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Abstract

Background: In pigs, gut bacteria have been shown to play important roles in nutritional, physiological, and immunological

processes in the host. However, the contribution of their metagenomes or part of them, which are normally reflected by

fragments of 16S rRNA-encoding genes, has yet to be fully investigated.

Results: Fecal samples, collected from a population of crossbred pigs at three time points, including weaning, week 15

post weaning (hereafter “week 15”), and end-of-feeding test (hereafter “off-test”), were used to evaluate changes in the

composition of the fecal microbiome of each animal over time. This study used 1205, 1295, and 1283 samples collected

at weaning, week 15, and off-test, respectively. There were 1039 animals that had samples collected at all three time

points and also had phenotypic records on back fat thickness (BF) and average daily body weight gain (ADG). Firmicutes

and Bacteroidetes were the most abundant phyla at all three time points. The most abundant genera at all three time

points included Clostridium, Escherichia, Bacteroides, Prevotella, Ruminococcus, Fusobacterium, Campylobacter, Eubacterium,

and Lactobacillus. Two enterotypes were identified at each time point. However, only enterotypes at week 15 and off-test

were significantly associated with BF. We report herein two novel findings: (i) alpha diversity and operational taxonomic

unit (OTU) richness were moderately heritable at week 15, h2 of 0.15 ± 0.06 to 0.16 ± 0.07 and 0.23 ± 0.09 to 0.26 ± 0.08,

respectively, as well as at off-test, h2 of 0.20 ± 0.09 to 0.33 ± 0.10 and 0.17 ± 0.08 to 0.24 ± 0.08, respectively, whereas very

low heritability estimates for both measures were detected at weaning; and (ii) alpha diversity at week 15 had strong and

negative genetic correlations with BF, − 0.53 ± 0.23 to − 0.45 ± 0.25, as well as with ADG, − 0.53 ± 0.32 to − 0.53 ± 0.29.

Conclusions: These results are important for efforts to genetically improve the domesticated pig because they suggest

fecal microbiota diversity can be used as an indicator trait to improve traits that are expensive to measure.
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Background

Until recently, research in physiology and production in

livestock has focused on understanding individual’s vari-

ability for a wide array of traits. With the assistance of

DNA technology, research in swine genetics has changed

to include the use of single nucleotide polymorphisms

(SNP) in identifying causative mutations that underpin

variation in phenotypic measures, as well as to predict

future performance of the pig, using all the genes or

subsets of genes across the animal genome. However,

the pig genome contains less than half the number of

genes existing in its second genome, which is its micro-

biome [1] whose impact on the host has yet to be fully

investigated.

The literature documents a growing body of research

characterizing the microbiomes of pigs at different

stages of development, including early life [2–5], grow-

ing stage [6, 7], and later stage [8, 9]. Bacteria in the pig

gut have been shown to impact host nutritional, physio-

logical, and immunological processes in various ways

[10–15]. Though gut microbial diversity in pigs has been

described to some extent [8, 9], most of the previous
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studies have been characterized by small sample sizes

and/or by targeted manipulation of specific groups of

bacteria in the gut at specific times in the animals’ lives,

often in relation to nutrition studies. Composition and

function of a healthy microbial ecosystem however have

yet to be qualitatively and quantitatively defined to be

used as a tool to maximize animal health and perform-

ance. Particularly, microbiome diversity has not been

studied at large scales, including large sample sizes being

conducted through several stages of the production life

of the pig. Additionally, the impact of diversity has not

been investigated from a perspective that could be used

to proactively predict and manipulate health and/or per-

formance of the host.

Studies in domestic pigs have revealed how outbred

pigs carry an amount of genetic variation comparable to

that of outbred human populations [16] and are more

similar to humans than rodents in terms of anatomy,

genetics, and physiology [17]. Pigs also have similar clin-

ical manifestations and susceptibility to many enteric

pathogens detected in humans [18–22]. With regard to

the gut microbes, 96% of the functional pathways found

in the human catalog are also present in the pig catalog

[1]. Therefore, the pig model of human health studies,

especially in gut microbiome, has drawn the attention of

the research community.

The research reported herein is part of a larger project

aimed at investigating the use of microbial information

to improve pig health and production, including higher

efficiency of feed utilization, better meat quality, and

healthier pigs. Within this paper, we focused on two

main objectives: (1) characterizing temporal changes in

the microbiome community of pig feces with respect to

both composition and diversity; and (2) investigating the

potential influence of host genetics on this diversity.

Methods
Animals

The pigs used in this study were raised in a commercial

setting operated by The Maschhoffs, LLC (Carlyle, IL,

USA); therefore, animal use approval was not needed for

the collection of these data. Twenty-eight purebred

Duroc sires, from a Duroc population under selection

for lean growth, were crossed with Large White × Land-

race or Landrace × Large White sows (dam lines) to

produce the offspring that were used in this study. The

pigs were weaned at 18.6 ± 1.09 days old and were

moved to a nursery-finishing facility, where they were

put in groups of 20 individuals per pen. Pen mates were

paternal half-siblings of the same gender and of similar

weaning weight. The experiment was repeated 6 times,

each of which comprised of 2 pens (1 pen of female pigs

and 1 pen of castrated male pigs that are referred to

“male” hereafter) from each of the 28 sires. Pigs that

came together in 1 replicate were put in 1 contemporary

group (hereafter “cg”) in analyses that followed.

The test period began the day the pigs were moved to

the nursery-finishing facility. During the nursery, growth,

and finish periods, they were fed standard pelleted feed.

During the grow-finish period, they were fed standard

diets, which were based on sex and live weight. Details of

diet formulae and their nutritional values are provided

(see Additional file 1). The pigs received a standard

vaccination and medication routine (see Additional file 2).

End of test (hereafter “off-test”) was reached on a pen-

specific basis when all pigs in a pen achieved an average

live weight of 136 kg and were harvested. Their average

age at harvest was 196.4 ± 7.86 days.

Rectal swabs were collected from all pigs in a pen at 3

time points, including weaning, 15 weeks post weaning

(average 118.2 ± 1.18 days, hereafter “week 15”), and

off-test. Four pigs were chosen randomly per pen for

lean carcass growth measurements, and their rectal

swabs were used for microbiome sequencing. In the end,

the number of samples at weaning, week 15, and off-test

were 1205, 1295, and 1283, respectively. There were

1039 animals having samples collected at all 3 time

points. More details on the distribution of samples

across families, time points, and sex are provided (see

Additional file 3).

