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Abstract: We have analyzed host cell genes linked to HIV
replication that were identified in nine genome-wide
studies, including three independent siRNA screens.
Overlaps among the siRNA screens were very modest
(,7% for any pairwise combination), and similarly, only
modest overlaps were seen in pairwise comparisons with
other types of genome-wide studies. Combining all genes
from the genome-wide studies together with genes
reported in the literature to affect HIV yields 2,410
protein-coding genes, or fully 9.5% of all human genes
(though of course some of these are false positive calls).
Here we report an ‘‘encyclopedia’’ of all overlaps between
studies (available at http://www.hostpathogen.org), which
yielded a more extensively corroborated set of host
factors assisting HIV replication. We used these genes to
calculate refined networks that specify cellular subsystems
recruited by HIV to assist in replication, and present
additional analysis specifying host cell genes that are
attractive as potential therapeutic targets.

Introduction

Genome-wide screening technologies offer unprecedented

opportunities for discovery [1], but each method is imperfect, so

that correct calls will be mixed with false positives, and authentic

functions will be missed at some frequency, yielding false

negatives. For example, three small interfering RNA (siRNA)

screens have been reported that interrogated most of the human

genes for effects on HIV infection [2–5], but though these screens

identified many cellular factors previously implicated in HIV

replication, the overlap between any pair of screens was ,7%.

The siRNA method has many limitations [6,7]. For a gene to be

detected as important during HIV infection, it must meet the

following criteria: 1) It must be possible to achieve biologically

meaningful reduction in mRNA levels with the siRNA(s) used. 2)

The protein must be sufficiently unstable to allow functionally

significant reduction over the time course tested. 3) The

knockdown must not be toxic. 4) The function targeted cannot

be provided by multiple redundant factors. In addition, genes may

be called mistakenly due to experimental errors during high

throughput analysis or off-target activities of the siRNAs used.

Furthermore, siRNAs that do pass all of the above hurdles and

affect viral infection may target factors that act only indirectly.

Other screening technologies are also fraught with experimental

limitations. However, genes identified independently in multiple

studies should have a greater chance of being correctly called.

Here, we report a meta-analysis of nine genome-wide screens for

cellular factors associated with HIV replication.

Genome-Wide Surveys Used in the Meta-Analysis

We analyzed human gene products identified as important for

HIV infection in the nine screens presented in Table 1. Three

screens (lists 1–3) used transfection of siRNAs to knock down

.20,000 human genes, then assessed the efficiency of HIV

infection. The König et al. study [3] (list 1) used 293T cells as

targets and only examined the steps of uncoating through viral

gene expression. This study used a relatively large number of

siRNAs per gene and included extensive mapping of the effects of

knockdown to steps in the HIV replication cycle. The Brass et al.

[2] (list 2) and Zhou et al. [4] (list 3) studies used HeLa cells as

targets, and had the advantage of examining all the steps of HIV

replication, though with less redundant siRNA coverage. List 4

contains genes near human polymorphisms identified by Fellay et

al. as associated with different HIV viral loads in patients [8]. List

5 is composed of genes encoding proteins found in HIV particles
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that budded out of monocyte-derived macrophages [9]. Lists 6–9

contain raw screening data on binding interactions between HIV

proteins and cellular proteins identified using a pull-down mass

spectrometry approach (lists 6–8, targeting Nef, Tat, and Rev) or

yeast two-hybrid analysis (list 9, targeting IN) [10]. List 10

summarizes interactions between HIV and cellular proteins from

the published literature [11]—the depth and quality of the

literature is quite variable among these proposed cellular factors,

but for this analysis all calls were treated equally. Lists 11 and 12

contain siRNA screen data for two additional viruses (influenza

virus studied in fly cells [12], and West Nile Virus studied in

human cells [13]), allowing comparison with HIV. Report S1

presents more detailed descriptions of the 12 data sets along with

extensive overlap analysis (also available at http://www.

hostpathogen.org).

Overview of Genes Proposed to Be Associated

with HIV Infection

A total of 1,254 genes were called as important during HIV

infection in at least one genome-wide survey (lists 1–9 above),

representing about 5% of all human protein-coding genes (using

the RefSeq total number of 25,157). One measure of the accuracy

of the genome-wide methods is assessing the overlap with genes

previously identified in published peer-reviewed studies of HIV

(list 10). Comparing the genes called in the HIV interaction

database (list 10, 1,434 genes) to those identified in the nine

genome-wide surveys (lists 1–9) yielded an overlap of only 257

genes. The union of all genes called in the genome-wide studies

and the National Center for Biotechnology Information (NCBI)

interaction database (lists 1–10) contains a remarkable 2,393

human protein-coding genes associated with HIV infection, or

9.5% of all human genes.

