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RESEARCH Open Access

Host genetics and diet, but not immunoglobulin
A expression, converge to shape compositional
features of the gut microbiome in an advanced
intercross population of mice
Larry J Leamy1, Scott A Kelly2, Joseph Nietfeldt4, Ryan M Legge4, Fangrui Ma4, Kunjie Hua3, Rohita Sinha4,
Daniel A Peterson5, Jens Walter4, Andrew K Benson4* and Daniel Pomp3

Abstract

Background: Individuality in the species composition of the vertebrate gut microbiota is driven by a combination
of host and environmental factors that have largely been studied independently. We studied the convergence of
these factors in a G10 mouse population generated from a cross between two strains to search for quantitative trait
loci (QTLs) that affect gut microbiota composition or ileal Immunoglobulin A (IgA) expression in mice fed normal or
high-fat diets.

Results: We found 42 microbiota-specific QTLs in 27 different genomic regions that affect the relative abundances
of 39 taxa, including four QTL that were shared between this G10 population and the population previously studied
at G4. Several of the G10 QTLs show apparent pleiotropy. Eight of these QTLs, including four at the same site on
chromosome 9, show significant interaction with diet, implying that diet can modify the effects of some host loci
on gut microbiome composition. Utilization patterns of IghV variable regions among IgA-specific mRNAs from ileal
tissue are affected by 54 significant QTLs, most of which map to a segment of chromosome 12 spanning the Igh

locus. Despite the effect of genetic variation on IghV utilization, we are unable to detect overlapping microbiota
and IgA QTLs and there is no significant correlation between IgA variable pattern utilization and the abundance of
any of the taxa from the fecal microbiota.

Conclusions: We conclude that host genetics and diet can converge to shape the gut microbiota, but host genetic
effects are not manifested through differences in IgA production.

Background
The mammalian gut harbors a microbiota that consists of

hundreds of microbial species whose relative abundances

vary considerably among individuals [1-3]. At some ex-

tremes of this variation, composition and function of the

microbiota show associations with complex diseases and

these abnormal microbial assemblages may even contribute

to the disease process [4-7]. Despite the growing catalogue

of known gut microbes and an increasing understanding

of their distributions in populations, the fundamental

principles that guide assembly and define structure of the

microbiome are largely unknown.

Ecological theory predicts that community assembly is

governed by a combination of deterministic, historic, and

neutral factors [8]. Evidence now exists that gut micro-

biota is structured by host-defined deterministic factors

specified by the genotype (which relate directly to physi-

ology and immune functions), deterministic environmen-

tal factors such as diet, and stochastic factors such as

colonization order and history of antibiotic exposure [9].

Though the relative contribution of several of these factors

have begun to be estimated individually, systematic studies

are needed to understand how these factors converge to

shape individualized microbiomes that show stability and

resilience.
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That natural genetic variation can indeed account for

variation in the abundances of taxa of the gut microbiota

has been demonstrated in mouse model systems, subse-

quently leading to the identification of quantitative trait

loci (QTL) that affect the relative abundances of specific

microbial taxa and groups of taxa in the gut [10-12].

Among the 18 QTLs initially mapped by Benson et al.

[10], at least three of the microbiota QTL overlapped

QTLs for complex diseases, suggesting that genetic pre-

disposition to complex diseases may be attributable, in

part, to assembly of abnormal microbiomes. Indeed, vari-

ation in several innate response genes is associated with

inflammatory and metabolic diseases in humans and these

diseases also manifest dysbiosis [13-18]. Although the

causal relationships between genetic variation, dysbiosis,

and disease are still largely unknown, work in experimen-

tal animal models shows that null mutations in innate re-

sponse genes give rise to dysbiotic microbiota that can

bring about disease characteristics when transferred into

naïve animals [19-23].

In contrast to innate response genes, it is unclear how

genetic variation in adaptive immune genes affects the

microbiome. Rag -/- mice, which entirely lack an adap-

tive immune system, have significant abnormalities in

composition of the gut microbiota [24]. However, the in-

nate and adaptive responses have overlapping roles in

gut function and innate responses dominate these roles

when an adaptive response such as IgA production is ab-

rogated [25-27]. These confounding effects have begun

to be untangled, with recent studies showing that signal-

ing through TLR5 can influence immunoglobulin pro-

duction against flagellar antigens of the gut microbiome

[28] and signaling through FoxP3+ T cells plays a role in

stimulating IgA production in Peyer’s patches that mod-

ulates members of the Lachnospiraceae [29].

