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Abstract 29 

The aquaculture industry has dramatically developed during the last two decades. However, 30 

this development has, in some cases, resulted in environmental degradation, emergence of 31 

diseases and low productivity. The need for improving disease resistance, growth performance, 32 

feed efficiency, and safe aquatic production for human consumption has stimulated 33 

development and applications of probiotics in aquaculture. Probiotics used in aquaculture 34 

include genera of Bacillus, Lactobacillus, Enterococcus, and Carnobacterium, and yeast. 35 

However, most of these probiotics are derived from terrestrial sources and not from the 36 

environment in which the aquatic animals live or the host animal. The use of “host-associated 37 

probiotics” has recently gained attention, as they offer an alternative strategy within 38 

aquaculture, which per se is dependent on the use of terrestrial microorganisms. The benefits 39 

of host-associated probiotics include improved growth performance, feed value, enzymatic 40 

contribution to digestion, inhibit adherence and colonization of pathogenic microorganisms in 41 

the gastrointestinal tract, increase hematological parameters, and immune response.  42 

The present review addressed insight into the application of host-associated probiotics within 43 

aquaculture, with special focus on their immunomodulatory and growth enhancing effects. 44 

Furthermore, the current review discusses research gaps and issues that merit further 45 

investigations.  46 

 47 
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1. Introduction 54 

Aquaculture is the fastest growing animal protein sectors to meet the demands of today’s 55 

growing worldwide population. For the satisfaction of the increased human consumption, 56 

intensive aquaculture systems at high densities have been developed (Tal et al., 2009). This 57 

intensification has however, resulted in significant damage to the aquaculture environment, due 58 

to organic wastes production which consume dissolved oxygen in ponds, and increase toxic 59 

metabolites; responsible for high mortality (Martinez Cruz et al., 2012).  For long time, 60 

chemotherapies and antibiotics were applied as an effective remedy for disease outbreaks in 61 

aquatic animals (Serrano, 2005). However, due to their excessive use, aquatic pathogens have 62 

become resistant to such treatments, along with the suppression of the host’s immune system 63 

(Capkin et al., 2015, 2017; Dawood & Koshio, 2016). Furthermore, the application of 64 

antibiotics may extend to human consumption, which could adversely affect human health and 65 

weaken the immune systems (Cheng et al., 2014; Hoseinifar et al., 2015; Langdon et al., 2016). 66 

As a result, strict regulations against antibiotic administration in livestock-, poultry-, and the 67 

aquaculture sector have been established in several countries. Alternative strategies such as; 68 

vaccines, pro -, pre -, synbiotics, and medicinal herbs must further be investigated to improve 69 

health of aquatic animals (Martínez Cruz et al., 2012; Altinok et al., 2015; Adel et al., 2016; 70 

Abdelkhalek et al., 2017; Van Doan et al., 2017; Dawood et al., 2018).  71 

Host aquatic microorganisms play a crucial role in the health maintenance by boosting the 72 

immune system, and increasing the resistance against opportunistic pathogens via the 73 

production of antimicrobial substances (e.g. Llewellyn et al., 2014; Ibrahem, 2015; Yan et al., 74 

2017). When discussing the functionality of gut microbiota, it depends on the ability of 75 

microorganisms to interact within the gastrointestinal (GI) tract, which benefit the host through 76 

influence upon its biological functions (Ramírez & Romero, 2017).  77 
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For nearly half a century the word probiotic has been used in several different ways, since Lilly 78 

& Stillwell (1965) first used it. Gatesoupe (1999) defined probiotics as “live microbial feed 79 

supplements that improve the health of both humans and terrestrial livestock”, and according 80 

to Dawood et al. (2016), probiotics is required to maintain a healthy environment for aquatic 81 

animals and to increase their performance, without any negative impacts upon the consumers.  82 

Supplementation of aquatic animal diets with probiotics positively influences growth 83 

performance, feed utilization, physiological conditions, optimize cell proliferation under 84 

stressful conditions, promote immune cell stimulation, modulate the gut microbiota and 85 

improve disease resistance (e.g. Irianto & Austin, 2003; Merrifield et al., 2010; De et al., 2014; 86 

Ringø et al., 2014; Hai, 2015a).  87 

When discussing disease resistance, the importance of a stable microbiota is worth to mention. 88 

The best evidence for this protective effect of the gut microbiota stems from an early study 89 

revealing that germfree animals are more susceptible to diseases compared to corresponding 90 

conventional animals with a “complete gut microbiota” (Collins & Carter, 1978). Germfree 91 

mouse can be killed with 10 cells of Salmonella enteritidis whereas 106 cells are needed to kill 92 

conventional mouse with a conventional gut microbiota. Therefore, it is crucial to increase our 93 

knowledge on probiotics adhering and colonising the GI tract of endothermic animals as well 94 

as aquatic animals, in the context of improved growth performance and health.  95 

When discussing the importance of probiotics in aquaculture, the mode of action and their 96 

effects on the intestinal microbiota, immunological, physiological responses, as well as growth 97 

performance must be continually investigated. Recently, there has been increasing attention 98 

towards administration of host-associated probiotics in aquaculture (Lazado et al., 2015; Li et 99 

al., 2018). However, as no clear definition per se exist, we defined host-associated probiotics 100 

as; bacteria originally isolated from the rearing water or the GI tract of the host to improve 101 

growth and health of the host.  In aquaculture, per se it is not clear, whether host-associated 102 
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probiotics are more effective than probiotics from other origins, even though there is some 103 

evidence demonstrating beneficial effects of host-associated probiotics vs. probiotics isolated 104 

from other sources (Lazado et al., 2015). One possible reason for their superior function may 105 

be because they perform better within their own original environment. Therefore, the present 106 

review addressed on the health benefits of host-associated probiotics in aquaculture, and their 107 

potential immunomodulatory and growth promoting effects. 108 

 109 

2. Sustainable aquaculture: the role of probiotics 110 

Outbreaks of infectious diseases are a major obstacle for the development of aquaculture, which 111 

adversely affect the sustainability of this industry (Mardones et al., 2018). Throughout the last 112 

decades, the aquaculture industry was heavily dependent on the use of antibiotics and 113 

chemotherapeutics for diseases control and prevention (Romero et al., 2012; Fečkaninová et 114 

al., 2017). However, the abusive use of these substances caused many adverse effects upon the 115 

host and its environment (e.g. Romero et al., 2012; Miller et al., 2016; Capkin et al., 2017; 116 

Suzuki et al., 2017), and therefore development of alternative strategies to antibiotics and 117 

chemotherapeutics are needed (e.g. Defoirdt et al., 2011; Altinok et al., 2016; Founou et al.,  118 

2016).  119 

Sustainable aquaculture has been created to preserve and develop the industry (Bostock et al., 120 

