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Host and viral traits predict zoonotic spillover  
from mammals
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The majority of human emerging infectious diseases are zoonotic, 
with viruses that originate in wild mammals of particular concern 
(for example, HIV, Ebola and SARS)1–3. Understanding patterns 
of viral diversity in wildlife and determinants of successful cross-
species transmission, or spillover, are therefore key goals for 
pandemic surveillance programs4. However, few analytical tools 
exist to identify which host species are likely to harbour the next 
human virus, or which viruses can cross species boundaries5–7. Here 
we conduct a comprehensive analysis of mammalian host–virus 
relationships and show that both the total number of viruses that 
infect a given species and the proportion likely to be zoonotic are 
predictable. After controlling for research effort, the proportion of 
zoonotic viruses per species is predicted by phylogenetic relatedness 
to humans, host taxonomy and human population within a species 
range—which may reflect human–wildlife contact. We demonstrate 
that bats harbour a significantly higher proportion of zoonotic 
viruses than all other mammalian orders. We also identify the 
taxa and geographic regions with the largest estimated number of 
‘missing viruses’ and ‘missing zoonoses’ and therefore of highest 
value for future surveillance. We then show that phylogenetic 
host breadth and other viral traits are significant predictors of 
zoonotic potential, providing a novel framework to assess if a newly 
discovered mammalian virus could infect people.

Viral zoonoses are a serious threat to public health and global 
 security, and have caused the majority of recent pandemics in  people4, 
yet our understanding of the factors driving viral diversity in  mammals, 
viral host range, and cross-species transmission to humans remains 
poor. Recent studies have described broad patterns of  pathogen host 
range1,3 and various host or microbial factors that facilitate cross- 
species  transmission5,7,8, or have focused on factors promoting 
 pathogen and  parasite sharing within specific mammalian taxonomic 
groups including primates9–11, bats12–14, and rodents12,15—but to 
date there has been no comprehensive, species-level analysis of viral 
 sharing between humans and all mammals. Here we create, and then 
analyse, a database of 2,805 mammal–virus associations, including  
754  mammal species (14% of global mammal diversity) from 15 orders  
and 586 unique viral species (every recognized virus found in 
 mammals16) from 28 viral families (Methods). We use these data to 
test hypotheses on the determinants of viral richness and viral sharing 
with humans. We fit three inter-related models to elucidate specific 
components of the process of zoonotic spillover (Extended Data Fig. 1).  
First, we identify factors that influence total viral richness (that is,  the 
number of unique viral species found in a given host,  including those 
which may have the potential to infect humans). Second, we identify 
and rank the ecological, phylogenetic and life- history traits that make 
some  species more likely hosts of zoonoses than others. Third, recog-
nizing that not all mammalian viruses will have the biological capacity 
to infect humans, we identify and rank viral traits that increase the 
likelihood of a virus being zoonotic.

In examining the raw data, we found that observed viral richness 
within mammals varies at a host order and viral family level, and is 

highest for Bunya-, Flavi- and Arenaviruses in rodents; Flavi-, Bunya- 
and Rhabdoviruses in bats; and Herpesviruses in non-human primates 
(Extended Data Fig. 2). Of 586 mammalian viruses in our dataset, 
263 (44.9%) have been detected in humans, 75 of which are exclu-
sively human and 188 (71.5% of human viruses) zoonotic—defined 
operationally here as viruses detected at least once in humans and at 
least once in another mammal species (Methods). The proportion 
of zoonotic viruses is higher for RNA (159 of 382, 41.6%) than DNA  
(29 of 205, 14.1%) viruses. The observed number of viruses per wild 
host species was comparable when averaged across orders, but bats, 
primates, and rodents had a higher proportion of observed zoonotic 
viruses compared to other groups of mammals (Fig. 1). Species in other 
orders (for example, Cingulata, Pilosa, Didelphimorphia, Eulipotyphla) 
also shared a majority of their observed viruses with humans, but 
data were limited in these less diverse and poorly studied orders. 
Several species of domesticated ungulates (orders Cetartiodactyla and 
Perissodactyla) are outliers for their number of observed viruses, but 
these species have a relatively low proportion of zoonotic viruses (Fig. 1;  
Supplementary Discussion).

Previous analyses show that zoonotic disease emergence events and 
human pathogen species richness are spatially correlated with mammal 
and bird diversity2,17. However, these studies weight all species equally. 
In reality, the risk of zoonotic viral transmission, or spillover, probably  
varies among host species owing to differences in underlying viral 
richness, opportunity for contact with humans, propensity to exhibit 
clinical signs that exacerbate viral shedding18, other ecological, behavi-
oural and life-history differences5,12,15, and phylogenetic proximity to 
humans10. We hypothesize that the number of viruses a given mammal 
species shares with humans increases with phylogenetic proximity to 
humans and with opportunity for human contact. We used generalized 
additive models (GAMs) to identify and rank host-specific predictors 
(ecological, life history, taxonomic, and phylogenetic traits, and a 
 control for research effort) of the number of total and zoonotic viruses 
in mammals (Methods; Supplementary Table 1).

The best-fit model for total viral richness per wild mammal  species 
explained 49.2% of the total deviance, and included a per-species 
 measure of disease-related research effort, phylogenetically corrected 
body mass, geographic range, mammal sympatry, and taxonomy (order)  
(Fig. 2a–e). Not surprisingly, research effort had the strongest effect 
on the total number of viruses per host, explaining 31.9% of the total 
deviance for this model (Extended Data Table 1). The remaining 
17.3% can be explained by biological factors, a value greater than or 
comparable to studies examining much narrower groups of  mammal 
hosts10,12,15 (Supplementary Discussion). Mammal sympatry was 
the second most important predictor of total viral richness (Fig. 2d).  
Our model selection consistently identified mammal sympatry 
calculated at a ≥ 20% area overlap over other thresholds explored 
(Methods), providing insight into the minimum geographic  overlap 
needed to facilitate viral sharing between hosts. Host geographic 
range was also significantly associated with increasing total viral 
  richness, although the strength of this effect was low (Fig. 2c). Several 
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mammalian orders, Chiroptera (bats), Rodentia (rodents), Primates, 
Cetartiodactyla (even-toed  ungulates), and Perissodactyla (odd-toed 
ungulates) listed here in order of relative deviance explained, had a 
significantly greater mean viral richness than predicted by the other 
variables (Fig. 2e). This finding highlights these taxa as important 
targets for global viral discovery in wildlife4, and suggests that traits 
not captured in our analysis (for  example, immunological function, 

social structure, and other life- history variables) may underlie their 
capacity to harbour a greater number of viral species. Our models to 
predict total viral richness were comparable when excluding virus–
host associations detected by serology, that is, using the ‘stringent 
data’, and were robust when validated with random cross-validation 
tests (Extended Data Table 1; Supplementary Table 2). However, we 
identified several regions that showed significant bias when cross- 
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Figure 2 | Host traits that predict total viral richness (top row) and 
proportion of zoonotic viruses (bottom row) per wild mammal species. 
Partial effect plots show the relative effect of each variable included in 
the best-fit GAM, given the effect of the other variables. Shaded circles 
represent partial residuals; shaded areas, 95% confidence intervals around 
mean partial effect. a–e, Best model for total viral richness includes:  
a, number of disease-related citations per host species (research effort, 
log); b, phylogenetic eigenvector regression (PVR) of body mass (log);  
c, geographic range area of each species (log km2); d, number of sympatric 
mammal species overlapping with at least 20% area of target species 

range; and e, mammalian orders. f–i, Best model for proportion of 
zoonoses includes: f, research effort (log); g, phylogenetic distance from 
humans (cytochrome b tree constrained to the topology of the mammal 
supertree28); h, ratio of urban to rural human population within species 
range; and i, three mammalian orders. Bats are the only order with a 
significantly larger proportion of zoonotic viruses than would be predicted 
by the other variables in the all-data model. Three additional mammalian 
orders, and whether or not a species is hunted, improved the overall 
predictive power of the best zoonotic virus model but were non-significant 
and are not shown (see Extended Data Table 1).