Though host factors can contribute measurably to fecal

microbiota composition, these differences do not appear to

explain the majority of the variation contributing to indi-

viduality. Thus, environmental and stochastic factors must

also play significant roles. Several studies show measurable

influences of dietary modulation on gut microbiota com-

position [7,30-32], with short-term changes in diet result-

ing in relatively rapid responses in the relative abundances

of taxa within the gut microbiota [33]. Even relatively

minor short-term changes such as inclusion of whole

grains or prebiotic oligosaccharides can translate into

significant, albeit temporary, changes in microbiome

composition [34,35]. Relationships between microbiome

composition and long-term diet are poorly understood but

seem to be reversible in mice [36]. Nonetheless, some asso-

ciations of long-term diet with overall microbiota compos-

ition have been reported in humans [37], making it still

unclear if diet on its own is a significant contributor to the

individuality of the gut microbiota.

Collectively, each of these deterministic factors (diet, im-

mune function, and host genotype) can have measurable

effects when studied independently, but it is unknown how

these factors converge to ultimately shape composition of

the microbiota. To provide insight into the interactions of

these factors, we conducted a genome scan to search for

QTL controlling composition of the microbiota and QTL

controlling variable region utilization among expressed

IgA in a mouse intercross model with a dietary variable

(high-fat versus conventional diet). The mouse population

was developed as an advanced intercross population pro-

duced from crosses of mice with a genetic predisposition

to dietary-induced obesity (C57BL/6J) with those in a

strain selected for high voluntary wheel running. At wean-

ing, the population was randomly assigned to normal or

high-fat diets for 6 to 8 weeks and sampled for microbiota

composition with tissue from the ileum of the same ani-

mals sampled at necropsy for RNA extraction and meas-

urement of mRNA from expressed IgA.

Results
Basic statistics and variance components of the

generation 10 microbiota

As we have reported previously [10], a large proportion of

the taxa detected by pyrosequencing show a sparse distri-

bution across the animal population; and of the 472 mice

in this G10 population of mice, 203 taxa (OTUs at 97%)

were detected in at least 75% of the animals. The mean

relative abundances of these 203 consistently-detected taxa

across all animals were quite broad, in the range of 0.045

for dominant taxa such as Alistipes OTU15 to 0.00027 for

low abundance taxa such as OTU76601. There was also

little relationship between the mean abundance of taxa and

the range as some dominant taxa such as Parabacteroides

OTU3 ranged nearly 1,000-fold across the animals (from

abundances of 0.222 to 0.000226) while some lower

abundance taxa such as Odoribacter OTU1 showed a

tighter distribution (abundances of 0.006 to 0.00011).

For statistical analyses, the relative abundances were log-

transformed to reduce the effects of skewness, and the

means and standard deviations of these log-transformed

abundances are given in Additional file 1.

Estimates of the variance components (Additional file 2)

for the microbiota taxa abundances vary considerably

among the 203 taxa. Differences among the cohorts

account for an average of 9.7% of the total variation, al-

though these percentage values are in the range of 0 (in 7

taxa) to as much as 43.2%. Contributions from family dif-

ferences average about one-half of that for cohort (4.8%),

with 49 taxa showing no differences. Litter differences

contribute on average 6.1% to the total variation, although

again with a number of taxa (N = 29) showing no differ-

ences between litters. Residual variation contributes by far

the largest amount to the total variation, averaging 79.4%
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and varying from 43.8% to 97.9% among the 203 taxa.

Thus excluding the environmental cohort and litter con-

tributions, an unknown fraction of the remaining 84.2%

contributed by family and residual differences is genetic in

origin.