2010). In this context, several criteria have been put forward and include; vaccines, 121 

immunostimulants, pro -, pre - and synbiotics (e.g. Ringø et al., 2014; Lazado et al., 2015; 122 

Hoseinifar et al., 2016). Several types of vaccines have been developed for aquaculture, in 123 

which the most successful effects are reported in salmonids and cyprinids (e.g. Dhar et al., 124 

2014; Ringø et al., 2014; Lazado et al., 2015; Hoare et al., 2017). Recent findings have revealed 125 

that vaccines are effective for disease control in aquaculture (e.g. Johnson et al., 2008; 126 

Brudeseth et al., 2013; Assefa & Abunna, 2018). However, individual vaccines are known to 127 

be effective against only one type of pathogen; which limiting their use in aquaculture (Ardó et 128 
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al., 2008; Feodorova et al., 2014). Immunostimulants with a wide range of applications and 129 

functions have therefore, been considered as an alternative strategy to overcome the 130 

“drawback” of vaccines (Barman et al., 2013; Hoseinifar et al., 2017). These bioactive 131 

compounds boost the immune system of the host, and protect the host against wide range of 132 

pathogens (e.g. Bricknell & Dalmo 2005; Ringø et al., 2012; Hoseinifar et al., 2015; Nawaz et 133 

al., 2018).    134 

Probiotics have many beneficial properties to the host and its environment, and they are now 135 

widely used in aquaculture as growth promoters, immunostimulants, and for disease protection 136 

(Pérez-Sánchez et al., 2014; Hai, 2015b). The word probiotic stems from the Greek 137 

roots pro and bios, or “profile” (Schrezenmeir & de Vrese, 2001). As a concept, the use of 138 

probiotics to control disease is referred to as “the use microorganisms against microorganisms” 139 

(Lazado et al., 2015). During the last two decades, numerous comprehensive reviews have 140 

addressed on probiotics and their impacts in aquaculture (e.g. Gatesoupe 1999; Verschuere et 141 

al., 2000; Irianto & Austin, 2003; Balcázar et al., 2006; Merrifield et al., 2010; Pérez-Sánchez 142 

et al., 2014; Ringø et al., 2014; Hai, 2015a,b; Hoseinifar et al., 2016) with  multidimensional 143 

actions. Probiotics offer numerous beneficial effects, including immunomodulatory, nutritional, 144 

and environmental capacity, and therefore have a great competitive advantage as prophylactic 145 

against disease (Ohashi & Ushida, 2009; Lazado et al., 2015). While there is no concrete 146 

evidence to conclude that probiotics are better than immunostimulants or vaccines, the 147 

beneficial effects upon the host and their environment ensure that probiotics will remain one of 148 

the most promising approaches used to control diseases and the subsequent environmental 149 

modifiers (Newaj-Fyzul & Austin, 2015). Several probiotics species are used in aquaculture; 150 

e.g. Bacillus sp., Lactobacillus sp., Enterococcus sp., Streptomyces, Carnobacterium sp., and 151 

yeast (e.g. Gatesoupe, 2007; Martínez Cruz et al., 2012; Tan et al., 2016; Elshaghabee et al., 152 
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2017). Table 1, 2 and 3 summarize the results of studies from 2005 to 2018, focusing on the 153 

effects of host-associated probiotics as growth promoters and immunostimulants in aquaculture. 154 

 155 

3. Host-associated vs. terrestrial probiotics 156 

To our knowledge, commercial probiotics have been used in aquaculture since the early 80ties 157 

(Boyed et al., 1984) and until today (e.g. Zheng et al., 2017; Zhou et al., 2017; Interaminense 158 

et al., 2018; Pereira et al., 2018). However, recently, attention has focused on using host-159 

microbiota as a probiotics source (e.g. Lazado et al., 2015; Interaminense et al., 2018; Li et al., 160 

2018; Wang et al., 2018). They are naturally established within the host defense system (Gomez 161 

et al., 2013; Llewellyn et al., 2014), and revealed a large number of beneficial characteristics; 162 

such as intestinal enzymes and novel bioactive lipid sebastenoic acid (Lazado et al., 2012; 163 

Sanchez et al., 2012). This is important for fish farming, as fish are a rich source of probiotic 164 

strains that provide additional mechanisms against numerous infectious diseases (e.g. 165 

Spanggaard et al., 2000; Pandiyan et al., 2013; Carnevali et al., 2017). Host-related microbiota 166 

can be an alternative probiotic source within aquaculture, as terrestrial sources per se are mostly 167 

used (Lakshmi et al., 2013; Lazado et al., 2015). Today, most probiotic candidates are derived 168 

from the mucosal layers, the autochthonous bacteria, of aquatic animals (Balcázar et al., 2007; 169 

Newaj-Fyzul et al., 2007; Caipang et al., 2010; Lazado et al., 2010; Maeda et al., 2014; Lazado 170 

& Caipang 2014a; Tzuc et al., 2014). For example, probiotics isolated from the GI tract of 171 

channel catfish (Ictalurus punctatus) (Larsen et al., 2014), rainbow trout (Oncorhynchus 172 

mykiss) (Spanggaard et al., 2000; Araújo et al., 2015), Atlantic cod (Gadus morhua) (Dhanasiri 173 

et al., 2011; Fjellheim et al., 2007), and Atlantic salmon (Salmo salar) (Jöborn et al., 1999). 174 

Two basic principles are generally applied as a guide for the use of host-associated bacteria as 175 

a probiotic (Lazado & Caipang, 2014a). The differences in physiological peculiarities and 176 

discrepancies of each host, as well as the considerable influences of various environmental 177 

factors make it hard to establish a probiotic candidate for global application (Lazado et al., 178 
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2015). For example, growth and bacteriocin production of Leuconostoc mesenteroides and 179 

Lactobacillus curvatus are affected by pH, temperature, and aquatic animal species (Mataragas 180 

et al., 2003). These parameters were reported to affect the adhesion ability of lactic acid bacteria 181 

(LAB) (Tuomola et al., 2001). Physiological variances between marine and terrestrial 182 

microorganisms exist, and impose differential responses to diverse environment (Morgan-Kiss 183 

et al., 2006; Lazado et al., 2015). Furthermore, a discrepancy exists in acquisition mechanism 184 

between marine and terrestrial microorganisms involved in inhibition of pathogen growth 185 

(Sandy & Butler, 2009), which is controlled by siderophore production; a mechanism of 186 

probiotics (Lazado et al., 2010; Ahmed & Holmström, 2014). The mode of action of bacterial 187 

iron acquisition includes siderophore-mediated transport, direct import through divalent metal 188 

transporters, or direct piracy from ironbound host proteins (Caza & Kronstad, 2013; 189 

