al. [16] divide patients by DRG and use a mixture of thin and heavy-tailed distributions (Gamma, Weibull,
Log-Normal). Simulated data of 128 samples of size 100 (N = 12800) and 100 samples of size 500 (N = 50000).

Gardiner et al. [17] consider a first sample of N = 137 patients who underwent bone marrow surgery and a second
sample of N = 469 patients in Psychiatry. In the latter sample, they interestingly report LOS varying from 1 to 24, 028
days, with a mean of 3, 712.4 days and a median of 1, 134 days. The authors recommend a mixture of exponential and
heavy-tailed distributions (Pareto, Generalized Pareto).

Lee et al. [7] consider one DRG in Obstetrics and Gynaecology ("Cesarian delivery with severe complicating diagnosis").
They consider an empirical dataset of N = 560 patients. Outliers are trimmed. They use a mixture of (Gaussian)
distributions.

Ickowicz et al. [14] consider a model for "short stays" and a different model for "long stays". Moreover, a mixture of
continuous (Normal or Log-Normal) and discrete (Poisson, Binomial, Negative Binomial) random distributions. Their
sample size is unknown but it is mentioned that is similar to that of [16], which consists in simulated data.

Rady et al. [15] consider N = 340 patients of an Intensive Care Unit. No division by DRG is performed, however the
minimum observed LOS was 1 day, and the maximum was 60 days.

2.4 Treatment of tails

A distribution is said to be heavy-tailed if its survival function S(t) satisfies eλ·tS(t) → +∞ as t → +∞ [17]. Its
moments, including the mean, may or may not be finite. A distribution is called thin or light-tailed otherwise.

Gardiner et al. [17] make some important remarks about outliers and tails. They note that "in modeling hospital Length
of Stay (LOS) and inpatient cost, extreme values in the data are likely and should not be regarded as outliers for deletion
or downweighted in analyses".

Hospital Length of Stay (LOS) is often modelled with thin-tailed distribution for the purpose of least square regression.

A recent debate [11] concerning the statistical representation of LOS is a thoracic surgery department [10] highlighted
the prevalence of thin-tailed statistical modeled in this context.
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Though no assumptions are explicitly made regarding the distribution of LOS, [10] use linear regression on averages and
medians which point to Gaussian underlying distribution. The former point was criticized by [11] which observes that
"ordinary least squares regression does not adequately accommodate large LOS values" and recommends "normality-
improving data transformations", which typically consist in Log-transformations. However, [2] point out that the
weakness of this approach is that "Log-LoS" does not have an intuitive meaning and is therefore not useful for policy
making. Moreover, the retransformation of the regression results from log results through exponentiation is complicated
by heteroscedasticity (i.e. the fact that the variability of LOS is unequal across the range of values of the independent
variables used to predict it), and produces “very imprecise estimates if the log-scale error is heavy-tailed”. In fact,
single-point forecasts are not theoretically justified for heavy-tailed variables with high standard deviation [3]. Moreover,
the mean and other moments may be infinite or require a very large number of observations to be estimated, due to the
slow convergence of the Law of Large Numbers for variable of this type. This point has also been highlighted by [17].

A more robust approach consists in modeling the relevant properties for decision-making (e.g. through fitted distribu-
tions) rather than predicting punctual values.

Marazzi et al. [5] assessed the adequacy of three conventional parametric models, Log-normal, Weibull and Gamma,
for describing the LOS distribution. But, as Lee et al. [7] point out, none of them seemed to fit satisfactorily in a wide
variety of samples. Moreover, [2] finds that

Harini [19] use data from a public repository covering 136 hospitals N = 101, 766. All diabetes patients. No division
by DRG is performed beyond that. They recommend heavy-tailed distributions (Beta-Cauchy, Gamma-Pareto, Gamma-
Exponential-Cauchy). It should be noted that these are compound distributions, not mixtures of distributions. Moreover
[5] suggest two approaches to respond to the skewed nature of the distribution of LOS and building "outliers resistant
(robust) methods": Using other transformations than the Log-normal or using other types of distribution. The authors
pursue the latter approach and test three heavy tailed distributions (Log-normal, Weibull, Gamma), which are found to
adequately fit the distribution of LOS, over 3279 samples totaling approximately 5 million stays in multiple European
countries. Among these, the Log-normal model is found to fit the majority of samples.

Based on a dataset recording 1901 patients’ LOS, Faddy et al. [2] develop an intuitive continuous Markov process
which is found to provide a better fit than Gamma and Log-normal models. This model is based on the assumption that
each day of admission, patients either progresses to another day of hospital stay, corresponding to increasing their LoS,
or they are discharged (absorbing state). This defines a general class of probability distributions describing the random
time that elapses before the absorbing state is reached. The Beta-Geometric model of LOS developed in the present
article is based on the same intuition. Our model rests on the two assumptions that once admitted a patient has a certain
likelihood of being discharge any subsequent day, and that different patients have different such likelihoods.

However, because of the discrete nature of LOS, we consider a discrete Beta-Geometric process. Thus, our model
differs and complements the reviewed literature as follows:

• We consider large samples of empirical observations (N = 46, 364, over four medical specialty departments).

• The Beta-Geometric is discrete, right skewed and can fit thin to very heavy tail behavior, depending on the
choice of parameters of the distribution.

• The object of our analysis are both the LOS per admission as well as the LOS per patient, highlighting the
effect of multiple admissions/readmissions on the statistical properties of LOS.

• The scale of our model are care units corresponding to four medical specialties, but the model can be scaled up
(e.g. to a hospital) or down (e.g. DRG) without loss of generality.

• We highlight and model important properties for resource management, such as the behavior of the mean
excess function, Maximum to Sum ratios and the effect of the concentration of LOS among a minority of
admissions/patients on bed turnover and revenue.

• We propose various novel graphical tools to complement LOS analysis. Notably the use of Mean Excess Plots
to detect mixtures of probabilities in and thresholds.

3 Data Description and Basic Statistical Properties

The dataset used in this study covers four medical specialty departments at Siriraj Hospital. These are Surgery, Obstetrics
and Gynaecology (OB/GYN), Pediatrics, and Rehabilitation Medicine (Reh. Med.). The present study was approved
(Certificate of Approval No. Si 032/2021) by the Institutional Review Board of Mahidol University. All data provided
to the first author for this study were de-identified.