Compositional features of the G4 and G10 gut microbiota

The G10 population showed several major differences in

composition of the microbiota when compared to the

population mapped at G4 [10], many of which could be

observed even at high taxonomic ranks. As illustrated in

Figure 1, the G10 population had significantly higher levels

of taxa belonging to the Bacteriodetes, Delta Proteobac-

teria, Epsilon Proteobacteria, Mollicutes, and Deferribac-

teres. This was offset by decreased levels of Clostridia,

Bacilli, Beta Proteobacteria, Gamma Proteobacteria, and

Flavobacteria. This same pattern could also be detected

at the genus level (Figure 1B), with the G10 mice showing

substantial elevation in members of the Bacteriodetes

(Bacteriodes, Parabacteriodes, Rikenella, Allistipes), Epsilon

Proteobacteria (Helicobacter), Delta Proteobacteria (Mucis-

pirillum), and Mollicutes (Ureaplasma) that are offset

by decreases in members of the Clostridia (Lachno-

bacterium, Roseburia, Dorea) and Bacilli (Lactobacillus,

Lactococcus, Weissella), and Beta Proteobacteria (Variovorax).

Phylogeny-based analysis of the 200 most abundant OTUs

from a random selection of 100,000 pooled sequences of

the G4 and the G10 animals (balanced for cohort in G4

and G10 and diet in G10) also showed many of these same

differences (Additional file 3), with expansion of the diver-

sity in taxa attributable to the Bacteridetes that was offset

by a reduction in diversity of taxa attributable to the

Figure 1 Comparison of microbiota composition between G4 and G10 populations. (A, B) Box and whisker plots for the Log10 relative
abundances of taxa ((A) Class, (B) Genus) that are shared between the G4 (green) and G10 (red) populations. The boxes represent 75% of the data
and whiskers indicate the range. (C) The relative abundances of the 16 shared genera between the G4 and G10 populations. G10 mice are shown
on the left by cohort and G4 mice are on the right ordered by cohort.

Leamy et al. Genome Biology 2014, 15:552 Page 3 of 20

http://genomebiology.com/2014/15/12/552



Firmicutes and the Proteobacteria. Estimates of alpha di-

versity using these same 100,000 sequences from the G4

and G10 populations (based on Shannon and Inverse

Simpson indices) showed slightly higher diversity in the

G4 animals, but the differences were not statistically sig-

nificant (P <0.09). Thus, despite the dramatic changes in

taxonomic composition of the microbiota between gener-

ations G4 and G10, there was little change in the overall

levels of diversity.

Even though compositional differences in the micro-

biota emerged at G10, several general features were still

conserved in the G4 and G10 populations. In both studies,

only a small portion of the taxa were measurable across a

significant proportion (75%) of the mice. Because genus-

level processing of the pyrosequencing data by the CLAS-

SIFIER algorithm is common to both studies, we examined

the genera comprising the Core Measurable Microbiota

(CMM) in both studies. All of the 16 genera of the G10

CMM were found among the 19 genera comprising the G4

CMM. Collectively, these 16 CMM genera comprise 40%

to 50% of the total microbiota across all mice (Figure 1C).

Though shared, these 16 CMM were distributed quite

differently in the G4 and G10 populations. For example,

members of the genera Alistipes, Bacteriodes, and Para-

bacteriodes dominate nearly all of the G10 mice but are

only dominant in groups of G4 mice corresponding to in-

dividual cohorts.

Effect of high-fat diet on the G10 microbiota

To examine the effects of diet on compositional features

of the microbiota, we first compared estimates of alpha

diversity in the microbiota across animals fed control

or high-fat diets. As shown in Figure 2A, the inverse

Simpson’s index (1/D) showed modest, but statistically

significant differences between the animals fed control

versus high-fat diets, with animals on the high-fat diet

displaying reduced levels of diversity. ANOVA identified

54 taxa showing significant effect of diet (P <0.05) but the

Bonferonni-corrected significance level (P <0.00000483),

left only eight of these 54 taxa passing the stringent

multiple-testing threshold for significance. Even these

eight taxa showed only modest differences in their dis-

tributions (Figure 2B). Likewise, Linear Discriminant

Analysis (LDA) of the log-transformed abundances of

the 34 taxa with smallest P values (from ANOVA)

also showed a small, but measurable effect of diet

(Figure 2C), with microbiota from animals fed control

or high-fat diet displaying partial separation, almost

exclusively in the first (X-axis) dimension.