Pokorzynski et al., 2017). Siderophores are low molecular weight substances with a high 190 

affinity for ferric iron, which are synthesized and secreted by bacteria in order to scavenge iron 191 

when the availability is limited. In Gram-negative bacteria, siderophore-bound iron is 192 

transported through cognate outer membrane receptors that require energy transduction via the 193 

TonB-ExbB-ExbD protein complex (Andrews et al., 2003; Ellermann & Arthur, 2017). The 194 

second mechanism depends on specific enzymatic hydrolysis of the siderophore, which serves 195 

to weaken its interactions with iron, and enable its liberation. In both Gram-negative and Gram-196 

positive bacteria, ferrous iron is directly transported through cytoplasmic membrane permeases 197 

or ABC transporters (Kammler et al., 1993; Sabri et al., 2006; Shapiro & Wencewicz, 2016). 198 

Some bacterial pathogens belonging to family Neisseriaceae, Pasteurellaceae and 199 

Moraxellaceae are also capable of utilizing host sources of iron by expressing outer membrane 200 

receptors that directly bind to host iron-binding proteins such as transferrin (Cornelissen, 2003; 201 

Parrow et al., 2013). The bottlenecks caused by the physio-chemical parameters on probiotic 202 

properties may be eliminated by using host-associated microorganisms as probiotics if these 203 
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microorganisms are originally isolated from the environment where they were applied 204 

(Verschuere et al., 2000;  Vadstein et al., 2013). Because the highest physiological activities of 205 

microorganisms are obtained in their natural habitats, we may presume that the ultimate benefits 206 

are achieved when they are applied in those conditions (Ibrahem, 2015). 207 

Because existing knowledge is fragmentary, it is difficult to draw a solid scientific conclusion 208 

to whether host-associated microbiota are superior to terrestrial sources (Lazado et al., 2015). 209 

However, it is believed that the survival rate and function of host-associated probiotics are 210 

optimal when they are applied in the “natural” environment (Murall et al., 2017). The 211 

application of both host and non-host candidate probiotics in aquaculture represent promising 212 

future alternatives (Lazado et al., 2015). Additional beneficial effects are obtained when 213 

combining two or more microorganisms, providing that they do not inhibit each other. Previous 214 

findings have indicated that the functionality and efficacy of their administration are improved 215 

with the use of multi-strain probiotics (Timmerman et al., 2004; Mohapatra et al., 2014). In 216 

probiotics-mediated disease prevention, the best level of protection for a broad spectrum of fish 217 

pathogens can only be achieved through the use of multiple strains in dietary preparations 218 

(Merrifield et al., 2010). Interestingly, the use of host-associated probiotics addresses the above 219 

concerns, but also shows that host-microbiota have functions other than being a part of natural 220 

defense system, such as immunomodulation and nutrient conversion (Lazado et al., 2015; 221 

Montalban-Arques et al., 2015). This is bioprospecting in a lesser scale, with a sustainable core 222 

concept of improving the health and welfare of aquaculture animals, through the utilization of 223 

their own commensal microbes (Llewellyn et al., 2014; Lazado et al., 2015). Recent findings 224 

have revealed that the microbial community of fish intestines are a new source of probiotics, 225 

and offer a biosynthetic diversity for natural products discovery (Sanchez et al., 2012).  226 

 227 

  228 
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4. Host specificity 229 

When discussing host-associated vs. terrestrial probiotics, host specificity is an important 230 

subject to mention. Adhesion of probiotic LAB was previously reported to be host specific, and 231 

Fuller (1989) stated, “The attachment to epithelial cells is very host specific which means in 232 

practical terms that a strain which is suitable as pig probiotic may not be active in chick and 233 

other animals”. However, later studies have indicated that LAB originated from one host adhere 234 

to mucus of other species (e.g. Tuomola et al., 1999; Rinkinen et al., 2000, 2003; Nikoskelainen 235 

et al., 2001a,b). In a recent review by Li et al. (2018), adherence and colonization of 236 

microorganisms in the GI tract of fish was discussed. As in vitro and ex vivo studies suggested 237 

host specificity of LAB colonization in sturgeon (Askarian et al., 2011; Salma et al., 2011), Li 238 

et al. (2018) put forward the controversial hypothesis that host specificity of LAB does not 239 

occur in “younger” fish species, e.g. Atlantic cod, Atlantic salmon and turbot, while it occurs 240 

in older species, sturgeons; “living fossil”. However, adhesion ability of LAB may be related 241 

to; adhesive and non-adhesive ability (Zhou et al., 2012), variation of mucin adhesion and cell 242 

surface characteristics depending on their isolation habitats indicated by Buntin et al. (2017), 243 

and hydrophobic properties (Grajek et al., 2016). 244 

 245 

5. Mode of actions of probiotics 246 

Probiotic microorganisms influence the immune responses of the host, as well as the interaction 247 

between these responses and their intestinal bacterial communities (Derrien & van Hylckama 248 

Vlieg, 2015; Fischbach & Segre, 2016). During the last decades, intensive studies on probiotics 249 

have shed new light on the importance of probiotics and their modes of action (Papadimitriou 250 

et al., 2015), and several modes of action have been proposed.  251 

(I) Probiotics enhance feed utilization and weight gain promoters of aquatic animals 252 

(Hai, 2015b; Zorriehzahra et al., 2016). Probiotics improve the host’s appetite and feed 253 



11 

 

digestion by breaking down indigestible components, increase production of vitamins, and 254 

detoxify compounds in the diet (Giraffa et al., 2010; Zorriehzahra et al., 2016).  255 

(II) Competitive exclusion of pathogens in the GI tract (Ringø et al., 2010a), by 256 

production of peroxide, bacteriocin, siderophore, and lysozyme enzymes (Yan et al., 2002). The 257 

physiological and immunological effects (Mohapatra et al., 2014; De et al., 2014) are 258 

considered to be two of the most important beneficial mechanisms of probiotic bacteria 259 

(Collado et al., 2010; Zorriehzahra et al., 2016).  260 

(III) Improve the resistance of farmed aquatic animals against stress caused by several 261 

environmental hazards throughout the aquaculture activity (Nimrat et al., 2012; Zorriehzahra et 262 

al., 2016).  263 

These modes of actions present the beneficial effects of probiotics in cultured aquatic animals. 264 

Nonetheless, future researches on the interaction between probiotics and the host, involving 265 

transcriptomic and proteomic analyses, are needed to understand of probiotic activity. 266 

 267 

6. Host-associated probiotics and their applications in aquaculture 268 

6.1 Bacillus sp. 269 

Bacteria belonging to genus Bacillus has simple nutritional requirements, fast metabolic rate, 270 

ease to isolate and preserve, and secrete multiple bacteriocins make them good probiotic 271 

candidates (Moriarty, 1998; Ziaei-Nejad et al., 2006).  Genus Bacillus is the most studied host-272 

associated probiotic, among a wide variety of aquatic animals. To our knowledge, Yanbo and 273 

