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microbiome
Catherine Igartua1*, Emily R. Davenport1,2, Yoav Gilad1,3, Dan L. Nicolae1,3,4, Jayant Pinto5† and Carole Ober1*†

Abstract

Background: The degree to which host genetic variation can modulate microbial communities in humans remains

an open question. Here, we performed a genetic mapping study of the microbiome in two accessible upper airway

sites, the nasopharynx and the nasal vestibule, during two seasons in 144 adult members of a founder population

of European decent.

Results: We estimated the relative abundances (RAs) of genus level bacteria from 16S rRNA gene sequences and

examined associations with 148,653 genetic variants (linkage disequilibrium [LD] r2 < 0.5) selected from among all

common variants discovered in genome sequences in this population. We identified 37 microbiome quantitative

trait loci (mbQTLs) that showed evidence of association with the RAs of 22 genera (q < 0.05) and were enriched

for genes in mucosal immunity pathways. The most significant association was between the RA of Dermacoccus

(phylum Actinobacteria) and a variant 8 kb upstream of TINCR (rs117042385; p = 1.61 × 10−8; q = 0.002), a long

non-coding RNA that binds to peptidoglycan recognition protein 3 (PGLYRP3) mRNA, a gene encoding a known

antimicrobial protein. A second association was between a missense variant in PGLYRP4 (rs3006458) and the RA

of an unclassified genus of family Micrococcaceae (phylum Actinobacteria) (p = 5.10 × 10−7; q = 0.032).

Conclusions: Our findings provide evidence of host genetic influences on upper airway microbial composition in

humans and implicate mucosal immunity genes in this relationship.

Keywords: QTL mapping, Microbiome, Nasal, Upper airways, Host-microbe interactions, Gene-environment,

GWAS

Background

Diverse populations of microorganisms inhabit nearly

every surface of the human body, and these complex as-

semblies of microbes reflect host-microbe and microbe-

microbe interactions. Collectively, these microorganisms

constitute the human microbiome [1]. Under healthy

conditions, the relationship between microbes and the

host is symbiotic with many physiologic benefits to the

host [2]. Imbalances or changes in the composition of

bacterial communities can shift this relationship from

symbiotic to pathogenic, a condition known as dysbiosis,

which has been implicated in a variety of diseases [3].

For example, altered composition of airway microbiota

has been linked to important respiratory diseases such

as sinusitis [4], chronic obstructive pulmonary disease

(COPD) [5], and asthma [6–8]. Similar to the traits it

influences, the microbiome itself can be considered a

complex phenotype with environmental and genetic

factors contributing to its composition [9]. Understand-

ing how host genetic variation shapes the microbiome

and how the microbiome ultimately functions to modu-

late host immunity are fundamental questions that are

central to fully characterizing the architecture of many

common diseases that occur at mucosal surfaces, includ-

ing those involving the airway.

Although knowledge of the airway microbiome lags

behind that of the gut, important characteristics of the

microbial communities in the airway are beginning to

emerge. Similar to the gut, the community structure of
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an individual’s airway microbiome is established early in

life and plays a critical role in immune development

[10–12]. Many external factors influence the airway

microbiome, including mode of delivery at birth [13],

breastfeeding [14], antibiotic use [15, 16], and exposure

to tobacco smoke [17] and pathogens [18]. While the in-

fluences of environmental exposures on microbiome

composition are well known, the degree to which host

genetics plays a role in structuring microbial communi-

ties is less well understood. In fact, recent data suggest

that host genetics may play an important role in shaping

microbiome composition. For example, the heritability

of the gut microbiome was recently investigated in 1,126

twin pairs [19]. Out of 945 taxa examined, the RAs of

8.8% of taxa had non-zero heritability estimates suggest-

ing that the abundances of those bacteria are influenced

by host genetic variation. Moreover, more similar micro-

biome structures among related individuals compared to

unrelated individuals [20, 21] further support a role for

genetics influencing interindividual variability in micro-

biome profiles. In fact, quantitative trait locus (QTL)

approaches have successfully identified variation in can-

didate host genes that influence the RA of specific

bacteria not only in Drosophila and mice but also in

humans [22].

Studies of host genetic influences on the microbiome

are particularly challenging due to the profound effects

of environmental exposures on microbiome variability. It

is not surprising, therefore, that two studies were unable

to show host genotype effects on the human gut micro-

biome [23, 24]. Studies of related individuals and even

twin pairs are confounded to a large extent by the more

similar environments among close relatives, making it

impossible to completely disentangle the relative roles of

genes and environment. To address these challenges, we

focused our studies on the Hutterites, a founder popula-

tion that practices a communal, farming lifestyle that

minimizes environmental variation between individuals

[25], and should increase power to identify genetic influ-

ences on complex traits, including the airway micro-

biome composition. For example, Hutterites prepare and

eat all meals in communal kitchens, smoking is prohib-

ited and rare, and individual family homes are nearly

identical within each colony (communal farm) and very

similar across colonies. Furthermore, the Hutterites in

our studies are related to each other in a 13-generation

pedigree and are descendants of only 64 founders.

Finally, nearly all genetic variation in these individuals

has been revealed through whole genome sequencing

studies in 98 Hutterite individuals [26].

We previously reported studies of the gut microbiome

in the Hutterites [27, 28]. Here, we interrogated the

interaction between host genetic variation and micro-

biome composition in two accessible sites in the upper

airways, the nasal vestibule and the nasopharynx, which

have important physiologic functions and relevance to

airway diseases. While the nasal vestibule is located in

the anterior nares and in direct contact with the envir-

onment, the nasopharynx is in the posterior nasal pas-

sage and continuous with the lower airway. Overall, our

findings demonstrate that the airway microbiome is in-

fluenced by host genotype at many loci and suggest that

host expression of innate and mucosal immune pathway

genes plays a significant role in structuring the airway

microbiome.

Results
Nasal microbiome composition

To characterize the variation of the microbiome from

the nasal vestibule and the nasopharynx, we first ana-

lyzed 16S rRNA V4 gene sequences from 322 samples

collected from 144 Hutterite adults in summer and/or in

winter months (Table 1 and Additional file 1: Table S1).

After applying quality control filters and subsampling to

250,000 reads per sample, 83 million reads were assigned

to 563 operational taxonomic units (OTUs) with 97% se-

quence identity. We identified sequences from eleven

phyla, with three accounting for 98.94% of the sequen-

ces—Firmicutes (52.28%), Actinobacteria (29.81%), and

Proteobacteria (16.85%). We then classified OTUs into

166 genera; six dominant genera accounted for 83.30% of

the sequences (Fig. 1 and Additional file 2: Table S1A).

In a prior study in a largely overlapping sample of

adult Hutterites, we identified large seasonal variation in

the gut (fecal) microbiome [28]. To see if similar pat-

terns were present in the nasal microbiome, we exam-

ined the genus level RAs for individuals studied in both

seasons (n = 34 for the nasal vestibule and 40 for the

nasopharynx). The RA of 12 genera in the nasal vesti-

bule and 15 in the nasopharynx differed by season after

applying a Bonferroni correction (paired Wilcox rank-

sum test, p < 0.0003), nine of which were different be-

tween seasons at both nasal sites (Additional file 2: Table

S1B, C). Similarly, we looked for genus level RAs that

differed between the nasal sites within each of the two

seasons (n = 72 for the summer and 60 for the winter)

but did not identify statistically significant differences

(Additional file 2: Table S1D, E).