Figure 1 | Observed viral richness in mammals. a, b, Box plots of 
proportion of zoonotic viruses (a) and total viral richness per species (b), 
aggregated by order. Data points represent wild (light grey, n =  721) and 
domestic (dark red, n =  32) mammal species; lines represent median, 

boxes, interquartile range. Animal silhouettes from PhyloPic. Data based 
on 2,805 host–virus associations. See Methods for image credits and 
licensing.
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validated by excluding mammals from zoogeographic areas, suggesting 
that there are location-specific factors that remain unexplained in our 
models (Methods; Supplementary Table 3).

Our best model to predict the number of zoonotic viruses per wild 
mammal species explained 82% of the deviance, and included phy-
logenetic distance from humans, the ratio of urban to rural human 
population across a species range, host order, whether or not a  species 
is hunted, disease-related research effort, and total viral richness 
(Extended Data Table 1). A large fraction of the deviance explained 
is driven by the observed total viral richness per host, supporting the 
biological assumption that the number of viruses that infect humans 
scales positively with the size of the potential ‘zoonotic pool’19 in each 
reservoir host. Removing this contribution by including observed total 
viral richness per host as an offset, the model explains 33% of the total 
deviance in the proportion of viruses that are zoonotic (Methods), with 
30% of total deviance explained by biological factors (Fig. 2f–i). Some 
mammalian orders had a significant positive (bats) or negative (two 
ungulate orders) effect on the proportion of zoonotic viruses (Fig. 2i).  
A number of previous studies have proposed that bats are special among 
mammals as reservoir hosts of a large number of recently emerging 
high-profile zoonoses (for example, SARS, Ebola virus, MERS)12,13,20. 
Our study tests this hypothesis in the context of all known mammalian 
viruses and hosts. While other mammalian orders have relatively high 
proportions of observed zoonoses and others have been poorly studied  
(Fig. 1a), our model results show that bats are host to a significantly 
higher proportion of zoonoses than all other mammalian orders after  
controlling for reporting effort and other predictor variables.

We found that the proportion of zoonotic viruses per species increases 
with host phylogenetic proximity to humans, and that this relationship 
is significant even when we removed ‘reverse zoonoses’ primarily asso-
ciated with transmission from humans to primates (Methods). This is 
the first time this relationship has been demonstrated using data for all 
mammals and specifically as a determinant of zoonotic spillover, and 
is supported by previous taxon-specific studies that have examined 
host relatedness and parasite/pathogen sharing in primates9,10, bats14 
and plants21. The proportion of zoonotic viruses shows some upward 
drift for mammals that are very phylogenetically distant from humans  
(Fig. 2g) that may represent an artefact of preferentially screening 
marsupials for human viruses. While primate species largely drive the 

phylogenetic effect, our best-fit model excluded the effect of the order 
Primates as a discrete variable (Fig. 2i), suggesting that continuous vari-
ation in phylogenetic distance across primate species is more important, 
and is significant even when all mammals are included. This finding 
highlights the need to uncover the mechanism by which phylogeny 
affects spillover risk, for example, evolutionarily related species sharing  
host cell receptors and viral binding affinities22,23 and specific viral 
mutations that may expand host range in related mammal species24.

We tested several measures to estimate human–wildlife contact at a 
global scale for the 721 wild mammals in our dataset, but only the ratio 
of urban to rural human population (all data model), the change in 
human population density, and the change in urban to rural  population 
ratio from 1970–2005 across a species range (stringent data model) 
were included (Extended Data Table 1). The response curve for urban 
to rural population suggests that increasing urbanization raises the 
risk of zoonotic spillover (Fig. 2h), as does increasing human popu-
lation density and the change in urban to rural population ratio over 
time. A single global metric of human–wildlife ecological contact did 
not emerge across models. However, the alternate inclusion of these 
related variables points to the importance of human–animal contact in 
defining per-species spillover risk globally, and the need for controlled 
field experiments and human behavioural risk studies to uncover the 
mechanisms underlying this risk. Overall, the strength of the effect 
of phylogenetic proximity was stronger than our proxies for animal–
human contact in predicting proportion of zoonoses (30–44% stronger 
explanatory factor), but both remained significant after controlling for 
research effort (Extended Data Table 1).

The predominance of zoonoses of wildlife origin in emerging 
 diseases has led to a series of programs to sample wildlife, discover 
novel viruses, and assess their zoonotic potential4,23,25,26. To inform 
their scale and scope we calculate the expected number of as-yet undis-
covered viruses and zoonoses per host species using our best-fit GAMs 
and a scenario of increased research effort (Methods, Supplementary 
Table 4). We then project these ‘missing viruses’ and ‘missing zoon-
oses’ geographically (Fig. 3, Extended Data Figs 3–8) to identify regions 
of the world where targeted, future surveillance to find new viruses 
and zoonoses will be most effective. In the process of translating our 
non-spatial, species-level predictions to geographic space, we identified 
several regions where our model predictions of the number of total 
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Figure 3 | Global distribution of the predicted number of ‘missing 
zoonoses’ by order. Warmer colours highlight areas predicted to be of 
greatest value for discovering novel zoonotic viruses. a, All wild mammals 
(n =  584 spp. included in the best-fit model). b, Carnivores (order 
Carnivora, n =  55). c, Even-toed ungulates (order Cetartiodactyla, n =  70). 

d, Bats (order Chiroptera, n =  157). e, Primates (order Primates, n =  73).  
f, Rodents (order Rodentia, n =  183). Hatched regions represent areas 
where model predictions deviate systematically for the assemblage of 
species in that grid cell (approximately 18 km ×  18 km, see Methods). 
Animal silhouettes from PhyloPic.
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and zoonotic viruses were systematically biased (hatched regions in 
Fig. 3 and Extended Data Figs 3–8; Methods). Local factors contribu-
ting to this bias may include geographic variation in the detection 
probability of human and/or wildlife viruses, indicating areas where 
additional research and capacity strengthening for viral detection are 
most needed. Our model predictions were not systematically biased or 
clustered across host phylogeny (Extended Data Fig. 9).

Geographic hotspots of ‘missing zoonoses’ vary by host taxonomic 
order, with foci for carnivores and even-toed ungulates in eastern and 
southern Africa, bats in South and Central America and parts of Asia, 
primates in specific tropical regions in Central America, Africa, and 
southeast Asia; and rodents in pockets of North and South America 
and Central Africa. Areas where ‘missing zoonoses’ predictions were 
systematically biased varied by taxonomic order, but included large 
parts of Africa for the all-mammal dataset (Fig. 3a, Extended Data  
Figs 3–8f). By contrast, the distribution of bias in predicting the 
 ‘missing viruses’ for all mammals was limited to patches of northeastern  
Asia, Greenland, peninsular Malaysia, and scattered grid cells in 
western Asia and Patagonia (Extended Data Fig. 3c). We also identify 
geographic regions with large numbers of mammal species currently 
lacking any information regarding their viral diversity (Extended Data 
Figs 3i–8i). In combination, these maps can be used for cost-effective 
allocation of resources for viral discovery programs, such as the Global 
Virome Project (D. Carroll et al., submitted).