Back fat thickness was recorded on live animals at

weeks 18 and 22 post weaning, hereafter referred to as

BF_18 and BF_22, respectively. Live weights were

recorded at weaning as well as weeks 14 and 22 post

weaning and were used to compute average daily body

weight gain from weaning to week 14 (hereafter

“ADGw_14”) and from week 14 through week 22 (here-

after “ADG14_22”).

DNA extraction and purification

Total DNA (gDNA) was extracted from each rectal swab

by mechanical disruption in phenol:chloroform. Briefly,

650 μL of extraction buffer (200 mM Tris; 200 mM

NaCl; 20 mM EDTA, pH 8.0) was added to each swab

stored in a 2-mL self-standing screw cap tube (Axygen,

CA, USA). Tubes were shaken using a Mini-BeadBeater-

96 (MBB-96; BioSpec, OK, USA) for 20 s to free sample

material from the swab head. Following a brief centrifu-

gation (10 s; 500 × g) to pull down any dislodged mater-

ial, each swab head was removed from its tube using

sterile forceps. Samples were frozen solid at − 80 °C, and

approximately 250 μL of 0.1 mm zirconia/silica beads

(BioSpec) and a 3.97 mm stainless steel ball were added

to the sample (while still frozen to avoid splashing).

Samples were allowed to thaw briefly, after which

210 μL 20% SDS and 500 μL phenol:chloroform:IAA

(25:24:1, pH 8.0) were added. Bead-beating was per-

formed on the MBB-96 (4 min, room temperature),
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samples were centrifuged (3220 × g; 4 min), and 250 μL

of the aqueous phase was transferred to a new tube. One

hundred microliters of this crude DNA was then further

purified using a QIAquick 96 PCR purification kit

(Qiagen, MD, USA). Purification was performed per the

manufacturer’s instructions with the following minor

modifications: (i) sodium acetate (3 M, pH 5.5) was added

to Buffer PM to a final concentration of 185 mM to

ensure optimal binding of genomic DNA to the silica

membrane; (ii) crude DNA was combined with 4 volumes

of Buffer PM (rather than 3 volumes); and, (iii) DNA was

eluted in 100 μL Buffer EB (rather than 80 μL).

Illumina library preparation and sequencing

Phased, bi-directional amplification of the V4 region

(515–806) of the 16S rRNA gene was employed to gener-

ate indexed libraries for Illumina sequencing using the

strategy described in [23]. Amplicon libraries were quanti-

fied using the Qubit dsDNA assay kit (Thermo Fisher

Scientific Inc., MA, USA) before being pooled in equimo-

lar ratios. These final pools were purified using Agencourt

AMPure XP beads (Beckman Coulter) per the manufac-

turer’s instructions. Purified pools were supplemented

with 5–10% PhiX control DNA and were sequenced on an

Illumina MiSeq machine as paired-end 2 × 250 + 13 bp

index reactions using the 600v3 kit. Un-demultiplexed

FASTQ files were generated by MiSeq Reporter. All

sequencing was performed at the DNA Sequencing

Innovation Lab at the Center for Genome Sciences and

Systems Biology at Washington University in St. Louis.

16S rRNA gene sequencing and quality control of data

Pairs of V4 16S rRNA gene sequences were first merged

into a single sequence using FLASh v1.2.11 [24], with a

required overlap of at least 100 and not more than 250

base pairs in order to provide a confident overlap.

Sequences with a mean quality score below Q35 were

then filtered out using PRINSEQ v0.20.4 [25]. Sequences

were oriented in the forward direction and any primer

sequences were matched and trimmed off; during primer

matching, up to 1 mismatch was allowed. Sequences

were subsequently demultiplexed using QIIME v1.9 [26].

Sequences with > 97% nucleotide sequence identity were

then clustered into operational taxonomic units (here-

after “OTUs”) using QIIME with the following settings:

max_accepts = 50, max_rejects = 8, percent_subsample =

0.1 and –suppress_step4. A modified version of Green-

genes [27–29] was used as the reference database. Input

sequences that had 10% of the reads with no hit to the

reference database were then clustered de novo with

UCLUST [30] to generate new reference OTUs to which

the remaining 90% of reads were assigned. The most

abundant sequence in each cluster was used as the rep-

resentative sequence for the OTU. Sparse OTUs were

then filtered out by requiring a minimum total observa-

tion count of 1200 for an OTU to be retained, and the

OTU table was rarefied to 10,000 counts per sample.

Average good’s coverage estimates for samples at wean-

ing, week 15 and off-test were 0.99 ± 0.002, 0.98 ± 0.002,

and 0.98 ± 0.002, respectively. Finally, the Ribosomal

Database Project (RDP) classifier (v2.4) was retrained in

the manner described in [31] with 0.8 cutoff used to

assign taxonomy to the representative sequences.

Comparative analysis of microbiome composition

In order to compare microbiome composition longitudin-

ally, relative abundance counts were logarithm-transformed

and zero-centered, then plugged into Kruskal-Wallis test.

Adjustment of P values for multiple testing was completed

via Bonferroni correction. This comparative analysis was

performed at the genus and species levels.

Clustering analysis

Clustering analysis in this paper was performed in two

parts. The first part was aimed to investigate whether or

not samples at the three time points could separate from

one another based on their microbiome compositions.

OTU counts were divided by the total count for each

sample (which was 10,000), logarithm-transformed, and

zero-centered before being applied to the R function

“prcomp” for principal component analysis. This analysis

was performed at the phylum, class, order, family, genus,

and species levels. The results are presented in Fig. 2.

Part 2 of the clustering analysis was focused on identi-

fying enterotypes among the samples collected at each

time point. For that purpose, Jensen-Shannon Diver-

gence (hereafter “JSD”) [32] was calculated at three sep-

arate time points according to the relative abundance of

each genus in each sample using the “dist.JSD” function

coded in R [33]. Based on the obtained distance matrix,

the samples at each time point were clustered via parti-

tioning around medoids (PAM) by using the “pam” func-

tion in the R library “cluster” [34]. The optimal number

of clusters was chosen by maximizing the Calinski–Har-

abasz index [35], using “index.G1” function in the R

library “clusterSim” [36], and the Silhouette index [37],

using the “silhouette” function in the R library “cluster”.