For the purpose of this study, we utilize the following data fields:
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• Admission Number: A unique identifier for each admission.

• Patient ID: A unique identifier for each patient.

• Admission Date.

• Discharge Date.

• Length of Stay: The difference in days between Discharge Date and Admission Date, the minimum value of
which is 1 days. Consequently, random variables modeling LOS are truncated if having support on negative
values, and shifted by one day, if having support on zero.

• Total Charge: The total billing expense to the payer, in Thai Baht (THB), resulting from an admission.

• Discharge Status: We distinguish positive discharge outcomes ("Complete recovery", "Improved", "Delivered",
"D/C with mother") and negative ones ("Dead", "Not improved", "D/C separately"), when applicable to
admissions in a medical specialty.

Throughout this paper, we distinguish between LOS per admission (number of days between admission and discharge
for one admission, identified by an admission number) and LOS per patient (cumulated LOS for all admissions of a
patient identified by a patient ID). These two levels of analysis notably allow us to study the effect of readmission and
multiple admissions on the tails of the distributions of LOS. Realizations of both of these integer random variables,
along with complete administrative and medical data are recorded for discharges that occurred between 13/11/2017
and 30/09/2018, the earliest recorded admission having occurred on 15/02/2017 and the latest on 29/09/2018.

Table 2 presents the sample sizes as well as basic descriptive statistics in each medical specialty department. We note
that all distributions fail the Skewness-Kurtosis test for Truncated Gaussians [22]. Moreover, we note a markedly higher
mean and median LOS per admission and per patient in Rehabilitation Medicine compared to the three other specialties,
a fact that was also observed in [18]. These two points are related since the time-frame of data collection is the same
for all specialty departments. Additionally, Rehabilitation Medicine department has a smaller capacity. Further, this
department shows the smallest ratio of patients-to-admissions, indicating frequent multiple admissions over the time-
horizon of the study (10.5 months). Indeed its 994 total admissions are attributed to 304 patients (patients-to-admissions
ratio of 30.52%), to be compared with the ratios of 87.75% in OB/GYN, 82.92% in Surgery, and 67.82% in Pediatrics.

Moreover, the distribution of LOS in this medical specialty exhibits a significantly lower Kurtosis. Indeed, Kurtosis in
the distribution of LOS in Surgery, OB/GYN and Pediatrics is extremely high and constitutes a first, important signal of
its heavy-tailedness, which allows us to safely reject thin-tailed distributions (Gaussian, Poisson, etc.) at this point for
these three departments. Among these three specialties, OB/GYN markedly differs by its lower Index of dispersion (i.e.
variance to mean ratio). Moreover, Kurtosis significantly increases when aggregating LOS per patient, except for this
medical specialty. Lastly, we note the remarkable stability of the Median LOS in Surgery, OB/GYN and Pediatrics, as a
likely result of the adherence to Benchmarks in the management of LOS.

Statistic Surgery OB/GYN Pediatrics Reh. Med.

No of Admissions 17949 19922 7499 994
Mean 6.5973 3.8533 8.2515 24.5824
Median 4 3 4 21
Variance 125.6517 11.0901 264.5326 187.2465
Dispersion 19.0459 2.8780 32.0587 7.6170
Kurtosis 139.0954 183.9783 47.8032 4.7843
Skewness 8.9926 9.4236 5.9014 1.9304
Max 304 119 272 87

No of Patients 14884 17483 5086 304
Mean 7.9558 4.3908 12.1663 80.3782
Median 4 4 4 66
Variance 215.4532 15.9265 715.3997 2613.087
Dispersion 27.0810 3.6271 58.8015 32.5098
Kurtosis 279.3174 134.4066 56.51553 6.428852
Skewness 12.18991 8.437034 6.163459 2.278371
Max 546 119 451 321

Table 2: Descriptive statistics for the LOS per admission and per patient in the four departments

Cumulative Distribution Functions of LOS per admission further confirm the singular nature of Rehabilitation Medicine
relative to the three other specialty departments. Figures 1, 2, 3 present the Cumulative Distribution Functions (CDF)
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for LOS per admission in Surgery, OB/GYN, and Pediatrics and additionally indicate the heavy-tailedness of these
distribution by comparison with typical thin-tailed CDF. However, the sigmoid CDF of LOS in Rehabilitation Medicine
is not inconsistent with a thin-tailed distribution. It resembles the CDF of a Gaussian, Poisson, or Geometric distribution,
but could also be that of a Beta-Geometric distribution exhibiting low variance in its underlying Beta distribution.

Figure 1: CDF of LOS per admission in Surgery

Figure 2: CDF of LOS per admission in Obstetrics and
Gynaecology

Figure 3: CDF of LOS per admission in Pediatrics

Figure 4: CDF of LOS per admission in Rehabilitation
Medicine

Figure 8 presents the histogram of LOS, per admission, in Rehabilitation Medicine over which the maximum likelihood
truncated Gaussian fit is superimposed (blue curves). We observe a strikingly high frequency for the particular LOS
value of 20 days, which for once fits the definition of an outlier as "an observation that differs significantly from other
observations" [23]. Indeed, this value shows a frequency of 144 admissions, which represents 11.46% of the 994
admissions in Rehabilitation Medicine. This markedly differs from neighboring values of 19 days with a frequency of
48 admissions (4.8% of all admissions), and 21 days with a frequency of 60 admissions (6.0% of all admissions). A
LOS of 20 days was previously found by Chatterjee et al. [59] to appear in remarkably similar relative proportions to
19 and 21 days (about twice as frequently) at the Skilled Nursing Facilities (SNF), where 220, 037 discharges were
made on day 20, compared to 131, 558 and 121, 339, on days 19 and 21, respectively. The explanation for this common
anomaly is that the first 20 days of rehabilitation are covered in full, and patients start paying out-of-pocket from day
21, which motivates discharge on the 20th day of care based on a concern for a patient’s ability to pay rather than than
their recovery status. Additionally, this arbitrary but "round" value may more simply represent a psychological anchor
and its frequency may be explained in an analogous manner to Benford’s law for digits [60]. In any case and from a
statistical perspective, the fact that some stays are artificially cut short at 20 days suggests that LOS would exhibit
heavier tails without this artificial restriction. Figure 12, which represents the LOS per patient in the same specialty
department shows a similar effect, with a cumulated LOS of 60 days being the overwhelmingly most frequent value
(a frequency of 32 observations or 10.52% of the 304 patients) compared to the two neighboring values of 57 and 63
cumulated days (both observed 17 times or 5.59% of the 304 patients).
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Though the distribution of LOS in Rehabilitation Medicine exhibits the thinnest right tail of all specialty departments,
we can observe in Figure 8, and even more so in Figure 12, that it does not fit a Gaussian distribution. Indeed extreme
values (e.g. above 60 days for LOS per admission, and above 200 cumulated days for LOS per patient), which would
be close to impossible to observe in a Gaussian, Poisson, or Geometric distribution of similar mean of variance, are
empirically way too frequent. The inadequacy of thin-tailed models is, as expected from Kurtosis, exceedingly more
pronounced for Surgery, OB/GYN, and Pediatrics as can be seen in Figures 5, 6, and 7 representing the histograms of
the respective distributions of LOS per admission in these departments, as well as Figures 9, 10, and 11, representing the
histograms of their respective LOS per patient, over which the best fitting truncated Gaussian curves are superimposed.