Finally, a significant challenge to preventing future disease emer-
gence is estimating the zoonotic potential of a newly discovered viral 
species or strain based on viral traits4–6,27. The best model for deter-
mining whether or not a known virus (n =  586 mammalian viruses) 
has been observed as zoonotic explained 27.2% of total deviance and 
included maximum phylogenetic host breadth (PHB—a virus-specific 
trait that measures the phylogenetic range of known hosts,  excluding 
humans), research effort, whether or not a virus replicates in the 
 cytoplasm, is vector-borne, or is enveloped, and average genome 
length (Fig. 4). Using the ‘stringent’ dataset to define whether a virus is 
zoonotic resulted in a reduced model that excluded enveloped status 
and genome length (Extended Data Table 1). Our findings confirm a 
positive relationship between zoonotic potential and ability to replicate 
in the cytoplasm7, and that viruses with arthropod vectors may be able 
to infect a wider range of mammalian hosts5. Our phylogenetically 
explicit measure of host breadth, PHB, can be used at various hierar-
chical taxonomic levels to quantify and rank viruses from specialist to 
generalist, and was the strongest predictor of zoonotic potential (12.4% 
of total deviance explained). This highlights the value of field programs 
to identify the natural host range of newly discovered pathogens in 
order to develop early proxies for their zoonotic potential4. Significant 
variation in PHB across viral families is suggestive of intrinsic differ-
ences in the ability of a virus to infect diverse hosts, and this relates to 
the proportion of observed zoonoses in each family (Fig. 4a).

Figure 4 | Traits that predict zoonotic potential of a virus. a, Box plot 
of maximum phylogenetic host breadth per virus (PHB, see methods) for 
each of 586 mammalian viruses, aggregated by 28 viral families. Individual 
points represent viral species, colour-coded by zoonotic status. Box plots 
coloured and sorted by the proportion of zoonoses in each viral family.  
b–d, Partial effect plots for the best-fit GAM to predict the zoonotic 
potential of a virus. b, Maximum PHB. Viruses that infect a 

phylogenetically broader range of hosts are more likely to be zoonotic. 
c, Research effort (log, number of PubMed citations per viral species). 
d, Whether or not a virus replicates in the cytoplasm or is vector-borne. 
Viral genome length and whether or not a virus is enveloped improved the 
overall predictive power but were non-significant and are not shown  
(see Extended Data Table 1).
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We acknowledge several important caveats in this study. First, our 
estimates of missing viruses and missing zoonoses per species are based 
on the current maximum observed research effort from the literature, 
and these estimates should be viewed as relative, not absolute. The true 
size of the undiscovered mammalian virome will probably increase with 
new genetic tools for unbiased viral discovery and in-depth studies 
that repeatedly sample wildlife populations over time25. Second, our 
 ecological and biological predictor variables only explain a portion of 
the total variation in viral richness per host and zoonotic  potential 
based on viral traits, although this is greater than that reported in 
comparable order-specific studies10,12. Third, while we control for 
research effort we cannot account for viruses or host associations that 
have completely evaded human detection to date, nor those identified 
but not published. Additional resources to support better data sharing 
and on-the-ground viral surveillance in the species and regions we 
identify would help validate predictive models to identify zoonotic viral 
hotspots, and streamline costly efforts to develop measures to prevent 
their future emergence.

The analyses reported herein have broad potential to assist in expe-
diting viral discovery programs for public health. Our host-specific 
analyses and estimates of missing zoonoses allow us to identify which 
species and regions should be preferentially targeted to characterize 
the global mammalian virome. Our viral trait framework then allows 
prioritization of newly discovered wildlife viruses for detailed charac-
terization (for example, by sequencing receptor-binding domains, and 
conducting in vitro and in vivo infection experiments23) to assess their 
potential to threaten human health.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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METHODS
No statistical methods were used to predetermine sample size. The experiments 
were not randomized and the investigators were not blinded to allocation during 
experiments and outcome assessment.
Database. To construct the mammal–virus association database we initially 
extracted all viruses listed as occurring in any mammal from the International 
Committee on Taxonomy of Viruses database (ICTVdb), and further individually 
went through each virus listed in the ICTV 8th edition master list and searched the 
literature for mammalian hosts. All viral species names were synonymized to ICTV 
8th edition, which was the global authority on viral taxonomy at the start of our 
data collection in 2010 (ref. 16). From 2010–15 the authors and a team of research 
assistants and interns at EcoHealth Alliance compiled mammal species associa-
tions for each of 586 unique viruses published in the literature between 1940–2015 
initially by using the virus name and synonyms as the search keywords in the 
major online reference databases (Web of Science, PubMed, and Google Scholar) 
in addition to searching in books, reviews, and literature cited in sources we had 
already obtained. To narrow the search for hosts for well-researched viruses, we 
additionally included the terms ‘host(s)’, ‘reservoir’, ‘wildlife’, ‘animals’, ‘surveillance’, 
and other relevant terms to find publications related to host range. Associations 
were cross-checked for completeness with the Global Mammal Parasite Database 
for primate, carnivore and ungulate viruses, version as of Nov 2006 (GMPD,  
http://www.mammalparasites.org)29 and other published reviews specific to bats 
and rodents12,30,31. We excluded all records without species-level host information, 
and those where we could not track down the primary references. Records of  
mammal–virus associations from experimental infection studies, zoological parks 
or captive breeding facilities, or cell culture discoveries were excluded. Host species 
were defined as domestic or wild following the list of domestic animal species 
from the Food and Agriculture Organization (FAO)32, and we removed the black 
rat (Rattus rattus) and domestic mouse (Mus musculus) from the domesticated 
list as these two species make up their own ‘peri-domestic’ category. Host species 
were categorized as either occurring in human modified habitats or being hunted 
by humans—both estimates for human contact—according to the IUCN Red List 
species descriptions33.

To control for the fact that some detection methods are more reliable than others 
in identifying the pathogen of interest, we recorded the detection method used for 
each host–virus association and scored these as 0, 1, or 2 according to the  reliability 
of detection method used. Viral isolation and PCR detection with sequence  
confirmation were scored as a 2 (= stringent data); and serological methods were 
scored as a 0 or 1, with viral or serum neutralization tests (= 1), and enzyme-
linked immunoassays (ELISA), antigen detection assays, and other serological 
assays scored as (= 0). ‘Stringent data’ were analysed separately to remove potential 
uncertainty owing to cross-reactivity with related viruses. We exhaustively searched 
the  literature to identify a stringent detection for each mammal–virus pair, and 
only included the serological finding for that pair if no molecular or viral isolation 
studies were available. We partitioned data and conducted separate analyses for the 
entire data set (0 +  1 +  2 detection quality) and the stringent data (score of 2) to 
reduce the noise from potential serological cross-reactivity. Full list of host–virus 
associations, detection methods, and associated references are provided in our data 
and code repository at http://doi.org/10.5281/zenodo.596810.

Our operational definition of a zoonotic virus includes any virus that was 
detected in humans and at least one other mammalian host in at least one primary 
publication, and does not imply directionality. Our complete dataset of mammalian 
viral associations demonstrates evidence of past or current viral infection which 
we believe is a reasonable proxy for measuring spillover, and our stringent dataset 
specifically is more robust to exclude species that may have been exposed to a 
given virus versus those that show some evidence for replication within the host 
species. Our bi-directional definition of spillover follows a proposal by the WHO 
that defines a zoonosis as “any disease or infection that is naturally transmissible 
from vertebrate animals to humans and vice-versa” (http://www.who.int/zoonoses/
en/) and excludes any human pathogens that recently evolved from nonhuman  
pathogens (for example, HIV in primates), as per Woolhouse and Gowtage-
Sequeria (2005) (ref. 1).