The result of clustering was visualized on a PCA plot,

using the “s.class” function of the "ade4" package in R

[38], and presented in Fig. 3. To determine genera that

were differentially abundant between two enterotypes at

each time point, LEfSe v1.0 [39] was used. The software

uses the Kruskal-Wallis test to identify genera that are

significantly different between two enterotypes at each

time point, and used to build a Linear Discriminant

Analysis (LDA) model, from which the relative differ-

ence between the two enterotypes is used to rank the

genera. More details of LDA is fully described in [39].
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The clustering analyses described above were repeated

using the unrarefied microbiome data as suggested in

[40], and the clustering results were compared with the

results from using the rarefied data.

Diversity analysis

The R package “vegan” [41] was used to investigate

alpha diversity in this study. The diversity was measured

using the Shannon index, computed here as −

Pn
i¼1 pi

ln pið Þ , where pi was the proportional abundance of

OTU i. A univariate linear regression model was formed

to test the significance of fixed effects,

yijlkm ¼ μþ sexi þ agej � familyl þ bsk þ dlm þ eijlkm;

ð1Þ

in which μ was the overall mean, age was the time point

(weaning, week 15, off-test), family was the paternal

half-sib family (n = 28), bs was the birth site (n = 3), dl

was the dam line (n = 2) and potential interaction

between the age and family, and a random residual effect

e; the response was the Shannon index. The index at

week 15 and off-test was pre-adjusted for contemporary

group (n = 6). Fixed effects that were found insignificant

from model (1) were removed from subsequent analyses.

After testing the significance of the fixed effects, we

explored longitudinal changes in the family effect using

the model (1.1), which was analyzed using function

“lmer” of the R package “lme4” [42].

yijlk ¼ μþ sexj þ bsk þ ageifamilyil þ eijlk ð1:1Þ

We modified model (1) to form model (1.2) to test the

impact of enterotypes on BF_18, BF_22, ADGw_14, and

ADG14_22. Model (1.2) consisted of five fixed effects,

including days, which were the age of the animal on the

day when back fat thickness and live weight were

measured; enterotype was the enterotype at weaning,

week 15, or off-test; and sex, family, bs, and e remained

the same as previously described.

yjlkm ¼ μþ sexj þ daysþ familyl þ bsk
þenterotypem þ ejlkm;

ð1:2Þ

Model (2) was formed to test the fixed effects of sex,

family, and bs, as well as random permanent environ-

mental effect of litter (n = 718), at three separate time

points. The litter effect in this study refers to the nursing

environment provided by the mother and siblings, influ-

encing the development of individual pigs, potentially

having profound impact on fitness and other phenotypic

traits later in life. The random effects were assumed to

be uncorrelated with each other. Covariance matrices of

the random effects were equal to Iσ2litter , Iσ
2
e , where I was

an identity matrix.

yjlkp ¼ μþ sexj þ familyl þ bsk þ litterp þ ejlkp ð2Þ

Genetic parameters of the Shannon index were investi-

gated using models (3), (4), and (5) as described below.

The model included fixed effects of sex and bs. Random

effects included animal and residual e in model (3).

Model (4) was an extension of model (3) to include the

permanent environmental effect litter. We estimated

heritability of the Shannon index at each time point, as

well as phenotypic and genetic correlations of the index

among the three time points. Model (5) was an exten-

sion of model (4) to include the random effects of pen

where the animals were raised after weaning. The

response in model (5) was the Shannon index at week

15 and off-test. We estimated heritability of the index, as

well as its phenotypic and genetic correlations between

these two time points. Assumptions of the random

effects of litter and pen remained similar to model (2).

The random effect of animal in models (3), (4), and (5)

was given a covariance matrix of Aσ
2
s , in which A was

the additive numerator relationship matrix, determined

from a pedigree. The animal in models (4) and (5) was

assumed uncorrelated with other random effects.

yjks ¼ μþ sexj þ bsk þ animals þ ejks ð3Þ

yjkps ¼ μþ sexj þ bsk þ litterp þ animals þ ejkps ð4Þ

yjknps ¼ μþ sexj þ bsk þ penn þ litterp þ animals
þejknps

ð5Þ

Models (3), (4), and (5) differed from each other by

the number of random effects. The goodness of fit of the

models was evaluated via Likelihood Ratio Test (LRT).

The pen effect applied to data collected only after wean-

ing; thus, model (5) was used for data from week 15 and

off-test only. Genetic parameters for OTU richness,

which was the number of OTUs obtained in our rarefied

data, were obtained in a similar manner. We also

performed bivariate analyses for pairs of traits between

Shannon index (at weaning and week 15, hereafter

“Sha_w” and “Sha_15,” respectively) and BF_18, BF_22,

ADGw_14, and ADG14_22. All of the linear models

were tested using ASReml v.4.1 [43].

Results

Distribution of taxonomic abundance

The results shown in Fig. 1 describe the abundance of

microbial taxa at six different levels (phylum, class,

order, family, genus, and species) at three different stages

of pig development (weaning, 15 weeks of age, and off-

test). There were 14, 21, 29, 54, 106, and 202 identified
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phyla, classes, orders, families, genera, and species,

respectively. Details of the distributions are provided

(see Additional file 4). Over the three time points,

95.79–97.80% of the OTUs were classified into six phyla:

Firmicutes, Bacteroidetes, Proteobacteria, Fusobacteria,

Spirochaetes, and Actinobacteria. Bacteria that were in

the phylum Firmicutes represented the largest propor-

tion of the total population followed by Bacteroidetes.

These two phyla accounted for 73.61, 95.35, and 93.03%

of all reads at weaning, week 15, and off-test, respect-

ively. As the animals aged, the proportion of OTUs in

the phylum Firmicutes increased, while the proportion

of OTUs in the phylum Bacteroidetes decreased. At the

phylum level, the proportion of OTUs that fell into the

non-classified group was 3.86, 2.12, and 2.62% at wean-

ing, week 15, and off-test, respectively.