Figure 5: Histogram of LOS per admission in Surgery
Figure 6: Histogram of LOS per admission in Obstetrics
and Gynaecology

Figure 7: Histogram of LOS per admission in Pediatrics
Figure 8: Histogram of LOS per admission in Rehabilita-
tion Medicine

4 Methods

4.1 Gini Index and Lorenz Curves

The Gini index and Lorenz curves are classical statistical indicators of inequality. The Lorenz curve [36] is a
representation of the CDF of a random variable showing the proportion of its total value that is concentrated in the
bottom x% of observations. It is often used to represent income distribution, where it shows the percentage y% of the
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Figure 9: Histogram of LOS per patient in Surgery
Figure 10: Histogram of LOS per patient in Obstetrics and
Gynaecology

Figure 11: Histogram of LOS per patient in in Pediatrics
Figure 12: Histogram of LOS per patient in Rehabilitation
Medicine

total wealth owned by the bottom x% of households. Inequality is represented as the area separating the Lorenz curve
from the y = x line, corresponding to the Lorenz curve of the Dirac delta distribution, i.e. perfect equality.

The value of the Gini index [36] represents the percentage of the area between the line of perfect equality of distribution
and the observed Lorenz curve. Its possible values range from 0 to 1, higher values indicating less equal distributions.
The "80-20" Pareto Principle, for instance, is indicated by a value for the Gini index of approximately 0.76 [37].

4.2 Maximum to Sum Ratios

Heavy-tailed distributions raise the question of the convergence of empirical moments (the first and second moments
being the mean and variance) [42]. Given an order p ∈ {1, 2, 3, 4, . . . }, the convergence of the ratio of the maximum to
the sum of exponent p is indicative of the existence of the moment of order p, and if so of the speed of convergence
of the empirical moments of order p to its true value. Formally, given a sample of n observations {x1, . . . , xn} of a

positive random variable X , let M(n, p) = Max{xp
1, . . . , x

p
n} be the maximum of order p and S(n, p) =

n∑
i=1

xp
i , the

sum of order p. We have the following result [42, 43]:
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E(Xp) < +∞ ⇔ lim
n→+∞

M(n, p)

S(n, p)
= 0

Based on the previous equivalence, Maximum to Sum plots [45, 44] represent the ratio of the maximum to sum of order
p as a function of the number of data points for different values of p and indicate a convergence of the moments of order
p to a finite value if and only if the ratio converges to zero. Figures 13, 14, 15, and 16 present the classical behavior
of such plots for Monte-Carlo samples of 105 observations from the thinest-tailed to the heaviest-tailed distributions.
These figures respectively illustrate thin-tailed, memoryless, sub-exponential, and fat-tailed classes of distributions.

Figure 13: Maximum to Sum ratios for a Gaussian Figure 14: Maximum to Sum ratios for an Exponential

Figure 15: Maximum to Sum ratios for a Beta-Geometric
with α = 1.3 and β = 3

Figure 16: Maximum to Sum ratios for a Beta-Geometric
with α = 1 and β = 3

4.3 Mean Excess Functions

The excess distribution over a threshold a for a random variable (such as a duration, e.g. LOS), with support in D(X),
is defined [52, 51] as Fa(x) = P (X − a ≤ x|X > a), a ∈ D(X). Intuitively, its complement 1− Fa(x) measures the
likelihood of X exceeding a + x, given that X has exceeded a. For instance, if X measures LOS, 1 − Fa(x) is the
likelihood of a patient staying x more days, given that they have been admitted for a days so far. The Mean Excess
function, also known as the Mean Residual Life function, is the expectation of this distribution for random variable of
finite expectations and is defined as ME(a) = E(X − a|X > a), a ∈ D(X). If X measures LOS, this would be the
expected remaining LOS of a patient, given that they have been admitted for a days so far.

This excess distribution and mean are the foundations for peaks over threshold (POT) modeling [52] which fits
distributions to data on excesses and has wide applications notably in risk management, actuarial science, project
management, and survival analysis. Moreover, they define three classes of random variables whose life-expectancy
exhibits crucially different statistical behaviors:

• A decreasing mean excess function is characteristic of thin-tailed random variables with memory. If the
variable measures the duration of a certain state, the longer an object has been in that state, the lower the
expected remaining duration. For instance, the number of miles driven until the engine of a car breaks down is
in this class. Gaussian or Poisson random variables possess this property.
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• A constant mean excess function is characteristic of memorylessness [54]. Exponential random variables and
their discrete analogues, Geometric random variables, notoriously exhibit this property. For instance, if a store
clerk hasn’t seen any new customers after 30 minutes of opening, the conditional probability that a customer
showing up will take at least 10 more minutes is equal to the unconditional probability of initially waiting 10
minutes after opening.

• An increasing mean excess function is characteristic of scalable heavy-tailed random variables and corresponds
to the Lindy Effect [26] where "the longer you wait, the longer you will be expected to wait". For instance, the
longer a book has been in print or a project has been running late, the longer their expected remaining duration
in a state of print or tardiness respectively, and any additional period in those states increases the expected
remaining duration. Lindy things "age in reverse" [58].

