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Abstract

Background: The composition of bacteria in and on the human body varies widely across human individuals, and

has been associated with multiple health conditions. While microbial communities are influenced by environmental

factors, some degree of genetic influence of the host on the microbiome is also expected. This study is part of an

expanding effort to comprehensively profile the interactions between human genetic variation and the composition of

this microbial ecosystem on a genome- and microbiome-wide scale.

Results: Here, we jointly analyze the composition of the human microbiome and host genetic variation. By mining the

shotgun metagenomic data from the Human Microbiome Project for host DNA reads, we gathered information on

host genetic variation for 93 individuals for whom bacterial abundance data are also available. Using this dataset, we

identify significant associations between host genetic variation and microbiome composition in 10 of the 15 body

sites tested. These associations are driven by host genetic variation in immunity-related pathways, and are especially

enriched in host genes that have been previously associated with microbiome-related complex diseases, such as

inflammatory bowel disease and obesity-related disorders. Lastly, we show that host genomic regions associated

with the microbiome have high levels of genetic differentiation among human populations, possibly indicating

host genomic adaptation to environment-specific microbiomes.

Conclusions: Our results highlight the role of host genetic variation in shaping the composition of the human

microbiome, and provide a starting point toward understanding the complex interaction between human

genetics and the microbiome in the context of human evolution and disease.

Background

Recent advances in high-throughput sequencing tech-

nologies have unveiled wide variability in the microbial

communities that coat the human body [1, 2]. There are

differences in the microbiota across body sites, which

constitute distinct ecological niches [1, 3, 4]. Within

each body site, the composition of the microbiome may

change rapidly, but community features can remain

constant for years [5, 6]. There is great variability in the

microbiome across individuals, with some differences

associated with chronic conditions, including obesity,

diabetes, and inflammatory bowel disease (IBD) [7–12].

Recent studies in germ-free animals have shown that

these shifts in the microbiome can have an effect on

host traits and could be causal in disease phenotypes

[7, 12–14]. Therefore, understanding the factors that

impact the composition of the microbiome in healthy

individuals is critical to elucidate the role of the micro-

biome in disease and for development of therapeutics

targeting the microbiome.

The composition of the human microbiome is influ-

enced by multiple environmental factors. For example,

changes in host diet affect gut microbiome communities

at the taxonomic and functional level [5, 15]. In addition,

intake of drugs and antibiotics can modulate the gut

microbiome [16, 17]. Moreover, studies have shown vari-

ation in the gut microbiome can be controlled by interac-

tions with pathogens and parasites [18, 19]. Lastly, social

contact and interaction with the environment have also

been implicated in shaping the microbial flora in the gut

and skin [20–22].
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Along with this clear evidence for the influence of

environmental factors, there is also support for a host

genetic component in structuring of human microbial

communities [23]. For example, single nucleotide poly-

morphisms (SNPs) in the MEFV gene are associated

with changes in human gut bacterial community struc-

ture [24], and IBD-risk loci are associated with changes

in gut microbiome composition [25]. Researchers have

also shown that a loss-of-function polymorphism in the

gene FUT2, which is a known risk factor for Crohn’s

disease, may modulate energy metabolism of the gut

microbiome [26]. Investigating individuals with inflam-

matory bowel disease, Knights et al. have shown that

NOD2 risk allele count is correlated with an increase in

the relative abundance of Enterobacteriaceae [27].

In addition to targeted and candidate gene approaches,

researchers have also used host genome-wide genetic

variation to find interactions with the microbiome. For

example, in a recent study using 416 twin pairs to assess

the heritability of the microbiome, Goodrich et al. identi-

fied microbial taxa for which relative abundance is more

similar in monozygotic compared to dizygotic twins [14].

In the laboratory mouse, quantitative trait locus (QTL)-

mapping approaches have found multiple loci associ-

ated with gut microbial community composition, some

of which overlap genes involved in immune response

[28, 29]. Moreover, researchers have shown that host

mitochondrial DNA haplogroups are correlated with

the structure of microbiome communities [30]. How-

ever, to date, there are no genome-wide studies that

attempt to characterize specific genes and pathways in

the human genome that shape the composition of the

microbiome, although the value of such studies has

often been suggested [31, 32].

Here, we performed a genome-wide analysis to identify

human genes and pathways correlated with microbiome

composition, using data generated by the Human Micro-

biome Project (HMP). In the last few years, the HMP has

sampled and cataloged the microbial diversity across mul-

tiple body sites in a few hundred individuals [33]. Since

genotype data are not yet available for the individuals

included in the HMP study, we extracted host genomic

information from the ‘human contamination’ reads in the

HMP shotgun metagenomic sequencing. This allowed us

to generate genome-wide genetic variation data from 93

individuals, which we then tested for association with the

microbiome profiles generated by the HMP.