Among the identified genera, two (Ruminobacter and

Akkermansia) were unique to the weaners, 101 were

present in all three age groups, one (Anaerotruncus) was

present only in the weaners and the 15 weekers, one

(Cellulosilyticum) was present only in the weaners and

the off-test, and one (Anaerostipes) was present only in

the 15 weekers and off-test animals. The number of

genera that had significant difference in relative abun-

dance counts (at least P < 0.01 with Bonferroni correc-

tion for multiple testing) between weaning and week 15

was 90, between weaning and off-test was 100, and

between week 15 and off-test was 82. A full list of P

values from Kruskal-Wallis tests at the genus level is

provided in Additional file 5. Clostridium significantly

increased in proportion over time, from 8.18 ± 6.68%

(mean ± SD) at weaning to 15.50 ± 6.67 and 17.80 ±

4.93% at week 15 and off-test, respectively (P < 0.001 and

P < 0.001, respectively). Other predominating genera at

weaning included Escherichia, Bacteroides, and Prevotella

with 7.73 ± 12.17, 7.30 ± 7.86, and 6.78 ± 5.76% of the total

sequences, respectively. The average proportions of

Escherichia and Bacteroides dropped significantly (P <

0.001) to 0.17 ± 0.87 and 0.15 ± 0.45% at week 15, and

0.23 ± 1.79 and 0.40 ± 0.87% at off-test, respectively,

whereas the average proportion of Prevotella significantly

increased to 13 ± 5.97% at week 15, then significantly (P <

0.001) dropped to 6.74 ± 3.08% at off-test.

At the species level, there were 202 identified species,

of which 7 species (Parabacteroides goldsteinii, Blautia

glucerasea, Anaerotruncus sp. NML 070203, Anaerotrun-

cus colihominis, Bacteroides nordii, Bacteroides caccae,

Bacteroides eggerthii) existed only at weaning and week

15, 4 species (Clostridium methylpentosum, Ruminococ-

cus albus, Bacteroides galacturonicus, Porphyromonas

bennonis) existed only in the week-15 and off-test

individuals, 2 species (Cellulosilyticum ruminicola, Col-

linsella stercoris) were present only in the weaners and

off-test animals, and 3 species (Akkermansia mucini-

phila, Ruminobacter amylophilus, Alistipes putredinis)

were found exclusively in the weaners. Remarkable

shifts in the abundance of sequences were observed in

E. coli (7.66 ± 12.05, 0.17 ± 1.86, and 0.23 ± 1.78% at

weaning, week 15, and off-test, respectively), P. djf_ls16

(3.93 ± 3.94, 0.43 ± 0.60, and 0.13 ± 0.12%), B. fragilis

(2.70 ± 6.00, 0.002 ± 0.03, and 0.06 ± 0.54%), C. jejuni

(1.70 ± 4.01, 0.01 ± 0.13, and 0.01 ± 0.07%), S. gallolyticus

(1.67 ± 3.90, 9.19 ± 5.85, and 8.64 ± 5.44%).

Principal component analyses were carried out at the

phylum, class, order, family, genus, and species levels.

Scatter plots, based on the first two principal

Fig. 1 Distribution of abundance of microbiome taxa at various levels over weaning, week 15, and off-test. The y-axis is average proportion of

relative abundance. The legend boxes list only the 10 most abundant taxanomic identity at each level
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components (hereafter “PC1” and “PC2”), of all samples

at the three time points are presented in Fig. 2. At each

taxonomic level, PC1 mainly separated the weaners from

the other two groups, whereas PC2 distinguished the 15-

week olds from the off-test individuals. However, the

effect of PC2 was clearly seen only in analyses at the

family, genus, and species levels. Proportions of total

variance explained by PC1 and PC2 are presented in

Table 1. At the phylum level, PC1 and PC2 accumula-

tively accounted for 97.25% of the total variation. This

proportion decreased to 75.04, 69.41, 44.38, 40.78, and

41.65% in analyses using the lower taxonomic levels,

class, order, family, genus, and species, respectively.

Table 1 also reveals that bacteria in the phylum

Firmicutes were the main driver separating the weaners

from the other two groups. They contributed to 75.39%

of the variation in PC1. Two phyla, Proteobacteria and

Bacteroidetes explained a total of 81.55% of PC2, which

separated the 15-week olds from the off-test pigs. At the

species level, PC1 was heavily loaded by ten species that

distinguished the weaners from the other two groups,

including S. gallolyticus, T. sanguinis, C. butyricum, C.

catus, E. coli, B. fragilis, B. vulgatus, C. jejuni, C. scin-

dens, and C. bolteae. PC2 was heavily loaded by the

species that separated the 15 weekers from the off-test

pigs, including E. coli, T. sanguinis, L. amylovorus, O. sp.

g2, P. sp. DJF b116, P. copri, P. sp. DJF ls16, P. sp. rs2, D.

formicigenerans, and M. elsdenii.

Clustering pigs’ fecal microbiomes into enterotypes

The highest CH and RS were obtained for two clusters

for both male and female samples collected at weaning,

week 15, and off-test. We combined male and female

samples at each time point and re-ran the CH test for

optimal number of clusters. The CH indexes at each

time point and clusters of samples corresponding to the

optimal number of clusters are presented in Fig. 3. The

optimal number of clusters for samples at each of the 3

time points was 2. We named them A and B at weaning,

C and D at week 15, and E and F at off-test. The number

of males and females in clusters A, B, C, D, E, and F

were 166 and 226, 443 and 370, 276 and 291, 354 and

374, 399 and 438, and 219 and 217, respectively. The

samples at each time point appeared to form 2 distinct

clusters (Fig. 3).

Compositional characteristics of the enterotypes were

studied, and genera that significantly (absolute LDA

score > 2) separated one enterotype from the other at

each time point are presented in Fig. 4. The overall ob-

servation was that at weaning type A and type B samples

were significantly distinguished by 41 genera, of which

14 genera, led by Escherichia, were more abundant in

type A samples than in type B samples, and 27 genera,

led by Prevotella, were significantly more abundant in

type B samples than in type A ones. Enterotypes C and

D at week 15 and enterotypes E and F at off-test were

significantly distinguished by 24 and 26 genera, respect-

ively. Both type C and type E samples at week 15 and

off-test, respectively, were significantly dominated by

Clostridium and Turicibater, whereas both type D and

type F samples at week 15 and off-test, respectively, were

significantly enriched by Lactobacillus and Streptococcus.