Were the genes identified in the genome-wide screens (lists 1–9)

even enriched at all for previously identified HIV interacting genes

(list 10)? The significance of this overlap was assessed by

comparison to a random distribution. For the NCBI list of HIV-

interacting factors (list 10), 1,434 randomly selected genes were

drawn 1,000 times with replacement from the background of all

human genes, simulating the NCBI list, and 1,254 random genes

were drawn 1,000 times from all human genes as well, simulating

the genome-wide list. The overlaps of the 1,000 repetitions of the

random draws were quantified and plotted (Figure 1A). The modal

number of overlapping genes was 71, and no simulations showed

an overlap of 257 or more genes, yielding a highly significant p-

value (,0.001). Thus the overlap, though modest, is highly

significant. Genes identified in lists 1–10 were analyzed in all

pairwise combinations to identify genes in common between each

pair (detailed data are in Report S1, pp. 5–70) and the significance

tested by simulation or calculated as in [14]. An example is

presented in Figure 1B, and the numbers of overlapping genes and

their significance for all pairwise combinations of gene lists is

shown in Table 2.

Analysis of Overlap among the Three siRNA

Screens for Genes Affecting HIV Replication

The three siRNA screens (lists 1–3) together called 842 genes as

diminishing HIV replication when knocked down, or 3.3% of all

human protein-coding genes (Report S1, pp. 98–120). A total of

34 genes were called in at least two siRNA screens (Table 3).

Three genes were called in all three screens (MED6, MED7, and

RELA). The pairwise overlaps were statistically significant

(p,0.024 for all pairs of screens), but the percentages of shared

genes were quite modest, ranging from 3% to 6%. The Brass et al.

and Zhou et al. screens (lists 2 and 3) both surveyed the entire HIV

life cycle and studied infection in HeLa cells, and these two share

the greatest overlap (6%). The three siRNA screens identified the

NCBI genes as 13.3%–18.3% of the total, indicating highly

significant enrichment (p,0.001), as reported previously.

We then asked whether further enrichment relative to the NCBI

HIV interaction database was achieved by examining human

genes identified in at least two siRNA two screens. Of the 34 genes

on two or more lists, 11 were previously reported in the HIV

interaction database (NUP153, CCNT1, CTDP1, CHST1, CD4,

CXCR4, TCEB3, JAK1, AKT1, DDX3X, and RELA), or 30% of

the total, substantially higher than the 13%–18% identified in

each single list alone. From this we infer that the newly identified

genes called in two or more siRNA screens (Table 3) are more

likely to be authentic new cellular cofactors for HIV infection.

Twenty-nine out of the 34 genes were found to be expressed in

cells or tissues expressing CD4 and coreceptor by transcriptional

profiling analysis, and so competent for HIV entry. Of the

remaining five, CCNT1 (cyclinT1) is known to be expressed in T

Table 1. Gene Sets Analyzed.

List Name Number of Genes Description Reference

1 siRNA HIV König 293 siRNA screen for host factors promoting HIV replication [3]

2 siRNA HIV Brass 283 siRNA screen for host factors promoting HIV replication [2]

3 siRNA HIV Zhou 303 siRNA screen for host factors promoting HIV replication [4]

4 SNP HIV Fellay 63 GWA study of HIV set point in infected individuals [7]

5 Particle Associated HIV 248 Proteins in HIV particles identified by mass spec [8]

6 HARC Nef 6 Cellular proteins that interact with HIV Nef protein (mass spec) This work

7 HARC Tat 69 Cellular proteins that interact with HIV Tat protein (mass spec) This work

8 HARC Rev 56 Cellular proteins that interact with HIV Rev protein (mass spec) This work

9 BIND INT HIV 23 Cellular proteins that interact with HIV IN protein (yeast two hybrid) [9]

10 NCBI Interactions 1434 Published interactions between an HIV protein and a cellular protien [10]

11 siRNA Flu Fly 98 Human homologs of fly gene products important for influenza virus infection [11]