Results and discussion
Mining the human microbiome project data for host reads

First, we scanned and identified the short reads in the

metagenomic sequencing data that map to the human

genome. By combining these reads across body sites

(primarily originating from nares and cheek swabs [33])

for each individual (Additional file 1: Figure S1), we

attained a mean depth of coverage of more than 10 reads

per base pair per individual (Additional file 1: Figure S2).

Combining all 93 individuals, the mean depth of cover-

age for each site is 1,061 reads (median 1,093), and 99 %

of sites are covered at >500x summed across individuals.

There is noticeable variability across individuals, although

most individuals have a mean coverage in the range of

5x-20x (Additional file 1: Figure S3). We performed

genotype calling on these individuals using stringent

quality controls and filtering, and identified a final set

of 4.2 million high-quality and informative single nu-

cleotide polymorphisms (SNPs), of which 92 % were

previously known and found in dbSNP, and were used

in subsequent analyses (Additional file 1: Figures S1 to

S10). The number of SNPs we identified is in line with

previous reports using whole-genome sequencing in

humans [34].

Correlation between host genetic variation and

microbiome composition

First, we examined the correlation between host genetic

variation and the overall diversity of the microbiome. At

this point we attempted to identify gross correlation

signatures, still without accounting for population struc-

ture, and deferring the discussion of mechanistic causes

for these correlations until later in the paper. We calcu-

lated the coordinates underlying variability in the host

genetic data using multidimensional scaling (MDS). We

then calculated alpha diversity, a measure of within-

sample microbial diversity within each body site (that is,

richness within a sample), and found it to be correlated

with the first coordinate of host genetic variation data in

the anterior nares (Fig. 1a, R2 = 0.207, P = 0.039) and

the right retroauricular crease (Additional file 1: Figure

S11, R2 = 0.218, P = 0.01). In addition, we found correla-

tions in several additional coordinates; for example, the

third principal component (PC) of host genetic variation

is correlated with alpha diversity in the supragingival

plaque, the throat, and the tongue dorsum (Additional

file 1: Figure S11). Reduced alpha diversity has been

previously linked to different health conditions (for ex-

ample, inflammatory bowel disease [7], type 2 diabetes

[11], and obesity [35]), and our results suggest a possible

role for host genetics in controlling the alpha diversity.

Next, we looked for correlations of host genetics with

the overall composition of the microbiome. We found

correlations between the first host genetic principal co-

ordinate and microbiome PCs in the stool and palatine

tonsils (Fig. 1b and Additional file 1: Figure S12). We

also found correlations at a number of other body sites,

although most were not statistically significant after mul-

tiple test correction (Additional file 1: Figures S12-S17).

Nevertheless, taken together, these correlations suggest a
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potential relationship between host genetics and micro-

biome composition.

This dataset also allows us to compare between-

individual differences in the microbiome and host genetic

variation. We correlated microbial beta diversity (that is,

between-sample diversity) at each body site with genome-

wide identity-by-state, a statistic estimating similarity in

genome sequence between pairs of individuals. We found

that identity-by-state is significantly negatively corre-

lated with beta diversity in 10 of the 15 body sites

(Additional file 1: Figure S13), including in the stool

(Fig. 1c, R2 = 0.19, P <1015), anterior nares, hard palate,

palatine tonsils, saliva, supragingival plaque, throat, and

tongue dorsum (P <0.01 in each of the 10 body sites).

These results indicate that the similarity in genome

sequence is positively correlated with microbiome simi-

larity, supporting a relationship between host genetic

variation and the microbiome at a large scale. However,

this pattern may be partly driven by population stratifi-

cation, or non-genetic environmental factors that are

correlated with genetic ancestry. For example, previous

studies have found differences in the gut microbiome

between human populations [36, 37], so geographic strati-

fication could drive a biologically non-causal correlation

between genetic ancestry and local diet, and thus with gut

microbial composition.

Host genes and pathways correlated with microbiome

composition

In an effort to control for population structure, in

addition to other non-genetic factors that may be driving

spurious correlations, we analyzed the data using a linear

mixed model. The additive effects model included as co-

variates possible confounders, such as gender, sample

collection location, sequencing center, and the first five

coordinates from the MDS analysis of the host genotypic

data. By including these covariates we are attempting to

correct for effects of individual ancestry and extrinsic

factors on the microbiome. We note that there are add-

itional potential confounding factors that we could not

Fig. 1 Host genetic variation is correlated with microbiome composition. a Correlation of the first PC of host genetic data (x-axis) and alpha

diversity of the anterior nares microbiome (y-axis). b Correlation of the first PC of host genetic data (x-axis) and first PC of the stool microbiome

data (y-axis). c Identity-by-state between individual pairs calculated from host genome data (x-axis) is correlated with stool microbiome beta

diversity (y-axis), which tabulates the magnitude of pairwise differentiation between the microbiomes of same pair of individuals. In all panels,

solid and dashed gray lines represent a linear regression and loess regression fit to the data, respectively
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account for in our model; for example, physical inter-

action between individuals, which has been shown to

affect microbiome composition in primates [20], is not

included, as these data were not collected by the HMP.