Zirong (2006) conducted the first study using host-associated probiotics in aquaculture. Their 274 

findings showed that Bacillus sp. supplementation diets significantly improved growth 275 

performance, survival rate, and feed conversion ratio; as well as protease and lipase activities 276 

in common carp (Cyprinus carpio) (Yanbo & Zirong, 2006). The authors suggested that these 277 

improvements were due to enhanced enzyme activities, resulting in improved diet digestibility; 278 

including proteins, starches, and lipid.  279 
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In channel catfish, dietary inclusion of Bacillus spp. isolated from oil or intestine, significantly 280 

increased channel catfish resistance towards Edwardsiella ictaluri and Aeromonas hydrophila 281 

(Ran et al., 2012). The improved diseases resistance was suggested to be attributable to a 282 

biologically meaningful discrepancy in the interactions between Bacillus strains and their 283 

respective host. Additionally, interactions may exist between host, pathogen, and probiotic 284 

bacteria that are influenced by environmental factors. Ran et al. (2012) suggested that more 285 

research is needed to clarify the complex interactions between the host, pathogen and the 286 

probiotic Bacillus strains, as well as how to improve the environment in order to obtain optimal 287 

biological control of disease.  288 

A study with Bacillus sp. isolated from shrimp intestine, Cha et al. (2013) reported significant 289 

increase in growth performance, innate immune response, and disease resistance in olive 290 

flounder (Paralichthys olivaceus), to Streptococcus iniae. The authors speculated that the 291 

increase in growth performance of fish fed dietary Bacillus sp. was a result of improved diet 292 

utilization. The GI tract of fish are known to be very sensitive to nutrients, presenting immediate 293 

changes in digestive enzyme activity, leading to enhanced growth and well-being (Bolasina et 294 

al., 2006;  Shan et al., 2008). Zhang et al. (2010) indicated that the growth improvement in sea 295 

cucumber (Apostichopus japonicus) fed a Bacillus subtilis supplemented diet was due to the 296 

increase in digestive activity via enhanced enzymatic activity. Previous probiotic studies 297 

suggested that supplementation increases the favorable microorganism in the host’s gut, which 298 

in turn release exoenzymes that can improve feed utilization and health conditions (Vine et al., 299 

2006; Yanbo & Zirong, 2006). These beneficial organisms secrete numerous proteases, which 300 

may play an important role in breakdown of peptide bonds of proteins, into monomers and free 301 

amino acids, which positively affect host’s nutritional status (Macfarlane & Macfarlane, 2012). 302 

Similarly, a significant increase in growth performance, immune response, and disease 303 

resistance were observed in orange-spotted grouper (Epinephelus coioides) larvae (Sun et al., 304 
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2013), rohu (Labeo rohita) (Ramesh et al., 2015), and striped catfish (Pangasianodon 305 

hypophthalmus) (Truong Thy et al., 2017) fed host-associated Bacillus sp. The authors 306 

suggested that further investigations are needed to evaluate the effect of probiotics on the 307 

immune function in fish larvae, and to estimate the duration of persistence of the Bacillus after 308 

discontinuation of probiotic supplementation.  309 

 There is limited information available regarding the effects of host-associated probiotics on the 310 

health and well-being of crustacean and mollusk. Nimrat et al. (2011) reported that giant tiger 311 

prawn (Penaeus monodon) fed Bacillus spp. isolated from shrimp intestines and pond sediment, 312 

presented significantly improved growth performance, and survival rate; as well as increasing 313 

the number of additional beneficial microbial probiotics. In mud crab (Scylla paramamosain), 314 

dietary administration of Bacillus spp. isolated from the crab’s intestine significantly enhanced 315 

survival rate, respiratory burst activity, immune related genes expression, and resistance to 316 

Vibrio parahaemolyticus (Wu et al., 2014). A significant decrease in hemocytes mortality and 317 

increase resistance toward Vibrio harveyi were observed in Pacific oyster (Crassostrea gigas) 318 

fed Bacillus sp. isolated from Tunisian hypersaline (Fdhila et al., 2017). The significant 319 

improvement in growth performance within these findings may be due to the ability 320 

of Bacillus spp. to adhere to the intestinal mucosa of the host, allowing them to secrete a wide 321 

range of digestive enzymes; such as amylase, lipase, and protease; all of which facilitate feed 322 

utilization (Marzouk et al., 2008; Latorre et al., 2016). Moreover, Bacillus spp. has been 323 

reported to detoxify potentially harmful food components, and produce many essential vitamins 324 

in the B-complex group (particular vitamin B12 and biotin), which results in higher feed 325 

utilization and digestibility of feed components (Blain Kennedy et al., 1998; El‐Haroun et al., 326 

2006). Regarding the immunomodulatory effects of probiotics, it should be noted that adhesion 327 

and colonization of probiotics in the intestines of the host are necessary to enhance the immune 328 

response (Ausubel, 2005; Govender et al., 2014; Nishiyama et al., 2016; Li et al., 2018). 329 
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Probiotics interact with immune system via microbe associated molecular patterns (MAMPs), 330 

consisting of cell wall polysaccharides, peptidoglycans, lipoprotein anchors, and lipoteichoic 331 

acids (Hosoi et al., 2003). Cells or components within the immune system are then able to 332 

interact with MAMPs through pattern recognition receptor; such as Toll like receptors, C-type 333 

receptor, and nucleotide oligomerigation domain like receptors (Kleerebezem et al., 2010; 334 

Lebeer et al., 2010; Bron et al., 2012). Another critical feature of probiotics is their presence 335 

inside the host, in which they are potentially colonizing and replicating, which further serves to 336 

improve the host’s health (Pandiyan et al., 2013). The colonization ability of probiotics within 337 

the GI tract of animals provides a necessary competition to indigenous microbiota (Hill, 1993). 338 

The ability to attach the gut surface is an important aspect of probiotics, which in turn is 339 

associated with mucous formation of the bacteria. These abilities are useful for protection 340 

against pathogen (Olsson et al., 1992), or immune stimulation (Salminen et al., 2007). 341 

Other species within genus Bacillus; Bacillus OJ, Bacillus amyloliquifaciens, and Bacillus 342 

aerophilus, isolated from GI tracts of Pacific white shrimp (Litopenaeus vannamei), yellow fin 343 

bream (Acanthopagrus latus), and rohu significantly enhanced growth performance, immune 344 

response, and disease resistance of Pacific white shrimp (Li et al., 2009), Nile tilapia 345 

