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American cutaneous leishmaniasis (ACL) is a com-
plex, multifactorial disease that results from environmen-
tal factors such as parasite polymorphism, phlebotomine 
sandfly components, as well as the host’s immune and 
genetic background. In northeastern Brazil, the endemic 
area of Corte de Pedra registers the highest incidence of 
ACL in the state of Bahia (BA). While the incidence of 
CL in BA varies from 1.5-3.2 per 10,000, the incidence 
in Corte de Pedra varies from 15-35 per 10,000. The pre-
dominant causative species is Leishmania braziliensis, 
which in most cases leads to CL, characterised by one or 
more ulcers with raised borders, most frequently located 
on the upper and lower extremities, but also on the head, 
face and trunk (Barral-Netto et al. 1997). Although CL 
is a self-limiting disease, approximately 3-5% of subjects 
infected with L. braziliensis will eventually develop mu-
cosal leishmaniasis (ML) or disseminated leishmaniasis 
(DL), considered now an emerging form of the disease in 
the area. Fig. 1 demonstrates these different clinical phe-
notypes, highlighting the sometimes disfiguring nature 
of the disease and the need to understand the variable 
disease pathology.

A number of studies on ACL conducted in Corte de 
Pedra in the past 30 years have contributed enormously 
to the knowledge of ACL epidemiology and immune re-
sponse (Carvalho et al. 2012, de Oliveira & Brodskyn 
2012). Particularly in the last decade, a number of stud-
ies evaluating both parasite and host polymorphisms 
have demonstrated that genetic factors are associated to 
different clinical forms, revealing relevant biomarkers to 
understanding the disease pathogenesis (Schriefer et al. 
2004, Castellucci et al. 2006, 2010, 2011, 2012, Rama-
sawmy et al. 2010, Queiroz et al. 2012). Here we present 
a narrative review of host genetic studies of ACL con-
ducted in Corte de Pedra over the last decade. Although 
there are a number of studies evaluating candidate genes 
in ACL (Table I), no genome-wide association studies 
have so far been reported that would provide a com-
prehensive map of genetic risk factors for this disease. 
This is in contrast to host genetic analysis of visceral 
leishmaniasis (VL), for which a well-powered genome-
wide association study was recently reported (Fakiola et 
al. 2013). Here we will focus on genetic susceptibility 
to ACL, beginning with the demonstration of familial 
aggregation of ACL disease in Corte de Pedra that led 
to analysis of specific candidate genes arising both from 
our knowledge of immune responses to human L. bra-
ziliensis infection, and through consideration of wound 
healing genes that was inspired initially by studies in 
mice (Sakthianandeswaren et al. 2005, 2009, 2010). 
These data are further discussed in relation to studies of 
genetic susceptibility to CL in other geographic regions, 
as summarised along with all published (Barbier et al. 
1987, Lara et al. 1991, Petzl-Erler et al. 1991, El-Mogy 
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American cutaneous leishmaniasis (ACL) is a vector-transmitted infectious disease with an estimated 1.5 million 
new cases per year. In Brazil, ACL represents a significant public health problem, with approximately 30,000 new 
reported cases annually, representing an incidence of 18.5 cases per 100,000 inhabitants. Corte de Pedra is in a re-
gion endemic for ACL in the state of Bahia (BA), northeastern Brazil, with 500-1,300 patients treated annually. Over 
the last decade, population and family-based candidate gene studies were conducted in Corte de Pedra, founded 
on previous knowledge from studies on mice and humans. Notwithstanding limitations related to sample size and 
power, these studies contribute important genetic biomarkers that identify novel pathways of disease pathogenesis 
and possible new therapeutic targets. The present paper is a narrative review about ACL immunogenetics in BA, 
highlighting in particular the interacting roles of the wound healing gene FLI1 with interleukin-6 and genes SMAD2 
and SMAD3 of the transforming growth factor beta signalling pathway. This research highlights the need for well-
powered genetic and functional studies on Leishmania braziliensis infection as essential to define and validate the 
role of host genes in determining resistance/susceptibility regarding this disease.
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et al. 1993, Cabrera et al. 1995, Karplus et al. 2002, Ol-
ivo-Diaz et al. 2004, Castellucci et al. 2006, 2010, 2011, 
2012, Kamali-Sarvestani et al. 2006, Matos et al. 2007, 
Salhi et al. 2008, Ajdary et al. 2010, 2011, Ramasawmy 
et al. 2010, Samaranayake et al. 2010, Oliveira et al. 2011, 
Fernández-Figueroa et al. 2012, Covas et al. 2013) data 
on susceptibility to CL in Table I. One factor that affects 
interpretation of all of these studies is the issue of sample 
size and power, which we will return to in our conclud-
ing remarks.