We ran this model genome-wide, correlating host gen-

etic variation in each SNP with the first five PCs of the

microbiome in each of the 15 body sites. In addition to

controlling for confounders, this genome-wide approach

also allows us to identify specific loci in the host genome

that are correlated with the microbiome, and understand

their likely functional effect in the host. We recognize at

the outset that our sample size is an order of magnitude

smaller than most genome-wide association studies

(GWAS), precluding us from being able to perform a

standard test of association between microbiome com-

position and each SNP. Therefore, instead, we used a

pathway-based analysis, whereby we aggregated SNPs

into pathways in order to learn about the biological

functions and processes that underlie interactions be-

tween host genome and the microbiome. We note that

this is a common analysis approach for genome-wide as-

sociation data, driven by the rationale that complex

traits are controlled by multiple genetic effects, which

could originate in different genes, but are likely to aggre-

gate in the same biological pathway or function. The

approach is aiming to identify these functions by looking

for enrichments of biological functional categories among

a set of associated genetic loci. Specifically, we first aggre-

gated SNPs that were correlated with at least one micro-

biome PC at an arbitrary nominal cutoff of P ≤10−6 (using

several other P value thresholds did not change the re-

sults; see Additional file 2: Tables S1 and S2). We then

identified overlapping or nearby genes, and used these

gene sets to perform a functional enrichment analysis.

Using this approach, we found the most significant

enrichment with genes involved in pathway Leptin Sig-

naling in Obesity (P = 2.29 × 10−7, Additional file 2:

Table S1). Leptin is a hormone whose structure places it

in the cytokine superfamily. It has been linked to the

microbiome in several recent studies, mainly using

leptin-deficient ob/ob mice [13, 38]. Leptin has several

important roles in immunity, including activation of

monocytes, neutrophils, and macrophages, and modula-

tion of inflammation [39]. Leptin may also impact the

microbiome indirectly in its role as a hormone, whereby

it regulates appetite and body weight, affects basal me-

tabolism, and regulates insulin secretion, among other

functions [39]. The enrichment identified here is driven

by significant correlations of host genetic variation with

microbiome PCs in the nose, oral cavity, and skin (see

Additional file 2: Table S1). Studies have shown that

the leptin is expressed and has a functional role in the

mouth [40]. Leptin and leptin receptor are expressed in

the skin [41], and may have a functional role in wound

healing and psoriasis [42, 43]. Moreover, leptin is

expressed in nasal polyps, and may affect the expres-

sion of mucin genes in polyp epithelial cells [44]. Never-

theless, the role of leptin in interactions with microbial

flora in these body sites is still not well understood.

In addition to leptin signaling, several other immunity-

related pathways are enriched among microbiome-

correlated host genes, such as Melatonin Signaling, JAK/

Stat Signaling, Chemokine Signaling, CXCR4 Signaling,

and Role of Pattern Recognition Receptors in Recogni-

tion of Bacteria and Viruses (Additional file 2: Tables S1

and S2). To further investigate the role of host genetic

variation in immunity-related genes on the microbiome,

we used the InnateDB database, and identified additional

enriched pathways, including Interleukin-12-Mediated

Signaling Pathway, GABAA Receptor Activation, Inositol

Phosphate Metabolism, IL2, CXCR4-Mediated Signaling

Events, and GnRH Signaling Pathway (Additional file 2:

Tables S3 and S4). In addition, we found enrichment of

genes in the REACTOME pathway Sulfide Oxidation to

Sulfate, suggesting a potential role for host genetic vari-

ation in genes determining sulfate abundance in control-

ling microbial composition. We also found enrichment

in the KEGG pathway Primary Bile Acid Biosynthesis.

Recent studies have shown that the microbiome can

modulate bile acid metabolism [45], and our results sup-

port a possible role for host genetic variation in bile acid

metabolic pathways in interacting with the microbiota.

Next, we examined correlations between microbiome

composition and host genetic loci that had been found

to be associated with complex disease. For that purpose,

we used the GWAS catalog [46], and looked for enrich-

ment of genes found to be associated with specific com-

plex disease. For each disease in the catalog, we plotted

the overlap between the genes associated with the dis-

ease and the genes found in our study to be associated

to microbiome composition. Plotting this overlap over a

range of P value cutoffs for each GWAS dataset, we

detected enrichments in a number of diseases (Fig. 2a).