Figures 17 and 18 illustrate the distinction between these three classes with Monte Carlo simulated samples of 106

observations from each distribution. In Figure 17, we plot the Mean Excess function of a truncated Gaussian (blue line)
of mean 10 and variance 3 and Exponential (red line) of rate .1. Note that the chaotic perturbations at the extremity of
the red curve are just the effect of the finite sample bias, i.e. the fact that points for very high order statistics in the plot
are the result of very few observations [40].

Figure 18 present the mean excess functions of the exponential of the previous Gaussian, i.e. a Log-Normal distribution
(green line), as well as a Pareto distribution of shape parameter .2.

The axis labels have been voluntarily omitted to fit both curves within one plot and highlight the monotonic shape of
the functions rather than specific values.

Figure 17: Mean Excess Functions for a Gaussian and
Exponential

Figure 18: Mean Excess Functions for a Pareto and Sub-
Exponential

4.4 The Subexponential Class of Distributions

Let X = X1, . . . , Xn be a sequence of positive independent and identically distributed random variables with
cumulative distribution function (CDF) F . Following [24, 25, 41], we consider that X belongs to the subexponential
class if it satisfies the following property:

lim
x→+∞

1− F (2)(x)

1− F (x)
= 2

Where F (2) is the CDF of Xi + Xj , i, j ∈ {1, . . . , n}, the sum of two independent copies of X . Practically, this
property implies that likelihood of two independent observations of X (e.g. two patients’ LOS) exceeding a high
threshold x is twice the likelihood of either one of them exceeding x. Thus, for only two observations, the value of
the sum, if high, is dominated by an individual observation and the other one contributes negligibly. This property

can be extended to n observations [24, 25, 41], where the property limx→+∞

1−F (n)(x)
1−F (x) = n also characterizes the

subexponential class. Therefore the sum of n observations would be dominated by extreme values, which makes
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aggregate indicators based on the sum (e.g. the mean) less indicative of a typical value and more sensitive to extreme
values. In distributions verifying this property, extreme observations can disproportionately impact and determines
sums or aggregates, an example of which being the wealth of a group of people in which the wealthiest person in the
country is included [26]. The total or average wealth of the group would be overwhelmingly determined by the wealth
of that person. This property is also known as the catastrophe principle[41]. For subexponential distributions, the
simplest explanation for a large sum and thus mean is that one large observation happened, not that a collection of many
slightly larger than expected events conspired together to make the sum large. This property runs completely contrary
to what happens under model thin-tailed distributions considered to model length of stay (Gaussian, Poisson), but is
present in Log-normal models and the Beta-Geometric model we propose herein.

Another important consequence of this property is the inapplicability of the Gauss-Markov theorem [24] and thus of
linear least-squares regression methods. However, maximum likelihood estimation methods [34] are applicable in this
context [24].

4.5 The (shifted) Beta-Geometric Distribution

Our proposed model for hospital Length of Stay is based on the following two assumptions, in which X is a random
variable representing its value for an individual admission or patient:

1. Once admitted, a patient has a constant probability p of being discharged any subsequent day. Given p, this is
equivalent to assuming that X follows a (shifted, i.e. starting from 1 instead of 0) Geometric distribution, with
probability density function (PDF) P (X = x|p) = p · (1− p)x−1, x ∈ {1, 2, 3, . . . }

2. Patients within a medical unit, department, or hospital exhibit different probabilities of discharge p depending
for instance on their diagnosis related group, individual health condition, type of care, hospital policy, and
other factors. In other words, p itself is a random variable. The Beta distribution [29] is conventionally used to
model the variations of a probability in a population. It is characterized by two positive real parameters α and

β and gives the following PDF for p: f(p|α, β) = pα−1
·(1−p)β−1

B(α,β) , p ∈ [0, 1], where B() is the Beta function

given by B(α, β) = Γ(α+β)
Γ(α)·Γ(β) and Γ() is the Gamma function given by Γ(α) =

∫ +∞

0
xα−1 · e−xdx.

Assuming a count that starts at 1 and under the two above assumptions X follows a (shifted) Beta-Geometric distribution,
a compound distribution characterized by the two parameters α, β ∈ R

+, with the following PDF:

P (X = x|p) =
B(α+ 1, β + x− 1)

B(α, β)
, x ∈ {1, 2, 3, . . . }

It should be noted that the Beta-Geometric distribution is not a mixture of two probability distributions (Beta and
Geometric), but a coherent compound distribution that results from a geometric process with variable success probability.

Despite its simplicity, the Beta-Geometric distribution is very versatile. This distribution can exhibit a wide variety of
tail behaviors, depending on the parameters of the underlying Beta distribution, . If the underlying Beta distribution has
low variance, it results in a behavior similar to a geometric random variable. Otherwise the variability of probabilities
of success alone can generate very heavy tailed behavior. We have generated Monte Carlo samples of size 106 of
Beta-Geometric random variables. As can be seen in Figure 16, which represents the Maximum to Sum ratios for a
Beta-Geometric with α = 1 and β = 3 the mean and higher moments do not converge. Figure 19 presents the Mean
Excess function for a Beta-Geometric with α = 1 and β = 3 (blue points), α = 3 and β = 1 (red points), and α = .5
and β = 1 (green points). We can observe, the strictly increasing nature of these functions.

Moreover, a log-transformed Pareto random variable is notoriously exponentially distributed. Hence a comparison of
the theoretical quantiles of an Exponential random variable with those of the log-transform of empirical data is the basis
of a visual Pareto test, known as the QQ (Quantile-Quantile) plot, Cf. Section 4.1. of [56]. A linear pattern indicates
that the empirical data belongs to a generalized Pareto distribution and confirms heavy tails. Figure 20 presents a QQ
plot for a 106 Monte Carlo sample of a Beta-Geometric with α = 1 and β = 3, in which linearity can be observed. In
addition to the previous remarks concerning the non-convergence of moments and the increasing Mean Excess function,
this observation makes us conclude that the Beta-Geometric can exhibit the behavior of a generalized Pareto model [53].