In order to address influence of transmission from humans to wildlife in our 
models, we also ran our GAM model fitting and selection procedure (see below) 
on a subset of data that excluded any probable ‘reverse zoonotic’ viruses. We first 
searched our entire dataset and removed any clear instances of transmission 
from humans to primates, for example, including records from zoological parks 
and wildlife rehabilitation centres (as previously noted). We then  additionally 
removed several human viruses most commonly transmitted from humans back 
to non- human primates to create a subset of data without the most common 
reverse zoonotic viruses (adeno-associated virus-2; human adenovirus D; human 
 herpesvirus 4; human metapneumovirus; human respiratory syncytial virus; 

measles virus; mumps virus)34,35. We present these additional analyses excluding 
reverse zoonoses and associated code at http://doi.org/10.5281/zenodo.596810.

Total viral richness was calculated as the number of unique ICTV-recognized 
viruses found in a given host species, and zoonotic viral richness was defined as 
the number of unique ICTV-recognized viruses in a given host species that were 
also detected in humans in our database.

To assess research bias for both host and virus, we searched ISI Web of 
Knowledge, including Web of Science and Zoological Record, and PubMed for 
the number of research publications for a given host or pathogen. We recorded two 
values for the number of research papers for a host. The first was a simple search 
by scientific binomial in Zoological Abstracts where we recorded the number of 
papers published between 1940–2013 for each host species. We also recorded 
the number of disease-related publications for each species using the scientific 
 binomial AND topic keyword: disease*  OR virus*  OR pathogen*  OR parasit* . 
The *  operator was used in our search criteria to capture all words that begin with 
each term, for example, ‘parasit* ’ would return hits for ‘parasite’, ‘parasites’, and 
‘parasitic’. These search criteria broadly included papers that examined disease or 
diseases, virus or viruses, pathogen or pathogens, parasite parasites, or parasitology, 
for each species. Only one measure of per-host research effort was included at a 
time in model selection. As these metrics are highly correlated and the number of 
disease related citations per host outperformed the total number of publications 
per host in all but one model (all-data zoonoses), we decided to use disease-related 
publications as our per-species research effort measure for all models to improve 
interpretability. We also recorded the number of publications for each of 586 virus 
species using a keyword search by virus name in PubMed and Web of Science. Only 
one measure of per virus research effort was included at a time in model selection.

We used a phylogenetically corrected measure of body mass (see details below 
under ‘Phylogenetic signal’) as our main life history predictor variable, because 
it was the only one for which a nearly complete dataset existed for the species in 
our dataset. We used the body mass recorded in the PanTHERIA database36 for 
709 species. For 3 species, we used the second choice option, body mass recorded 
in the AnAge database37. For 11 species, we used the third choice option of the 
extrapolated body mass recorded in PanTHERIA, which is based on body length 
or forearm length, depending on species. For 36 species, we used the average 
body mass for members of the genus that had a recorded body mass. We explored 
other life-history variables related to longevity38, reproductive success, and basal 
 metabolic rate but these were ultimately excluded owing to the high number of 
missing records.
Phylogenetic signal. We address the issue of non-independence of host 
 species traits owing to shared ancestry39 in our analyses by first quantifying 
the  phylogenetic signal for each variable in our model using Blomberg’s K40. 
Blomberg’s K measures phylogenetic signal in a given trait by quantifying trait 
variance  relative to an expectation under a Brownian motion null model of evolu-
tion using a  phylogenetic tree with varying branch lengths. Blomberg’s K-values 
are scaled from 0 to infinity, with a value of 0 equal to no phylogenetic signal and 
values greater than 1 equal to strong phylogenetic signal for closely related species 
that share more similar trait values. While there is no clearly defined K value cut-
off in which to apply phylogenetic comparative methods, non-significant value 
of < 1, or more conservatively < 0.5, are typical for traits that are phylogeneti-
cally independent. The only host variables we examined with significant K values 
> 0.5 were host body mass, and our direct measure of phylogenetic distance to 
humans. While there are several tools available to control for phylogeny in multi-
variate analyses, for example, using phylogenetic generalized least square models  
(for example, PGLS)41, there is currently no modelling approach to control for 
 phylogeny using GAMs. More importantly, a wholesale effort to control for 
 phylogeny across all variables in our analysis was not appropriate here, as we 
are explicitly testing the relative importance of phylogenetic distance to humans 
 versus other host traits including measures of human–wildlife contact to predict 
the  proportion of zoonotic viruses for a given host species. This left body mass as 
the only variable in our models, excluding our direct measures of phylogenetic 
distance, with a significant Blomberg K value that was greater than 1. We con-
trolled for the significant effect of shared evolutionary history using a phylogenetic 
eigenvector regression (PVR)42,43 on body mass. The PVR approach allowed us to 
remove phylogenetic signal for any phylogenetically non-independent  variables 
and then include the corrected values back in our GAMs, while retaining  predictor 
variables like phylogenetic distance to humans as unmodified. We calculated 
PVR for body mass using the R package PVR and our custom-build maximum 
likelihood host phylogeny using cytochrome b sequences constrained to the 
order-level topology of the mammalian supertree28,44. Our new variable for body 
mass that controls for phylogenetic signal (PVRcytb_resid) removed most of the 
 phylogenetic signal, with K =  3.5 unadjusted, and K <  0.5 after PVR correction. 
Our new metric of body mass scales in the same way, with larger values equal to 
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species with larger body mass. PVR body mass was included in our GAM model 
selection for the total viral richness and zoonotic virus models.
Host phylogenetic analysis and phylogenetic host breadth. We used two  different 
mammal phylogenetic trees in our analyses and used a model selection framework 
to determine which best explained our observed association with zoonotic viral 
richness. First the mammal supertree was pruned in R (package ape, function drop.
tips) to include only synonymous species for the 753 species in our database28,45. 
We synonymized all host species names between the mammal supertree and the 
host associations in our database using the IUCN Red List33. If the species was 
listed as ‘cattle’ it was assumed to be Bos taurus, all other records were excluded 
if there was ambiguity as to the scientific name for the host species. Second, a 
maximum likelihood cytochrome b tree was generated using the constraint of a 
multifurcating tree with taxa constrained to their respective orders and the order-
level topology matching that of the mammal supertree6, as per this Newick tree 
f il e: ( MO NO TR EM AT A, (( DI DE LP HI MO RP HI A, (D IP RO TO DO NT IA ,P ERAM E 
L EM OR PH IA )) ,( PR OB OS CI DE A, (( PI LO SA ,C IN GU LA TA ), (( (( RO DE NT IA ,L AG  
OM OR PH A) ,( PR IM AT ES ,S CA ND EN TI A) ), (( (( CETARTIODACTYLA,PERISSO 
DACTYLA),CARNIVORA),CHIROPTERA),EULIPOTYPHLA))))))). T       h   i s 
 g en er ated a  higher-resolution species-level mammal tree using cytochrome b data, 
with more reliable positioning of the higher-level taxonomic relationships than 
was obtained in exploratory phylogenetic analyses using cytochrome b data alone. 
GenBank accession numbers and cytochrome b sequence lengths for each species 
are provided in in our data and code repository. Cytochrome b gene fragments 
ranged from 143 to 1,140 bp, with > 1,000 bp available for 558/665 (84%) of the 
taxa. Data derived from the cytochrome b tree constrained to the topology of the 
mammal supertree was selected as the best option in all best-fit GAMs.

Sequences were aligned using MUSCLE with default setting in Geneious R6, 
and checked visually for errors46. The best maximum likelihood tree with and 
without the constraint tree were generated using RAxML-HPC2 on XSEDE 
via the CIPRES Science Gateway server v.3.1 (ref. 47) using a GTR model with  
parsimony seed, 1.000 bootstrap replicates, and the following, specific parameters 
(raxmlHPC-HYBRID -s infile -n result -x 12345 -g constraint.tre -N 1000 -c 25 -p  
12345 -f a -m GTRCAT).

Matrices of pairwise patristic distances between all species, including Homo 
sapiens, were calculated from the two phylogenies using the ‘cophenetic’ function 
in the R package ape45. Phylogenetic trees (Newick format for pruned supertree 
and cytochrome b tree) and matrices of phylogenetic distance from humans are 
provided in the data and code repository.