We found enrichments in genes associated with several

complex diseases for which a role for the microbiome

has been shown, such as ulcerative colitis [47], inflam-

matory bowel disease [48], obesity-related traits [7], and

HDL cholesterol and triglycerides. In addition, we found

enrichment of genes associated with metabolite levels

and metabolic traits, for which an interaction with the

microbiome has been observed [35].

We used a similar approach to identify enrichment of

SNPs annotated as expression quantitative trait loci

(eQTLs) among the sites we found to be correlated

with microbiome composition (Fig. 2b). We found an

enrichment of eQTLs in several tissues that were iden-

tified in the GTEx project [49]. This result indicates

that the loci we identified in our analysis as correlated
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with microbiome composition are likely to have a func-

tional role in regulating gene expression. Lastly, we

sought to validate our results using an independent

cohort. We followed a similar approach to identify cor-

relations between GI tract microbiome PCs and host

genetic variation in 984 individuals from the TwinsUK

project cohort [14, 50]. We find an enrichment of SNPs

correlated with microbiome composition in both studies

(Fig. 2c; P = 0.028 using Fisher’s exact test for significant

overlap between the two sets of SNPs). When considering

genes located nearby correlated SNPs, the enrichment be-

comes more prominent; possibly indicating that different

SNPs may control similar microbiome-linked genes and

pathways.

Fig. 2 Complex disease and functional SNPs are enriched among microbiome-correlated host genetic variation. a Enrichment of genes correlated

with microbiome composition (y-axis) compared to all other genes that are significantly associated with a complex disease using a given P value

threshold (x-axis). Each colored line represents a different complex disease with an enrichment of at least three-fold. b Enrichment of SNPs correlated

with microbiome composition (y-axis) compared to all other SNPs that have been identified as eQTLs in the GTEx data using a given P value threshold

(x-axis). Each colored line represents a different tissue type analyzed by GTEx. c Enrichment of SNPs (blue) and genes (red) correlated with microbiome

composition in this study (y-axis) among SNPs and genes correlated with microbiome composition in the TwinsUK dataset using a given P value

threshold (x-axis)
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Host genetic variation correlated with bacterial taxa

In addition to identifying interactions with the overall

structure of the microbiome, we were interested in

finding correlations between host genetic variation and

specific bacterial taxa. To do so, we tested for correl-

ation between genetic variation and relative abundances

of bacteria derived from the HMP 16S rRNA gene

sequences. Abundance data from HMP OTUs were

parsed, extensively filtered, normalized, and taxonomic-

ally collapsed, to achieve a single representation for each

taxon at the genus level or above (see Additional file 1:

Figures S14-S19 and Additional file 3). After filtering

inter-correlated taxa, our final dataset included 615

microbiome abundance traits in 15 body sites. In an

effort to reduce the number of statistical tests, we in-

cluded in the analysis only host SNPs located within

protein-coding sequences.

Using this approach, we found 83 associations between

genetic variation in host coding sequence and abundance

of specific microbial taxa (genome-wide false discovery

rate Q-value <0.1). These 83 associations are described in

Additional file 2: Table S5. Among these, we find several

key host genes related to immunity, such as HLA-DRA

(P = 3.72 × 10−6) and TLR1 (P = 5.04 × 10−6), which we

found to be correlated with abundance of Selenomonas

in the throat and Lautropia in the tongue dorsum, re-

spectively. Another interesting correlation was found

between host genetic variation in SNPs in the LCT gene

and the abundance of Bifidobacterium in the GI tract

(P = 1.16 × 10−5, Fig. 3a, b). LCT encodes the lactase

enzyme, which is expressed in the GI tract and acts to

hydrolyze lactose, the sugar found in dairy products. In-

triguingly, Bifidobacterium can metabolize lactose, and

reports show that some strains prefer lactose to glucose

[51]. Since genetic variants in and around LCT are

directly linked to lactase persistence [52], it is likely

that the variants we observed dictate an individual’s

consumption of milk products, which in turn may regu-

late the abundance of Bifidobacterium in the GI tract.

Although the data do not provide sufficient resolution

to discriminate the Bifidobacterium species that drives

this association, further analytical and experimental

approaches may shed light on this result.

Using pathway enrichment approaches described

above, we found that genes linked to abundance of bac-

terial taxa are over-represented with relevant diseases

(Additional file 2: Table S6), including transendothelial

migration of lymphocytes, meningitis, and several cancer

Fig. 3 Correlation between coding genetic variation and bacterial abundance. a Manhattan plot illustrating the P values (y-axis, −log scale) for

correlation of each tested coding SNP (shown as circles) by its genomic location (x-axis) with the abundance of Bifidobacterium in the gut. SNP

colors alternate by chromosome, with red dots representing SNPs with P values that surpass genome-wide significance after FDR correction. b A

close-up of the region of correlation within LCT. Genomic positions on chromosome 2 are on the x-axis, and the P values are on the y-axis (−log

scale). Each dot represents a SNP tested using our model, and the color represents the linkage disequilibrium (r2) between each dot and the top