Collectively, despite the difference in fat content of the

diets, diet-based differentiation of the microbiota in our

population was minimal and likely due to the cumulative

effects of small differences across multiple taxa, as op-

posed to large shifts in small numbers of taxa.

QTLs affecting relative abundances of G10 gut microbial

taxa

Table 1 gives a summary of all QTLs affecting the rela-

tive abundances of taxa from the gut microbiota of the

G10 mice. Over all 203 taxa, a total of 42 QTLs were dis-

covered, including 22 that had LOD scores reaching the

5% genomewide level of significance. Their confidence

intervals average 9.85 Mb with a standard deviation of

5.25 Mb. These QTLs affect 39 of the 203 different taxa

(19%), 36 of which are affected by a single QTL. Three

taxa, OTU29627, OTU17740, and OTU30840, each are

Figure 2 Effect of diet on the G10 microbiota. (A) Box and whisker plots of the Inverse Simpson’s index for animals on the control or high-fat
diet. The microbiota from animals fed the control (blue) or high-fat (red) diets show a significant effect of diet (one-sided t-test: P <0.045). (B) The
distributions of eight taxa showing a statistically significant effect of diet (Bonferonni-adjusted P <0.00000483) are depicted in box and whisker
plots. The boxes define 75% of the data points. Blue = control diet, Red = high-fat diet. (C) The log-transformed abundances of 34 taxa with the
smallest, non-adjusted ANOVA P values were used as variables for Linear Discriminant Analysis (LDA) with diet and parity as factors. The first two
LDA functions account for >60% (X axis) and >30% (Y-axis) of the variation in these taxa.
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Table 1 QTL statistics for the microbiome traits in the G10 mouse population

Trait Best hit (genus) Ch Position (Mb) CI (Mb) LOD FDR a d % Interaction

OTU15028 Blautia 1 49.1 43.3-50.7 4.53* 0.404 -0.20 -0.15 4.72 Diet (C)

Butyricicoccus 1 127.2 123.3-140.7 3.97 0.507 -0.18 0.02 4.50 Diet (HF)

ButyricicoccusOTU7 1 127.2 123.3-140.7 4.30* 0.425 -0.18 0.03 4.81 Diet (HF)

OTU18932 Prevotella 1 173.3 167.0-182.1 4.29* 0.425 0.09 0.05 4.51

ParabacteroidesOTU6 2 59.5 57.5-62.5 4.08 0.431 0.27 0.04 5.40

OTU24985 Alistipes 2 60.2 57.5-62.5 4.21 0.469 0 0.15 4.01

OTU29627 Hydrogenoanaerobacterium 2 172.5 170.3-173.6 4.51* 0.404 0.01 -0.24 5.48 Sex (M)

9 29.8 22.0-33.4 4.51* 0.404 -0.16 -0.02 4.71

OTU23089 Clostridium 3 16.9 11.8-22.6 4.05 0.431 0.19 -0.21 3.49

OTU26092 Blautia 3 20.4 11.8-22.6 4.97* 0.356 0.16 -0.25 3.87

OTU17889 Roseburia 4 12.5 8.3-19.7 3.99 0.480 0.11 0.18 3.60 Diet (C)

OTU3615 Desulfotomaculum 5 115.2 112.9-118.1 4.07 0.431 -0.24 -0.28 3.82

OTU32093 Eubacterium 6 54.0 53.1-59.2 5.08* 0.356 0.04 0.22 5.20

OTU35558 Desulfocurvus 6 115.6 112.2-120.0 4.42* 0.469 0.09 -0.08 4.52

Lactobacillusjohnsonii 6 126.9 122.4-131.6 4.08 0.431 -0.30 -0.11 4.12

ATCC33200

OTU14099 Butyricimonas 8 71.6 64.4-79.1 4.66* 0.404 -0.11 -0.27 4.62

OTU16090 Alistipes 8 74.9 64.4-79.1 4.10 0.439 -0.15 -0.25 4.20

OTU27257 Alistipes 8 77.5 66.5-79.1 4.16 0.431 -0.11 -0.25 4.08

OTU41353 Alistipes 9 37.3 34.6-40.9 7.99* 0.002 -0.16 -0.04 8.29

OTU29084 Clostridium 9 40.2 33.5-42.3 4.56* 0.404 -0.11 0.06 4.79

OTU17740 Prevotella 9 40.7 33.5-40.9 5.87* 0.139 -0.26 0.07 5.21 Diet (C)