Table 1 Sample composition: a total of 332 samples were collected

from 144 (58 male, 86 female) Hutterite adults (age 16 to 78 years)

Nasal site Summer Winter Both seasons Unique subjects

Vestibule 87 80 34 133

Nasopharynx 88 77 40 125

Both sites 72 60 23 144
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Nasal microbiome diversity

We used three diversity metrics to assess within sample

(alpha) diversity for each of the four seasonal nasal site

groups—the number of species (richness), Shannon

index, and evenness. Overall, the highest alpha diversity

was observed in the nasopharynx in the summer (Fig. 2a

and Additional file 1: Figure S1A), where the number of

observed species and the Shannon index reflected higher

diversity compared to the nasopharynx in the winter

(paired Wilcoxon signed-rank test; p = 0.002 and 0.048,

respectively). Additionally, there was higher diversity in

the nasopharynx in the summer compared to the nasal

vestibule in the summer (paired Wilcoxon signed-rank

test; richness p = 4.6 × 10−7, Shannon index p = 0.009,

Fig. 1 Taxonomic composition of bacterial communities in the nasal vestibule and the nasopharynx, sampled in summer and in winter. Genus

level mean RA is shown for the 20 most abundant genera identified in the samples. The remaining 146 genera are grouped as “other”. Out of the

six most abundant genera (83.30% of the sequences) in our sample, four (Corynebacterium, Moraxella, Streptococcus, and Staphylococcus) were

among the most abundant (RA > 1%) in adult participants in the HMP anterior nares sample [1] (adults) and five (Corynebacterium, Moraxella,

Alloiococcus, Streptococcus, and Staphylococcus) among infants in the Children Asthma Study nasopharynx sample [85].*Genus unclassified, family

level presented. **Genus and family unclassified, order level presented

Fig. 2 a Alpha diversity. Alpha diversity measurements for microbial communities from the nasal vestibule and the nasopharynx by season. The

nasopharynx in the summer (light green) shows the overall largest alpha diversity. *Paired Wilcoxon rank-sum test p < 0.5; **p < 0.01; ***p < 0.001.

b Beta diversity. Principal coordinate analysis (PCoA) of the 50 most abundant OTUs derived from Euclidean distance. Nasal site samples show

separation in the summer (PC2 p < 2.2 × 10−16). Seasonal samples show separation in the nasal vestibule (PC2 p < 2.2 × 10−16) and in the nasopharynx

(PC2 p < 0.0002). Ellipsoids contain 95% of the samples within each group
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and evenness p = 0.031, respectively). Although higher

diversity trends were observed in the nasopharynx in the

summer compared to the winter, these associations were

largely due to decreased alpha diversity among women

compared to men in the winter (Wilcoxon signed-rank

test; richness p = 0.03, Shannon index p = 0.002, and

evenness p = 0.001, respectively; Additional file 1: Figure

S1B). Lastly, Shannon index and evenness decreased

with increasing age only in the nasopharynx in the sum-

mer (p = 0.019; Additional file 1: Figure S2).

We next analyzed community composition and struc-

ture between samples (beta diversity) by calculating

Euclidean distances between all pairs of individuals. In

the seasonal analyses, the summer samples for both the

nasal vestibule and the nasopharynx had lower Euclidean

distances compared to their respective winter samples

(Wilcoxon signed-rank test, nasal vestibule p < 2.2 × 10
−16, and nasopharynx p < 2.2 × 10−16), reflecting more

similar microbiome diversity between pairs of individuals

in the summer than in the winter. Moreover, Euclidean

distances for the same individual paired with him/herself

between seasons (separately within the nasal vestibule

and nasopharynx samples) and between nasal sites

(separately within the summer and the winter samples)

were lower than the respective distances calculated

between each individual with all other individuals

(Wilcoxon signed-rank test nasal vestibule between

seasons p = 9.25 × 10−8; nasopharynx between seasons

p = 3.97 × 10−12; summer between nasal sites p < 2.2 ×

10−16, winter between nasal sites p < 2.2 × 10−16;

Additional file 1: Figure S3). These results reflect sta-

bility in microbiome structure between seasons and

nasal sites within individuals, potentially reflecting a

genetic component to microbiome composition and

diversity.

To further examine the impact of anatomical location

and season on beta diversity, we analyzed Euclidean dis-

tances derived from all OTUs with principal coordinate

analysis (PCoA). Although PCoA did not show clear

separation between the top two PCs and the four

groups, analysis of similarity (ANOSIM) revealed signifi-

cant differences in community structure (p < 9.9 × 10−5;

R = 0.16). Because beta diversity was previously shown to

have greater dissimilarities between anterior and others,

more posterior nasal microbiomes [29], we performed

PCoA again after selecting the 50 most abundant OTUs

to determine if variation captured from composition of

the most predominant bacteria would separate between

nasal sites. In this analysis, PCoA showed clear dissimi-

larities between the NV and the NP in the summer (PC2

p < 2.2 × 10−16; ANOSIM p < 9.9 × 10−5; R = 0.24; Fig. 2b).

We note that the lack of dissimilarity between nasal sites

in the winter may result from decreased power due to

the lower alpha diversity observed in the winter samples.

In fact, the higher prevalence of respiratory viruses in

temperate regions in this season [30] supports the possi-

bility that viral-microbial interactions may synergistically

affect microbial structure at both nasal sites in the

winter. For example, studies of the airway microbiome

after exposure to pH1NI [31] and rhinovirus [32] have

demonstrated that viral infections can alter microbiome

composition in a manner that decreases microbial diver-

sity and enriches for pathogens associated with subse-

quent bacterial infections.

Correlation between host genetic similarity and

microbiome structure

To evaluate the relationship between genetic similarity

(or relatedness) among pairs of individuals and the simi-

larity of their nasal microbiomes, we compared genetic

distance, measured by the kinship coefficient and beta

diversity between all pairs of individuals in the sample

combined across seasons (see methods). We reasoned

that if there was a genetic influence on bacterial com-

position and diversity, more related individuals should

have lower measures of beta diversity, reflecting more

similar microbiomes. To assess significance, we performed

10,000 permutations for each of the two nasal sites. This

analysis revealed a significant negative Spearman correl-

ation between kinship and beta diversity (NV p < 1 × 10−4,

NP p = 4.0 × 10−4; Fig. 3).

Although an individual’s microbiome composition is

highly sensitive to the household environment [33], shar-

ing of households by the first degree relatives did not

significantly affect the correlation between beta diversity

and kinship in our sample. To examine this directly, we

removed all the first degree relatives who lived in the

same household (three sibling pairs and their parents; 15

out of 175 first-degree relative pairs in the sample) and

repeated the analysis. The correlation between kinship

and Euclidean distance remained significant (NV p < 1 ×

10−4 and NP p = 5.0 × 10−4), indicating that the signifi-

cant effect of kinship on microbiome similarities

between Hutterite adults is not likely due to shared envi-

ronments. Instead, we attribute these correlations largely

to shared genetic variation.