SNP, colored purple and indicated by its dbSNP rsID (inset legend indicates the spectrum of colors and matching r2 values). Blue lines represent

recombination rate calculated from the European samples in the 1000 Genomes Project. Gene regions are shown underneath, with LCT

highlighted. c An interaction network generated using IPA showing pathways that are enriched among genes that harbor SNPs correlated with

abundance of bacterial taxa (in orange). Lines represent known interactions between genes, and shapes represent types of proteins (see legend

at the bottom left)
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categories, including gastrointestinal adenocarcinoma,

growth of mammary tumor, head and neck tumor, and

thyroid cancer. To further visualize the interactions

between these genes, we used the Ingenuity Pathway

Analysis knowledgebase, which holds curated informa-

tion on molecular pathways and protein interactions,

and identified several networks significantly enriched

with genes correlated with bacterial taxa abundances

(Additional file 2: Table S7). Figure 3c displays the

highest-scoring network, containing genes involved

with cellular movement, hematological system develop-

ment and function, and immune cell trafficking.

Lastly, we investigated the evolutionary pressures acting

on the SNPs we found to be correlated with microbiome

composition. To do so, we used FST, a measure of allele

frequency differentiation between human populations,

calculated from the 1000 Genomes Project data (see

Materials and Methods) [34]. Comparing FST between

four human populations (African, American, Asian, and

European), we found that SNPs that were linked to micro-

bial communities in our study have higher FST values

compared to the rest of the genome (Fig. 4; FDR Q <0.05

for the highlighted comparisons using a permutation test

on the medians; see Additional file 3). Interestingly, we

found that in some body sites, the microbiome is linked to

genes with higher FST values across most population com-

parisons; for example, the oral cavity microbiome is linked

to higher FST in all pairwise comparisons among popula-

tions, except Asian vs. European. In addition, specific

population pairs seem to be enriched with higher FST
across body sites; for example, both the African vs. Asian

and the American vs. Asian comparisons show high FST
values in the genes that interact with microbial communi-

ties in three of the four body sites (oral cavity, GI tract,

and airways). Overall, 12 of the 24 comparisons yielded

significantly high FST compared to the genome-wide aver-

age, while six comparisons yielded significantly lower

values.

These results suggest that host genetic variation that is

linked to microbial variation is enriched with sites that

evolve under differential selection pressures across human

populations. This is consistent with the notion of local

adaptations to population-specific microbiomes, possibly

controlled by environmental conditions for each popula-

tion. Given that genes that we found to be linked to

microbiome composition are enriched with immunity-

related genes and pathways, this result may not be surpris-

ing; indeed, genetic variation in immune genes has long

been associated with higher rated of positive selection in

human populations [53]. However, these selective pres-

sures were hypothesized to be mainly a result of inter-

action with pathogens. Our results indicate that selection

pressures on immunity genes and pathways may also be

due to interaction with commensal microbial communi-

ties that accompany changing environments. Another

potential explanation for this pattern is that past selection

pressures against pathogens have driven changes in

immunity genes that affect the commensal microbiome as

a byproduct. Although distinguishing between these hy-

potheses is not possible using currently available data, the

end result – commensal microbial traits affected by past

selection events on host genes – is an exciting finding that

we hope would be explored further in the future.

Conclusions
We describe an analysis of host genetic variation data

mined from the metagenomic shotgun sequencing per-

formed by the Human Microbiome Project. The ability

to mine host genetic material from metagenomic shot-

gun sequence data has recently raised several privacy

concerns [54]. We note that in the current study,

informed consent for sequencing of host DNA was

given by the participants, although this is not a com-

mon procedure for metagenomics studies. We show

here that it is possible to reconstruct complete host

genomes using metagenomic sequence data, which is

potentially identifiable. However, this was possible due

to the unique study design of the HMP, whereby multiple

body sites from each individual were sequenced at a high

depth, allowing us to pool data across body sites and reach

Fig. 4 SNPs correlated with microbiome composition have high FST values between human populations. Each panel represents a comparison of

a pair of human populations indicated in the title. Shown is the FST median + 95 % CI (x-axis, calculated using bootstrapping) in SNPs where

genetic variation is correlated with microbial taxa at P <10−4, separated by the body site (y-axis). Vertical dashed line represents the genome-wide

median FST. Color highlight was used in cases where FST in microbiome-correlated sites was significantly higher than the genome-wide value

(FDR Q <0.05; using a permutation test of the median)
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a 10x mean coverage per host genome. Common metage-

nomic shotgun sequencing studies, which usually include

an order of magnitude less sequence data, are unlikely to

enable such an analysis. Moreover, the majority of studies

sequence stool samples, which include many fewer host-

derived reads. Nevertheless, we anticipate that future

shotgun metagenomics sequencing studies would consider

these potential privacy concerns.