Though the main focus of this paper does not lie in a theoretical study of random variables, it can be empirically verified
that the tail of this random variable is at least heavy enough to belong to the subexponential class for some values of
α and β that result in even thinner tails than the values that seem adequate to model LOS in the dataset at hand. We
have generated two random samples of 106 observations each from two identical Beta-Geometric distributions with
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Figure 19: Mean Excess Functions for Beta-Geometric
distributions Figure 20: Q-Q plot for a Beta-Geometric

α ≥ 1.1 and β ≥ α and verified the property defining subexponentiality. Figure 21 presents the empirical limit of the

ratio
1−F (2)(x)
1−F (x) for α = 1.1 and β ∈ {3, 5, 7, 9}. As we will show in the subsequent sections, LOS can exhibit even

heavier tails than these Monte Carlo samples.

Figure 21:
1−F (2)(x)
1−F (x) for a Beta-Geometric with α = 1.1 and β ∈ {3, 5, 7, 9}

5 Results: The role of Extreme LOS Value

This section presents some properties of the empirical LOS in the four specialty departments which are direct conse-
quences of the high frequency and statistical significance of extreme values. We subsequently propose a Beta-Geometric
model of LOS and evaluates its goodness of fit.
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5.1 On the concentration of LOS

Heavy-tailed distributions tend to be dominated by a small percentage of observations. For LOS, this means that days
of hospital would be concentrated among a small percentage of admissions or patients. Such a Power Law behavior
which has been previously observed in the English healthcare system in [61]. However, this effect cannot be adequately
modeled by thin-tailed random variables, discarding outliers, or considering small samples.

It should be noted that this behavior is a natural consequence of the variability in patients’ daily probabilities of
discharge. An equal distribution of LOS is neither natural nor desirable. However, from a resource planning point of
view, measuring this inequality is important in understanding and modeling healthcare systems in order to adequately
price LOS. This is particularly true for high-demand hospitals operating close capacity such as Siriraj hospital, where
patients are directly competing for admission.

Figures 26, 27, 28, and 29 represent the reversed Lorenz curves for LOS, by admission and by patient, in Surgery,
OB/GYN, Pediatrics, and Rehabilitation Medicine respectively. These plots are Lorenz curves in which the horizontal
axis is inverted. Thus, the horizontal axis represents the cumulative percentage of admissions/patients ordered by
decreasing LOS, and the vertical axis represents the corresponding cumulative percentage of LOS consumed by that
percentage of admissions/patients. These plots read for x% of patients/admissions have consumed y% of the LOS. In a
thin-tailed distributions, though mildly concave, these plots would typically not show points of inflexion [55], from
which the slope of the trendline markedly changes. These points, known as elbows, can serve as a basis for patient
classification.

Figure 22: Lorenz curve of LOS in Surgery
Figure 23: Lorenz curve of LOS in Obstetrics and Gynae-
cology

Figure 24: Lorenz curve of LOS in Pediatrics Figure 25: Lorenz curve of LOS in Rehabilitation Medicine

Table 3 presents the Gini index for the LOS per admission and per patient, for each specialty department.

As expected, we can observe that the heavier the tail of the distribution, the higher the inequality in the distribution of
LOS, and the aggregation of LOS per patient tends to make the tails significantly heavier.

The distribution of LOS in Rehabiliation Medicine, once again, exhibits a behavior that is the closest to that of a
thin-tailed random variable. However, we note an inflexion point at the left of the curve, where 3.05% of admissions
concentrate 12.45% of LOS, and 3.6% of patients concentrate 12.36% of LOS. OB/GYN presents a similar but more
extreme inflexion point, where 1.94% of admissions concentrate 10% of LOS and 2.58% of admissions concentrate
12.79%. Surgery and Pediatrics exhibit the most extreme discrepancies in the distribution of LOS between the top
percentiles and the rest of the admissions/patients, thus resulting in lower bed turnover rates. In Surgery, 4.2% of
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Statistic Surgery OB/GYN Pediatrics Reh. Med.

No of Admissions 17949 19922 7499 994
Gini index .53 .32 .62 .27
Delta 7.07 2.51 10.29 13.47

No of Patients 14884 17483 5086 304
Gini index .55 .32 .67 .30
Delta 8.78 2.84 16.44 48.59

Table 3: Gini index for LOS per admission and per patient in the four departments

admissions/patients concentrate 30% of LOS. and in Pediatrics 6.7% of patients concentrate 50% of LOS, and 5.5% of
admissions concentrate 40% of LOS. The latter specialty department also exhibits the widest gaps between the curves
per admission and per patient, which illustrates the effect of multiple admissions on the concentration of LOS. The
inflexion points determined by the percentile distribution of LOS allow for the definition of these thresholds in a way
that takes actual resource consumption in a care unit into account.

Figure 26: Reversed Lorenz curve of LOS in Surgery
Figure 27: Reversed Lorenz curve of LOS in Obstetrics
and Gynaecology

Figure 28: Reversed Lorenz curve of LOS in Pediatrics
Figure 29: Reversed Lorenz curve of LOS in Rehabilitation
Medicine

5.2 On revenue

As seen in Section 5.1, the top percentiles of patients/admissions, in terms of LOS, can represent a very significant
proportion of total LOS. This concentration of LOS also has financial effects. In Figures 30, 31, 32, and 33 we have
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computed the average daily charge per admissions, as a function of LOS (i.e. revenue divided by LOS, for each discrete
value of LOS), in Surgery, OB/GYN, Pediatics, and Rehabilitation Medicine, respectively.

For the three departments of Surgery, OB/GYN and Pediatrics, we find that ceteris paribus, the mean revenue per day
of an admission significantly decreases with the increase of LOS. That is up to a certain threshold, from which long
LOS patients are approximately charged the same amount per day. Rehabilitation Medicine is once again a singular
specialty department in this regards. Indeed, we find that the charge per day tends to increase with the increase of LOS
for short stay patients, up to a point (from which long LOS could be defined) where it stabilizes for additional days of
stays. The curves in Figures 30 to 33 can be accurately described as piecewise linear. Using the Elbow method [55], the
respective thresholds for the pseudo-linearity of the charge per day function in each of the four specialty department are
given in Table 4.