Genome-wide association studies of relative abundance

To directly test for host genetic effects on genus level

bacteria in the nasal vestibule and in the nasopharynx,

we performed microbiome quantitative trait locus

mapping on the bacterial RAs for each nasal site in the

summer sample and winter samples separately, and in a

larger sample combining both seasons. We tested for as-

sociations between 52 and 90 genera with 148,653 SNPs

(LD r2 < 0.5) using a linear mixed model as implemented

in GEMMA [34] and included sex and age as fixed

effects and kinship as a random effect to adjust for the
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relatedness between all pairs of individuals in our study.

Due to the multiple testing burden inherent in micro-

biome studies, genome-wide significance thresholds

were determined within each bacteria GWAS. We note,

however, that none of the associations passed a study-

wide significance threshold (p < 1.1 × 10−10) that would

correct for the number of bacteria, sites, and seasons

tested. Our analyses revealed 37 mbQTLs at q < 0.05,

eight of which passed genome-wide significance (p < 5 ×

10−8), and three of which were associated with multiple

bacteria (overall 37 variants associated with 22 genus

level bacteria). Of the 37 mbQTLs, 14 were associated

with 10 genera in the nasal vestibule and 23 were associ-

ated with 14 genera in the nasopharynx. The results for

mbQTLs with q < 0.05 are shown in Table 2, and results

for 108 mbQTLs with q < 0.10 are shown in Additional

file 3: Table S2. In addition to mapping the relative

abundance, we also mapped alpha and beta diversity, the

results of which are shown in Additional files 4 and 5:

Tables S3 and S4.

The most significant association with relative abundance

was with an intergenic SNP 8 kb upstream of the TINCR

gene on chromosome 19 and the abundance of Dermacoc-

cus (phylum Actinobacteria) in the nasal vestibule in the

summer (rs117042385; p = 1.61 × 10−8; q = 0.002, Fig. 4a,

b). Dermacoccus abundance has been observed to be de-

pleted in the skin of individuals with atopic dermatitis

[35], and microbes belonging to the Actinobacteria

phylum are characterized by their production of metabo-

lites with anti-inflammatory and antimicrobial properties

[36]. Interestingly, TINCR is a long non-coding RNA gene

that controls human epidermal differentiation and dir-

ectly binds to the peptidoglycan recognition protein 3

(PGLYRP3) transcript [37]. These combined results re-

flect the important role of Dermacoccus in surface

community structure and barrier integrity in both the skin

and nasal epithelia [38]. A second mbQTL (rs28362459),

located 314 kb downstream from the TINCR mbQTL

(r2 = 0.26; D = 0.76), was also associated with the RA

of Dermacoccus in the same site and season as TINCR (p

= 9.47 × 10−7, q = 0.047, Fig. 4a, b). rs28362459 is a mis-

sense variant in fucosyltransferase 3 (FUT3), a gene essen-

tial for the synthesis of Lewis blood groups [39, 40].

To determine if the association of increased Derma-

coccus RA with the rs28362459-C allele in FUT3 is inde-

pendent of the association with the rs117042385-C allele

upstream of TINCR, we phased the two variants and

examined the four haplotypes (seven diplotypes) present

in our sample. This revealed independent effects of ge-

notypes at both SNPs contributing to the RA of Derma-

coccus (p = 4.65 × 10−9; Fig. 4c). In particular, individuals

who were homozygous for both alleles (rs117042385-

CC/rs28362459-CC) had the highest RA of Dermacoc-

cus, while one or two copies of the FUT3 rs28362459-A

allele on a homozygous TINCR rs117042385-CC back-

ground was associated with decreased RA. Overall, the

presence of a FUT3 rs28362459-A allele was associated

with lower RA regardless of genotype at TINCR

rs117042385. The two individuals who were homozy-

gous for both the TINCR rs117042385-T and FUT3

rs28362459-A alleles did not have any Dermacoccus se-

quences detected. Overall, these results suggest that the

FUT3 rs28362459 and TINCR rs117042385 variants (or

variants in strong LD with them) are exerting independ-

ent effects on the RA of Dermacoccus.

Another mbQTL that linked PGLYRP genes more dir-

ectly to host regulation of the microbiome is an associ-

ation between a missense variant in PGLYRP4 (rs3006458)

on chromosome 1 and the RA of an unclassified genus of

family Micrococcaceae (phylum Actinobacteria) in the

combined season nasopharynx sample (p = 5.10 × 10−7; q

= 0.032, Additional file 1: Figure S4A). This same SNP was

also associated with genus Aerococcus in the nasopharynx

in the winter at a less stringent q value cutoff (phylum

Fig. 3 Heat scatterplots of Euclidean distance (beta diversity) by kinship coefficient. Individuals with larger kinship coefficients (more related) have

more similar beta diversities (lower Euclidean distances). Red dashed represents the trend line from a linear model. Nasal vestibule p < 1 × 10−4;

nasopharynx p = 4.0 × 10−4
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Table 2 QTL mapping results of nasal microbiome relative abundance

A. Nasal vestibule

Bacteria genus (phylum/class/order/family) Mean RA rsID Chr Start Alleles Gene(s) p q Beta

Summer

Dermacoccus (Actinobacteria/Actinobacteria/
Actinomycetales/Dermacoccaceae)

7.9 × 10−5 rs67386870 5 126156219 A/C LMNB1 2.46 × 10−7 0.016 −1.10

rs77536542 5 168583325 G/A SLIT3 (1,2) 6.35 × 10−8 0.005 −1.27

rs117042385a 19 5530692 T/C ZNRF4, TINCR 1.61 × 10−8 0.002 −1.16

rs28362459 19 5844792 A/C FUT3 9.47 × 10−7 0.047 −0.81

Unclassified genus (Actinobacteria/Actinobacteria/
Actinomycetales/Micrococcaceae)

4.1 × 10−4 rs111354832 4 7136504 –/CAT FLJ36777,
SORCS2

5.99 × 10−8 0.015 −0.74

Winter

Kocuria (Actinobacteria/Actinobacteria/
Actinomycetales/Micrococcaceae)

5.2 × 10−4 rs12713689a 2 70427457 G/A C2orf42, TIA1 2.10 × 10−8 0.005 −0.91

Aerococcus (Firmicutes/Bacilli/Lactobacillales/
Aerococcaceae)

2.2 × 10−4 rs10505338 8 119755490 A/G SAMD12-AS1,
TNFRSF11B

2.02 × 10−7 0.038 −0.81

Lactobacillus (Firmicutes/Bacilli/Lactobacillales/
Lactobacillaceae)

1.4 × 10−3 rs4142162 13 81127842 G/A SPRY2,
LINC00377

1.45 × 10−7 0.017 −0.77

Combined

Unclassified genus (Actinobacteria/Actinobacteria/
Actinomycetales/Intrasporangiaceae)

9.2 × 10−5 rs11085969 19 15792546 A/G CYP4F12 5.84 × 10−8 0.005 −0.91

Microbispora (Actinobacteria/Actinobacteria/
Actinomycetales/Micrococcaceae)

5.5 × 10−4 rs2891405 12 113152097 G/A MIR1302-1,
RPH3A

1.50 × 10−7 0.038 −0.81

Unclassified genus (Actinobacteria/Actinobacteria/
Actinomycetales/Micrococcaceae)