The endemic site of Corte de Pedra - Corte de Pedra, 
a village located in the southwestern region of BA, be-
longs to the municipality of Presidente Tancredo Neves, 
whose population is approximately 17,928 inhabitants 
(source: Brazilian Institute of Geography and Statistics). 
The endemic area of Corte de Pedra, however, extends 
far beyond the village, covering 20 municipalities in a 
total area of approximately 9,935 km2 around the site 
where a Health Post was established in 1980s as a ref-
erence centre for the treatment of leishmaniasis in the 
region. Currently, 430,347 people are distributed across 
these towns, for which the main economic activity is 
subsistence farming, particularly the cultivation of co-
coa, cloves, guarana, banana, coffee, black pepper and 
rubber. The endemic area of Corte de Pedra is typically 
an area of rainforest that over the years has been reduced 
to isolated areas of secondary forest with agricultural 
activities providing the main source of income for the 
majority of its inhabitants. The occupational and domes-
tic habits of these individuals, which involve work on 
farms and homes built in clearings in the woods, have 
increased the population’s exposure to L. braziliensis 
infection. From 2007-2012, 7,093 cases of ACL were re-
corded in the region, with 6,747 (95%) cases of CL, 138 
(2%) cases of ML and 208 cases (3%) cases of DL.

A familial aggregation study - It is well known that 
the clinical outcome of parasitic infections is influenced 
by the complex interaction of parasite strain, host genetics 
and environmental factors. Leishmaniasis, in particular, 
has a broad clinical spectrum associated with variable 
profiles of immune response and different Leishmania 
species (Cabrera et al. 1995, Alcais et al. 1997, Ribeiro-
de-Jesus et al. 1998). Previous studies have described fa-
milial clustering of VL and CL (Alcais et al. 1997, Black-
well et al. 1997, Jeronimo et al. 2000). Given that ML is a 
rare phenotype associated with a vigorous inflammatory 
response to parasite antigens (Bacellar et al. 2002), we 
conducted a study to address the hypothesis that famil-
ial clustering of ML would occur in the endemic area of 
Corte de Pedra. The study was a reconstructed cohort, a 
hybrid between a case-control and a retrospective cohort 
study. All members of 30 ML and 30 neighbourhood con-
trol families were assessed for history of exposure, as as-
sessed by positive delayed type hypersensitivity (DTH) 
response and/or current or past disease confirmed from 
medical records or by clinical examination for presence of 
a scar in association with a positive DTH response. First-
degree relatives of index cases were compared with those 
of index controls (Castellucci et al. 2005). There were sig-
nificant differences between the frequencies of CL (37% 
vs. 20%) and ML (5% vs. 0%) when comparing case fami-
lies and control families, respectively. Additionally, fami-
lies with two cases of ML had a higher frequency (29.6%) 
of DTH-positive individuals than control families (9.4%). 
In this way we documented familial aggregation of CL 
and ML in a region where L. braziliensis is highly endem-
ic. Although shared environment reflecting the rate of 
exposure to sandflies, the number of parasites inoculated 
by the infected sandflies, pre-existing immune responses 
to sandfly saliva products and variation between isolates 
of L. braziliensis (Grimaldi Jr & Tesh 1993, Gillespie et 
al. 2000) could contribute to this familial aggregation, 
our data favoured the hypothesis that genetic background 
could be influencing a higher rate of infection and/or a 
propensity to develop or retain a positive skin test in fam-
ily members. This was supported by our failure to detect 
differences between ML and neighbourhood control fami-
lies for environmental factors evaluated in our study area. 
At the same time, other studies were already documenting 
(Table I) host genetic factors influencing the immune re-
sponse and clinical outcome of leishmaniasis in mice and 
humans (Blackwell et al. 1997, Blackwell 1998). Based on 
these findings, we conducted a number of candidate gene 
studies in order to identify polymorphic markers associ-
ated with ACL in the Corte de Pedra population.