12 siRNA WNV 305 Gene products important for West Nile virus infection [12]

doi:10.1371/journal.ppat.1000437.t001
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Figure 1. Overlap Analysis to Generate an Empirical p-Value. In each panel the downward arrow indicates the number of genes overlapping
between the experimental data sets, and the bars show the frequencies of overlaps in comparisons to random distributions. (A) Simulation of overlap
between all of the genes called in genome-wide screens (lists 1–9) and the NCBI database of factors reported to be involved in HIV replication (list 10).
One thousand pairs of gene sets were drawn randomly from the set of all human genes, 1,254 to simulate the set of all genes from genome-side
screens and 1,434 to simulate NCBI genes, and the overlap in each pair plotted. The experimental overlap was 257 genes. (B) Simulation of
overlapping genes between the König et al. and Zhou et al. siRNA screens. The experimental overlap was nine genes. The p-value calculated using
the hypergeometric distribution was slightly lower (p=0.014). (C) Simulation of expected overlap between screens given the measured error
between replicates. The standard deviation of infectivity measurements were calculated from the König et al. siRNA screens, and then simulated
datasets were generated containing the measured error. For simulations, either two replicates (pink) or ten replicates (yellow) were generated and
the overlap quantified. The y-axis: number of top-scoring genes considered in overlap analysis; x-axis: actual number of overlapping genes seen
comparing simulated data sets. (D) Choices for toxicity threshold strongly influence the recovery of genes affecting HIV infection. The genes tested in
the König et al. siRNA screen were ranked according to toxicity of knockdown, then sets containing 100% of genes, the least toxic 50%, or the least
toxic 20% were extracted (top). From each of these, the 300 genes that when knocked down showed the strongest reduction in HIV infection were
then selected, and the overlap between gene sets calculated (bottom).
doi:10.1371/journal.ppat.1000437.g001
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cells and represents a false negative call in the expression data

used. A comprehensive table of all genes identified in pairwise

combinations of lists 1–12 is provided at the end of Report S1

together with the expression analysis (pp. 72–98).

Why did the three different siRNA screens yield such different

gene lists? One possible explanation could be that the expression of

host cell factors differed between the HeLa and 293T cells studied.

However, analysis of transcriptional profiling data showed that

.93% of the genes called as important for HIV infection in any

one of the three studies were expressed in both cell types.

However, variation due to 1) experimental noise, 2) timing of

sampling, and 3) different filtering criteria likely do explain some of

the differences. Two replicates were available for analysis from the

König et al. screen, allowing estimation of the variance. From this,

the expected overlap for of the top 300 genes in replicate screens

could be simulated. A test of two replicates or ten replicates per

screen (Figure 1C) yielded 150 or 240 overlapping genes,

illustrating how the high variance reduced the overlap, but

replication improves it.

A second source of variation was differences between time

points analyzed, which varied among the published siRNA

screens. Although data were not available for multiple time points

for the HIV screens, data were available for a screen of influenza

virus infection at three time points (S. Chanda, unpublished data).

Analysis demonstrated that variation between time points was of

the same magnitude as variation within time points and partially

independent.

A third source of variation is likely to be differences in the

filtering thresholds used. We investigated the effects of different

choices for the toxicity filter by reanalyzing the data of the König

et al. screen using three different toxicity thresholds. In the first, no

filter was applied (100% of genes were accepted for further

analysis), in the second, only genes in the 50% least toxic group

were considered, in the third, only the 20% least toxic genes were

considered. For each set, the 300 genes with the strongest

reduction in HIV infection after knockdown were extracted and

the overlap among sets compared (Figure 1D). Fewer than 150

genes out of 300 overlapped between the 100% and 20% sets, and

the maximum between any pair was 222 genes, indicating that the

final gene set called is very sensitive to the toxicity threshold

chosen.

Thus variations between replicates, between time points, and in

filtering thresholds all likely contributed to the differences between

siRNA screens. Further differences also likely arose from use of

different siRNA libraries, cell types, and viral strains [5].