3.5 × 10−4 rs111354832a 4 7136504 –/CAT FLJ36777,
SORCS2 (2)

3.45 × 10−8 0.017 −0.77

Peptoniphilus (Firmicutes/Clostridia/Clostridiales/
Tissierellaceae)

8.9 × 10−5 rs9865782 3 113652774 A/G GRAMD1C 1.17 × 10−7 0.005 −0.91

Paracoccus (Proteobacteria/Alphaproteobacteria/
Rhodobacterales/Rhodobacteraceae)

6.5 × 10−5 rs9953410 18 29532946 C/A TRAPPC8,
RNF125

2.21 × 10−7 0.038 −0.81

Enterobacter (Proteobacteria/Gammaproteobacteria/
Enterobacteriales/Enterobacteriaceae)

6.4 × 10−5 rs11042877 11 10576232 A/C MRVI1-AS1 3.86 × 10−7 0.017 −0.77

rs12446497 16 7341674 A/G RBFOX1 5.84 × 10−7 0.005 −0.91

B. Nasopharynx

Bacteria species (phylum/class/order/family) Mean RA rsID Chr Start Alleles Gene(s) p q Beta

Summer

Aerococcus (Firmicutes/Bacilli/Lactobacillales/
Aerococcaceae)

6.5 × 10−4 rs7702475a 5 58088523 A/G RAB3C 3.97 × 10−8 0.010 0.77

Unclassified genus (Firmicutes/Bacilli/Lactobacillales/
Aerococcaceae)

5.3 × 10−4 rs11888528 2 120118764 C/T C2orf76 1.43 × 10−7 0.038 0.79

Methylobacterium (Proteobacteria/Alphaproteobacteria/
Rhizobiales/Methylobacteriaceae)

4.3 × 10−4 rs308961 3 12150014 T/G SYN2 8.12 × 10−7 0.034 −0.70

rs10547084 4 37753111 –/TCTC RELL1,PGM2 4.93 × 10−7 0.031 0.77

rs67737950 4 40260058 G/C RHOH,
LOC101060498

2.73 × 10−7 0.023 0.85

rs7702475 5 58088523 A/G RAB3C 2.46 × 10−7 0.023 0.77

rs1278260 10 127731197 C/A ADAM12 6.21 × 10−7 0.031 0.95

Unclassified genus (Proteobacteria/Alphaproteobacteria/
Caulobacterales/Caulobacteraceae)

8.5 × 10−4 rs927984 6 25412987 T/C LRRC16A 2.78 × 10−7 0.036 0.94

rs1543603a 6 25413922 A/G LRRC16A 2.30 × 10−8 0.006 0.88

Winter

Mycobacterium (Actinobacteria/Actinobacteria/
Actinomycetales/Mycobacteriaceae)

2.2 × 10−4 rs1802665 10 61788623 G/T ANK3 8.73 × 10−8 0.007 −0.98

Gemella (Firmicutes/Bacilli/Gemellales/Gemellaceae) 3.7 × 10−4 rs17631306a 1 111072322 A/G KCNA10,
KCNA2

2.94 × 10−8 0.008 1.27

Unclassified genus (Firmicutes/Bacilli/Lactobacillales) 5.7 × 10−4 rs1153741 2 182860422 G/A PPP1R1C 1.52 × 10−7 0.039 −0.83

Combined

Gordonia (Actinobacteria/Actinobacteria/
Actinomycetales/Gordoniaceae)

1.1 × 10−4 rs61925863 12 66694722 C/G IRAK3, HELB 2.88 × 10−7 0.038 −0.90

rs12435212a 14 85483485 G/T LINC00911 1.93 × 10−8 0.005 0.88
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Firmicutes; p = 1.28 × 10−6; q = 0.06). Peptidoglycan recog-

nition proteins (PGRPs) are a conserved family of antibac-

terial pattern recognition molecules that directly bind

peptidoglycan and other bacterial cell wall components,

including lipopolysaccharide (LPS) [41]. The genus Aero-

coccus is commonly found in a wide range of environ-

ments including air, dust, soil, meat-cutting brines, marine

sources, and the human respiratory tract [42]. Other lactic

acid bacteria belonging to the order Lactobacillales (e.g.,

Streptococcus pneumoniae) colonize mucosal surfaces in

the upper and lower airways of the host and cause import-

ant respiratory diseases including sinusitis, acute otitis

media, and pneumonia [43].

For each of the 90 bacteria tested, we calculated the

proportion of relative abundance variance explained

(PVE) by the joint effect of all SNPs tested in the map-

ping analyses (SNP heritability). PVE estimates the max-

imum phenotypic variance that can be explained by the

variants interrogated in the analysis and provides a lower

bound heritability estimate. In the combined analyses,

there were 22 bacteria in the nasal vestibule (27%) and

34 bacteria in the nasopharynx (37%) that had SNP her-

itability estimates with standard errors not intersecting

with zero. These estimates ranged between 13.25 and

48.69% (Fig. 5 and Additional file 6: Table S5). Overall,

bacteria with identified mbQTLs in this study (q < 0.10)

had higher estimates of SNP heritability than the

remaining tested bacteria (Wilcoxon signed-rank test

NV p = 0.009; NP p = 0.05).

mbQTL associations with multiple bacteria

Five mbQTLs (q < 0.05), including the PGLYRP4 mbQTL

discussed above, had associations with multiple bacteria

within the same nasal site at a relaxed significance thresh-

old (q < 0.10). The largest number of associations identi-

fied with a single mbQTL was an intronic variant in the

leucine rich repeat containing 16A (LRRC16A; rs1543603)

and the RAs of five Proteobacteria in the nasopharynx in

the summer (unclassified genus of family Caulobacteracea,

unclassified genus of family Bradyrhizobiaceae, Parvibacu-

lum, Blastomonas, and Rheinheimera; average cumulative

sum = 2.1% of all RA and 13.5% of all Proteobacteria),

of which Caulobacteraceae was the most significant

(p = 2.30 × 10−8, q = 0.006; Additional file 1: Figure

S4B). LRRC16A encodes CARMIL (capping protein,

Arp2/3, and Myosin-I linker), a protein that plays an

important role in cell shape and motility [44].