We calculated mean, median, max., min., IQR, and standard deviation 
 (represented as generic function F in equation (1) of phylogenetic host breadth 
(PHB) from all known mammalian hosts for each virus using the pairwise  patristic 
distances d( )i j,  for each mammal–mammal association for all hosts of a given virus 
excluding humans, where i indexes each mammal in the database, as does j, and J 
represents the total mammals in the database. We aggregated these PHB values 
using mean, median, or maximum values at a viral species, genus and viral family 
level to generate higher-level taxonomic variables of host breadth per viral group. 
Our measure is similar to those developed by previous studies to understand 
 parasite host specificity48–50, but here we create a generalizable variable to measure 
viral host breadth that can be aggregated at different viral taxonomic levels.

=
=

PHB F d (1)i
J

j i j0 ,

To make Extended Data Fig. 9, taxon names and terminal branches of cytochrome 
b tree constrained to supertree were colour-coded using residual from the best-
fit zoonotic virus GAM (predicted minus observed zoonotic viral richness) for 
wildlife species, and plotted using the plot.phylo function in the R package ape45. 
Symbols (circles) at terminal taxa additionally added to better visualize  residual 
value colours were added using willeerd.nodelabels function (http://dx.doi.
org/10.5281/zenodo.10855). All marine mammals, domestic animals, and other 
taxa with missing data were coded as grey for missing data.

Viral richness heat map (Extended Data Fig. 2) was generated using the R 
package pheatmap, and the ‘complete’ hierarchical clustering algorithm to sort 
cells across rows and columns by similar values of viral richness. All box plots, 
histograms and all other figures generated in R v.3.3.0 (ref. 51). R code for primary 
figure generation is provided in the code repository.
GAM fitting and selection. We fit a set of generalized additive models (GAMs) 
that included all of our selected potential variables explaining the number of total 
viruses or number of zoonoses in hosts, as well as whether viruses were zoonotic 
(for conceptual framework and summary of each GAM see Extended Data Fig. 1;  
for full variable list and data sources see Supplementary Table 1). Our use of GAMs, 
an incorporation of smooth spline predictor functions into the generalized  linear 
model (GLM) framework, allowed us to examine the functional form of our 

 predictor variables (for example, Figs 2 and 4). Categorical and binary  variables 
(for example, host order, IUCN status of hunted or not, and certain viral traits) 
were fit as random effects of each variable level. We used automated term  selection 
by double penalty smoothing52 to eliminate variables from the models. This 
method removes variables with little to no predictive power and has been shown 
to be comparable or superior to comparing alternate models with and without 
 variables. We did use the model comparison method for domestic animals, where 
the  sample size was not sufficient for fitting all variables. In this case  dropping 
 variables by double penalty smoothing still allowed pruning the model list to 
 eliminate redundant models. Where there were competing variables measuring 
the same  mechanistic effect, we fit alternate GAMs using only one of each of these 
variables (as specified in below and in the Extended Data Fig. 1). These included 
phylogenetic  variables, citation counts from alternate databases, and different 
measures of human  population/host overlap. For example, to  capture host phy-
logeny we used phylogenetic distance based on either the  mammal  supertree20 or a  
purpose-built cytochrome b constrained by the  topology of the mammal supertree, 
but never both in the same model. For human population variables, we looked at 
either  variables measuring overlap of species range with human-occupied areas, 
or human population in those areas, as area- and  population-based measures 
were highly co-linear. For citation variables, we looked at either all citations or the 
number of disease-related citations for each host  species, not both, and similarly 
citations in either PubMed or Web of Knowledge. We used a binomial GAM to 
analyse the 586 mammalian viruses in our database and identify viral traits that 
may serve as predictors of zoonotic potential. Co-linearity was not a major issue 
among variables included in the same model.

We inspected models within 2 AIC units of the model with the lowest AIC, 
and present the outputs of the best-fit and all other top models (< 2 ∆ AIC) in our 
data and code repository. In general, variable effects retained the same functional 
form and effect size across models within 2 ∆ AIC—differences were limited to the 
adding or dropping of very weak, insignificant effects, or switching between highly 
correlated competing variables such as citation counts from different databases.

For our model of number of zoonoses per host, we used the total number of 
observed viruses per host as an offset, effectively fitting a model of proportion of 
zoonotic viruses per host. We found this variable had a coefficient near to one 
when it was used as a linear predictor, indicating its appropriateness as an offset.

We repeated the model selection process for all models using the more stringent 
set of data that used only virus identified in mammal hosts using viral isolation, 
PCR, or other methods of nucleic acid sequence confirmation, that is, that excluded 
all associations detected via serology.

All models were fit using the MGCV package for R (version 1.8-12.). We used 
the model with the lowest AIC to predict the number of expected zoonotic viruses 
for each host species, using all the data from our database that had  complete obser-
vations for the best model. Our top models consistently outperform the  alternatives 
by wide margins, as measured by AIC. We used standard methods in the R 
package MGCV to calculate deviance explained, which is defined as (D_null – 
 D_model)/D_null. In this formula, D_null is the deviance (− 2 ×  likelihood) of an 
intercept-only, (or, in the case of the zoonoses model, offset-only), model, while 
D_model is the deviance of our best-fit model.

Analyses were limited to terrestrial mammal species as defined by the IUCN 
Red List (marine mammals were excluded) and we ran separate analyses for wild 
and domestic animals. As domestic animals made up a much smaller dataset 
(n =  32 species) with a unique set of explanatory variables that differed from the 
wild species analyses, these models were fit separately. Domestic species results are 
also discussed separately (see Supplementary Discussion) as they are tangential 
to the primary findings.
Model cross-validation. We used k-fold cross-validation to evaluate goodness of fit 
for all models. The data was divided into ten folds, selected randomly. For each fold, 
the model was re-fit based on the other nine folds, and goodness of fit was assessed 
by conducting a nonparametric permutation test comparing the predicted values 
versus the real values for the kth fold, where a non-significant result indicates that 
predictions are unbiased. Poisson models goodness-of-fit may be compared via a 
parametric χ2 permutation test on deviance values, but this test is inappropriate 
in the case of models with low mean values, as is our case for some of our GAMs53. 
The k-fold cross-validation confirmed the robustness of our model predictions 
for wild mammals, code and outputs from these tests for each best-fit GAM are 
provided in Supplementary Table 2.

In addition to randomly selected k-fold cross-validation, we evaluated the 
robustness of our models via a non-random geographic cross-validation, code and 
summary document provided in our code and data repository. In order to mean-
ingfully organize species in our dataset by geographic areas, we used the 34 zoogeo-
graphic regions for terrestrial mammals recently redefined by Holt et al.54. Using 
QGIS55, a mammal-specific zoogeographical shapefile provided by Holt’s group 
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at the University of Copenhagen (http://macroecology.ku.dk/resources/ wallace) 
was intersected (using QGIS Vector >  Geoprocessing Tools >  Intersect) with a 
shapefile of IUCN’s host ranges for all mammals in our database. Areas of these 
intersections were then calculated using an equal-area projection (Mollweide), and 
each host was assigned to only the region that contained the greatest  proportion 
of its range. We systematically removed all observations  (species) from each given 
zoogeographical region, re-fit the model using all observations from outside 
the region, then performed a non-parametric permutation test comparing the 
 predicted values to the observed values for that region. Non-significant results 
indicate that model predictions are unbiased. Significant results for a given 
zoogeographic region suggest that there are location-specific biases that remain  
unexplained. This systematic zoogeographic cross-validation supported the overall 
robustness of our model predictions for several models, that is, all-data zoonoses, 
all-data total viral richness, and stringent-data total viral richness models. For these 
models, even though a majority of zoogeographic regions were unbiased, we still 
identified several zoogeographic regions that showed significant bias. Our zoogeo-
graphic cross-validation was equivocal for the stringent-data zoonoses model, with 
eight regions that showed evidence of bias and seven regions which showed no 
evidence of bias (Supplementary Table 3).