We next asked whether the three siRNA screens yielded host

factors participating in similar cellular processes. We extracted

overrepresented functional clusters for each screen (lists 1–3) using

The Database for Annotation, Visualization, and Integrated

Discovery (DAVID) tool [15]. Overrepresented clusters were then

filtered for significance (p,0.06 based on a geometric mean of all

terms in a group), redundancy, biological relevance, and

specificity. This yielded 24 functional groups, most containing

contributions from factors identified in two or more screens

(Figure 2; genes are cataloged in Table S1). For example, all three

screens were enriched in factors involved in ‘‘Nuclear Pore/

Transport’’ (21–24 genes each), which likely facilitate the

trafficking of HIV complexes between cellular compartments,

including the nuclear import of the HIV pre-integration complex,

export of viral RNAs, or possibly synthesis of other required

factors. Other functional classes or complexes identified included

‘‘DNA Repair’’, ‘‘Ubiquitin-associated’’, ‘‘Mediator Complex/

Transcription’’, ‘‘RNA Binding’’, ‘‘GTP Binding’’, and ‘‘Heli-

case’’. Thus, a functional analysis of the three screens revealed
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greater overlap in gene ontology (GO) categories than was seen for

individual genes.

Recovery of Well-Documented Host Genes

Affecting HIV in Genome-Wide Studies

A variety of well-documented cellular cofactors for infection were

identified in two out of three screens, including i) the binding and

entry factors CD4 and CXCR4; ii) the NFkappaB subunit RELA; iii)

the activating kinases AKT1 and JAK1; iv) the Vpr and Vif cofactor

TCEB3/elonginB; and v) the Tat cofactor CCNT1/cyclinT1 [16]

(which was also in the mass spectrometry study of Tat-associated

proteins). The Rev cofactor DDX3X [17], an RNA helicase, was also

identified in two out of three screens and in addition was found by

mass spectrometry to bind to both Tat and Rev. The DNA repair

factor MRE11 was also identified, which was previously implicated in

HIV DNA circularization [18], though effects on HIV infection

efficiency have not been reported previously.

A variety of further well-established factors were identified in

one siRNA screen only. The well-studied viral budding factor

TSG101 [19] was called in the Zhou et al. siRNA screen (list 3),

and also identified as associated with HIV particles after release.

The Rev cofactor XPO1/CRM1 [20] was called in the Zhou et al.

siRNA screen but not the others.

Also instructive is analyzing the known HIV cofactors that were

not identified. HLA-B57 and HLA-C have well-documented

effects on viral set point and HIV disease progression [8,21], but

these were not detected in the siRNA screens, probably because

the HLA proteins affect the immune response to HIV and not

replication at the cellular level. The integration cofactor PSIP1/

LEDGF/p75 was not identified, probably because only very

complete knockdowns diminish HIV replication [22–30]. Several

genes known to encode products important for HIV replication

were identified in the initial screen of König et al., which yielded

4,019 candidates, but were not further validated in the filtered

data set of 293 proteins. These included Sp1, a transcription factor

known to bind the HIV LTR; the HIV Gag binding protein

cyclophilin A (PPIA) [31]; and several integrin proteins, believed

to assist in virus binding to cells (ITGB1, ITGB2, ITGB3). The

ESCRT proteins are known to be important in HIV budding [32],

but only VPS24 was identified. Another member of this complex,

VPS53, was called in the Brass et al. study, and the initial

unfiltered König et al. screen, but not in other studies. The RNA

lariat debranching enzyme DBR1 was used as a positive control in

the König et al. study, and is well known to affect reverse

transcription [33], but DBR1 was not identified in any of the other

studies. Thus, the recovery of already implicated host factors was

generally good in the overlap analysis, providing confidence about

the authenticity of the newly called genes. However, some well-

documented factors were missed, indicating that other factors

important for HIV replication were probably missed by the

analysis.

Network Analysis of the HIV–Host Interactome

To identify the cellular subsystems recruited by HIV in more

detail, we assembled a host–pathogen protein interaction network

based on the gene products in lists 1–10 (Table 1). The network

interaction map took advantage of binary protein binding

relationships cataloged in curated literature-based protein–protein

interaction databases (i.e., Bind, HPRD, MINT, Reactome, etc.).

HIV–host interactions were predicted based on evidence compiled

in the NCBI HIV interaction database. The resulting HIV–host

network was comprised of 1,657 cellular proteins that formed

interactions with other host cell factors or HIV-encoded proteins

(p,1025). Two hundred and ninety of these host proteins

(‘‘nodes’’) were supported by experimental evidence from two or

more datasets, reflecting a 35% enrichment of proteins that are

called by multiple datasets in this analysis. We performed a further

analysis to identify unusually dense network neighborhoods within

this interactome map using a graph theoretic clustering algorithm

(MCODE) [34]. This revealed 11 putative molecular clusters, ten

of which could be associated with distinct biochemical or cellular

functions.