The association between genotype at a single SNP,

rs1543603, with the RAs of five genus level bacteria

suggested potential functional community level relation-

ships between these five Proteobacteria. Indeed, the RAs

of all five Proteobacteria were correlated with each other

(correlation coefficients > 0.773; median 0.924). Four of

the Proteobacteria were classified as Alphaproteobacteria

and one as Gammaprotebacteria, classes of bacteria with

pathogenic species (e.g., Inquilinus, and Moraxella and

Haemophilus, respectively) that have been linked to clin-

ically important airway diseases such as cystic fibrosis

[45], COPD [46, 47], sinusitis [48], or asthma [7]. A co-

Table 2 QTL mapping results of nasal microbiome relative abundance (Continued)

Unclassified genus (Firmicutes/Clostridia/
Clostridiales/Clostridiaceae)

1.0 × 10−2 rs9661504 1 205915667 A/T SLC26A9,
FAM72C

4.16 × 10−7 0.046 −0.70

rs10232599 7 46035291 G/A IGFBP3, TNS3 1.14 × 10−7 0.029 −0.67

Unclassified genus (Actinobacteria/Actinobacteria/
Actinomycetales)

1.3 × 10−3 rs12156316 8 41706484 T/C ANK1 8.16 × 10−7 0.042 0.58

rs10901086 9 134635034 T/C RAPGEF1,
MED27

7.05 × 10−7 0.042 0.89

rs12244238 10 6083239 G/A IL2RA 6.82 × 10−7 0.042 −0.69

Unclassified genus (Actinobacteria/Actinobacteria/
Actinomycetales/Micrococcaceae)

5.0 × 10−4 rs3006458 1 153320372 T/G PGLYRP4 5.10 × 10−7 0.032 −0.75

rs4774283 15 58114121 T/G GCOM1,
ALDH1A2

2.56 × 10−7 0.032 −0.57

rs4814474 20 16322199 A/C KIF16B 9.3 5× 10−7 0.040 0.56

Rhodococcus (Actinobacteria/Actinobacteria/
Actinomycetales/Nocardiaceae)

6.4 × 10−5 rs1653301a 2 201076401 A/G C2orf47,
SPATS2L

1.45 × 10−8 0.004 −0.82

Unclassified genus (Actinobacteria/Actinobacteria/
Actinomycetales/Sporichthyaceae)

1.5 × 10−4 rs13128830 4 21455808 T/C KCNIP4 3.03 × 10−7 0.022 0.64

Unclassified genus (Proteobacteria/Alphaproteobacteria/
Sphingomonadales/Sphingomonadaceae)

5.1 × 10−3 rs1653301 2 201076401 A/G C2orf47,
SPATS2L (3)

9.48 × 10−8 0.024 −0.80

A. Nasal vestibule. Fourteen host variants were associated at a q < 0.05 with the relative abundance of 10 genera. rs111354832 is associated with an unclassified

genus of family Micrococcaceae in the summer and in the combined sample. B. Nasopharynx. Twenty-three host variants were associated at a q < 0.05

with the relative abundance of 14 genera. At this site, 2 SNPs (rs1653301 and rs7702475) are associated with more than one bacterium. rsIDs presented

for dbSNP142. aGenome-wide significant result (p < 5 × 10−8). Alleles presented as minor/major. Direction of effect is presented for the minor allele. RA

relative abundance, Chr chromosome. Gene labels 1–4 correspond to genes previously reported in either the Bonder [55] or Goodrich [19] GWAS. 1,

Goodrich (fecal; unclassified genus of family Clostridiaceae); 2, Bonder (fecal; PWY-6948_sitosterol_degradation_to_androstenedione); 3, Goodrich (fecal;

genus Blautia)
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Fig. 4 Associations with the RA of Dermacoccus in the nasal vestibule in the summer. a Manhattan plot. Association results are presented for

variants pruned for LD (r2 < 0.5). Four variants on chromosomes 5 and 19 are associated with the RA of Dermacoccus at a q < 0.05 significance

threshold (red line). b Locus and genotype plots for the 2 mbQTLs on chromosome 19. Variants included in the locus plot are those with MAF >

10% in the Hutterites, prior to LD pruning. Genotype plots show both minor alleles (T at rs117042385 and A at rs28362459) are associated with

lower Dermacoccus RA. c Box plots of Dermacoccus residuals for rs117042385 and rs28362459 phased haplotypes. Numbers underneath each

boxplot represent the number of individuals in each genotype or haplotype class
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occurrence network [49] assigned all five bacteria to a sin-

gle network that included 13 bacteria (12 Proteobacteria

[two Alphaproteobacteria, two Gammaproteobacteria, and

three Betaproteobacteria] and one Bacteroidetes) from

among the 90 genera tested in the nasopharynx in the

summer (Fig. 6). In this network, genera from families

Bradyrhizobiaceae and Caulobacteraceae, two of the five

bacteria associated with rs1543603 (p = 3.25 × 10−7 and

2.30 × 10−8, respectively) are the largest hubs with nine

neighbors each. We next tested for the association of the

sum of these 13 correlated bacteria with rs1543603, but

this metric was not more significant (p = 7.72 × 10−5) than

any of the individual bacteria associations. These findings

suggest that host genetic effects can act to modulate

microbial community patterns, by directly affecting host-

microbe interactions with only one or a few main drivers

of the community.

Pathway analyses of genes near mbQTLs

To further understand how host genetic variation regu-

lates nasal microbiome composition and to identify shared

pathways among the mbQTLs identified in this study, we

selected the closest gene to each mbQTL (q < 0.10; 131

genes) and to all variants in LD (r2 > 0.8) with each

mbQTL, using LD estimates in the Hutterites. We then

generated protein-protein interaction networks among

these genes, using Ingenuity Pathway Analysis Knowledge

Base (IPA®, QIAGEN Redwood City, CA), a curated data-

base of biological interactions and functional annotations.

IPA identified two networks with Fisher’s exact p < 10−25.

The most significant network included 21 of the 131

genes, nine of which were near mbQTLs with q < 0.05

(Fisher’s exact p = 10−43; Fig. 7a). This network contained

many hubs including SMAD2, a gene that regulates the

production of immunoglobulin A (IgA) by LPS-activated

B-cells and activates immune response at other mucosal

surfaces upon stimulation by pathogenic microbes [50].

The second significant network (Fisher’s exact p = 10−29;

Fig. 7b) contained 17 of the 131 genes, also with nine

genes near mbQTLs with q < 0.05. Many of the hubs in

this network represent important modulators of mucosal

immunity, including immunoglobulins A and G (IgG and

IgG2a), IL12/IL12RA, TCR, and STAT5A/B [51–53].

Comparison of genes near mbQTLs in the Hutterites to

published microbiome QTL studies

To determine if genes associated with the RA of bacteria

in the upper airway also influence the RA of bacteria at

other human body sites, we compared 53 genes near the

37 mbQTLs discovered in our study (q < 0.05) to

genes reported in four published microbiome GWAS

data [19, 27, 54, 55]. The TwinsUK study, the largest

human gut microbiome QTL study to date, reported

17 genes within 10 kb of 15 mbQTLs were associated

with 15 different taxa (FDR < 5%). Blekhman et al.

(2015) identified 34 exonic microbiome QTLs within

32 genes (q < 0.05) associated with taxa from within

12 Human Microbiome Project (HMP) body sites.

Bonder et al. (2016) meta-analyzed three gut microbiome

Dutch cohorts and identified nine loci associated with

relative abundance and 33 with gene ontology terms and

microbial pathways (p < 5 × 10−8). Lastly, Davenport et al.

(2015) reported seven loci associated with six taxa (q <

0.05) in a gut microbiome GWAS in the Hutterites. Only

one gene, Slit guidance ligand 3 (SLIT3) on chromosome

5, had multiple variants associated among these published

studies (rs10055309 in TwinsUK and rs2163761 in Bonder

et al. 2016). Overall, two genes with mbQTLs identified in

this study at q < 0.05 have been previously reported in at

least one other study: SLIT3 [19, 55] and Sortilin related

VPS10 domain containing receptor 2 (SORCS2) [55]. An

additional seven genes identified using more relaxed

thresholds (q < 0.10 in our study and all reported genes in

other GWAS studies) are noted in Table 2 and Additional

files 2, 3, and 4. Overall, there is little overlap between

studies, likely reflecting the specificity of microbial com-

munities to local environments and body sites, and the

heterogeneity between studies with respect to sample size,

geography, body sites, and the race, age and gender com-

position of the samples.