X 66.1 54.5-74.6 4.07 0.469 -0.18 -0.02 5.21

OTU25269 Odoribacter 9 40.7 33.5-40.9 6.01* 0.137 -0.26 0.02 6.63 Diet (C)

OTU13989 Bacteriodes 9 40.7 40.5-42.4 4.51* 0.342 -0.10 0.13 4.20 Diet (HF)

OTU25483 Bacteriodes 9 40.7 33.5-40.9 6.04* 0.137 -0.21 0 6.83 Diet (C)

Lactococcus lactis 9 113.3 112.3-115.0 3.95 0.513 0.11 -0.07 3.71

OTU21572 Roseburia 10 6.4 4.7-9.07 4.24 0.469 0.07 0.17 3.72

OTU33466 Oscillibacter 11 41.8 35.1-44.5 4.12 0.469 -0.15 0.10 4.29

OTU22207 Alistipes 11 97.8 93.4-114.0 3.97 0.463 0.05 0.11 3.31

Odoribacter 14 17.1 10.5-20.3 4.39* 0.404 -0.04 -0.11 3.26

OdoribacterOTU6 14 17.1 10.5-20.3 4.04 0.431 -0.04 -0.10 3.04

OTU30840 Clostridium 14 71.1 67.6-87.5 4.67* 0.404 0.01 -0.25 6.40

18 68.4 65.4-70.2 3.93 0.500 -0.02 0.22 4.16

OTU46742 Hydrogenoanaerobacterium 14 88.7 79.7-87.5 4.87* 0.404 -0.11 -0.13 4.82

OTU20360 Bacteriodes 16 6.9 3.98-9.92 4.28* 0.425 -0.12 0.08 4.52

AlistipesOTU15 16 44.8 42.7-48.1 4.21 0.469 -0.06 0.07 4.76 Sex (M)

Mucispirillum 16 45.7 42.7-57.8 4.72* 0.404 0.28 -0.26 6.54

Mucispirillumschaedleri(T) 16 45.7 42.7-57.9 4.72* 0.404 0.28 -0.26 6.54

Lactobacillus 16 63.3 51.6-70.4 4.27* 0.469 -0.10 0.31 3.77

OTU17491 Odoribacter 17 48.7 51.9-58.2 4.11 0.439 -0.09 0.12 2.99

OTU23606 Bacteriodes 18 83.1 83.1- 4.01 0.480 0 -0.21 4.03

OTU29519 Clostridium 19 24.3 22.6-24.7 4.04 0.476 -0.22 0.23 4.30

Shown are all QTLs affecting the microbiota traits that had LOD scores reaching the suggestive or significant (*) threshold level of significance. The false discovery

rate (FDR) also is listed for each QTL, indicating its probability of being a false positive result. Locations and confidence intervals of the QTLs are given in Mb (from

NCBI Build 37). Also shown is the percentage contribution (%) of each QTL to the total variance of each trait, and its additive (a), dominance (d) genotypic effects

(bolded values indicate significance). QTLs affecting the microbiota in males only = Sex (M) and in females only = Sex (F). QTLs affecting the microbiota in mice fed

only the control diet = Diet (C) and for mice fed only the high-fat diet = Diet (HF).
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affected by two QTLs on different chromosomes. Using

a strict approach to correct for multiple testing, FDR

values were calculated from the probabilities associated

with the LOD scores of the G10 QTLs (Table 1), and

these are in the range of 0.002 to 0.513. Only a single

QTL on Chr 9, which controls the abundance of the

Alistipes OTU41353, exceeds this strict experiment-wide

tthreshold. Overall, the FDR procedure suggests roughly

one-half of the 42 total G10 QTLs could represent false

positive results.