Proteasome
A densely connected network of proteasome subunits was

identified by the MCODE analysis (Figure 3A). The proteasome

was prominent in the published siRNA screening data, and

implicated in probable early steps of viral infection. In previous

literature, the proteasome was shown to act negatively on HIV

infection by destroying replication intermediates [35,36]. The

siRNA data indicate that the proteasome may also facilitate HIV

infection. The mechanism is unclear and could be indirect–for

Figure 2. Gene Ontology Analysis of GO Groups Enriched
among Genes Called in Two or More siRNA Screens. The color
code indicates the number of genes in each functional group from each
screen derived using DAVID Functional Annotation Clustering. Anno-
tations for each function group were based on the assessment of GO
categories that comprised each group, which can be found in Table S1.
doi:10.1371/journal.ppat.1000437.g002
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example, reducing proteasome activity may alter cellular ubiquitin

levels, and so affect HIV replication by altering the free ubiquitin

pool.

Transcription/RNA Polymerase
Genes for subunits of RNA polymerase II and associated factors

were identified in several different screens, yielding a densely

connected network (Figure 3B). In some of the siRNA screens, the

knockdown of Pol II subunits was mapped to the step of Tat

transactivation. Because so many subunits were identified, the

simplest interpretation is that reduced dosage of the full complex is

responsible for the deficit in HIV replication.

Mediator Complex
Multiple subunits of the mediator complex were identified in

two or more siRNA screens (Table 3 and Figure 3C). The

mediator complex links transcriptional activator proteins to the

RNA polymerase II basal transcription apparatus, thereby

allowing transcriptional activation [37,38]. The observation that

so many subunits were identified suggests that activity of the

complex as a whole is the target of siRNA modulation. Viral

replication cycle mapping by Zhou et al. indicated that some of the

mediator proteins were needed to support Tat-activated tran-

scription, though studies in König et al. suggest a possible further

role in reverse transcription. The data can be accommodated in a

model where changes in dosage in the mediator complex are not

toxic to cells, but where Tat-activated transcription is extremely

sensitive to mediator dosage. Previously, mediator was shown to be

important for Sp1-driven transcription, and Sp1 is required for

transcription from the HIV LTR, suggesting possible involvement

of Sp1 as well.

Tat Activation/Transcriptional Elongation
A dense network was formed containing the Tat cofactor cyclin

T1 (CCNT1) [16], which was identified in two out of three siRNA

screens and by mass spectrometry (Figure 3D). Together with its

binding partner CDK9, which was identified as a Tat binding

protein, cyclinT1 forms positive transcription elongation factor b

(P-TEFb). The MCODE analysis links the P-TEFb complex and

the elongin complex involved in transcriptional elongation.

Another factor, the RNA Pol II carboxyl-terminal domain

(CTD) phosphatase CTDP1, was also identified and was also

previously associated with Tat activation. In addition, two STAT

proteins, also involved in transcription and NFkappaB signaling

and implicated in lentiviral infection [39], were identified

(Figure 3E).

RNA Binding/Splicing
A large cluster of RNA binding and splicing proteins was

identified in the MCODE analysis. Eleven of the cellular genes

encode protein components of hnRNP complexes (HNR factors)

that form on pre-mRNA and direct splicing and other activities.

HNRNPU contains both an RNA binding domain and a DNA

binding domain that mediates attachment to the nuclear scaffold,

potentially linking sites of mRNA synthesis to specific sub-nuclear

locations. Six further genes (SF3 factors) encode components of the

splicing factor 3 a/b complex, which is involved in activating the

U2 snRNP and promoting splicing. Three SNR proteins and two

SF proteins were also identified and are implicated in RNA

splicing and RNP formation. Several of these proteins were

implicated in the literature to modulate Tat or Rev function (e.g.,

[40–42]), and seven direct binding interactions to these viral

proteins were identified in the mass spectrometry data reported

here.

Several observations also suggest possible connections of

RNAP/splicing factors to the viral DNA integration step. Two

components of the splicing factor SF3 bound integrase in the yeast

two-hybrid data (list 9) [10]. The splicing protein SNW1/SKIIP1

was found by König et al. be selectively important at the

integration step [3]. The integrase-interacting protein PSIP1/

LEDGF/p75 appears to tether integrase to active transcription

units [23,29,43,44], and an alternatively spliced variant of this

protein (p52) is involved in RNA metabolism [45]. Though

indirect, these observations suggest a model in which splicing

factors may help recruit integrase to active transcription units,

which are favored for integration [46–48].