Nonetheless, three intronic variants in the gene SLIT3

(LD r2 < 0.05) on chromosome 5 were each associated

with either the RA of an unclassified genus of family

Clostridiaceae in TwinsUK (rs10055309) or the sitosterol

degradation to androstenedione pathway (MetaCyc

PWY-6948; pathway involved in plant-derived steroid

degradation) in Bonder et al. (2015; rs2163761), and with

the RA of genus Dermacoccus in the nasal vestibule in

the summer in our study (rs77536542; p = 6.35 × 10−8;

Fig. 4a). Both rs10055309 and rs2163761 were the most

significant QTL reported in each study. SLIT3 is a

secreted protein that is widely expressed across many

tissues with highest expression in skin, brain cerebellum,

and lung [56]. SLIT3 hypermethylation has been re-

ported in a number of human cancers [56], and SLIT3

expression is increased in LPS-stimulated macrophages

in mice [57].

A variant 57 kb downstream of SORCS2 on chromo-

some 4 (rs111354832) was associated in our sample with

an unclassified genus of family Micrococcaceae (combined

season nasal vestibule) and with Kaistobacter (nasal vesti-

bule in the summer) while an intronic variant in SORCS2

(rs10012347; LD r2 = 0.17) was associated with the sitos-

terol degradation to androstenedione pathway (MetaCyc

PWY-6948) in Bonder et al. (2016). Furthermore, an add-

itional QTL in SORCS3 (rs703462), a paralog of SORCS2

on chromosome 10, was associated with Peptoniphilus in

the combined nasopharynx sample (q < 0.10). SORCS
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Fig. 5 (See legend on next page.)
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genes are strongly expressed in the central nervous sys-

tem, and their patterns of expression have been implicated

in organ development in mice, including the development

of the lung and nasal epithelial tissues [58]. The multiple

associations of variants in SLIT3 and SORC genes in the

TwinsUK study, Bonder et al. (2016) and in our study

suggest that these genes may play a role in modulating

bacterial abundances in a genotype-specific manner across

diverse body sites in humans.

Discussion

Our study is the first to assess the role of genome-wide

host genetic variation in shaping the human microbiome

at the two upper airway sites. We first demonstrated

reduced bacterial beta diversity between more closely

related pairs of individuals and then discovered associ-

ated genetic variants at functionally related genes. These

combined results indicate a significant role for host

genotype in patterning microbial diversity in the nose.

Our results further suggest that the upper airway may be

the site of important gene-environment interactions. In this

context, host genotype at many loci may ultimately impact

health and disease by modulating particular members of

the microbial community. For example, a missense variant

in fucosyltransferase 3 (FUT3; rs28362459) was strongly as-

sociated with decreased abundance of Dermacoccus (the

nasal vestibule in the summer), a bacteria that is depleted

in the skin of individuals with atopic dermatitis [35]. This

SNP is predicted to be deleterious by both Polymorphism

Phenotyping (PolyPhen) v2 [59] and Combined Annotation

Dependent Depletion (CADD) [60] scores (0.997 and

15.12, respectively). Interestingly, the non-secretor pheno-

type, characterized by a null variant in another FUT gene,

FUT2, and the resulting absence of ABH antigens in the

mucosa in homozygotes for the null allele, influences the

composition and diversity of the microbiome in the human

intestinal tract [61, 62]. Moreover, variants in both FUT2

and FUT3 have been shown in GWAS to increase suscepti-

bility to diseases associated with both mucosal surface

pathobiology and microbiome composition, such as cystic

fibrosis [39], Crohn’s disease [63], and ulcerative colitis [64].

Our study extends a role for fucosyltransferases to the nasal

mucosal surface and further implicates host genetic influ-

ences on bacterial diversity at this site.

Four mbQTLs show effects on phylogenetically diverse

phyla, and two were identified in different seasons and

nasal sites. In particular, a missense variant in PGLYRP4

(rs3006458) was associated with the abundance of genus

Aerococcus (Firmicutes) in the nasopharynx in the sum-

mer and with family Micrococcacea (Actinobacteria) in

the nasopharynx in the combined sample. The RAs of

Aerococcus and Micrococcacea are only weakly correlated
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1. Cloacibacterium

2. Unclassified genus of family Caulobacteracea

3. Unclassified genus of family Bradyrhizobiaceae

4. Parvibaculum

5. Blastomonas

6. Unclassified genus of class Betaproteobacteria

7. Unclassified genus of family Comamonadaceae 

8. Unclassified genus of family Comamonadaceae

9. Acinetobacter

10. Unclassified genus of family Bradyrhizobiaceae

11. Rheinheimera

12. Pseudomonas

13. Sphingomonas

Fig. 6 Five genus level bacteria associated with rs1543603 (in LRRC16A) are hubs in a co-occurrence module of 12 Proteobacteria and one Bacteroidetes.

Co-occurrence networks built from correlation coefficients between all 90 genus level RAs determined in the nasopharynx summer sample. Nodes

represent bacteria and are listed by number, colored by phylum, and sized proportionally to the RA of each bacterium. Edges represent correlations greater

than 0.75. Blue node borders represent the five bacteria associated with rs1543603, an intronic variant in LRRC16A

(See figure on previous page.)

Fig. 5 SNP heritability estimates for 90 bacteria tested in the nasal vestibule and nasopharynx combined samples. Each point represents the

percent variance explained (PVE) for each bacteria genus level relative abundance; dashed lines show the standard error. The bacteria listed in the

inset have SNP heritability estimates with standard errors that do not span zero. Bacteria for which mbQTLs (q < 0.10) were identified in either the

seasonal or the combined samples are shown in red. Heritability estimates for all bacteria are presented in Additional file 4: Table S4
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with each other indicating that these are likely independ-

ent associations. Moreover, the associations with phylo-

genetically distant bacteria and in different subsamples

(summer vs. combined) suggest that PGLYRP4 has pleio-

tropic effects over several organisms. Alternatively, the

SNP identified in our study (rs3006458) could be tagging

a haplotype with multiple variants that have independent

effects on different bacterial abundances. The genomic re-

gion that includes the PGLYRP genes includes a cluster of

genes implicated in epidermal barrier function [65], and

SNPs in this region show extensive LD. However, inde-

pendent evidence suggests that PGLYRP4 may be the

target gene of this association. The rs3006458-T allele,

which is associated with lower RA of Aerococcus and

Micrococcacea in our study, was associated with increased

gene expression of the PGLYRP4 gene in the epithelial and

mucosal tissues (skin, small intestine, and esophageal mu-

cosa) in the Genotype-Tissue Expression [66], and in the

lung tissue in a separate eQTL study [67]. These tissues

serve as physical barriers and provide innate immune

functions essential for antimicrobial defense [68]. Collect-

ively, these data suggest that host genotype at rs3006458

(or a variant in LD with rs3006458) regulates the expres-

sion in PGLYRP4 in the skin, lung, and airway mucosa

and functions to modulate bacterial abundance, possibly

beyond the two genera identified in this study. The link

between genetic variation in host PGRPs and microbiome

abundance revealed in this study indicates that at least

some of the important roles these proteins play in modu-

lating communities of symbiotic organisms [69] are attrib-

utable to host genetic variation.