The presence of biased regions in our zoogeographic cross-validation sug-
gested the possibility that there is a systematic bias associated with geography not 
captured by the predictor variables in our models. To further investigate this, we 
added zoogeographical region as a categorical random effect to each of our best-
fit models. For three of our best-fit GAMs (all-data total viruses, stringent-data 
total viruses, and stringent-data zoonoses) the addition of zoogeographical region 
as a categorical random effect decreased the model AIC and increased the total 
 deviance explained by 3–5%. The all-data zoonoses model, which was used to 
 create the series of maps in the main manuscript, does not improve with the inclu-
sion of zoogeographical region. However, the improved predictive power of models 
using region-specific terms is offset by the increase in degrees of freedom (that 
is, if we included 31 zoogeographic regions as separate terms) and, more impor-
tantly, a decreased interpretability of our models—especially when compared to 
the geographical variables we used, such as host area or species range overlap with 
human modified habitat. We opted not to include these random effects in our final 
GAMs in favour of keeping only variables interpretable in the context of our host 
trait-specific framework. Instead, we indicate areas of geographic bias directly on 
our spatially mapped outputs. (See ‘Calculating and visualizing missing viruses 
and missing zoonoses’, below.) Summaries of these models, along with changes in 
relative deviance explained for the other explanatory variables when zoogeographic 
region is added as a random effect, are provided in our code and data repository.
Spatial variables. For all the wildlife hosts we used the geographic range infor-
mation obtained from the IUCN spatial database version 2015.2. Wildlife host 
species shapefiles needed to replicate analysis are hosted on our Amazon S3 storage 
(https://s3.amazonaws.com/hp3-shapefiles/Mammals_Terrestrial.zip)33. IUCN 
depict species’ range distributions as polygons based on the extent of occurrence 
(EOO), which is defined as the area contained within a minimum convex hull 
around species’ observations or records. This convex hull or polygon is further 
improved by including areas known to be suitable or by removing unsuitable or 
unoccupied areas based on expert knowledge. To accurately calculate the area in 
km2 of each host species we projected the polygons to an equal area projection 
(Mollweide).

We calculated various thresholds of mammal sympatry based on percentage 
of range overlap for each wild species in our database using IUCN shape files for 
all mammals globally. We define mammal sympatry as the number of mamma-
lian species that overlap with the target species’ geographic range. We calculated 
mammal sympatry for each wild species in our database at six different thresholds 
based on the percentage area overlap with the target species geographic range, 
that is, the number of other wild mammal species with any (> 0%), ≥  20%, ≥  40%,  
≥  50%, ≥  80%, or 100% range overlap. The six different thresholds for mammal 
sympatry were included as competing terms in our model selection for the total 
viral richness models.

We derived and tested several global measures to estimate the level of human 
contact with each wild species in our database. To estimate the area of host 
 geographic range covered by crops, pastures, rural and urban areas—as  measures 
of global human contact with a given wildlife species—each species polygon was 
intersected (overlapped) with spatial data representing those land cover types. 
Additionally, we calculated the total number of people within each host  geographic 
range using data from HYDE database56, and also separately totalled the number 
of people in rural and urban populations. We obtained data on the distribution of 
cropland, pastures, rural and urban areas also from the HYDE database56 for the 
years 1970, 1980, 1990, 2000 and 2005 with a spatial  resolution of 5 ×  5 arc  minutes, 
equivalent to 10 km by 10 km at the equator. These datasets were  created by 

 combining information from satellite imagery and sub- national crop and  pasture 
statistics56. In our GAMs, we used several transformations of these variables as 
competing proxies for human–wildlife contact: the log-transformed area of host 
range that overlapped each type of human-modified land cover, log-transformed 
human population in the host range, log-transformed human population density 
in the host range, and the log-ratio of urban and rural human populations in the 
host range. For each of these, we also included as a variable the change in value 
from 1970 to 2005. Human–wildlife contact  variables that significantly covaried 
were excluded (set as competing terms) during the model selection process. The 
ratio of urban to rural human population was used to disentangle variables of 
human–wildlife contact that significantly covaried. For example, the total area of 
a species range that overlapped with urban and rural areas was highly correlated 
with the total geographic area variables we examined (for example, total area, and 
area in crop, pasture, rural, and urban). The ratio of urban to rural population 
allowed us to separate these signals and best represent this proxy of per-species 
human–wildlife contact. All spatial analyses were performed in R (3.3.2)51, using 
the following R libraries: raster57, rgdal58, and sp58.
Calculating and visualizing missing viruses and missing zoonoses. We used 
each respective best-fit, all-data GAM from the total viral richness and propor-
tion zoonoses models to calculate the estimated number of viruses that would 
be observed if the research effort variable for each species was equal to that of 
the most-studied wild species in our database (Vulpes vulpes with 4,433 total 
 publications and 1,477 disease-related publications). We used the prediction of the 
total virus richness GAM as the offset for the zoonoses GAM. We then calculated 
the missing viruses and missing zoonoses by subtracting the observed number of 
viruses and  zoonoses from the predictions based on maximum research for each 
wild mammalian species.

We used geographic range maps from the IUCN spatial database (2015.2) to 
 visualize the spatial distribution of observed host–virus associations, observed 
host–zoonoses associations, these associations as predicted under maximum 
research, and the maximum predicted minus the observed viruses, or the  missing 
viruses and missing zoonoses (for example, Fig. 3; Extended Data Figs 3–8; 
Supplementary Table 4). We also generated maps comparing species richness of all 
species in the IUCN database against those with viral associations in our  database. 
For each species, the distribution range was converted to a grid system with cells 
1/6 of a geographic degree (approximately 18 km ×  18 km at the equator line). 
Each grid cell was assigned a value of one to indicate presence. We repeated this 
process and assigned the observed and predicted-under-maximum-effort number 
of zoonotic viruses to their correspondent grid cells. Viral and host species richness 
maps, and both the missing viruses and missing zoonoses maps were calculated by 
overlying individual grids. Each richness map represents the sum of all values for 
a given grid cell. We repeated the process for all the host species in our database 
and created viral and species richness maps for the following orders: Carnivora, 
Cetartiodactyla, Chiroptera, Primates and Rodentia. These taxa were selected 
because they represent 681/736 (92.5%) of wild mammal species in our database.