(Oreochromis niloticus) (Ridha & Azad, 2012), and rohu (Ramesh et al., 2017). More recently, 346 

Meidong et al. (2018) reported that B. aerius isolated from pla-mong (Pangasius bocourti) 347 

improved growth performance, immune responses, as well as resistance against A. hydrophila. 348 

6.2 Bacillus subtilis 349 

B. subtilis is one of the most studied species within genus Bacillus. Dietary administration of 350 

B. subtilis isolated from mrigal (Cirrhinus mrigala) significantly improved total serum protein, 351 

globulin content, antibody level, hematology and immune response, as well as disease 352 

resistance against E. tarda and A. hydrophila in rohu (Nayak et al., 2007; Kumar et al., 2008). 353 

In a study with grass carp (Ctenopharyngodon idella), Wu et al. (2012) revealed that dietary 354 
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administration of B. subtilis isolated from grass carp significantly improved specific growth 355 

rate, feed conversion ratio, enzyme activity, and total bacteria counts in the GI tract of the fish. 356 

In a study using rainbow trout, reported Newaj-Fyzul et al. (2007) that dietary supplementation 357 

of B. subtilis isolated from rainbow trout intestines significantly enhanced respiratory burst, 358 

serum and gut lysozyme, peroxidase, phagocytic killing, and all α1-antiprotease activities. 359 

Furthermore, the study revealed a significant increase in lymphocyte population, as well as the 360 

resistance towards A. hydrophila. Likewise, the supplementation of B. subtilis isolated from 361 

intestines of sea cucumber, Japanese eel (Anguilla japonica), and pond water significantly 362 

enhanced the growth performance, immune response, enzyme activity, and disease resistance 363 

of sea cucumber, Japanese eel and Nile tilapia (Zhao et al., 2012; Lee et al., 2017; Liu et al., 364 

2017). In Pacific white shrimp dietary inclusion of B. subtilis significantly increased survival 365 

rate, immune response, and resistance to V. harveyi (Liu et al., 2014). However, body crude 366 

lipid content significantly decreased in the shrimp fed B. subtilis, vs. the control diet. More 367 

recently, a Bacillus spp. revealing exoenzymes activities improved the host's growth 368 

performance, including weight gain and feed efficiency (Liu et al., 2017). Bacillus exoenzymes 369 

are very efficient at metabolizing a large variety of carbohydrates, lipids, and proteins (Liu et 370 

al., 2009), and dietary supplementation of bacilli may improve digestive enzyme activities (Han 371 

et al., 2015). It is widely accepted, that the level of digestive enzyme activity is a useful 372 

comparative indicator of the host’s food utilization rate, digestive capacity, and growth 373 

performance (Ueberschär, 1995; Suzer et al., 2008).  374 

Regarding immunomodulation and disease improvement, several mechanisms have been 375 

suggested, antimicrobial synthesis, pathogen competition, prevention of intestinal 376 

inflammation, and improvement of the GI tract microbiota (Suva et al., 2016). B. subtilis spores 377 

trigger specific humoral and cell-mediated immune responses (Amuguni & Tzipori, 2012). The 378 

interaction between B. subtilis spores and macrophages plays an important role in the 379 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/enzyme-assay
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development of both innate and adaptive immune responses of the host (Guo et al., 2016). Two 380 

studies have demonstrated that the inclusion of B. subtilis leads to successful macrophage 381 

activation. Suva et al. (2016) revealed that B. subtilis B10, B. subtilis BS02, and B. subtilis 382 

(natto) B4 spores might possess immunomodulatory activities, obtained through the induction 383 

of pro-inflammatory cytokines, which exert probiotic activities through activated macrophage 384 

functions. Commensal bacteria play an important role in the development of the gut-associated 385 

lymphoid tissue (GALT), and are important for both innate and adaptive immunity. B. subtilis 386 

promotes active lymphocyte proliferation within GI tract, due to their high metabolic activity. 387 

Bacillus activity is determined mainly by their ability to produce antibiotics; of which, B. 388 

subtilis is the most productive species. Bacillus subtilis devotes 4%–5% of its genome to 389 

antibiotic synthesis, and produces as many as 66 antibiotics. Each Bacillus antibiotic contains 390 

a different structure and spectrum of antimicrobial activity (Sorokulova, 2013).  391 

6.3 Bacillus cereus 392 

Few studies have used B. cereus as potential probiotic in fish and shrimp. Navin et al. (2014) 393 

indicated that the giant tiger prawn (Penaeus monodon) fed dietary inclusion of B. cereus 394 

isolated from shrimp’s intestines; significantly increase growth performance, feed conversion 395 

ratio, and immune response. Rengpipat et al. (2000) reported a similar improvement in immune 396 

response in shrimp, which they attributed to the presence of the surface antigens of Bacillus S11 397 

and their metabolites, which serve as immunogens in the shrimp’s immune defense 398 

mechanisms. They also noted that the additional of Bacillus S11 cell wall peptidoglycan may 399 

trigger immune functions in shrimp. In a study using sea cucumber, Zhao et al. (2016) observed 400 

significant increases in phagocytosis, respiratory burst, and total nitric oxide synthase activities; 401 

as well as disease resistance to Vibrio splendidus. The dietary B. cereus isolated from the mud 402 

of sea cucumber culturing water bodies, while effective in the above ways, showed no changes 403 

in growth performance, total coelomocytes counts, acid phosphatase, or superoxide dismutase 404 
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activities. This difference could be attributed to the specific Bacillus strains, the size and source 405 

of sea cucumbers, as well as experimental period and conditions (Zhao et al., 2016). 406 

6.4 Bacillus pumilus 407 

Bacillus pumilus is a host-associated probiotic of recently interest in the field of aquaculture. 408 

Dietary administration of B. pumilus or B. pumilus in combination with B. clausii isolated from 409 

fish hosts significant improved growth performance, immune response, and disease resistance 410 

of Nile tilapia and orange-spotted grouper (Sun et al., 2010; Srisapoome & Areechon, 2017). 411 