Eight of the mbQTLs identified in our study at a re-

laxed q < 0.10 influenced the abundance of more than

one organism. Most were identified within the same

season and nasal site, and four influenced the abundance

of multiple closely related bacteria. For example, an in-

tronic variant in LRRC16A (rs1543603) was associated

with the abundance of five highly correlated genera of

phylum Proteobacteria in the nasopharynx in the sum-

mer and co-occur in a larger network of 12 Proteobac-

teria and one Bacteroidetes. One possible explanation

for this correlated network may be that these bacteria are

physically interacting and their overall community structure

is influenced by host genotype, but there may be other

metabolic or physiological reasons why these bacteria co-

occur. Although not much is known about LRRC16A, other

proteins with leucine-rich repeat (LRR) domains, such as

nucleotide-binding oligomerization domain receptors

(NODs) and toll-like receptors (TLRs) [70], function as rec-

ognition receptors in innate immunity.

Although our study provides novel insights into host

genetic influences on the nasal microbiome, there are

some limitations. In particular, the size of our sample is

relatively small for genetic mapping (77–88 individuals

in seasonal analyses; 125 and 133 individuals in the com-

bined). We reasoned that the reduced environmental

heterogeneity among Hutterite individuals would en-

hance the effects of genetic variation and facilitate the

detection of associated variants. While we were success-

ful in identifying mbQTLs, we acknowledge that there

are likely many more associations to be found in larger

samples. A second limitation is the multiple testing

A B

Fig. 7 Ingenuity Pathway Analysis (IPA) interaction networks. Networks show genes near nasal mbQTLs are enriched for mucosal immunity

pathways. Two significant networks (p < 10−25) are presented. a Network one is centered on SMAD2 and ERK1/2 (p < 10−43; 21 genes). b Network

two is a highly connected network centered on IL2RA, STAT5a/b, and IL12, among others. This network contains many of the key regulators of

mucosal immunity (p < 10−29; 17 genes). Node color represents genes near microbiome QTL associations in the nasal vestibule (blue) or in the

nasopharynx (green); open symbols are genes added by IPA. Edges represent direct (solid) and indirect (dashed) interactions in the IPA Knowledge

Base database. Node shapes correspond to functional classes of gene products: concentric circles for groups or complexes, diamonds for enzymes,

rectangles for transcriptional regulators or modulators, ovals for trans-membrane receptors, and circles for other
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burden that results from the high dimensionality of the

microbiome. While we reduced the number of tests per-

formed by mapping only genus level bacteria present in

the majority of individuals, we only corrected for mul-

tiple testing within each study and did not correct for

the 90 bacteria and six subgroups for which we per-

formed mbQTL mapping. Although we used a fairly

stringent threshold of genome-wide significance (q <

0.05), we acknowledge that some of our findings may be

false positives. In addition, there is the possibility that

samples from the nasopharynx may have been contami-

nated by the anterior nares; these regions are, indeed,

anatomically and physiologically distinct. Our sampling

method was motivated by the practicalities of field re-

search and utilized standard clinical techniques. We note

that only one study to date has surveyed the regional

biogeography of the nasal microbiome; they included the

anterior nares and two more posterior nasal sites (mid-

dle meatus and sphenoethmoidal recess, which are dis-

tinct from the nasopharynx, though also lined by

respiratory epithelium) using a similar sampling tech-

nique [29]. Our findings of separation between the an-

terior and posterior nasal sites across some measures

and variables (most prominently in the summer) are

broadly consistent with their results, which show some

differences and some overlap across sites. Nevertheless,

precise spatial analyses of the nose require additional

studies using alternative sampling techniques. Lastly, the

genetic effects revealed by our study are context specific

due to the many environmental and stochastic factors

that affect microbiome composition and, therefore, chal-

lenging to replicate. For example, even within our study

of a relatively homogenous population, we detected sig-

nificant effects of season, age, and gender. In fact, most

of the mbQTLs that we identified were specific to one

season and demonstrate that even small temporal

changes (6 months) in the RAs of bacteria within the

same individuals can mask or enhance genetic effects.

Although we did not formally replicate the results in in-

dependent populations, the identification of multiple in-

tronic variants within the gene SLIT3 in our study, the

TwinsUK study [19], and Bonder et al. (2016) [55] bol-

sters confidence in the involvement of this gene in regu-

lating microbial structure across multiple mucosal sites.

Conclusions
Our study provides evidence for genetic contributions to

modulating variability of the nasal microbiome, a trait

that has been linked to a number of airway diseases [71].

Importantly, our findings support the concept that host

genetic variation directly influences the expression or

function of genes that are specifically involved in innate

mucosal immunity pathways. Such a framework is con-

sistent with previous reports showing that antimicrobial

peptides [69, 72] and host immunity [73] are the key

modulators of microbial defense in the mucosa. Our

data further suggest that host genetic effects on immune

genes modulate particular bacteria or the structure of

whole microbial communities in the upper airways. We

speculate that interactions between host genetics and

microbiome structure or composition in the upper air-

way can influence dysbiotic tendencies that may predis-

pose to respiratory disease and could be subject to

intervention. Indeed, moving forward, more detailed

analyses of the complex relationship between genetic

variation in host mucosal immunity and the microbio-

me—captured here in a snapshot in the upper air-

way—are required to fully characterize determinants of

an inherently dynamic microbial ecosystem. Such work

could potentially identify targets for novel therapeutic

strategies useful across a wide range of respiratory

diseases.

Methods

Sample collection

Nasal brushings from Hutterites ages 16 to 78 from five

colonies located in South Dakota, all within 14 miles of

each other, were collected at two time points, winter

(January/February 2011) and summer (July 2011), and

from two nasal sites, the nasal vestibule and the naso-

pharynx. Samples from each of the two nasal sites were

collected from opposite nares using sterile flock collection

swabs (Puritan© 25-3316). The HMP anterior nares collec-

tion protocol [74] was used for the nasal vestibule, and the

Center of Disease Control and Prevention (CDC) protocol

for collection of nasopharyngeal swabs (http://www.cdc.gov/

urdo/downloads/SpecCollectionGuidelines.pdf) was used to

sample the nasopharynx. After excluding samples with low

DNA yield, low sequencing read depth, antibiotic history

within the prior 3 months, current use of steroid nasal spray,

or missing genotypes, our final data consists of 133 individ-

uals with nasal vestibule samples (87 summer and 80 winter)

and 125 individuals with the nasopharynx samples (88 sum-

mer and 77 winter; Table 1).

Sample DNA extraction library preparation and

sequencing

Nasal brushes were immediately frozen at −20 °C follow-

ing collection, shipped on dry ice, and stored at −80 °C.

DNA extraction was carried out using the BiOstic®

Bacteremia DNA Isolation Kit (12240–50). DNA con-

centration and purity were assessed using the Nanodrop

1000 spectrophotometer (Thermo Scientific, IL, USA).