The analysis described in this paper focused on the

taxonomic structure of the microbiome. However, it

would be interesting to incorporate the functional com-

position of the microbiome when considering associations

with host genetic variation. Indeed, several studies have

highlighted the importance of shotgun metagenomics for

uncovering the genic composition and metabolic capacity

of the microbiome [1, 48]. A similar analysis would be

critical to uncover functional interactions that could not

be detected by looking at community and taxonomic

composition. In addition, there are several environmental

factors that could influence the microbiome, such as diet,

which were not included in our analysis. We expect that

the inclusion of such potential confounders in future stud-

ies would help to further disentangle the effects of envir-

onment and host genetic variation on the microbiome.

Our analysis has shown that host genetic variation in

immunity-related pathways is correlated with micro-

biome composition. These results are consistent with

recent reports of host immunity involvement in modulat-

ing microbiome structure, for example through produc-

tion of antimicrobial compounds [55] or inflammation

[56]. Additionally, many recent studies have shown that a

mice with a knocked-out immune gene display dramatic

changes in their microbiota [57–60]. Moreover, genetic

variation in immune genes in the mouse was found to be

correlated with the composition of the microbiome [61].

In addition, our results show that the host variants and

genes that are correlated with the structure of the micro-

biome are enriched in genes associated with complex dis-

ease that have been linked to the microbiome. This result

is not surprising, considering that recent studies in the

mouse have shown that microbiome QTLs overlap com-

plex disease-linked genes [28, 29]. Taken together, these

findings motivate the need for larger association studies to

characterize host genetic variation linked to the micro-

biome in the context of various health conditions, envir-

onmental effects, and genetic backgrounds. Moreover,

functional studies, for example using cells or animal

models, would be crucial for elucidating the causal mech-

anisms whereby human genetic variation impacts the

microbiome.

Materials and methods
A full and detailed description of the Methods is available

in the Additional file 3 document.

Ethical statement

Recruitment protocols were approved by Institutional

Review Boards at each HMP clinical site, and written in-

formed consent was obtained from all study participants

for data sharing through dbGap. All study participants

have consented for the sequencing of their own genetic

material [33]. Specifically, the HMP human subjects

study was reviewed by the Institutional Review Boards

(IRBs) at each sampling site: the BCM (IRB protocols H-

22895 (IRB no. 00001021) and H-22035 (IRB no.

00002649)); Washington University School of Medicine

(IRB protocol HMP-07-001 (IRB no. 201105198)); and

St Louis University (IRB no. 15778). The study was also

reviewed by the J. Craig Venter Institute under IRB

protocol 2008–084 (IRB no. 00003721), and at the Broad

Institute of MIT and Harvard the study was determined

to be exempt from IRB review.

Host read data acquisition, filtering, and alignment

The processing of the raw data files through the geno-

typing step was performed on the compute cluster at the

Broad Institute. We downloaded 1,553 raw Illumina read

files (total of 8 TB) in SRA format, representing samples

from 98 individuals (HMP subjects), from the dbGaP

database. The files were decrypted, and converted to

FASTQ format using NCBI’s SRA toolkit (version 1.0.0-

b10) with default parameters. A total of 152 files that

failed the standard Illumina quality checks were ex-

cluded from the downstream analysis. The reads from

the remaining 1,401 files were aligned to the human

genome (build hg19) using BWA v0.5.7 [62] with default

settings for the alignment, except for the ‘bwa sampe’

step, where the option ‘-a 2000’ was used to change the

maximum insert size from default 500 to 2,000. Out of

the 79,877,504,468 post-filter reads, 35,828,514,379 were

mapped to the human genome. The 1,401 BAM files

were reorganized by merging reads from different sam-

ples from the same subject into subject BAM files using

samtools [63]. The merging failed for one individual

(due to corruption of the original sample BAM files),

and for four others the merged BAM files contained

only reads from stools samples very little human DNA

present. These five subjects were excluded, leaving 93

individuals. The average number of mapped reads per

individual was 365 million.

Genotype calling, filtering, and QC

Variants (SNPs and short indels) were called from all 93

cleaned and re-aligned BAM files using the GATK’s

UnifiedGenotyper function with standard emission con-

fidence parameter set to 3.0 (−stand_emit_conf 3.0).

This value, much lower than the GATK default, was

used in order to provide an exhaustive list of possible

variants for subsequent filtering. The coverage for each
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individual was down-sampled to 200 (that is, the option

–dcov 200 was used). Other options of UnifiedGenoty-

per were kept at their default values. The calculation

was parallelized over genomic coordinates by splitting

the genome into 80,000 bp intervals and running Uni-

fiedGenotyper for each of these intervals on a separate

processor of the compute cluster. After excluding con-

tigs that did not map to a known chromosome, this

unfiltered, low-pass genotype set included 19,377,382

SNPs and 3,519,487 short InDels. In order to filter the

genotype calls and keep only high-quality variants, we

used GATK and applied several hard filters that are rec-

ommended for low-coverage whole-genome data [64].