Using model (1.2), we tested the potential impacts of

enterotypes A, B, C, and D on BF_18, BF_22, ADGw_14,

and ADG14_22, as well as the effect of enterotypes E

and F on BF_22 and ADG14_22. Enterotypes A and B

Fig. 2 Scatter plots of samples at weaning (red circles), week 15 (green circles), and off-test (blue circles) by principal component 1 (PC1) and

principal component 2 (PC2) at six taxonomic levels
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did not have significant effect on the traits (all P > 0.05).

Enterotypes C and D had significant effect on BF_18

(P < 0.001) and BF_22 (P < 0.001) but not on

ADGw_14 and ADG14_22 (both P > 0.05). Enterotypes

E and F had significant effect on BF_22 but not on

ADG14_22. Enterotypes D and F were both significantly

enriched mainly with Lactobacillus, Streptococcus, and

Prevotella compared to Clostridium-enriched enterotypes

C and E, and our analysis revealed that enterotype D at

week 15 was associated with an increase of 0.08 and

0.10 cm in backfat thickness at week 18 (BF_18) and

week 22 (BF_22), respectively, compared to enterotype C.

Similarly, enterotype F was associated with an increase of

0.10 cm in BF_22 compared to enterotype E.

A subset of 1039 animals that had samples collected at

weaning, week 15, and off-test was used to evaluate the

frequency with which individual animals transitioned

between enterotypes as they developed. The percentage

of type A weaners developing into types C and D at

week 15 was 43.11 and 56.89%, respectively. For type B

weaners, 41.26 and 58.74% of them became type C and

D, respectively. From weaning, 32.55 and 32.66% of type

A and type B pigs, respectively, grew to type F pigs at

off-test. From week 15, 22.07 and 40.23% of type C

and type D pigs, respectively, joined the type F group at

off-test. A detailed breakdown of the number of samples

in each enterotype is provided (see Additional file 6).

We tested whether or not the distribution of samples

in the enterotypes (see Additional file 7) was affected by

the family factor, using contingency tables and a Chi-

squared test in R. Sire families had significant impact on

the distribution of animals into enterotypes at weaning

(P < 0.005), week 15 (P < 0.05), and off-test (P < 0.001).

Table 1 Proportion of variation explained by the first two principal

components at different taxonomic levels and contribution of the

top members to the first two principal components

Taxonomic level PC1 PC2 Contribution
to PC1

Contribution
to PC2

Phylum 93.66 3.59

Firmicutes 75.39 3.74

Proteobacteria 8.03 54.56

Bacteroidetes 6.31 26.99

Class 62.59 12.45

Clostridia 45.98 3.35

Gammaproteobacteria 12.87 4.80

Fusobacteriia 7.91 11.20

Bacteroidia 7.61 22.58

Erysipelotrichia 4.86 3.43

Epsilonproteobacteria 4.51 1.19

Order 57.75 11.66

Clostridiales 40.23 7.54

Enterobacteriales 11.00 14.12

Fusobacteriales 7.24 8.69

Bacteroidales 6.76 5.50

Pasteurellales 6.16 6.96

Erysipelotrichales 4.29 1.46

Campylobacterales 4.13 4.34

Fibrobacterales 2.42 2.91

Family 31.72 12.66

Enterobacteriaceae 12.75 7.34

Bacteroidaceae 6.58 0.88

Fusobacteriaceae 6.27 4.74

Enterococcaceae 5.69 2.57

Pasteurellaceae 5.50 2.68

Peptostreptococcaceae 5.31 3.77

Clostridiaceae 4.52 7.89

Streptococcaceae 4.30 4.25

Campylobacteraceae 3.13 1.92

Prevotellaceae 3.05 9.18

Genus 30.56 10.22

Escherichia 6.58 5.24

Bacteroides 3.84 0.34

Fusobacterium 3.76 1.45

Peptostreptococcaceae 3.47 1.98

Enterococcus 3.06 2.04

Turicibacter 2.85 3.04

Clostridium 2.77 4.36

Streptococcus 2.67 1.51

Actinobacillus 2.57 0.47

Butyricimonas 2.50 1.51

Table 1 Proportion of variation explained by the first two principal

components at different taxonomic levels and contribution of the

top members to the first two principal components (Continued)

Taxonomic level PC1 PC2 Contribution
to PC1

Contribution
to PC2

Species 33.49 8.16

Escherichia coli 3.18 3.33

Bacteroides fragilis 1.90 1.13

Streptococcus gallolyticus 1.83 0.91

Bacteroides vulgatus 1.74 0.25

Campylobacter jejuni 1.60 0.71

Turicibacter sanguinis 1.54 1.95

Clostridium scindens 1.46 0.57

Clostridium butyricum 1.44 0.66

Clostridium bolteae 1.39 0.60

Coprococcus catus 1.38 0.11

PC1 and PC2 are the two principal components 1 and 2, respectively
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Longitudinal analysis of microbiome diversity

Alpha diversity of the microbiome was evaluated using

the Shannon index and plotted in Fig. 5 by sex and time

point. At weaning, the average Shannon indices for type

A and type B weaners was 3.33 ± 0.67 and 4.13 ± 0.43 in

the males and 3.21 ± 0.68 and 4.18 ± 0.43 in the females,

respectively. Results from t tests showed that those

means were significantly different between types A and

B in both male and female weaners (P < 0.001). At week

15, types C and D had an average Shannon indices of

4.50 ± 0.30 and 4.47 ± 0.29 in males and 4.60 ± 0.26 and

4.57 ± 0.27 in females, respectively. These averages were

not significantly different between the two enterotypes

in both sex groups (P > 0.05). The average Shannon indi-

ces for type E and type F off-test pigs were 4.57 ± 0.32

and 4.59 ± 0.31 in males and 4.67 ± 0.28 and 4.73 ± 0.23

in the females, respectively. Significant difference in the

Shannon index between type E and type F animals was

observed only in the female pigs (P < 0.01).