If the strict experiment-wise threshold is relaxed, mul-

tiple examples of overlap are observed (Table 1) among

the genomic sites of significant (genome-wide P <0.05)

and suggestive (genome-wide P <0.1) QTLs. Such over-

lap implies pleiotropy and underlying covariation of mi-

crobial taxa. The most obvious example of this is seen

for six QTLs on Chr 9 at 37.3 Mb to 40.7 Mb that each

affects a different taxon. All six of these QTLs, especially

the four mapping to 40.7 Mb, may represent a single gene

or set of closely linked genes with independent effects on

these traits. Notably, these six QTLs have the lowest FDR

values and thus the highest probability of being true posi-

tives. The traits affected by these six QTLs show three dif-

ferent patterns of covariation across the animals, suggesting

alleles from two or more closely linked genes may be con-

tributing to the phenotypic segregation. Altogether, 27 of

the 42 total QTLs have non-overlapping confidence inter-

vals, suggesting that there may be as few as 27 unique de-

tectable QTLs affecting these traits. Over half (N = 19) of

the 27 unique QTLs affect only one trait, however, so pu-

tative pleiotropy is not extensive.

Thirty-three of the 42 microbiota QTLs exhibit signifi-

cant additive effects with an average absolute a value of

0.161. Of these 33, most (24) are negative in sign, indi-

cating that the HR allele at these loci generally acts to

increase the abundance of the affected taxa. The number

of QTLs showing significant dominance genotypic ef-

fects is 29, nearly as many as those exhibiting additive

genotype effects. Further, the mean of the absolute

values of these significant dominance effects (d values) is

0.186, slightly greater than that for the additive effects.

The d/a ratios (not shown) suggest that 13 of these 39

QTLs show dominance whereas 10 exhibit overdomi-

nance and six exhibit underdominance. An example of

overdominance (heterozygote greater than either homo-

zygote) is shown by the QTL on Chr 6 (54 Mb) affecting

OTU32093 with a dominance value of 0.22 that is over

five times greater than its additive value of 0.04.

The percentage of the total phenotypic variation ex-

plained by the microbiota QTLs is in the range of about

3% to over 8%, averaging 4.6%. The highest percentages

explained are seen for the QTL on Chr 9 mentioned above

although a QTL on Chr 16 affecting Mucispirillum (and

Mucispirillium schaedleri which accounts for most of the

Mucispirllum), and one on Chr 14 affecting OTU30840,

account for over 6% of the variation in their abundances.

In the G4 population, the percentage contributions of the

microbiota QTLs were quite comparable, varying from

1.5% to 9.0% and averaging 4.7% [10].

QTL replication in the G10 population

The high number of potentially false positive QTLs from

multiple testing led us to search for validation through po-

tentially overlapping QTLs mapped previously in the G4

population. The initial comparison revealed no overlap,

but given the differences in taxonomic composition and

given that the G4 QTLs were originally mapped only at

the taxonomic rank of genus and higher, it seemed pos-

sible that the lack of overlap was partially due to the dif-

ferent levels of taxonomic resolution used for mapping.

To overcome this confounder, the taxonomic resolution

was normalized by processing the G4 microbiota data

set using the same OTU pipeline used for the G10 data.

This generated 331 species-level OTUs and 23 genera

(Additional file 4) that met our trait distribution threshold

(at least 5 reads per taxon across 75% of the animals).