Specifically, we excluded SNPs with low mapping qual-

ity, SNPs with a strand bias, and SNPs that are otherwise

of low quality. In addition, we masked out SNPs that are

near InDels using a window size of 10. Lastly, we excluded

any SNPs for which there is missing information and a

clear filter decision could not be made.

Next, we performed variant score recalibration on the

SNPs that have passed the above filters using the GATK

VariantRecalibrator. As input to train the model, we

used three input SNP sets: (1) HapMap3.3 SNPs; (2)

dbSNP build 132 SNPs; and (3) 1000 Genomes Project

SNPs from Omni 2.5 chip. After applying the recalibra-

tion using the GATK ApplyRecalibration command and

excluding variants that did not pass the various filters,

we were left with 13,190,940 SNPs across the 93 individ-

uals. Of this set, 7,229,492 SNPs (60.3 %) were also

found in dbSNP. As quality control, we plotted the num-

ber of sites filtered out by each filter or combination of

filters, as well as the Ti/Tv ratio for each filter combin-

ation (Additional file 1: Figure S5). The sites that passed

our filtering criteria have the highest Ti/Tv ratio (mean

2.1), which is close to the expected value observed in

many sequencing projects, including the 1000 Genomes

Project pilot data (genomic average Ti/Tv of 1.96) [65].

When we consider the frequency spectrum of alleles in

our sample (Additional file 1: Figure S6), we see an

enrichment of low-frequency variants, as consistent with

many recent population-scale sequencing studies [66].

We see a similar distribution when we consider allele

sharing across individuals (Additional file 1: Figures S8

and S9), with most alleles appearing in only one individ-

ual. Since alleles at lower frequencies are less informative

for association analysis, we excluded from downstream

analysis SNPs that are at frequency of less than 5 % in our

sample, leaving us a set of 5,536,004 SNPs. Of this set,

5,108,016 SNPs are also found in dbSNP (92.3 %). We

further filtered this set keeping only SNPs with minor al-

lele frequency above 10 %, SNP with P value >10−3 for

Hardy-Weinberg equilibrium, autosomal SNPs, and SNPs

with less than 50 % missing information. The final set

included 4,205,323 SNPs that set that passed these QC

thresholds and were used in the analysis. Pairwise

identity-by-state (IBS) distances between individuals

were calculated from the filtered SNP data using PLINK

[67, 68]. We performed metric multidimensional scaling

analysis (MDS) on the pairwise IBS distance matrix using

PLINK.

Correlation and enrichment analysis

We used the first five principal coordinates (PCs) of the

microbiome 16S data in each of the 15 body sites as

quantitative traits, which we correlated against genetic

variation in the host. Prior to running this analysis we

normalized the PC values using the Box-Cox transform-

ation with the formula

y λð Þ ¼ yλ–1
� �

=λ

Where λ was calculated using the function box.cox.-

powers in R (in the package ‘car’). Correlation analysis of

normalized trait values was performed in PLINK v1.07

[67], and included the following covariates: (1) Individual

sex (binary variable); (2) Individual age; (3) Site where

microbiome data were collected; (4) Center where se-

quencing was performed (this was coded as binary vari-

ables representing the four collection centers: BCM

(Baylor College of Medicine), BI (Broad Institute), JCVI

(J. Craig Venter Institute), and WUGC (Washington

University Genome Center); (5) The total number of

sequences for each individual in the metagenomic se-

quencing data; and (6) The positions on the first five

dimensions in the MDS analysis of the genotype data. In

addition to the microbiome PCs, we also ran a similar

correlation analysis for a set of microbiome taxa, follow-

ing a comprehensive filtering of the 16S OTU data as

described in Additional file 3. To reduce the multiple

test burden, this analysis was performed on a set of

protein-coding host SNPs, which were identified after

annotation of the SNP data using ANNOVAR [69], and

included 33,814 protein-coding SNPs.

We considered SNPs correlated with microbiome PCs

with P value ≤10−6, and identified genes that overlap or

are located ≤50 kb from these SNPs, using data for all

known human genes taken from the refGene table (hg19

genome build). The identified genes were used as input

to functional enrichment analysis, performed using In-

genuity Pathway Analysis (IPA; August 2012 software

release), a program that uses Ingenuity’s high-quality

knowledge base, which includes curated information on

genes, pathways, and interactions (see [70]). IPA generates

a P value using a Fisher’s exact test comparing the ex-

pected and observed genes in a given pathway. The most

enriched canonical pathways are listed in Additional file 2:

Table S1. To identify the bacterial taxa driving these

enrichments, we calculated correlations between each
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OTU and the PCs in each body site. The most highly

correlated OTU for each PC where correlation with host

genetics was found is listed in Additional file 2: Table S1.