The test from model (1) showed a significant impact

of sex (P < 0.05), bs (P < 0.001), and interaction between

age and family (P < 0.001) on the alpha diversity of

microbiome measured using the Shannon index. The

estimated effects of the fixed factors are listed in

Additional file 8. The effect of dl was not significant

(P > 0.05) and was thus removed in subsequent ana-

lyses. We compared the clustering results from the rar-

efied data to the results from the unrarefied, and found

no major differences in the clusters and enterotypes. For

the reader reference, we put the results using the

Fig. 3 Calinski-Harabasz indexes (CH) for number of potential clusters of samples at weaning, week 15, and off-test. The highest CH value at each

time point indicates optimal number of cluster/enterotypes. Samples at weaning formed two clusters, A and B. Samples at week 15 formed two

clusters, C and D. Samples at off-test formed two clusters, E and F

Fig. 4 Effect size of genera that separate two enterotypes at weaning (A and B), week 15 (C and D), and off-test (E and F). The bar length represents a

log10-transformed linear discriminant score. The colors represent which enterotype a genus is found to be more abundant compared to the other

enterotype. Only absolute values of the effect size are considered when comparing one genus to another
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unrarefied data in Additional file 9, Additional file 10,

and Additional file 11.

Longitudinal changes in random effects of family were

estimated using model (1.1) and are plotted in Fig. 6,

which shows a group of 14 families (1, 2, 5, 7, 8, 12, 13,

14, 15, 16, 17, 21, 23, 25) with negative estimated effect

on the Shannon index at weaning, indicating their diver-

sity was below the average of the 28 families investi-

gated. The other 14 (3, 4, 6, 9, 10, 11, 18, 19, 20, 22, 24,

26, 27, 28) families had their estimated family effect

above the population mean. The latter group appears to

show a trend, though not consistently across the 14

families, where families that had very high diversity at

weaning tended to have very low diversity at week 15

and off-test. This tendency is even less consistent in the

other group of 14 families. Pearson’s correlation for the

estimated family effect on the diversity between weaning

and week 15 was − 0.70, between week 15 and off-test

was − 0.82, and between week 15 and off-test was 0.98.

Analyses performed at individual time points and

described in model (2) revealed significant impact of sex

(P < 0.05) and bs (P < 0.001) and insignificant effect of

family (P > 0.05) at weaning. At week 15 and off-test,

both family and sex effects were significant (P < 0.001),

whereas the bs effect was insignificant (P > 0.05).

We considered the index as a phenotypic record and

hence attempted to estimate its genetic parameters. The

results from model (3), not including the litter effect, are

presented in Table 2, suggesting that the measure was

lowly heritable at weaning and week 15 (0.04 ± 0.04 and

0.15 ± 0.06, respectively) but moderately heritable at

off-test (0.33 ± 0.10). Very weak negative phenotypic cor-

relation was detected between weaning and week 15

(− 0.01 ± 0.03), as well as between weaning and off-test

Fig. 5 Box plots of the Shannon index in each enterotype by sex at weaning, week 15, and off-test

Fig. 6 Family effect on the Shannon index estimated for each family at weaning, week 15, and off-test
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(− 0.04 ± 0.03). Considering the standard error, those

correlations were almost zero. However, the measures

at week 15 were positively correlated with those at

off-test phenotypically, 0.15 ± 0.03. Genetically, the

index at weaning was negatively correlated with those

at week 15 and off-test, respectively − 0.17 ± 0.48 and

− 0.34 ± 0.47. However, the genetic correlation for this

index between week 15 and off-test was 0.44 ± 0.25.

We also estimated genetic parameters of OTU rich-

ness and observed a trend similar to the one found with

the Shannon index. Table 3 shows almost zero heritabil-

ity, 0.03 ± 0.04, for the OTU richness at weaning, but

moderate heritabilities of 0.26 ± 0.08 and 0.24 ± 0.08 at

week 15 and off-test, respectively. A very weak genetic

correlation was estimated between weaning and week 15

(0.07 ± 0.52), whereas the estimated genetic correlations

between weaning and off-test, as well as between week

15 and off-test, were 0.25 ± 0.53 and 0.11 ± 0.25, respect-

ively. Very large standard errors were observed for the

genetic correlations between weaning and week 15, as

well as between weaning and off-test for the Shannon

index and OTU richness.

Tables 4 and 5 show genetic parameters of the Shannon

index and OTU richness estimated using model (4). Heri-

tabilities of the Shannon index and OTU richness at

weaning were 0.02 ± 0.04 and 0.01 ± 0.03, respectively. It

should be noted that small estimated additive genetic

variances at weaning might have inflated the estimated co-

variances between weaning and the other two time points.

The estimated heritabilities of the Shannon index and

OTU richness slightly changed to 0.16 ± 0.07 and

0.24 ± 0.09, respectively, at week 15, whereas they de-

creased to 0.22 ± 0.09 and 0.20 ± 0.08, respectively, at

off-test. Interestingly, the genetic correlation between

week 15 and off-test for the Shannon index and OTU

richness increased remarkably to 0.65 ± 0.23 and 0.39

± 0.27, respectively.

Tables 6 and 7 present genetic parameters of the

Shannon index and OTU richness estimated using

model (5). Adding the random effect of pen in model (5)

accounted for the immediate environment shared among

pen mates at week 15 and off-test. This led heritability

estimates for the Shannon index to decrease slightly to

0.17 ± 0.08 and 0.19 ± 0.09 at week 15 and off-test,

respectively; heritability estimates for OTU richness also

decreased slightly to 0.23 ± 0.09 and 0.17 ± 0.08 at week

15 and off-test, respectively, when compared to the esti-

mates from model (4). The genetic correlation for the

two traits between week 15 and off-test increased to

0.80 ± 0.24 and 0.52 ± 0.29, respectively. Our results might

suggest there is very little or no influence of the host’s

genetics on gut microbiome diversity at weaning, when the

gut microbiota may be significantly influenced by environ-

mental factors coincident with the weaning process.

The LRT revealed significant improvement in goodness

of fit when including the litter effect, model (3) vs model

(4) (P < 0.001), as well as when including the pen effect,

model (4) vs model (5) (P < 0.001), for both Shannon

index and OUT richness. The results suggest that it is

important to include both litter and pen in the model

when estimating genetic parameters for the two traits.