Analysis of candidate immune response genes - The 
first series of candidate gene studies undertaken in our 
study area were based on analysis of candidate immune 
response genes informed by our knowledge of the im-
munopathology of disease. These studies were initially 
based on a case-control study design, where possible 
supported by family-based analysis to control for ethnic 
admixture. Both cohorts were geographically and demo-
graphically equivalent. Table II describes the structure 
of case-control and family sample sets used as a resource 
for these candidate gene studies.

Fig. 1: the study area and spectrum of clinical disease caused by 
Leishmania braziliensis infection in Corte de Pedra, state of Bahia, 
Brazil. A: typical house and farm area; B: typical cutaneous leishma-
niasis lesion characterised by granulomatous background and elevat-
ed borders; C: disseminated leishmaniasis, a form of disease that is 
increasing in the study area; D: mucosal leishmaniasis characterised 
by infiltrated ulcers that can cause extensive destruction of the nasal 
septum, columella and the upper lip.
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Interleukin (IL)-6 - ML is a severe disease that nor-
mally follows localised CL. Immune pathology is created 
by a strong pro-inflammatory response with high levels 
of tumour necrosis factor (TNF) and failure of type 2 
cytokines to regulate this response. IL-6 down-regulates 
T helper (Th) cell type 1 differentiation and drives Th2 
cell differentiation. Previous studies have shown that 
pre-treatment with recombinant human IL-6 inhibits 
interferon (IFN)-γ and TNF mediated activation of hu-
man macrophages for killing of L. amazonensis (Hatzi-
georgiou et al. 1993) and IL-6 has been shown to down 
regulate the expression of TNF membrane receptors (Ber-
mudez et al. 1992). We evaluated (Castellucci et al. 2006) 
the functional IL6-174 bp G/C promoter polymorphism, 
a single nucleotide polymorphism (SNP) associated with 
pro-inflammatory diseases and IL-6 regulation (Fishman 
et al. 1998, Bidwell et al. 1999, Terry et al. 2000). In ad-
dition, IL-6 levels were measured in macrophages with 
or without stimulation with soluble Leishmania antigen 
(SLA) from L. braziliensis. Our data (Castellucci et al. 
2006) provide both population-based [odds ratio (OR) = 
2.29, 95% confidence intervals (CI) = 1.40-3.77, p = 0.001] 
and family-based (z = 4.3, p = 1.5 x 10-5) evidence for an 
association between the C allele of the -174 bp SNP at 
IL6 and susceptibility to ML. The family-based analysis 
was important in confirming that the association was not 
due to population substructure that might have differed 
between case and control groups. In addition, we found 
that the C allele was associated with reduced baseline 
expression of IL-6 in unstimulated macrophages and in 
macrophages stimulated with SLA. There are inconsis-
tencies among studies concerning the role of the IL6-174 
bp G/C polymorphism, both in terms of which is the dis-
ease-associated allele, and when attempting to determine 
whether different genotypes are functionally associated 
with the production of differing IL-6 levels. The fact that 
IL-6 has many pleiotropic effects in regulating both type 
1 and type 2 immune response pathways (Diehl & Rincon 
2002), plus the complexities of the immunopathogenesis 
of these different diseases (Rincon et al. 1997, Diehl et al. 
2000), might explain such differences. Besides, it is im-
portant to bear in mind that the -174 bp SNP is not the sole 
polymorphic determinant of differential and cell type-
specific promoter activity driving IL6 gene transcription 
(Fishman et al. 1998, Terry et al. 2000). In relation to our 
own study, as macrophages are the primary site of infec-
tion, we hypothesise that low IL-6 production in carriers 
of the C allele may contribute to a reduced capacity to 
induce Th2 cell differentiation and regulate the activity 
of CD4+ Th1 cell-generated cytokines (such as IFN-γ and 
TNF) that contribute to the destructive pathological mani-
festations associated with ML.