In the process of translating our non-spatial, species-level predictions to geo-
graphic space (that is, layered raster maps), we identified several geographic areas 
where our model predictions of the number of total and zoonotic viruses were 
 systematically biased, that is, P <  0.05 (Supplementary Table 3). In order to  visualize 
the geographic biases of our non-spatial model predictions in our maps (see above 
regarding zoogeographic cross-validation), we demarcate regions with significant 
bias with hatching. Hatched regions represent areas where model predictions of 
total or zoonotic viral richness deviate systematically for the collection of species 
in that grid cell. For each grid cell we calculated whether the bias exceeded that 
expected from a random sampling of hosts. This was accomplished by summing 
the residuals from 100,000 random draws of species in our dataset that was equal 
to the number of species present in that grid cell, then identifying grid cells where 
the observed bias was outside the middle 95% of the randomly drawn distribution. 
We calculated this for all mammals, and separately for each order across all grid 
cells. Areas with observed bias (outside of 95% of the randomly drawn distribution) 
are shown with hatched regions on each missing virus and missing zoonoses map.
Animal images used in figures. Animal silhouettes added to Figs 1 and 3 and 
Extended Data Figs 1 and 2 to visually represent each mammalian order were 
downloaded from PhyloPic (http://www.phylopic.org). Images used to represent 
the orders Chiroptera, Cingulata, Diprotodontia, Lagomorpha, Peramelemorphia 
and Primates were available for use under the Public Domain Dedication license. 
Images used to represent the orders Carnivora and Rodentia (by R. Groom), 
Didelphimorphia, Pilosa, and Probscidea (by S. Werning), Eulipotyphyla (by  
C. Rebler), Certartiodactyla and Perissodactyla (by J. A. Venter, H. H. T. Prins, 
D. A. Balfour & R. Slotow and vectorized by T. M. Keesey) were  provided under 
a Creative Commons license (https://creativecommons.org/licenses/by/3.0/). We 
created the silhouette used to represent the order Scandentia.
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Data availability. All datasets (host traits, viral traits, full list of host–virus asso-
ciations and associated references, phylogenetic trees, and phylogenetic distance 
matrices) needed to fully replicate and evaluate these analyses are provided at 
http://doi.org/10.5281/zenodo.596810. The top-level README.txt file in the 
 directory details the file structure and metadata provided.
Code availability. All R code and R package dependencies needed to fully replicate 
and evaluate these analyses are provided at http://doi.org/10.5281/zenodo.596810.
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Extended Data Figure 1 | See next page for caption.
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Extended Data Figure 1 | Conceptual model of zoonotic spillover, viral 
richness, and summary of models. a, Conceptual model of zoonotic 
spillover showing primary risk factors examined, colour-coded according 
to generalized additive models used. b, Conceptual model of observed, 
predicted, and actual viral richness in mammals. c, GAMs used in our 
study to address specific components of a and b, colour-coded by model. 
Variables listed with ‘or’ under each GAM covaried and were provided as 
competing terms in model selection, and those in bold were included in 
the best-fit model using all host–virus associations. Significant variables 
from each best-fit GAM are noted with an asterisk. Zoonotic viral 
spillover first depends on the underlying total viral richness in mammal 
populations and the ecological, taxonomic, and life-history traits that 
govern this diversity (GAM 1). Second, host- and virus-specific factors 

may facilitate viral spillover. We examine the relative importance of host 
phylogenetic distance to humans, ecological opportunity for contact, or 
other species-specific life-history and taxonomic traits (GAM 2), and 
identify viral traits associated with a higher likelihood of an observed 
virus being zoonotic (GAM 3). We estimate the total and zoonotic viral 
richness per host species using GAMs 1 and 2, and calculate the missing 
viruses and missing zoonoses under a scenario of increased research 
effort (b, Methods). Owing to imperfect surveillance in both humans and 
wildlife and biases in viral detection, there may be uncertainty in the exact 
proportion of viruses that are zoonotic (b, light grey), and also between the 
actual, or true, viral richness (dotted lines) and the predicted maximum 
viral richness per host (dashed line).
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Extended Data Figure 2 | Heat map of observed total viral richness by mammalian order and viral family. Dataset includes 754 mammalian species 
and 586 unique ICTV recognized viral species. Heat map aggregated by rows and columns to group taxa with similar levels of observed viral richness.
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Extended Data Figure 3 | Global distribution of viral and host species 
richness for all wild mammals. a, Observed total viral richness (for 
n =  576 host spp.); b, predicted total viral richness given maximum 
research effort; c, missing viruses or predicted minus observed total 
viral richness; d, observed zoonotic viral richness (n =  584); e, predicted 
zoonotic viral richness given maximum research effort; f, missing 
zoonoses or predicted minus observed zoonotic viral richness (same 
as included in Fig. 3a); g, global mammal species richness (n =  5,290); 

h, mammal richness for species in our database (n =  753); i, mammal 
species with no described viruses in the literature. Warmer colours (larger 
values) in panels c and f highlight areas predicted to be of greatest value 
for discovering novel viruses or novel viral zoonoses, respectively, in 
mammals. Red/pink colours in panel i highlight areas with poor viral 
surveillance in mammal species to date. Hatched regions represent areas 
where model predictions deviate systematically for the collection of 
species in that grid cell (see Methods).
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Extended Data Figure 4 | Global distribution of viral and host species 
richness for wild carnivores (order Carnivora). a, Observed total  
viral richness (for n =  55 host spp.); b, predicted total viral richness  
given maximum research effort; c, missing viruses or predicted minus 
observed total viral richness; d, observed zoonotic viral richness (n =  55); 
e, predicted zoonotic viral richness given maximum research effort;  
f, missing zoonoses or predicted minus observed zoonotic viral richness 
(same as included in Fig. 3b); g, global host species richness for Carnivora 

(n =  276); h, host species richness for Carnivora in our database (n =  79);  
i, species of the order Carnivora with no described viruses in the literature. 
Warmer colours (larger values) in c and f highlight areas predicted to be 
of greatest value for discovering novel viruses or novel viral zoonoses, 
respectively, in carnivores. Red/pink colours in panel i highlight areas 
with poor viral surveillance in carnivore species to date. Hatched regions 
represent areas where model predictions deviate systematically for the 
collection of species in that grid cell (see Methods).
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Extended Data Figure 5 | Global distribution of viral and host species 
richness for wild even-toed ungulates (order Cetartiodactyla).  
a, Observed total viral richness (for n =  70 host spp.); b, predicted total 
viral richness given maximum research effort; c, missing viruses or 
predicted minus observed total viral richness; d, observed zoonotic viral 
richness (n =  70); e, predicted zoonotic viral richness given maximum 
research effort; f, missing zoonoses or predicted minus observed zoonotic 
viral richness (same as included in Fig. 3c); g, global host species richness 
for Cetartiodactyla (n =  229); h, host species richness for Cetartiodactyla 

in our database (n =  105); i, species of the order Cetartiodactyla with no 
described viruses in the literature. Warmer colours (larger values) in c and 
f highlight areas predicted to be of greatest value for discovering novel 
viruses or novel viral zoonoses, respectively, in even-toed ungulates.  
Red/pink colours in panel i highlight areas with poor viral surveillance  
in even-toed ungulates species to date. Hatched regions represent areas 
where model predictions deviate systematically for the collection of 
species in that grid cell (see Methods).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 6 | Global distribution of viral and host species 
richness for bats (order Chiroptera). a, Observed total viral richness 
(for n =  156 host spp.); b, predicted total viral richness given maximum 
research effort; c, missing viruses or predicted minus observed total 
viral richness; d, observed zoonotic viral richness (n =  157); e, predicted 
zoonotic viral richness given maximum research effort; f, missing 
zoonoses or predicted minus observed zoonotic viral richness (same 
as included in Fig. 3d); g, global host species richness for Chiroptera 

(n =  1117); h, host species richness for Chiroptera in our database 
(n =  192); i, species of the order Chiroptera with no described viruses in 
the literature. Warmer colours (larger values) in c and f highlight areas 
predicted to be of greatest value for discovering novel viruses or novel 
viral zoonoses, respectively, in bats. Red/pink colours in panel i highlight 
areas with poor viral surveillance in bat species to date. Hatched regions 
represent areas where model predictions deviate systematically for the 
collection of species in that grid cell (see Methods).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 7 | Global distribution of viral and host species 
richness for primates (order Primates). a, Observed total viral richness 
(for n =  71 host spp.); b, predicted total viral richness given maximum 
research effort; c, missing viruses or predicted minus observed total 
viral richness; d, observed zoonotic viral richness (n =  73); e, predicted 
zoonotic viral richness given maximum research effort; f, missing 
zoonoses or predicted minus observed zoonotic viral richness (same as 
included in Fig. 3e); g, global host species richness for Primates (n =  400); 

h, host species richness for Primates in our database (n =  98); i, primate 
species with no described viruses in the literature. Warmer colours (larger 
values) in c and f highlight areas predicted to be of greatest value for 
discovering novel viruses or novel viral zoonoses, respectively, in primates. 
Red/pink colours in panel i highlight areas with poor viral surveillance 
in primate species to date. Hatched regions represent areas where model 
predictions deviate systematically for the collection of species in that grid 
cell (see Methods).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 8 | Global distribution of viral and host species 
richness for rodents (order Rodentia). a, Observed total viral richness 
(for n =  178 host spp.); b, predicted total viral richness given maximum 
research effort; c, missing viruses or predicted minus observed total 
viral richness; d, observed zoonotic viral richness (n =  183); e, predicted 
zoonotic viral richness given maximum research effort; f, missing 
zoonoses or predicted minus observed zoonotic viral richness (same 
as included in Fig. 3f); g, global host species richness for Rodentia 