Relationships between Sha_w and Sha_15 with BF_18,

BF_22, ADGw_14, and ADG14_22 are provided in

Table 8. The phenotypic correlations between the Sha_w

and BF_18, BF_22, ADGw_14, and ADG14_22 were all

positive, between 0.03 and 0.06, whereas the correla-

tions between Sha_15 and those four traits were all

negative, between − 0.10 and − 0.08. Genetic correla-

tions between BF_18, BF_22, ADGw_14, and ADG14_22

and Sha_w were 0.38 ± 0.43, 0.55 ± 0.41, − 0.73 ± 0.51, and

0.44 ± 0.48, respectively, whereas their correlations with

Sha_15 were − 0.53 ± 0.23, − 0.45 ± 0.25, − 0.53 ± 0.32,

and − 0.53 ± 0.29, respectively. The genetic correlations

between Sha_15 and the four traits were all strong and

more consistent than the estimates between those four

traits with Sha_w, which had very large standard errors.

Table 2 Estimated genetic parameters of the Shannon index

and their standard errors

Weaning Week 15 Off-test

Weaning 0.04 ± 0.04 − 0.01 ± 0.03 − 0.04 ± 0.03

Week 15 − 0.17 ± 0.48 0.15 ± 0.06 0.15 ± 0.03

Off-test − 0.34 ± 0.47 0.44 ± 0.25 0.33 ± 0.10

Model not including litter effect. Values on the diagonal are heritability, above

the diagonal are phenotypic correlations, and below the diagonal are

genetic correlations

Table 3 Estimated genetic parameters of the OTU richness and

their standard errors

Weaning Week 15 Off-test

Weaning 0.03 ± 0.04 0.00 ± 0.03 − 0.02 ± 0.03

Week 15 0.07 ± 0.52 0.26 ± 0.08 0.07 ± 0.03

Off-test 0.25 ± 0.53 0.11 ± 0.25 0.24 ± 0.08

Model not including litter effect. Values on the diagonal are heritability, above

the diagonal are phenotypic correlations, and below the diagonal are

genetic correlations

Table 4 Estimated genetic parameters of the Shannon index

and their standard errors

Weaning Week 15 Off-test

Weaning 0.02 ± 0.04 − 0.01 ± 0.03 − 0.04 ± 0.03

Week 15 − 0.23 ± 0.49 0.16 ± 0.07 0.16 ± 0.03

Off-test − 0.96 ± 0.43 0.65 ± 0.23 0.22 ± 0.09

Model including litter effect. Values on the diagonal are heritability, above the

diagonal are phenotypic correlations, and below the diagonal are

genetic correlations
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This result might suggest that Sha_15 in our data could

be a better predictor of BF18, BF22, ADGw_14, and

ADG14_22 than Sha_w.

Discussion
The data used in this project were collected from a

population of crossbred pigs whose fecal bacterial com-

munities were sampled at weaning, week 15, and off-

test. The overall goal of this project was to investigate

the potential contribution of information from the pig

fecal microbiome to the genetic improvement of the pig.

The analyses presented here are our first steps toward

better understanding temporal changes in the pig’s fecal

microbiome, with respect to both community compos-

ition and diversity, and toward exploring the potential

influence of the host’s genetic background on variation

in microbiota diversity over time.

The gut microbiota of the animals in this study were

predominated by two phyla, Firmicutes and Bacteroidetes,

in agreement with published research [6, 8, 44–46].

However, the most abundant genus at all three time points

in our dataset was Clostridium, instead of Prevotella as

reported in [8, 46, 47]. The colonization of Clostridium

and other genera, including Escherichia and Prevotella,

begins immediately following birth [48, 49] and could be

disrupted by changes in living environment and the host

conditions [50, 51]. At weaning, the pigs were removed

from their mothers and exposed to changes in both diet

and living environment. All of these changes might have

impacted the gut microbial ecosystem established prior to

weaning, during which the piglets were trained on

concentrate food. Our data suggest weaning animals can

be divided into two distinct enterotypes: (1) a Prevotella-

enriched cluster which might represent those communi-

ties accustomed to feed rich in plant polysaccharides and

(2) an Escherichia-enriched cluster in which the presence

of Enterococcus might indicate gut health disruption [52].

Analyses of enterotypes in this study were based on

the assumption that there existed at least two entero-

types among the pigs at each time point, and we were

interested in their potential association with back fat

deposition and growth rate. The pigs used in this study

did not clustered into Prevotella and Ruminococcus

enterotypes as reported in pigs [2] nor did they group

distinctively into Prevotella, Bacteroides, and Ruminococ-

cus enterotypes as reported in human research [33, 53].

The difference in enterotypes between this research and

aforementioned studies might have been partly attrib-

uted to the difference in the genetic background of the

host. From a genetics point of view, the pigs used in this

study were from a population under selection for growth

and thus might have been less diverse than the hosts in

the other studies. In terms of association between enter-

otypes and phenotypes, the results presented herein

contradicted the findings reported in [53], in which

significant association was observed between enterotypes

at 36 days of age with average daily gain at 70 days of

age. Enterotypes identified among week 15 and off-test

pigs in our study were significantly associated with only

back fat thickness. Association between the identified

enterotypes and alpha diversity was not clear in our

study and might be further studied by investigating the

genera underlying differences among the enterotypes.

A highly diverse microbiota is beneficial to the host

[54–56]. We have demonstrated that alpha diversity in

our data was under significant influence of family strata

and have identified families whose progeny had increas-

ing microbiota diversity through week 15 and off-test.

We used paternal half-sib families in this research, thus

each family represented a breeding male pig that was

mated to several female pigs to produce the offspring.

The significant variation in alpha diversity we observed

among the families in this study suggests bacterial bio-

diversity within the pig gut might be influenced by the

host’s genetics. The diversity index used in this study, to

Table 5 Estimated genetic parameters of the OTU richness and

their standard errors

Weaning Week 15 Off-test

Weaning 0.01 ± 0.03 0.00 ± 0.03 − 0.03 ± 0.03

Week 15 – 0.24 ± 0.09 0.08 ± 0.03

Off-test – 0.39 ± 0.27 0.20 ± 0.08

Model including litter effect. Values on the diagonal are heritability, above the