CCL2/MCP1 - There are several reports for the puta-
tive roles of the CCL2-encoded monocyte chemoattrac-
tant protein-1 (MCP-1) in leishmaniasis from infection 
studies in vitro (Ritter & Moll 2000, Bhattacharyya et 
al. 2002) as well as by analysis of human (Ritter et al. 
1996) and murine (de Moura et al. 2005) lesions. Previ-
ous studies have variably demonstrated increased risk 
or protection from pulmonary tuberculosis associated 
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with single SNP variants and/or different haplotypes 
created by promoter region SNPs at -362 bp and at -2,518 
bp (Flores-Villanueva et al. 2005, Thye et al. 2009, Inte-
mann et al. 2011). One of these studies (Flores-Villanue-
va et al. 2005) further showed that tuberculosis patients 
carrying the G allele for the SNP at -2,518 bp had the 
highest plasma levels of MCP-1 and the lowest plasma 
levels of IL-12p40, which was therefore interpreted as 
a secondary effect of MCP-1 in impairing the Th1 im-
mune response against Mycobacterium tuberculosis. 
We also demonstrated (Ramasawmy et al. 2010) that 
the G allele at the regulatory CCL2 -2,518 bp promoter 
is a risk factor for ML using our population-based (OR 
= 4.4, 95% CI = 1.42-13.65, p = 0.01) and family-based 
(z = 2.68, p = 0.007) samples (Table II) from Corte de 
Pedra. A number of studies suggest a link between the 
leishmanicidal capacity of MCP-1 and lesion healing. 
Previous work has demonstrated that MCP-1 enhances 
the cytotoxic response via induction of reactive oxygen 
intermediates by infected macrophages (Ritter & Moll 
2000, Bhattacharyya et al. 2002). Moreover, in patients 
with self-healing CL, high levels of MCP-1 were detect-
ed in infected skin whereas, in the non-healing lesions 
of diffuse CL, MCP-1 expression was much lower with a 
predominance of another CC chemokine, CCL3 or mac-
rophage inflammatory protein 1-α (MIP-1α) (Ritter et al. 
1996). In addition, it was demonstrated that the chemok-
ines MCP-1, MIP-1α and CXCL1 were expressed in ears 

and draining lymph nodes of mice infected in the ear 
with L. braziliensis (de Moura et al. 2005). Our results 
suggest that high levels of MCP-1 appear to exacerbate 
ML disease. In contrast to previous data (Flores-Villan-
ueva et al. 2005), plasma levels of IL-12p40 and IL-12p70 
did not differ significantly between our CCL2 -2,518 bp 
genotype groups. We also observed higher MCP-1 levels 
in the supernatants of macrophages from GG compared 
to AA genotypes both in un-stimulated as well as SLA 
and LPS stimulated cultures. Our data support the alter-
native view that the proinflammatory capacity of MCP-1 
in recruiting host monocytes could provide both the en-
vironment for parasite replication and for tissue damage 
and lesion development. This could be due to a direct 
effect of MCP-1 in bringing fresh monocytes to the site 
of infection and/or to downstream events regulated by 
MCP-1 in macrophages and other cells.

CXCR1 and SLC11A1 - It has been hypothesised 
(Peters & Sacks 2009) that differences in the ability of 
macrophages and dendritic cells from different inbred 
mouse strains to respond to apoptotic vs. necrotic poly-
morphonuclear leukocytes (PMN), arising during the 
wound healing response to an infected sandfly bite, de-
termines disease progression. The arrival and mainte-
nance of infiltrating cells at bite sites is thought to be 
mediated by sandfly derived factors that either mimic a 
tissue damage signal or activate chemokine/chemokine 
receptor pathways (Teixeira et al. 2005a, b, 2006). Ex-

TABLE II
Characteristics of collections made during the primary (2000-2004)  

and secondary (2008-2010) sampling periods (A) and demographic data of the case-control groups (B)

A

Primary sample period Secondary sample period

CL ML
Leishmaniasis

 per se CL ML
Leishmaniasis 

per se

Cases (n) 250 87 337 402 39 441
   Males 128 60 188 219 24 243
   Females 122 27 149 183 15 198
Age at disease (years)
   Mean 19.1 30.3 22.4 21.5 26.6 21.9
   95% confidence interval 17.1-21.2 25.8-34.3 20.3-24.4 20.1-22.9 20.7-32.4 20.6-23.3
Nuclear families (n) - - 168 - - 157

Total families/trios (n) - - 767 - - 764

B ML CL Unaffected control DTH+

Individuals (n) 60 60 60 60
Age range (years) 11-69 10-80 11-75 12-75
Mean age (years) ± SD 40 ± 17.1 41 ± 17.8 40 ± 18.0 38 ± 18.0
Males:females 47:13 47:13 47:13 47:13
Mean time residing in study area ± SD 27 ± 16.9 31 ± 18.2 29 ± 17.4 32 ± 17.7
Farm as main occupation (%) 80 70 68 75