Another possible role of splicing factors is in maintaining the

proper balance between spliced and incompletely spliced HIV

RNAs. HIV replication requires multiply spliced messages

(encoding Tat, Rev, and Nef), singly spliced messages (encoding

Vif, Vpr, Env/Vpu, and a second form of Tat), and unspliced

messages (encoding Gag and Gag-Pol). The unspliced RNA also

serves as the genomic RNA. Alterations in dosage of splicing

factors by siRNA knockdown may well diminish HIV replication

by altering the ratios of the different HIV mRNA forms.

The BiP/GRP78/HSPA5 Chaperone
The BiP/GRP78/HSPA5 protein chaperone was identified in

the network analysis (Figure 3G). BiP/GRP78/HSPA5 is a

member of the HSP70 family that is involved in the folding and

assembly of proteins in the endoplasmic reticulum. BiP has been

implicated in interacting with newly synthesized HIV gp160 SU/

TM precursor [49], and HSP70 family members have been

proposed to interact with Gag, Tat, Vpr, and MA. The MCODE

analysis connected BiP/GRP78/HSPA5 to a collection of nuclear

proteins involved in splicing (PRPF8, SFPQ, and SNW1), nuclear

matrix architecture (MATR3), and ubiquitylation (UBR5).

Determining how these cellular proteins modulate the interactions

of BiP/GRP78/HSPA5 with HIV proteins offers a potential route

to better understanding protein folding and sorting during HIV

replication.

The CCT Chaperone
The MCODE analysis identified subunits of the chaperone

containing TCP1 (CCT) complex (Figure 3H). Subunits were

identified in siRNA screens, in HIV particles after budding, and

also as Tat binding proteins. This complex consists of two identical

stacked rings of eight subunits. Unfolded proteins are thought to

Figure 3. Gene Clusters, Generated Using PPI and MCODE Analysis, Derived from the Full Set of Genes Implicated in HIV Infection
(Lists 1–10). The size of each node is proportional to the number of screens in which the host cell gene was called. Gene identifiers are in Table S1.
Diamonds indicate genes from the NCBI HIV interactions database. Color code: red= König et al., green= Brass et al., blue = Zhou et al., cyan= Fellay
et al., magenta= Frankel interaction screens (unpublished data), yellow=HIV particle associated, and grey = Studamire and Goff integrase
interactions. For genes that were called in multiple screens (larger symbols), a color was chosen arbitrarily from among the screens positive for that
gene. Default parameters were used, specifically— Degree Cutoff: 2. Node Score Cutoff: 0.0. Haircut: true. Fluff: false. K-Core: 2. Maximum Depth From
Seed: 100. (A) Proteasome; (B) Transcription/RNA Pol; (C) Mediator Complex; (D) Tat activation/Transcriptional elongation; (E) Immune response; (F)
RNA Binding/Splicing; (G) H5PA5/BiP Chaperone; (H) CCT Chaperone; (I) t-RNA Synthase; (J) Transport; (K) Unknown.
doi:10.1371/journal.ppat.1000437.g003
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pass through the central cavity, and become folded in an ATP-

dependent manner. The CCT chaperone has not previously been

associated with HIV replication, and represents a new candidate

for involvement in Tat activation and HIV budding.

Additional Densely Connected Clusters
Several further functions were identified, including proteins

involved in t-RNA synthase function, transport, and one of

unknown function (Figure 3 I–3K). The t-RNA synthase and

transport complexes contained members that associated with Tat

according to the mass spectrometry study, and the unknown

complex contained a member binding to Rev, suggesting specific

links to HIV replication.

Other Newly Identified Functions
Several sets of proteins were identified that were not called as

densely connected networks but appear to be functionally related.

The nuclear pore and associated factors were clustered in the

initial MCODE network but were not sufficiently densely to

emerge as a densely connected network. Proteins involved in

nuclear import identified in two out of three siRNA screens

included products of NUP153, RANBP2, TNPO3, and RGPD8.