diagonal are phenotypic correlations, and below the diagonal are genetic

correlations. Genetic correlations between weaning and week 15, as well as

between weaning and off-test, were not estimable

Table 6 Estimated genetic parameters of the Shannon index

and their standard errors

Weaning Week 15 Off-test

Weaning – – –

Week 15 – 0.17 ± 0.08 0.16 ± 0.03

Off-test – 0.80 ± 0.24 0.19 ± 0.09

Model including litter effect and pen effect. Values on the diagonal are

heritability, above the diagonal are phenotypic correlations, and below the

diagonal are genetic correlations. The pen effect did not apply to weaning

samples; thus, model (5) was used for only week 15 and off-test

Table 7 Estimated genetic parameters of the OTU richness and

their standard errors

Weaning Week 15 Off-test

Weaning – – –

Week 15 – 0.23 ± 0.09 0.08 ± 0.03

Off-test – 0.52 ± 0.29 0.17 ± 0.08

Model including litter effect and pen effect. Values on the diagonal are

heritability, above the diagonal are phenotypic correlations, and below the

diagonal are genetic correlations. The pen effect did not apply to weaning

samples; thus, model (5) was used for only week 15 and off-test
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the best of our knowledge, has never been reported in

the current literature as a trait. In animal production,

there are index traits that are computed based on actual

measures on animals, such as feed conversion ratio (the

ratio of the weight of feed consumed by an animal to its

body weight gain over the same period of time) and

residual feed intake (which is modeled from feed intake,

weight gain, and fat thickness). In humans, body fat

deposition has been associated with alpha diversity of

the gut microbiota [57–59]. Disease conditions have also

been correlated with decreases in microbiome diversity

[60–64]. Despite numerous studies linking the gut

microbiota’s composition and diversity to host health

conditions, the current literature has no reports on gen-

etic parameters of the diversity of the gut microbiome.

Before this discussion extends to the genetic parameters

of microbiota diversity, it might be worth clarifying the

use of permanent environmental effect of litter in the

statistical models that we used in this paper. The perman-

ent environmental effect in this study refers to the nursing

environment provided by the mother and siblings. This

environment influences the development of individual

pigs and potentially has a profound impact on fitness and

other phenotypic traits later in life [65–67]. It is thought

that immediately after birth, newborn pigs begin acquiring

their gut microbiota from a combination of environmental

exposures and vertical transmission of maternal microbes

[68, 69]. It has been shown that maternal diet and anti-

biotic exposures may induce long lasting impacts on gut

microbiota establishment, gut biology, and the growth

performance of progeny [3, 70, 71].

This study is the first to describe OTU richness and

alpha diversity as phenotypic traits in farm animals and

the first to estimate their genetic parameters at three key

stages of pig development. The heritability of 0.15 – 0.33

reported in this study means that 15 – 33% of the vari-

ation in alpha diversity measured in our pigs, at week 15

and off-test, was due to genetics. Examples of traits with

similar heritability range include residual feed intake

(h2 = 0.13) and belly weight (h2 = 0.28) [72]; tenderness

(h2 = 0.26), meat color (h2 = 0.28), growth rate (h2 = 0.30),

and feed conversion ratio (h2 = 0.29) [73–75]. These traits

have been targeted for selection in pig breeding programs

around the world due to their economic importance to

the pork industry. Alpha diversity, reported to be associ-

ated with gut health, and found in this study to be strongly

correlated with back fat thickness and average daily gain,

which are the two important components of feed effi-

ciency in livestock production, could very well be an indi-

cator trait for genetic selection. Our results also suggest

that diversity at weaning might not be an accurate pre-

dictor of diversity at later stages in life. If alpha diversity is

to be used as an indicator trait, its availability soon after

weaning will be beneficial to a selection process. There-

fore, we suggest further investigation into alpha diversity

at time points earlier than week 15.

Domestic pigs are similar to humans in terms of anat-

omy, genetics, and physiology [17]. They can be used as

a model to study human diseases due to their similar

clinical manifestations and susceptibility to many enteric

pathogens that afflict humans [18–22]. Furthermore,

outbred pigs, like the ones used in the present study,

best mimic animal variation reflective of outbred human

populations [16]. This study estimates the contribution

of host genetics to the diversity of pig’s gut microbiota.

Taking this finding into human studies, a better under-

standing of the relationship between host genetics and

microbiome diversity might lead to changes in research

direction to improve the human gut health.

Conclusions
This study was conducted on a group of crossbred pigs

living through three stages of life (weaning, week 15, and

off-test) and was designed to explore longitudinal

changes in fecal microbiome composition and diversity,

as well as the influence of host genetics on microbiome

diversity. Two enterotypes were identified at each stage

of life, but only enterotypes at week 15 and off-test were

proven to be associated with back fat thickness. Micro-

biome alpha diversity as measured using the Shannon

index was found to be lowly to moderately heritable at

week 15 and off-test. The diversity at these two time

Table 8 Heritability and phenotypic/genetic correlations between back fat, average daily gain, and Shannon index at weaning and

week 15

Sha_w Sha_15 BF_18 BF_22 ADGw_14 ADG14_22

Sha_w 0.04 ± 0.04 – 0.05 ± 0.03 0.06 ± 0.03 0.04 ± 0.03 0.07 ± 0.03

Sha_15 – 0.18 ± 0.08 − 0.10 ± 0.03 − 0.08 ± 0.03 − 0.09 ± 0.03 − 0.09 ± 0.03

BF_18 0.42 ± 0.50 − 0.53 ± 0.23 0.30 ± 0.11 – 0.43 ± 0.03 0.31 ± 0.03

BF_22 0.52 ± 0.49 − 0.45 ± 0.25 – 0.28 ± 0.10 – 0.45 ± 0.03

ADGw_14 − 0.73 ± 0.51 − 0.53 ± 0.32 0.29 ± 0.32 – 0.09 ± 0.06 –

ADG14_22 0.44 ± 0.48 − 0.53 ± 0.29 0.10 ± 0.29 0.24 ± 0.28 – 0.17 ± 0.08

Values on the diagonal are heritability, above the diagonal are phenotypic correlations, and below the diagonal are genetic correlations. Sha_w Shannon index at

weaning, Sha_15 Shannon index at week 15, BF_18 back fat thickness at week 18, BF_22 back fat thickness at week 22, ADGw_14 average daily gain from weaning

to week 14, ADG14_22 average daily gain from week 14 to week 22
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points was also found to have strong genetic correlation

to each other. The diversity index at week 15 was also

strongly correlated with back fat and average daily gain

of the pigs. These findings may lead to a new direction

of research in animal breeding and genetics and suggest

potentially significant utility for gut microbiome data in

the genetic evaluation process.
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