We also used the InnateDB database [71] to identify en-

richment of specific gene ontology (GO; [72, 73]) categor-

ies (Additional file 2: Table S3) and additional pathway

databases (Additional file 2: Table S4), including KEGG

[74] [75] and Reactome [76]. To make sure the specific

cutoff values chosen in this analysis do not affect the

enrichment result, we repeated this analysis with vary-

ing P value and gene distance cutoffs (see Additional

file 2: Table S2). Specifically, we used two P value cut-

offs (P ≤10−6 and P ≤5×10−7) and three gene distance

cutoffs (D ≤50 k, D ≤20 k, and D ≤5 k), and examined

the enrichment P value and rank of pathways of inter-

est (Additional file 2: Table S2).

The data from the GWAS Catalog [46] and the GTEx

consortium [49] presented in Fig. 2 were downloaded

from [77] in June 2013, and the GTEx portal [78] on

October 2013, respectively. The enrichment plots shown

in Fig. 2 were calculated as follows: given a dataset (for

example, GWAS catalog genes involved in obesity-

related traits), and given a P value cutoff (Pi, shown on

the x-axis of the figure), we identified the set of genes or

SNPs for which P ≤Pi. Next, we calculated the overlap

between Gi and the genes or SNPs identified to be corre-

lated with the microbiome in the current paper. The fold

enrichment (y-axis) for Pi is the number observed com-

pared to expected overlapping genes or SNPs, where the

expected number is the overlap among genes or SNPs

not in Gi.

To identify enrichment in an independent cohort, we

used data from the TwinsUK Project, which included

both stool microbiome 16S data, as well as host genetic

data assessed by SNP genotyping, from 984 adults [14].

OTU tables and PCs were generated using the QIIME

pipeline as described above [79–82]. Host SNP genotyp-

ing data were fully imputed using IMPUTE version

2[83], and quality checked as previously described [50].

SNPs were removed if they had a minor allele frequency

below 5 %, a genotyping rate below 95 % or extreme de-

viation from HWE (P <0.001). Deviation from HWE was

determined using the genotypes from only a single twin

from each twin pair. Only imputed SNPs with an imput-

ation accuracy score (IMPUTE INFO field) greater than

0.9 were included in the analysis. The final number of

SNPs used for the association analysis was 1,310,141. To

test for correlation between host SNPs and fecal micro-

biome PCs, we used the score test implemented in the

software Merlin [84] to account for the relatedness of the

individuals (option –fastassoc). The recombination rates

from HapMap II release 22 were used as the genetic map

input to Merlin. Model covariates included the number of

sequences per sample, sample batch, sequencing run, the

person that extracted the DNA, the gender, the age, and

the first three PCs of the MDS. After quality filtering of

traits and genotypes, 170 MZ twin pairs, 241 DZ twin

pairs, and 162 unrelated individuals were included in the

association analysis. For the analysis shown in Fig. 2c, we

used correlation P values for SNPs and nearby genes, and

calculated fold-enrichment for several P values as de-

scribed above.

FST analysis

We used FST data downloaded from the database of recent

positive selection across human populations [85] via [86]

in March 2014. We compared FST values in SNPs that

were correlated with microbiome PCs with P <10−4 in

each of the four body sites and the rest of the SNPs in our

sample. To compare two sets of FST values we used a per-

mutation test on the medians as follows: we randomly

split the data into two groups the same size of the two

original groups, and calculated the difference in medians

between the two groups. This process was repeated 10,000

times, and the P value was defined as the proportion of

permutations in which difference in medians was greater

that the real difference between the two original groups.

Figure 4 shows all the comparisons made and highlights

in color cases where the calculated P value was smaller

than 10−3. The error bars in the figure are 95 % confidence

intervals that were calculated using bootstrapping as fol-

lows: for a given set of FST values, we subsampled with

replacement a sample of the same size, and calculated the

median of the sample. This was repeated 10,000 times,

with the median recorded in each iteration. The 95 % CI

was defined as the range between the 2.5 and 97.5 percen-

tiles of all subsample medians.

Data deposition

16S rRNA gene sequence data and OTU tables are avail-

able on the HMP DACC website [87]. Host genetic data

are deposited in dbGaP under project number phs000228.

Additional files

Additional file 1: This is a PDF document containing Supplementary

Figures S1 through S19. (PDF 12238 kb)

Additional file 2: This is a PDF document containing Supplementary

Tables S1 through S7. (PDF 622 kb)

Additional file 3: This is a PDF document containing detailed

supplementary materials and methods. (PDF 300 kb)
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