CL: cutaneous leishmaniasis; DTH: delayed type hypersensitivity; ML: mucosal leishmaniasis; SD: standard deviation.
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pression patterns for chemokines have been associated 
with the evolution of large and small lesions in mice fol-
lowing L. braziliensis infection, influenced by both the 
strain of parasite (Teixeira et al. 2005b) and the mouse 
genetic background (Teixeira et al. 2005a). One way to 
look at the interplay between PMN and macrophages in 
disease progression in humans is to determine whether 
polymorphisms at genes that regulate their infiltration 
or function are associated with different clinical pheno-
types following infection with Leishmania spp. CXCR1 
(IL8RA) and CXCR2 (IL8RB) are genes encoding recep-
tors for chemokines that attract PMN to inflammatory 
sites. They lie on human chromosome 2q25 230-260 kb 
upstream of SLC11A1, a gene that regulates macrophage 
activation and resistance to VL (Blackwell et al. 2001). 
In our studies (Castellucci et al. 2010), we showed an as-
sociation between ACL and polymorphic variants at the 
CXCR1, specifically at SNP rs2854386 for both popula-
tion-based (OR = 2.38, 95% CI = 1.23-4.57, p = 0.009) 
and family-based (z = 2.00, p = 0.045). Of interest, the 
common C allele (presumed to be the functional variant) 
was associated with CL, whereas the rare G allele was 
associated with ML (z = 2.00, p = 0.046). This suggested 
that, whereas high numbers of PMN might be detrimen-
tal in the context of CL disease, they may have an im-
portant positive role to play in preventing ML disease. In 
addition, in the family-based study CL was associated (z 
= 2.55, p = 0.011) with a 3’ insertion/deletion polymor-
phism at SLC11A1, a gene primarily known for its role in 
the regulation of macrophage activation. The association 
is also of interest in relation to the putative role of this 
molecule in regulating expression of secretory leukocyte 
protease inhibitor and hence affecting the wound heal-
ing response (Thuraisingam et al. 2006). Differences in 
lesion development have not been observed following 
subcutaneous needle injection of either Leishmania ma-
jor (Alexander & Blackwell 1986) or Leishmania mexi-
cana (Roberts et al. 1989) into Slc11a1 congenic mice, 
suggesting that the genetic influence of SLC11A1 on sus-
ceptibility to CL following natural infection in humans 
might be mediated by the effect on the wound healing 
response to the sandfly bite. This means that the mecha-
nism by which SLC11A1 influences CL disease may be 
different to its influence on VL in mice following in-
travenous needle injection (Bradley & Kirkley 1977) or 
in natural infection of dogs (Sanchez-Robert et al. 2005, 
2008) and humans (Bucheton et al. 2003, Mohamed et 
al. 2004). Our data supports roles for both CXCR1 and 
SLC11A1 in determining the outcome of L. braziliensis 
infection, providing interesting insight into the possible 
roles of PMN and macrophages in ACL.

The wound healing gene hypothesis: studies inspired 
by mice - Our observations on the possible role of wound 
healing genes in response to sandfly delivered parasites 
were not the first to suggest a possible role for wound 
healing genes in CL susceptibility. Indeed, our interpre-
tation was based largely on the seminal mapping studies 
of susceptibility to CL carried out in mice (Sakthianan-
deswaren et al. 2005, 2009, 2010), which inspired us to 
look for the possible role of these and other wound heal-
ing genes in susceptibility to ACL in Corte de Pedra.