(n =  2206); h, host species richness for Rodentia in our database (n =  221);  
i, rodent species with no described viruses in the literature. Warmer 
colours (larger values) in c and f highlight areas predicted to be of greatest 
value for discovering novel viruses or novel viral zoonoses, respectively, 
in wild rodents. Red/pink colours in panel i highlight areas with poor 
viral surveillance in rodent species to date. Hatched regions represent 
areas where model predictions deviate systematically for the collection of 
species in that grid cell (see Methods).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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a Chiroptera b Carnivora d Primates e Rodentiac Certartiodactyla

Extended Data Figure 9 | Order-level phylogenies showing residuals 
from zoonoses model. a–e, Subtrees from cytochrome b maximum 
likelihood phylogeny for 558 mammal species (constrained to order-level 
topology of mammal supertree) for bats (a), carnivores (b), even-toed 
ungulates (c), rodents (d) and primates (e). Species included have at least 
one described virus association and available genetic data. Wildlife species 
names and terminal branches are colour-coded by the residuals (predicted 

minus observed) from the best-fit GAM to predict the number of zoonotic 
viruses using all data. Species with residual values between − 1 and 1 
(black) are accurately predicted within one virus. Warm colours represent 
species with positive residuals (orange > 1 to 3; red > 3). Cool colours 
represent species with negative residuals (green < − 1 to − 3; blue < − 3). 
Marine mammals, domestic animals, and species with missing data and 
not included in the best-fit models are shown in grey.
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Extended Data Table 1 | Summary of best-fit GAMs for total and zoonotic viral richness per wild mammal species, and 

probability of a virus being zoonotic

Models were selected separately using the entire dataset and a stringent dataset that excluded host–virus associations detected by serology. Variables are sorted by relative 

per cent deviance explained with in each model.

Term Value
Z 

statistic

Chi-sq 

statistic
P-value

Effective 

Degrees of 

Freedom

Total Dev. 

Explained

Relative 

Dev. 

Explained

Total Viral Richness Model (all data, n=576 species) 49.2%

Intercept 0.52 7.43 <0.001

Disease-related publications (log) 1846.57 <0.001 5.55 64.8%

Mammal sympatry (>20% range overlap) 301.38 <0.001 5.16 10.1%

Order CHIROPTERA 155.12 <0.001 1 9.9%

Order RODENTIA 95.49 <0.001 1 4.8%

Order PRIMATES 34.4 <0.001 0.94 2.5%

Phylogenetically-corrected body mass 216.42 0.009 3.82 1.9%

Order CETARTIODACTYLA 24.37 <0.001 0.94 1.8%

Geographic range (log) 18.93 0.025 3.58 1.6%

Order PERISSODACTYLA 9.95 0.001 1 1.4%

Order EULIPOTYPHLA 5.87 0.009 0.85 1.1%

Total Viral Richness Model (stringent data, n=575 species) 35.8%

Intercept -0.47 -5.31 <0.001

Disease-related publications (log) 923.02 <0.001 4.98 53.6%

Order RODENTIA 129.28 <0.001 0.98 12.6%

Order CHIROPTERA 109.23 <0.001 1 12.2%

Order PRIMATES 85.12 <0.001 1 11.8%

Mammal sympatry (>20% range overlap) 44.96 <0.001 4.69 3.9%

Phylogenetically-corrected body mass 9.65 0.036 3.51 2.8%

Geographic range (log) 11.14 0.079 2.66 1.5%

Order CINGULATA 0.87 0.286 0.76 0.6%

Order EULIPOTYPHLA 1.21 0.151 0.59 0.4%

Order PERAMELEMORPHIA 0.74 0.307 0.7 0.4%

Order SCANDENTIA 0.94 0.13 0.41 0.3%

Proportion Zoonoses Model (all data, n=584 species) 82.0% (number of zoonoses)

33.0% (proportion, w/offset)

Intercept -0.34 -8.57 <0.001

Order CETARTIODACTYLA 27 <0.001 0.88 36.3%

Phylog. dist. from humans (log, cytb tree) 12.7 0.002 1.88 17.0%

Urban to rural human population ratio in 

species range (log)
10.01 0.002 1.25 13.0%

Disease-related publications (log) 5.81 0.017 1.2 7.7%

Order CHIROPTERA 4.43 0.015 0.71 6.5%

Order PERISSODACTYLA 3.28 0.039 0.76 6.4%

Order SCANDENTIA 0.81 0.311 0.79 5.3%

Order PERAMELEMORPHIA 0.76 0.323 0.78 4.8%

Order DIPROTODONTIA 0.72 0.194 0.43 1.7%

Hunted species, IUCN 0.75 0.167 0.36 1.3%

Proportion Zoonoses Model (stringent data, n=576 species) 23.6%

Intercept -1.35 -22.66 <0.001

Phylog. dist. from humans (log, cytb tree) 56.13 <0.001 2.36 34.5%

Order CETARTIODACTYLA 22.93 <0.001 0.94 28.0%

Urban to rural human population ratio 

change, 1970-2005
16.88 0.002 4.05 19.6%

Order PERISSODACTYLA 0.86 0.308 0.83 5.0%

Change in human population density in 

range, 1970-2005
3.16 0.132 1.47 4.3%

Disease-related publications (log) 5.03 0.014 1.21 3.8%

Order DIPROTODONTIA 2.39 0.066 0.71 2.8%

Phylogenetically-corrected body mass 0.12 0.294 0.12 1.1%

Order LAGOMORPHA 0.7 0.196 0.42 0.9%

Order PRIMATES 0.62 0.097 0.28 0.1%

Viral Traits Model (all data, n=464 viruses) 27.2%

Intercept -1.59 -5.69 <0.001

Max phylogenetic host breadth w/out 

humans, (log, cytb tree) 
44.91 <0.001 2.94 45.6%

Number of publications (log) 35.83 <0.001 3.28 37.4%

Cytoplasmic replication 10.96 <0.001 0.86 9.2%

Vector-borne 4.9 0.014 0.75 4.6%

Envelope 0.88 0.166 0.46 2.3%

Average genome length (log) 0.12 0.266 0.09 0.9%

Viral Traits Model (stringent data, n=408 viruses) 21.1%

Intercept -2.23 -7.51 <0.001

Number of publications (log) 29.51 <0.001 2.64 53.1%

Max phylogenetic host breadth w/out 

humans, (log, cytb tree)
15.75 <0.001 2.53 25.5%

Cytoplasmic replication 10.33 0.001 0.88 17.5%

Vector-borne 1.87 0.085 0.6 3.9%
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Erratum: Host and viral traits 
predict zoonotic spillover from 
mammals
Kevin J. Olival, Parviez R. Hosseini, Carlos Zambrana-Torrelio, 
Noam Ross, Tiffany L. Bogich & Peter Daszak
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In this Letter, owing to an error during the production process, 
Supplementary Tables 1–4 were missing from the HTML. These four 
tables have now been added to the HTML version of the original Letter.
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