They concluded that the significant improvement in growth performance via B. pumilus diet 412 

was attributed to the absence of an antigenic stimulus provided by the pathogenic bacteria could 413 

reduce a number of immune cells. This condition may create the efficient absorption and 414 

utilization of nutrients in the intestines (Sun et al., 2010). Significant enhancement of fish health 415 

and disease resistance may be credited to the increase in none-specific immunity by enhancing 416 

phagocytic activity, the number of vital leukocytes, and superoxide anion production. In 417 

theory, B. pumilus provides high anti-spore IgG titers, pro-inflammatory tumor necrosis factor, 418 

and a bacteriocin-like activity against other Bacillus (Duc et al., 2004); as well as complement 419 

activity (Sun et al., 2010). These abilities may effectively elevate the survival rate of 420 

experimental fish fed B. pumilus (Aly et al., 2008).  421 

6.5 Bacillus licheniformis  422 

B. licheniformis is another efficient host-associated probiotic in aquaculture. Grass carp  fed 423 

dietary B. licheniformis and B. subtilis isolated from the grass carp pond, significantly increased 424 

globulin level, IgM, lysozyme, and complement activities; as well as myeloperoxidase content, 425 

superoxide anion production, total antioxidant activity, glutathione, and anti-superoxide anion 426 

free radical (Weifen et al., 2012). The improvement in fish immunity may be due to 427 

supplementation of Bacillus, which improves water quality, resulting in better living 428 

condition for fish (Lalloo et al., 2007; Borges et al., 2008; Wang et al., 2008). The addition of 429 
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probiotic bacteria to the water environment can decrease harmful microorganisms, act as a 430 

food source for zooplanktons, and stimulate remineralization of macronutrients and 431 

micronutrients that boost phytoplankton growth, and thereby enhance the oxygen level 432 

(Verschuere et al., 2000). Bacillus species reduces the abundance of pathogenic Vibrio 433 

bacteria in in vitro test and improves water quality through the reduction of toxic NH4
+ and 434 

NO2−, maintaining a neutral pH (Nimrat et al., 2012). Additionally, Bacillus produce 435 

antimicrobial compounds (Rengpipat et al., 1998; Ringø et al., 2007; Nayak, 2010; Nandi et 436 

al., 2018). Bacillus preparations, added to the water, 108 CFU m3, increased serum 437 

immunoglobulin levels, non-specific immune parameters and the antioxidant ability of grass 438 

carp, but by adding Bacillus preparations into the water and feed, 108 CFU g-1, significantly 439 

improved immune effects were revealed (Weifen et al., 2012). Adding probiotics in both water 440 

and feed may provide better opportunities for the colonization of probiotics in the fish 441 

intestine, thereby enabling them to compete with pathogens for nutrients, and/or to inhibit the 442 

growth of pathogens; thus altering the prophylactic use of chemicals, antibiotics, and biocides 443 

(Decamp et al., 2008; Ma et al., 2009). The approach by adding probiotics to water and feed 444 

is better to use in saltwater as the environment is saltier, the fish loses water passively, and the 445 

fish has to drink. The noticeable increase in antioxidant enzyme activity may be due to that 446 

Bacillus act as antigen, which can stimulate the body’s antioxidant enzyme system and 447 

increase the amount of antioxidants (Weifen et al., 2012; Wang et al., 2017). These antioxidant 448 

enzymes effectively remove excessive free radicals produced by a high metabolism and 449 

adverse environmental stress; as well as regulate of the body’s free radical balance, and repair 450 

damages to tissues and organs (e.g. Harris, 1992; Gill et al., 2010). Recently, Gobi et al. (2018) 451 

displayed that dietary administration of B. licheniformis significantly improved growth 452 

performance, mucus and serum immune parameters, antioxidant enzyme activity, and 453 

resistance to A. hydrophila in tilapia. It is known that increase in fish body weight gain by 454 
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feeding fish probiotic supplemented diets, could be contributed to the increase in digestive 455 

enzyme activity, increase in appetite, increase in the production of vitamin, breakdown of 456 

indigestible components, as well as possible improvement of intestinal morphology (Irianto & 457 

Austin, 2002).  458 

There have been numerous investigations on the immunomodulatory effect of probiotics on 459 

different immune cells to enhance immune responses (e.g. Nayak et al., 2010; Das et al., 2013; 460 

Sangma & Kamilya, 2015; Gobi et al., 2018). Mucus and serum protein were significantly 461 

higher in rohu fed a B. subtilis supplemented diet, catla (Catla catla) fed a diet added B. 462 

amyloliquifaciens, and catla fed B. subtilis (Nayak et al., 2010; Das et al., 2013; Sangma & 463 

Kamilya, 2015). Similarly, Gobi et al. (2018) revealed that serum protein and mucus protein 464 

were significantly higher in tilapia (Oreochromis mossambicus) fed B. licheniformis Dahb1 465 

supplemented diets. Serum protein and mucus protein associated with agglutinins, lectins, 466 

lysozyme, immunoglobulins are considered as important proteins involved in the defense 467 

mechanism (Alexander & Ingram, 1992; Esteban, 2012). Gobi et al. (2018) suggested that 468 

tilapia fed diets containing B. licheniformis Dahb1 or other probiotics increased the level of 469 

these proteins, and subsequently increased serum and mucus protein concentration. 470 

6.6 Lactic acid bacteria  471 

The host-associated lactobacilli have gained much attention in aquaculture, for review see the 472 

comprehensive review of Ringø et al. (2018). Harikrishnan et al. (2010) reported that kelp 473 

grouper (Epinephelus bruneus) fed dietary Lactobacillus sakei isolated from olive flounder  474 

intestine significantly increased macrophage phagocytic, peroxidase, serum lysozyme 475 

activities, and total protein levels; as well as a resistance to S. iniae and S. parauberis. In 476 

addition, Pacific red snapper (Lutjanus peru) fed Lb. sakei isolated from the mucus of spotted 477 

sand bass (Paralabrax maculatofaciatus) significantly promoted haemoglobin, 478 

myeloperoxidase, lysozyme, and total antiproteases activities; as well as IgM, serum 479 
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antioxidant capabilities, and vacuoles inside the enterocytes (Reyes-Becerril et al., 2014). 480 

Enhanced fish growth following feeding of Lb. sakei may be due to the improvement of nutrient 481 

digestibility and/or to the alteration of the intestinal microbiota and immunostimulation (Reyes-482 

Becerril et al., 2012). The chemical composition of microorganisms includes different 483 

polysaccharides that may have potential prebiotics in the host’s intestine (Ringø et al., 2010b). 484 

Both bifidobacteria and lactobacilli are capable of utilizing these oligosaccharides, and increase 485 

the number of beneficial bacteria in host’s gut. Further benefits of dietary supplemented 486 

oligosaccharides; include improved feed efficiency, enhanced growth, and increased digestive 487 

enzyme activities. Furthermore, they seem able to modulate immune responses and preserve 488 

the integrity of the intestinal wall (Xu et al., 2009; Dimitroglou et al., 2010).  489 

Lactobacillus plantarum has also gained popularity in fish and shellfish farming. Kongnum & 490 

Hongpattarakere (2012) revealed that Lactobacillus plantarum isolated from the shrimp 491 

intestines significantly improved relative growth rate, feed conversion ratio, survival rate, and 492 

hemocytes count as well as disease resistance to V. harveyi in Pacific white shrimp. Similarly, 493 

significant increases in growth performance, feed utilization efficiency, survival rate, enzyme 494 

activity, immune response, and disease resistance to A. hydrophila were observed in rohu (Giri 495 

et al., 2013); and swimming crab (Portunus pelagicus) (Talpur et al., 2013). More recently, the 496 

dietary supplementation of Lb. plantarum, Weissella confuse, Lactococcus lactic, and 497 