In Figure 30, 31, and 32 we observe a steeply declining, pseudo-linear curve up to a certain threshold of LOS, which
could be considered the threshold for short LOS in terms of charge. For this group of patients, additional days of
LOS result in a decrease in the charge per day (in addition to the opportunity cost resulting from the inability to admit
patients with a shorter stay and thus higher charge). Once the function the charge per day function reaches its minimum,
it stabilizes for all higher LOS values.

Department Surgery OB/GYN Pediatrics Reh. Med.

First Range 1 to 14 days 1 to 11 days 1 to 13 days 1 to 9 days
Correlation −.94 −.88 −.91 +.83
Second Range 15 to 30 days 12 to 17 days 14 to 50 days 10 to 39 days
Correlation −.90 −.90 −.91 +.73
Third Range 31 to 304 days 18 to 119 days 51 to 272 days 40 to 87 days
Correlation −.95 −.94 −.97 +.90

Table 4: Thresholds and correlation for the average charge per day of LOS

We find a very high negative piecewise linear correlation (≤ −.88) for each pseudo-linear range of the average charge
per day function in Surgery, Ob/GYN, and Pediatrics, as detailed in Table 4. This hints at the fact that long LOS is
not adequately priced, possibly because long LOS observations are discarded as outliers in analysis models. To give a
prosaic example, let us focus on one hospital bed and compare either admitting n patients with 1 days of LOS or one
patient with n days of LOS. Additionally, we assume that the average charge per day for a stay of 1 day is m monetary
units, when the average charge per day for a stay of n days is 1 monetary unit. Not only would the single patient staying
n days pay less per day (m > 1), but the difference in charge with shorter stay patients would be multiplied by n such
that the total opportunity cost would be n · (m − 1). This in addition to the fact that this hospital would have been
used to serve n− 1 more persons. This simplistic example obviously neglects the medical needs of these patients and
should not be seen as a call to make admission decisions based on revenue. It is however an invitation to consider
renegotiating the pricing strategy at Siriraj Hospital in order to adequately price the opportunity cost resulting from
long LOS. However, the Rehabilitation Medicine department seems to adequately price this opportunity cost (possibly
because long LOS is expected in this department) as illustrated in Figure 33. The average charge per day increases
with LOS, and shows a similarly high positive piecewise linear correlation when broken down into three pseudo-linear
ranges. Similarly to the CDF (Figure 4), the average charge function in this specialty department is sigmoidal. We
note that a change in the nature of the function from convex to concave occurs precisely at the 20 days mark. This a
reflection of the mixed nature of the distribution of LOS in Rehabilitation Medicine, with a marked difference in the
distribution of values of LOS below and above 20 days

Another question concerns the association between LOS, charge, and the discharge status of patients (broken down into
positive and negative statuses, as described in Section 3). Figures 34, 36, and 38 show individual LOS and charges per
day of admissions concluded with a positive discharge status in Surgery, OB/GYN, and Pediatrics, respectively, while
Figures 35, 37, and 39 represents these variables for admissions concluded with a negative discharge status for the same
respective departments. The Rehabilitation Medicine department having seen only a single admission with a negative
discharge status ("Not improved"), the same data is represented in Figure 40 and is excluded from the following remark.
Although discharges with a negative discharge status are much less frequent, we observe a similar distribution of LOS
in each of the positive and negative discharge status group, as with the distribution of LOS over both groups.

Moreover, the distribution of LOS over each group shows a similar correlation with the average charge per day as
the distribution over the whole. Overall, we can conclude that LOS, at this level of analysis (whole medical specialty
departments) does not show any striking association with the discharge status. It may however possibly be the case of a
more granular analysis per DRG, which is outside the scope of the present study.
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Figure 30: Average charge per day in Surgery
Figure 31: Average charge per day in Obstetrics and Gy-
naecology

Figure 32: Average charge per day in Pediatrics
Figure 33: Average charge per day in Rehabilitation
Medicine

Figure 34: Charge per day for positive discharge status in
Surgery

Figure 35: Charge per day for negative discharge status in
Surgery

5.3 On the Convergence of Moments

Because of the preponderance of extreme values, one of the main concerns when suspecting subexponentionality in the
study of random variables concerns the existence of moments, as described in Section 4.2. Indeed, the non-convergence
of moments, or their very slow convergence (which requires extremely large sample sizes), renders the estimation of
indicators such as the mean, variance, skewness or kurtosis from empirical observations impractical. Figures 41, 42
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Figure 36: Charge per day for positive discharge status in
Obstetrics and Gynaecology

Figure 37: Charge per day for negative discharge status in
Obstetrics and Gynaecology

Figure 38: Charge per day for positive discharge status in
Pediatrics

Figure 39: Charge per day for negative discharge status in
Pediatrics

Figure 40: Charge per day in Rehabilitation Medicine

represent the Maximum to Sum plot for LOS per admission and per patient, respectively, in Surgery. Figures 43 and
44, 45 and 46, as well as 47 and 48 represent similar pairs of Maximum to Sum plots for OB/GYN, Pediatrics, and
Rehabilitation Medicine. We note the convergence of first moments (mean) in all specialty departments. However,
second moments (variance), though apparently convergent, show a slow convergence even for our large datasets of tens
of thousands of patients, which makes empirical estimates unreliable. Similarly, third and fourth moments (skewness
and kurtosis respectively) cannot be reliably estimated from empirical data, except in the Rehabilitation Medicine
department with per admission data.
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This problem is particularly acute for LOS data per patient in Surgery and Pediatrics. As previously noted, the
aggregation of LOS per patient makes the tail of the distributions of LOS heavier and the convergence of moments
accordingly slower.

The novel information from these plots is the visible heavy tailedness of the distribution of LOS per patient in
Rehabilitation Medicine.

We have excluded a Generalized Pareto distribution for each specialty department using the Pareto test included in R
Package ptsuite [62, 63]. The resulting p-values were respectively 4.52 · 10−193, 0, 1.24 · 10−291, and 0 in Surgery,
OB/GYN, Pediatrics, and Rehabilitation Medicine and are not consistent with generalized Pareto distributions. However,
the Maximum to Sum plots are consistent with subexponential distributions, within which the Beta-Geometric is the
best candidate because of its discreteness and consistency of assumptions in modeling LOS, as stated in Section 4.5.
This is further confirmed with QQ-plots and Mean Excess plots.