FLI1 - Fine mapping in the region of chromosome 9 
in mice (chromosome 11q24 in humans) identified Friend 
leukaemia virus integration 1 (Fli1) (FLI1 in humans) as 
a novel candidate influencing both resistance to L. major 
and an enhanced wound healing response (Sakthianan-
deswaren et al. 2010). To determine whether polymor-
phisms at FLI1 were important in human disease, SNPs 
that tagged the first two major linkage disequilibrium 
blocks and the proximal promoter of the FLI1 gene were 
analysed in 325 endemic L. braziliensis families (Castel-
lucci et al. 2011). The proximal promoter region of FLI1 
contains a functional GAn microsatellite, as well as a 
CpG island that spans the proximal promoter region and 
the 5′ region of intron. Using robust case-pseudocontrol 
conditional logistic regression analysis of discovery (OR 
= 1.65, 95% CI = 1.18-2.29, p = 0.003) and replication 
(OR = 1.60, 95% CI = 1.10-2.33, p = 0.014) family-based 
cohorts, we demonstrated association between FLI1 
(rs7930515; Pcombined = 1.8 x 10-4) and susceptibility to 
CL caused by L. braziliensis (Castellucci et al. 2011). 
In the murine study, resistance to L. major correlated 
with a wound-healing response that presented in con-
genic resistant mice as a large population of fibroblasts 
and an organised and abundant deposition of collagen 
bundles in the absence of inflammatory cells (Sakthi-
anandeswaren et al. 2005). Recent studies have shown 
an association between enhanced type I collagen expres-
sion and epigenetic repression of the FLI1 gene (Wang 
et al. 2006). As reviewed above, our group also reported 
an association between ML and the C allele at the IL6-
174 bp G/C promoter polymorphism (Castellucci et al. 
2006), which determines low levels of IL-6 release from 
macrophages. Homocysteine dependent stimulation of 
IL-6 has recently been reported (Thaler et al. 2011) to 
upregulate genes essential for epigenetic DNA methyla-
tion via expression of FLI1. Homocysteine increases the 
CpG methylation status (and hence represses gene ex-
pression) of the CpG-rich proximal promoter of the lysyl 
oxidase (LOX) gene (Thaler et al. 2011), an extra-cellular 
copper enzyme that initiates the cross-linking of colla-
gens and elastins. Inhibition of IL-6 reverses this repres-
sion. Regulation of collagen expression and organisation 
may thus involve epigenetic regulation at both FLI1 and 
LOX genes, consistent with the presence of the CpG is-
land across the region of the functional FLI1 promoter 
elements. This suggests that, although there are many 
immune-related functions for both IL-6 and FLI1 that 
could account for association with CL caused by L. bra-
ziliensis, there may be a direct functional link between 
these two genes that mediates resistance or susceptibility 
to infection through the wound-healing response. This, 
in turn, might provide novel therapeutic opportunities.

Transforming growth factor β (TGFβ) signalling 
pathway - IL-6 is known to increase expression of FLI1 
(Thaler et al. 2011). In the wound healing response, both 
FLI1 (Nakerakanti et al. 2006) and IL-6 (Gressner et al. 
2011) repress connective tissue growth factor (CTGF) and 
all three genes interact with the TGFβ pathway. We there-
fore interrogated further the possible roles of wound heal-
ing pathways in cutaneous forms of leishmaniasis caused 
by L. braziliensis by looking for genetic associations with 
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polymorphisms in other genes through interaction with 
FLI1 and the TGFβ signalling pathway (Castellucci et al. 
2012). Robust case-pseudocontrol conditional logistic re-
gression analysis showed associations between CL and 
SNPs at CTGF (rs6918698, OR = 1.67, 95% CI = 1.10-
2.54, p = 0.016), TGFBR2 (rs1962859, OR = 1.50, 95% CI 
= 1.12-1.99, p = 0.005), SMAD2 (rs1792658, OR = 1.57, 
95% CI = 1.04-2.38, p = 0.03), SMAD7 (rs4464148, OR = 
2.80, 95% CI = 1.00-7.87, p = 0.05) and FLII (rs2071242, 
OR = 1.60, 95% CI = 1.14-2.24, p = 0.005) and between 
ML and SNPs at SMAD3 (rs1465841, OR = 2.15, 95% 
CI = 1.13-4.07, p = 0.018) and SMAD7 (rs2337107, OR = 
3.70, 95% CI = 1.27-10.7, p = 0.016). There is a complex 
interplay between FLI1 and the TGFb signalling pathway 
in regulating collagen deposition and fibrosis during the 
wound healing process. In looking for genetic associa-
tions that might throw light on how those genes are influ-
encing the wound healing processes important in CL vs. 
ML disease caused by L. braziliensis, our results indicate 
that CTGF regulated via the SMAD2 arm of the TGFβ 
signalling pathway is required for wound healing in CL 
disease. In contrast, ML disease was associated with 
polymorphism in SMAD3, suggesting that alternative 
regulation of gene expression via the TGFβ signalling 
pathway may lead to ML disease. Fig. 2 provides a model 
for how polymorphisms at genes regulating the different 
signalling pathways might influence CL and ML disease. 
Further functional data will be required to determine 
what the downstream events following signalling via 
SMAD3 in ML compared to signalling via SMAD2 for 
CL disease might be. Additionally, both forms of disease 
were influenced by polymorphisms in the negative regu-
lator SMAD7 that blocks the TGFβ pathway upstream of 
both SMAD2 and SMAD3 emphasising the relevance of 
TGFβ signalling on ACL.