Enterococcus faecalis were investigated (Li et al., 2018b). The bacteria were isolated from the 498 

intestines of flathead grey mullet (Mugil cephalus), rockfish (Sebastes schlegeli), fat greenling 499 

(Hexagrammos otakii), and söhachi (Cleisthenes herzensteini) and significantly stimulated 500 

growth performance, disease resistance against V. splendidus, alkaline phosphatase, acid 501 

phosphatase, super oxide dismutase, lysozyme activity, and up-regulated heat shock proteins 502 

genes of juvenile sea cucumber. The elevated of growth rate of aquatic animals may be related 503 

to the effects of LAB actions on competitive exclusion of pathogenic bacteria, supplying 504 
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hydrolytic enzymes, and/or by supplying fatty acid and vitamins (Huang et al., 2014; Hai, 505 

2015b). Regarding the immunostimulatory effects of Lb. plantarum, it was reported that 506 

lactobacilli could elicit innate and adaptive immune responses in the host via binding to the 507 

pattern recognition receptors (PRR) expressed on immune cells and many other tissues, 508 

including the intestinal epithelium. PRR recognize the conserved molecular structures known 509 

as microbe-associated molecular patterns, which induce the production of cytokines, 510 

chemokines, and other innate effectors (Abreu, 2010; Kawai & Akira, 2010; Wells et al., 2010). 511 

In addition to lactobacilli, are several other genera of LAB used as probiotics in aquaculture, 512 

Enterococcus, Lactococcus, and Weissella. Enterococcus faecium isolated from the intestine of 513 

flathead grey mullet significantly boosted nitroblue tetrazolium assay and common carp 514 

resistance to A. hydrophila (Gopalakannan & Arul, 2011). The authors suggested that the 515 

reason of the noticed results might be the extracellular products of probiotic bacteria, such as 516 

bacteriocin- and nisin-like compounds, which induce the immune system of common carp. 517 

Additionally, there are several mechanisms through which probiotic bacteria can induce 518 

bacterial antagonism, by producing antimicrobial agents, like antibiotics, antimicrobial 519 

peptides (bacteriocins), siderophore substances, or hydrogen peroxide (e.g. Sugita et al., 1998; 520 

Ringø et al., 2018). Like many probiotics, E. faecium produce bacteriocin, which creates a 521 

pore in the cell membrane of pathogens, which leads to the efflux of K+ ions, resulting in cell 522 

death (Satish & Arul, 2009). In a study with grouper, Sun et al. (2012) reported that dietary 523 

supplementation of E. faecium and Lactococcus lactic, originating from the gut of orange-524 

spotted grouper, significantly increased feed utilization, hepatopancreatic protease activities, 525 

complement component-3, and serum lysozyme activities; however, no change in phagocytic, 526 

serum superoxide dismutase activities, IgM, or complement component-4 were observed. 527 

Similarly, significant improvements in growth performance, innate immune response, up-528 

regulation of lysozyme genes, and disease resistance to Streptococcosis were observed in 529 
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kurumar shrimp (Marsupenaeus japonicus) and olive flounder, fed host-associated Lactococcus 530 

lactic as a probiotic (Maeda et al., 2014;  Nguyen et al., 2017). Allameh et al. (2014) isolated 531 

an E. faecalis from intestine of snakehead fish (Channa striatus) and revealed significantly 532 

improved resistance of snakehead fish against A. hydrophila when the E. faecalis was included 533 

in the diet. More recently, Mouriño et al. (2016) reported that hybrid surubim catfish 534 

(Pseudoplatystoma reticulatum ♀ × P. corruscans ♂), fed Weissella cibaria isolated from its 535 

foregut intestine, showed a significant increased red blood cell count. However, no significant 536 

difference occurred in white blood cells, total thrombocyte count, haematocrit percentage, 537 

basophils and other leukocytes; as well as glucose levels between supplemented diets and 538 

control. 539 

 540 

6.7 Other host-associated probiotics 541 

Aeromonas sobria has been used as a potential probiotic in aquaculture (Brunt & Austin, 2005). 542 

The authors suggested that dietary administration of A. sobria isolated from GI tract of rainbow 543 

trout significantly enhanced appetite, leukocytes count, phagocytic and respiratory burst 544 

activities; as well as resistance to Lactococcus garvieae and S. iniae. The mode of action of A. 545 

sobria involves the stimulation of cellular immunity, which directly increases the number of 546 

leucocytes, and enhances phagocytic and respiratory burst activities. It remains speculative, 547 

exactly how A. sobria stimulates this activity when used as a feed supplement (Brunt & Austin, 548 

2005).  549 

Senegalese sole (Solea senegalensis) fed diet supplemented with two Shewanella, Pdp11 and 550 

Pdp13 isolated from gilthead sea bream skin, significantly increased growth and nutrient 551 

utilization, proximate composition, and alkaline phosphatase of juvenile sole (Sáenz et al., 552 

2009). Sharifuzzaman & Austin (2009) conducted an experiment with the use of Kocuria 553 

SM1isolated from the digestive tract of rainbow trout. Fish fed dietary Kocuria SM1 at 554 

concentration of 108 cells g-1 for four weeks showed significantly enhanced phagocytic, 555 
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peroxidase, and serum lysozyme activities. In a study with rainbow trout, LaPatra et al. (2014) 556 

revealed that feeding host-associated Enterobacter sp. significantly increased survival rate, 557 

antibody titers, and resistance to Flavobacterium psychrophilum. Similarly, significant increase 558 

were noticed on growth performance, tolerance to crowding stress, microbiota, enzyme 559 

activities, innate immune response, relative immune gene expressions, and disease resistance 560 

in fish and shellfish fed Shewanella putrefaciens, Psychrobacter namhaensis, 561 

Pseudoalteromonas, and Clostridium butyricum host- associated probiotics (Tapia-Paniagua et 562 

al., 2014; Makled et al., 2017; Offret et al., 2018; Sumon et al., 2018). The significant increase 563 

in growth performance and health status of fish, as well as disease resistance within above 564 

studies are possibly due to the increase in digestive enzyme activities, absorptive capacities of 565 

the intestine, innate immune, relative immune gene expressions, and modulate GI tract 566 

microbiota.  567 

 In the pioneer review devoted to “Probiotics in man and animals”, Fuller (1989) wrote, 568 