Figure 41: Maximum to Sum ratios of LOS per admission
in Surgery

Figure 42: Maximum to Sum ratios of LOS per patient in
Surgery

Figure 43: Maximum to Sum ratios of LOS per admission
in Obstetrics and Gynaecology

Figure 44: Maximum to Sum ratios of LOS per patient in
Obstetrics and Gynaecology

Indeed, in Figures 49 to 56, representing the QQ-plots of LOS per admission and per patient, in the four department, we
can observe a pseudo-linear behavior (including in Rehabilitation Medicine, past a certain threshold) that is consistent
with a subexponential distribution. However, the marked difference between the head and tail of the QQ-plots in Figure
55 and 56 indicates that the distribution of LOS in Rehabilitation Medicine being possibly of a mixed nature, which is
further confirmed by the Mean Excess plots in the next Section.

5.4 On Expected Residual Length of Stay

An increasing expected residual LOS is possibly the most important property that cannot be captured by thin-tailed
models. As explained in Section 4.3, this property can be understood as the expectation of LOS increasing the longer a
patient has been in the system, or prosaically, the longer a patient has been admitted, the further they, counter-intuitively,
get from being discharged in subsequent days.

Figures 57 to 60 represent the mean excess plots for LOS per admission and per patient, in Surgery, OB/GYN, and
Pediatrics. They confirm the subexponential nature of these variables. Note that the decrease in the Mean Excess
function at the rightmost points of the curve is a common effect known as the “finite sample bias” [40], wherein points
close to the sample maximum would not be expected to further increase simply because no higher values have been
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Figure 45: Maximum to Sum ratios of LOS per admission
in Pediatrics

Figure 46: Maximum to Sum ratios of LOS per patient in
Pediatrics

Figure 47: Maximum to Sum ratios of LOS per admission
in Rehabilitation Medicine

Figure 48: Maximum to Sum ratios of LOS per patient in
Rehabilitation Medicine

observed yet.
The Mean Excess function of LOS in Rehabilitation Medicine, which is represented per admission in Figure 63, and per
patient in Figure 64, once again stands out. The Mean Excess decreases for thresholds below 20 We see a dramatic
change in the monotonicity of the Mean Excess Function, which goes from decreasing to increasing precisely at value
20 days. This indicates a heavy-tailed distribution for stays above 20 days.

Lastly, we observe that all increasing Mean Excess functions exhibit more linear behavior when LOS is aggregated by
patient. This confirms, once again, the increase in the heaviness of tails that this aggregation induces.

6 Modeling Length of Stay

Given n independent realizations x1, . . . , xn, of a Beta-Geometric random variable X , defined by parameters α and β
as described in Section 4.5, the likelihood function is given by the product of their individual PDF:

L =
n∏

i=1

B(α+ 1, β + xi − 1)

B(α, β)

The corresponding log-likelihood is thus given by:

Log(L) = Log(B(α+ 1, β + xi − 1))− nLog(B(α, β))

The maximum likelihood estimates for α and β, respectively α̂ and β̂, can be obtained by numerically maximizing
Log(L) with respect to α and β using statistical software such as the betageometric function of R package VGAM [32]
or the BGEPDF of statistical software dataplot [35, 38, 39].

Based on the evidence for a Beta-Geometric distribution of LOS in these departments, we have computed the maximum
likelihood estimates of the α and β parameters for LOS in Pediatrics, Surgery, and OB/GYN.
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Figure 49: Q-Q plot of LOS per admission in Surgery Figure 50: Q-Q plot of LOS per patient in Surgery

Figure 51: Q-Q plot of LOS per admission in Obstetrics
and Gynaecology

Figure 52: Q-Q plot of LOS per patient in Obstetrics and
Gynaecology

As for the Rehabiliation Medicine department, and given the marked difference in the distribution before and after 20
days, and the evidence for a mixture distribution, we fit a Poisson distribution for values of LOS from 1 to 19 days with
a Poisson distribution, whereas the distribution of values above 20 days is modeled with a shifted Beta-Geometric.
We subtract 20 days from all observations, fit a Beta-Geometric, then add 20 days to the resulting Beta-Geometric
distribution.

We generate a 105 Monte-Carlo sample for the fitted distribution to the LOS in the four departments, both per admission
and per patient. To evaluate goodness of fit, we use a discrete two-sample Kolmogorov–Smirnov goodness of fit test
[46, 47, 48].

The Kolmogorov–Smirnov statistic (the D-statistic) more precisely quantifies the distance between the observed
distribution function of the sample and the cumulative distribution function of the fitted distribution. We present the α
and β parameters found for the fitted Beta-Geometric distributions of LOS in the four departments1, as well as the
corresponding Kolmogorov–Smirnov distance, at 5% level of significance, in Table 5.

Moreover, Figures 65 and 66 respectively compare the histograms of the fitted and observed LOS per admission
in Pediatrics and Rehabilitation medicine. Figures 67 and 68 respectively illustrate the comparison of cumulative
distributions functions per patient in Surgery and per admission in Rehabilitation Medicine, and Figures 69 and 70
the comparison of Mean Excess Functions for the distribution of LOS per patient in Surgery and per admission in
Rehabilitation Medicine.

1For the Rehabilitation Medicine department this distribution only concerns values of LOS above 20 days as previously stated.
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Figure 53: Q-Q plot of LOS per admission in Pediatrics Figure 54: Q-Q plot of LOS per patient in Pediatrics

Figure 55: Q-Q plot of LOS per admission in Rehabilita-
tion Medicine

Figure 56: Q-Q plot of LOS per patient in Rehabilitation
Medicine

Fitting mixture distributions is a relatively under-studied problem in statistics, and overwhelmingly concerned with
Gaussian mixtures [49, 50]. To the best of our knowledge there haven’t been any works regarding fitting a Poisson/Beta-
Geometric mixture. As a result, fitting a theoretical distribution to the LOS in Rehabilitation medicine proved more
challenging because of the mixed nature of the distribution of LOS in this department resulting from the artificial
inflation of the frequency of value 20 days. However, for the three departments whose LOS only sees unconstrained
variations (Surgery, Pediatrics, and OB/GYN), we obtain a satisfying fit with Beta-Geometric models and a 95%
confidence level, as described in Table 5.