The 16S rRNA gene V4 region was amplified following

conditions in Caporaso et al. protocol [75] using 62

different region-specific primers labeled with a unique

12-base Golay barcode sequence in the reverse primer.

Final libraries were quality controlled prior to pooling
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with the Agilent Bioanalyzer DNA 1000 (Agilent Tech-

nologies, CA, USA). Libraries were pooled into 8 pools

of 62 samples and sequenced on the HiSeq2000 platform

(Illumina Inc., CA, USA) under a single end 102 base-

pair protocol.

Sequencing and taxonomic classification

Data was pre-processed using CASAVA 1.8.1. Following

sample de-multiplexing, 617,909,462 sequence reads were

processed using the Quantitative Insights into Microbial

Ecology (QIIME) 1.8.0 toolkit [76]. Quality controlled

reads were required to have an exact match to an ex-

pected barcode, zero ambiguous base calls, less than three

consecutive low-quality base calls, and a minimum Phred

quality score of 20 along the entire read. We used an

open-reference OTU workflow where sequences were first

clustered against the Greengenes May 2013 reference [77],

and reads that did not cluster with known taxa (97%

identity) were subjected to de novo clustering. Repre-

sentative sequences were aligned using PyNAST version

1.2.2 [78], and the taxonomy of each OTU cluster was

assigned with the uclust classifier version 1.2.22q. We

applied an OTU abundance filter of 0.005% [79] to

reduce spurious OTUs, removing 5.96% of total se-

quences and obtaining a final dataset of 563 OTUs.

Data processing

Seasonal

For each of the four seasonal groups (the nasal vestibule

in the summer and in the winter, and the nasopharynx

in the summer and winter), a genus level RA table was

calculated after subsampling reads to 250,000 per sam-

ple. Each bacteria’s RA was then quantile normalized

using the qqnorm function in R. Next, PCA was per-

formed using the prcomp function in R and each of the

top 10 principal components (PCs, explaining ~76–78%

of the variance) were tested in a linear model against

technical covariates. In at least one of the seasonal

groups, we identified correlations between one of the

PCs with DNA concentration prior to PCR, final base

pair fragment size and date of sampling (p < 0.001). PCR

adapter barcode, library batch, order within library

batch, and final library concentration were not signifi-

cant. After regressing out the identified technical covari-

ates from the normalized RAs, we performed PCA on

the residuals and tested for associations between the top

10 PCs and biological covariates. Age and sex were

significant and were therefore adjusted for in all subse-

quent analyses. Next, to reduce the burden of multiple

testing in the seasonal mapping studies, we removed

genera that were detected in fewer than 75% of individ-

uals. This resulted in 78 genus level RAs in the nasal

vestibule in the summer, 52 in the nasal vestibule in the

winter, 90 in the nasopharynx in the summer and 59 in

the nasopharynx in the winter.

Combined seasons

Although combining samples across seasons could intro-

duce noise, it provides the largest possible sample size

and consequently greatest power for genetic associations

with bacteria that do not vary in abundance across sea-

sons. Therefore, for each nasal site, we averaged the

summer and winter genus level RA residuals obtained

after quantile normalization and the regression of identi-

fied technical covariates for individuals with measure-

ments during both seasons, or included the one season

result for those with only one measurement (referred to

as the combined sample). We selected all genus level

bacteria present in at least 75% of individuals in either

season, which resulted in 76 genus level RAs in the nasal

vestibule and 90 in the nasopharynx. We performed

PCA on the combined seasons matrix to verify variation

among samples did not separate the combined samples

from the samples with one seasonal measurement.

Season of origin (summer, winter or averaged) was not

correlated with any of the top 10 principle components

in either nasal site (Additional file 1: Figure S5).

Genotype data

The Hutterite individuals in our study are related to

each other in a 13-generation pedigree that includes

3,671 individuals, all of whom originate from 64 foun-

ders. Using PRIMAL [26], an in-house pedigree-based

imputation algorithm, whole genome sequences from 98

Hutterite individuals were phased and imputed to 1,317

Hutterites who were previously genotyped on Affymetrix

arrays [80–82]. For mapping studies, we first selected

3,161,460 variants with genotype call rates greater than

95% in our sample and minor allele frequencies (MAF) >

0.10 in any of the 4 season/site subsamples. Next, we es-

timated LD in the Hutterite data using PLINK [83], and

pruned variants for LD using an r2 threshold of 0.5, to

yield a final set of 148,653 variants for mapping studies.

Diversity metrics

Alpha diversity metrics at the species level (observed spe-

cies, Shannon index and evenness) were calculated in

QIIME [76] using the alpha_diversity.py script after sub-

sampling reads from 1,000 to 10,000 every 1,000 reads,

from 10,000 to 100,000 every 10,000 reads and from

150,000 to 250,000 every 50,000 reads. Each subsampling

series was completed 10 times and rarefaction curves were

plotted. Diversity metrics were averaged from the 250,000

read subsamples using the collate_alpha.py script and this

metric was compared across seasons and nasal sites.

To calculate beta diversity, we first obtained the OTU

table using phyloseq [84], quantile normalized OTU
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abundances using qqnorm in R and regressed out

technical covariates (DNA concentration prior to

PCR, final base pair fragment size and date of sam-

pling). Next, we calculated pairwise Euclidean dis-

tance using the vegdist function in the R package

vegan. We chose Euclidean distance as our beta diver-

sity metric because this metric does not depend on

raw relative abundance values for distance calculation.

We wanted to correct our data for significant tech-

nical covariates, and Euclidean distance can be calcu-

lated on residuals after regressing out these technical

covariates.

Kinship associations to beta diversity

Pair-wise kinship coefficients were previously calcu-

lated by PRIMAL [26] using 271,486 variants geno-

typed on Affymetrix platforms. The average kinship

coefficient between all pairs of individuals (n = 144) in

our study was 4.51% (range 0.60–32.03%). We per-

formed 10,000 permutations to assess the association

between pairwise Euclidian distances and kinship co-

efficients in the combined season samples (nasal ves-

tibule 8778 pairs, nasopharynx 7750). The p value is

the number of times out of 10,000 permutations that

the Spearman correlation of the permuted sequence

pair was more extreme than the observed pair.

Co-occurrence network analyses

We used SparCC [49] to calculate the nasopharynx in

the summer correlation coefficients between all 90 gen-

era tested in our mapping studies. We applied default

settings and assigned p values calculated from 100 boot-

straps. Co-occurrence networks were generated from the

SparCC correlation matrix for genera with correlation

r2 > 0.75 and p < 0.01 (1/100 bootstraps). The network

was generated using igraph R package, where nodes rep-

resent each genera and edges represent correlations be-

tween the genera above the applied threshold.

Ingenuity Pathway Analysis of protein-protein interaction

networks

We selected the closest gene to 1,413 variants (131

genes) with Hutterite linkage disequilibrium (LD) r2 >

0.8 with the 108 mbQTLs (q < 0.10). To interrogate and

visualize network associations, we used the Ingenuity

Pathway Analysis Knowledge Base (IPA®, QIAGEN

Redwood City, CA), limiting interactions to primary cells

or tissues. The network scores generated by IPA are

based on a right-tailed Fisher’s exact test comparing the

observed and expected mbQTL genes present in a path-

way relative to the IPA database.
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