Leishmania infection is associated with a broad 
spectrum of clinical phenotypes. L. braziliensis, in par-
ticular, causes debilitating and disfiguring CL, ML and 
DL that generally take a long time to heal. For over 50 
years, pentavalent antimony (Sbv) given by the intramus-
cular or intravenous route remained the first-line drug 
for the treatment of ACL. This therapy can cause toxic 
side effects and is difficult to administer in poor rural 
areas (Machado et al. 2010). In Corte de Pedra, cure 
rates after Sbv therapy are becoming increasingly lower 
and vary from 50-90% (Romero et al. 2001, Unger et al. 
2009). In light of this, identifying important pathways/
mechanisms of disease can lead to new therapeutic tar-
gets and more efficient intervention strategies that aim 
to increase adherence to treatment in areas with limited 
access to health services. Genetic studies in humans pro-
vide a potentially powerful route to understanding novel 
pathways of disease pathogenesis that could provide new 
chemotherapeutic targets.

Whilst broadly driven by parasite species, many 
studies have implicated host genetics in determining the 
outcome of infection within each species (El-Safi et al. 
2006, Lipoldova & Demant 2006, Blackwell et al. 2009, 
Sakthianandeswaren et al. 2009). Nevertheless, the only 
definitive study carried out in humans to date was the 
recent genome-wide association study on VL (Fakiola et 
al. 2013), which demonstrated that polymorphisms with-
in the DRB1-DQA1 class II region of human leukocyte 
antigen were the only SNPs to attain genome-wide sig-
nificance. Remarkably, this finding crossed the epidemi-
ological divide of parasite species (Leishmania donovani 
and Leishmania chagasi) and geography (Indian and 
Brazil) and has important implications for the develop-
ment of molecularly defined vaccines. While candidate 
gene studies (Table II) have implicated a broader array 
of genes in susceptibility to CL, these are compromised 
by lack of power and failure to obtain replication within 
and between populations. Large well-powered genome-
wide studies with replication will be required to evaluate 
the real significance of these findings. It is of interest, 
nevertheless, that our studies of ACL have provided evi-
dence in support of important roles for immune response 
genes involved in wound healing, which are underpinned 
by initial genetic studies in murine models of disease. 
These wound healing genes may provide novel therapeu-
tic opportunities in ACL, not the least because there may 
already be great interest in the same genes as therapeu-
tic targets for other skin disorders. For example, the use 
of imatinib mesylate has been proposed for treatment of 
systemic sclerosis (Asano 2010, Asano et al. 2010), an 
autoimmune disorder similarly resulting from immune 
activation, fibrosis development and damage of small 
blood vessels, in which FLI1 is down regulated through 
an epigenetic mechanism (Asano et al. 2010). Imatinib 
mesylate reverses the expression levels of FLI1. Similar 
opportunities might apply in the case of other genes that 
we have demonstrated are associated with the spectrum 
of ACL disease. Work is in progress to analyse expres-
sion levels of FLI1 and other wound healing genes in 
tissue biopsies from L. braziliensis patients to determine 

Fig. 2: diagram of genes that have been implicated in susceptibility to 
cutaneous leishmaniasis (CL) and mucosal leishmaniasis (ML) dis-
ease caused by Leishmania braziliensis in the area of Corte de Pedra, 
state of Bahia, Brazil, showing involvement of, and interaction with, 
the transforming growth factor β (TGFβ) pathway. Polymorphisms 
in genes annotated in red lettering have been associated with CL or 
ML disease. Turquoise circles indicate the pathway through which 
interleukin (IL)-6 influences SMAD4 via FLI1. SP1/3 are transcrip-
tion factors that influence FLI1 expression. CTGF: connective tissue 
growth factor. Source: Castellucci et al. (2012). 
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their potential as therapeutic targets, along with plans to 
undertake well-powered genome-wide association stud-
ies to validate our genetic findings for this important 
tropical infectious disease.
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