Model Surgery OB/GYN Pediatrics Reh. Med.

Admissions 17949 19922 7499 994
α 7.027677 7.1307 3.2695 37.3032
β 38.58531 9.3826 17.6431 387.4253
D-statistic 0.0480 0.0398 0.0474 0.0605

Patients 14884 17483 5086 304
α 6.1900 13.9223 2.3282 10.4402
β 39.6485 4.0856 14.9977 24.5310
D-statistic 0.0590 0.0483 0.0518 0.0632

Table 5: Results of the Kolmogorov-Smirnov tests for fitted 105 Beta-Geometric samples with 95% confidence level.
A Poisson model was additionally used for stays below 20 days in Rehabilitation Medicine.
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Figure 57: Mean Excess function of LOS per admission
in Surgery

Figure 58: Mean Excess function of LOS per patient in
Surgery

Figure 59: Mean Excess function of LOS per admission
in Obstetrics and Gynaecology

Figure 60: Mean Excess function of LOS per patient in
Obstetrics and Gynaecology

7 Managerial Implications

Section 5 identified and analyzed some empirical properties of LOS that have important implications for operational
and financial planning at the level of healthcare units.

We have shown, in Section 4.1, that extreme value can result in large discrepancies in the distributions of LOS among
admissions/patients.

Moreover, a counter-intuitive property of LOS studied in Section 5.4 is an increasing conditional expectation, as
represented by the shape of the mean excess functions in Figures 57 to 60. This is the case for all departments, including
the Rehabilitation Medicine department past a certain threshold, as seen in Figures 63 and 64. This property makes
Length of Stay Lindy [24], in an undesirable sense; the longer a patient has stayed, the longer he/she would be expected
to remain, with a corresponding increase in the expected opportunity cost of high LOS.

Thus, from the standpoints of both equity of access to healthcare and adequately reflecting the value offered to patients,
the opportunity cost of long stays should be reflected in their pricing. Section 5.2 showed that this opportunity cost is
currently not adequately taken into account at Siriraj hospital. Models of Revenue Management based on differentiated
pricing models, which are now standard in the Airline Industry [64], could be fruitfully applied by healthcare providers
to cover this opportunity cost and provide beds to patients who value them most when demand exceeds supply.
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Figure 61: Mean Excess function of LOS per admission
in Pediatrics

Figure 62: Mean Excess function of LOS per patient in
Pediatrics

Figure 63: Mean Excess function of LOS per admission
in Rehabilitation Medicine

Figure 64: Mean Excess function of LOS per patient in
Rehabilitation Medicine

Further, in Section 5.3, we have highlighted some practical difficulties in estimating the moments of LOS from
empirical observations due to the slow convergence of the Law of Large Numbers. This catastrophe principle,
inherent to subexponential random variables, makes models for forecasting precise values of LOS (e.g. least square
regressions based on second moments) inapplicable. Lastly, we have illustrated the importance of reducing unnecessary
readmissions and avoiding multiple admissions. As they compound to make the tails heavier, they exaggerate the
previous challenges.

Based on the simple assumptions stated in 4.5, we have shown, in Section 6, that seeing hospital admissions as a simple
Geometric process with heterogeneous (Beta) probabilities of discharge adequately reproduces these properties and
provides a good fit with observed LOS.

Rather than a naive forecasting of length of stay at admission, only evaluated by absolute percentages of deviations or
correlation, a more actionable quantitative focus for resource planning lies in accurately estimating the parameters
of the Beta-Geometric model that governs a given LOS. This type of analysis has the additional advantage of being
scalable to different levels of decision-making (i.e. variations in the distribution of the discharge probability would
result in different Beta-Geometric models of LOS in a hospital, departments, units, and within those for different DRG,
type of patients, types of interventions, etc.). Further, the various graphical tools we have proposed could be employed
to dynamically determine thresholds and use them for long-stay patient reviews. Moreover, pricing negotiations with
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Figure 65: Histogram of observed and fitted LOS per
admission in Pediatrics

Figure 66: Histogram of observed and fitted LOS per
admission in Rehabilitation Medicine

Figure 67: CDF of observed and fitted LOS per patient in
Surgery

Figure 68: CDF of observed and fitted LOS per admission
in Rehabilitation Medicine

Figure 69: Mean Excess function of observed and fitted
LOS per patient in Surgery

Figure 70: Mean Excess function of observed and fitted
LOS per admission in Rehabilitation Medicine

payers should not only include the direct cost of treatment but also the opportunity cost of the expected LOS increasing
in the tail, as well as the opportunity cost of being unable to admit patients with potentially shorter stays and higher
charges per day, as a result of tail events.
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8 Conclusions and Limitations

This study showed that long stays (the tail of LOS distributions) have important consequences for resource consumption
and revenue management in healthcare facilities and are not to be discarded as outliers. It is thus important that
healthcare providers move away from simplistic, thin-tailed models and the disproportionate focus on regression, to
align their quantitative models with those of payers (Extreme Value Theory is, after all, the mathematics of insurance).
We have proposed a Beta-Geometric model for LOS that adequately reproduces these properties and shows a satisfying
fit with empirically observed LOS in 46, 364 electronic health records, covering four specialty departments. An
added advantage of the proposed model is that it offers a consistent model for decision-support in a medical specialty
department that can also be scaled down to individual DRG, or up the hospital as whole, by a simple adjustment of the
parameters of the underlying Beta distribution of discharge probabilities. Moreover, the discreteness and simplicity
of the assumptions that this model rests on offer an advantage over mixture distribution models. By Occam’s razor
these models are not justified when a single (compound) probability distribution can adequately fit. However, we
have found that artificial restrictions on LOS (such as the preponderance of LOS value 20 in Rehabiliation Medicine)
can produce emprical LOS distributions that are best described by mixture models. In these cases, modeling with a
Beta-Geometric/Poisson mixture distribution proved more challenging and produced a lower quality fit. A more refined
analysis of LOS in Rehabilitation Medicine, over larger datasets than the one considered in our study (994 admissions),
and with additional methodological developments on fitting mixed distributions would be potentially valuable.
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