NUP153 and TNPO3 have been associated with the trafficking of

HIV proteins previously [2,3,50–52]. RANBP2 is a giant gene

encoding a product that accumulates at nuclear pores and binds to

RAN, which is a small GTP-binding protein of the RAS

superfamily. RANBP2 also contains FG repeats, a cyclophilin-

related nucleoporin, and a domain that binds UBC9, the E2 for

SUMO1 transfer. RGPD8 is named for ‘‘RANBP2-like and GRIP

domain containing 8’’. It too accumulates at the nuclear pore and

is believed to assist in RNA and protein transport. The actions of

NUP153 and TNPO3 have been mapped to nuclear import of the

HIV preintegration complex in [2,3,51], and NUP153 has also

been proposed to be involved in export of HIV Rev [53].

Three genes were identified that affect the microtubule system.

MAP4 is a microtubule-associated protein that has not previously

been studied in detail. MID1IP1 is a regulator of microtubule

polymerization. CAV2 (caveolin 2) is involved in the formation of

plasma membrane invaginations involved in a variety of cellular

functions including signal transduction, cell growth, and apoptosis.

Caveoli have also been implicated as interacting with the

microtubule network [54]. Previous studies have suggested that

HIV particles may traffic along microtubules to reach the nucleus

[55]. Thus MAP4, MID1IP1, and possibly CAV2 are candidates

for cofactors in this process. Other proteins were also called in two

siRNA screens (ANAPC2, DMXL1, HMCN2, and IDH1) but are

of unknown function (Table 3).

Identifying New Drug Targets

One of the main reasons for carrying out the screens for host

factors is the hope of identifying new targets for HIV therapeutics.

Several studies have indentified potentially ‘‘druggable’’ human

proteins by cataloging families of InterPro domains where one

member is the target of one or more small molecule inhibitors with

drug-like properties. All members of the family are then proposed

as potential drug targets [56,57] (John Hogenesch, data available

at http://www1.qiagen.com/Products/GeneSilencing/LibrarySiRna/

SiRnaSets/HumanDruggableGenomesiRNASetV30.aspx?ShowInfo

=1). In Report S1 (pp. 72–120), we annotate our overlap study for

‘‘druggable’’ targets by these criteria. Focusing on an updated version

of the list from Hopkins and Groom [56], we found that eight of the

34 genes common to the two siRNA screens were called as potential

drug targets (Table 3, column labeled ‘‘druggable’’). Two of these

eight are in fact known to be the targets of small molecules with

activity against HIV. CXCR4 is the target of AMD3100 and related

molecules [58,59], and AKT1 is the target of miltefosine [60]. The

fact that two out of eight genes called as druggable are known

antiviral drug targets (at least in tissue culture) suggests that this

analysis is yielding viable new targets. Of the additional genes

encoding candidate drug targets, inhibitors have been reported for

the kinases ADRBK1/GRK2 and JAK1. These can be tested for

activity against HIV in cell culture. Annotation of the larger collection

of genes that were found on two or more lists (lists 1–9) yielded a

further 56 genes encoding potentially druggable cellular factors.

Summary

Analysis of genes called as important for HIV replication in

multiple genome-wide screens yielded a list rich in well-known

factors and also intriguing new candidates. Many important

factors were surely missed by this approach, but at least some of

the most promising new genes can be distilled from among the

9.5% of all human protein-coding genes now proposed to affect

HIV infection. Many of the new genes can be linked into clusters,

specifying cellular subsystems associated with HIV replication.

Promising drug targets could be discerned among the best-

documented new factors.

Methods

Overlap analysis and comparisons to random distributions were

carried out using R [61]. The p-values for overlaps between lists

were generated by comparison to results of random simulation and

by calculation based on the hypergeometric distribution as in [14].

No correction was applied for multiple comparisons. Networks

were generated using MCODE analysis on the binary interaction

file and plotted in cytoscape. The global interaction network was

judged to be statistically significant by comparison to random

simulation (p,1025). Subnetworks were selected that 1) contained

at least two proteins from different studies and 2) showed high

connectivity. The protein–protein interaction data for Nef, Tat,

and Rev from the HARC Center were derived using previously

described methods (LC MS-MS followed by database matching)

[62]. A more thorough analysis of these (early stage) data will be

reported elsewhere.

Updated versions of Report S1 documenting the overlap among

genome-wide screens can be found at http://www.hostpathogen.

org.

Supporting Information

Report S1 Gene List Comparison Report

Found at: doi:10.1371/journal.ppat.1000437.s001 (1.88 MB PDF)

Table S1 Gene IDs from Functional Clusters in Figure 3

Found at: doi:10.1371/journal.ppat.1000437.s002 (0.09 MB XLS)
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