“Probiotic preparations may consist of single strains or may contain any number up to eight 569 

strains”. However, most probiotic studies carried out in aquaculture since the early 1990ties 570 

and until today have used single administration, but during the last decade, supplementation of 571 

multiple probiotics in the diets to aquatic animals has gained interest (e.g. Mohapatra et al., 572 

2011; Ibrahem, 2015; Zorriehzahra et al., 2016). The advantage of multiple-strain preparations 573 

is; they are active against wider range of conditions and species.  574 

Dietary inclusion of Enterobacter cloacae and Bacillus mojavensis, singular or combined, 575 

significantly improved growth performance, cellular immunity, and disease resistance of 576 

rainbow trout (Capkin & Altinok, 2009). These improvements may be due to the probiotic 577 

effects of these two microorganisms. Probiotics stimulate the digestive processes through the 578 

proliferation of a favorable microbiota population, enhancing microbial enzyme activity, 579 

improving the intestinal microbial balance; and, consequently, improving the digestibility, 580 
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absorption of food, and feed utilization (El‐Haroun et al., 2006; Capkin & Altinok, 2009). The 581 

authors indicated that the putative probiotic bacteria isolated from intestines of rainbow trout 582 

possess antibacterial abilities. Presence of such intestinal bacteria in the GI tract can protect fish 583 

against infections caused by pathogenic bacteria (Capkin & Altinok 2009). The mode of action 584 

of Enterobacter and B. mojavensis is to stimulate cellular immunity, specifically due to an 585 

increased number of leucocytes. E. cloacae are listed under the same family as Y. ruckeri, 586 

Enterobacteriaceae. This strain may not only competitively exclude Y. ruckeri, but also present 587 

an appearance likely to trigger higher immune reactions than that of an unrelated Bacillus 588 

(Capkin & Altinok, 2009). Similarly, the combination of three probiotics; Bacillus coagulans, 589 

Rhodoseudomonas palustris, and Lactobacillus acidophilus isolated from intestines of common 590 

carp and grass carp significantly increased weight gain, final weight, and digestive enzyme 591 

activity of grass carp (Wang, 2011). Chi et al. (2014) revealed that the dietary supplementation 592 

of Aeromonas veronii, Vibrio lentus, and Flavobacterium sasangense derived from GI tract of 593 

common carp significantly boosted total serum protein, albumin and globulin levels, innate 594 

immune response, and expression of 1L-1b and TNF-α in common carp. Similar results 595 

improving growth performance, digestive enzyme activities, stress indicators, immune 596 

response, relative immune gene expressions, modulation of gut microbiota composition, and 597 

disease resistance were observed in rainbow trout fed Kocuria SM1 and Rhodococcus SM2 598 

(Sharifuzzaman et al., 2014), in grass carp fed Shewanella xiamenensis and A. veronii (Wu et 599 

al., 2015), in sea cucumber fed Bacillus cereus, B. cereus, and Paracoccus marcusii (Yang et 600 

al., 2015), in Malaysian mahseer (Tor tambroides) fed Bacillus sp. and Alcaligenes sp. or 601 

Bacillus sp., Alcaligenes sp. and Shewanella sp. (Asaduzzaman et al., 2018a, b). In a study 602 

using Pacific white shrimp, dietary administration of host-associated Shewanella haliotis, B. 603 

cereus, and Aeromonas bivalvium significantly stimulated respiratory burst, superoxide 604 

dismutase, respiratory burst activity, acid phosphatase activities, and up-regulated 605 
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prophenoloxidase and β-glucan-binding protein genes, as well as resistance to V. harveyi (Hao 606 

et al., 2014). In recent studies with Pacific white shrimp fed host-associated probiotics 607 

Rhodobacter sphaeroides and Afifella marina or B. subtilis and S. algae isolated from ponds or 608 

its GI tract; significantly improvements in water quality, growth performance, resistance to 609 

acute hepatopancreatic necrosis disease (AHPND), and control Vibrio in shrimp 610 

hepatopancreas were observed (Chumpol et al., 2017; Interaminense et al., 2018). As with other 611 

host-associated probiotics, significant improvements in growth performance, immune response, 612 

and disease resistance of fish may be due to the increase in digestive enzyme activities, 613 

absorptive capacities of the intestine, innate immune and relative immune gene expressions, 614 

modulation of the GI tract microbiota, and production of antibacterial substances (Van Doan et 615 

al., 2018). Additionally, a recent study reported that growth performance improvement 616 

of Malaysian mahseer was governed primary by muscle fibres hypertrophy and up-regulated 617 

growth related (GH and IGF1) gene expression (Asaduzzaman et al., 2018b).  618 

In contrast, Allameh et al. (2016) revealed that inclusion of individual LAB strains in the diet 619 

resulted in significantly improved growth performances of Javanese carps compared to fish fed 620 

a diet supplemented a LAB mixture. Dietary inclusion E. faecalis at 107 cfu g−1 revealed higher 621 

growth performance compared to other treatments. Additionally, the population levels of LAB 622 

in the fish intestine significantly increased, while the levels of Gram‐negative bacteria 623 

significantly decreased vs. the control.  624 

 625 

7. Conclusions and future applications of probiotic in aquaculture 626 

The present review addressed whether or not host-associated probiotics vs. probiotics obtained 627 

from other sources and commercial probiotics are more suitable to use in aquaculture. Although 628 

some studies have revealed beneficial effects of host-associated probiotics on performance, 629 

immune responses and disease resistance of aquatic organisms, the observed effects were 630 

species-specific. Therefore, it is necessary to carry out additional studies where both host-631 
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associated probiotics and probiotics obtained from other sources are used in the same study, 632 

and to determine optimum inclusion levels for host-associated probiotics. In order, to 633 

evaluate in vivo adherence and colonization of the host-associated probiotic strains within the 634 

complex microbial ecosystem of the intestine, detection of green fluorescence protein (GFP) 635 

tagged strains or fluorescence in situ hybridization (FISH) targeting 16S rRNA to identify the 636 

probiotics on the mucus surface must be carried out. Furthermore, mucus associated 637 

(autochthonous) microbiome must be investigated by next-generation sequencing (NGS), 638 

transcriptomic or proteomic profiling, and not the allochthonous microbiome; mostly 639 

investigated per sc. In addition, we recommend that gnotobiotic approaches are used in future 640 

studies, as the gnotobiotic approaches have been reported to have important roles to understand 641 

the function of gut microbiota on numerous biological processes of the host. Moreover, data is 642 

needed to understand the mechanisms by which the immune system of the intestinal mucosa 643 

discriminates between pathogenic, probiotics and commensal microorganisms. In summary, the 644 

present study revealed higher effectiveness of host-associated probiotics compared probiotics 645 

obtained from other sources, but increased attention towards isolation, optimum inclusion level 646 

and administration of host-associated probiotics in aquaculture is needed. 647 
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