These taxa were then mapped using the G4 genotyping

data as done previously [10] with the robust permutation-

based thresholds of the GRAIP algorithm to account for

structural relatedness among families [38]. A total of 21

significant QTLs were detected among the G4 OTUs

(Additional file 5) and with equivalent levels of taxonomic

resolution, four of these G4 QTLs now shared overlapping

peaks with G10 QTLs or were immediately adjacent to a

G10 QTL (Figure 3). These included two different G4

QTLs on Chr 1, and one each on Chr 3 and Chr 9. Not-

ably, the G10 QTLs on Chr 9 had the highest degree of

statistical support. In addition to overlapping peaks, three

of these four QTLs affect organisms that are taxonomic-

ally related in the G4 and G10 animals. For example, the

G4/G10 QTLs around 170 Mb of Chr 1 control OTUs be-

longing to the genera Bacteriodes (G4) and Prevotella

(G10), both of which belong to the taxonomic order Bac-

teriodales. Likewise, the QTL peaks on Chr 3 and Chr 9

control OTUs belonging to the order Clostridiales (a

member of the family Ruminococcaceae in the G4 popula-

tion and an OTU belonging to the genus Clostridium in

the G10 population). These overlapping QTLs controlling

taxonomically related organisms in separate populations

are strongly suggestive of replicated QTLs. In addition,

the capacity of these QTLs to influence distinct, but taxo-

nomically related organisms, further illustrates how some

host genomic loci can exert pleiotropic effects across

cross-sections of phylogenetic space in the microbiome.

QTL interactions in the G10 population

QTLs were tested for potential interactions with sex and

with diet by calculating the -2 ln (likelihood) for a model
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containing all terms, but with the interactions of the a

and d effects with sex or diet. Likelihoods obtained from

this model were then compared with the null model

lacking the interaction terms. Differences between likeli-

hoods from the two models were further evaluated by

chi-square tests. Using a probability cutoff of P <0.05 for

significance, two microbiota QTLs in the G10 population

showed significant interactions with sex, and eight QTLs

interacted with diet (Table 1). The sex interactions in-

volve QTLs on Chr 2 (at 172.5 Mb) and Chr 16 (at

44.8 Mb), and in both cases, significant effects were seen

only in the male mice. Among the 8 QTLs showing in-

teractions with the dietary environment, only four separ-

ate genomic sites are represented. However, despite the

small number of loci influenced by diet, we note that

some of these loci are quite complex.

Particularly noticeable is the set of four QTLs mapping

to the same position on Chr 9 that show different effects

depending on the dietary environment (Figure 4). QTLs

for OTU17740 (Figure 4A), OTU25269 (Figure 4B), and

OTU25438 (Figure 4C) show significant QTL effects

only in mice fed the control diet while the QTL for

OTU13989 (Figure 4D) shows significant effects only for

mice fed the high-fat diet. Not surprisingly, the abun-

dances of OTU17740, OTU25269, and OTU25438 show

high degrees of correlation across the G10 mice but no

correlation with OTU13989. The QTLs for OTU29084

(Figure 4E) and OTU41353 (Figure 4F), which also map

to a similar position, show no interaction with diet.

A second set of overlapping QTLs showing significant

interactions with diet are found on Chr 1 (Figure 5).

Figure 5A shows that a Chr 1 QTL at 49.1 Mb clearly

has a greater effect on the relative abundance of OTU15028

in mice fed the control rather than the high-fat diet

whereas the reverse is true for the effects of a different

QTL on Chr 1 (127.2) on Butyricicoccus (Figure 5B).

Two additional examples are illustrated of QTLs with

greater effects in mice fed the control (Figure 5C) or the

high-fat diet (Figure 5D). The HR/HR genotype for the

Chr 4 QTL (Figure 5C) increases the abundance of

OTU17889 in mice fed the control diet, but the reverse

is true for the B6/B6 genotype. The Chr 9 QTL affecting

OTU13989 (Figure 5D) showed a different pattern in

which the HR/B6 genotype increases the abundance of

this taxon more so in mice fed the high-fat rather than

the control diet.

QTL analysis of IghV utilization patterns

The availability of ileal tissue from a large subset of the

animals across both diets provided a unique opportunity

Figure 3 Relative positions of QTLs controlling gut microbial taxa from the G4 and G10 populations. In the graph on the top right (Whole
Genome), peak positions of the QTLs from the G4 (green dots) and G10 (blue dots) generations are plotted along the length of the 19 mouse
autosomes. The relative positions of each chromosome are indicated above the X axis. Regions where confidence intervals overlap from G4 and
G10 QTLs are highlighted in gray and are plotted in the corresponding graphs to the left and below. Plots for the overlaps on the individual
chromosomes show the chromosome positions (X axis) and naïve/GRAIP-adjusted LOD scores (Y axis) for the significant G4 QTLs with the
confidence intervals of the G10 QTLs plotted as a single line at its corresponding position and peak LOD score. Individual taxa are color-coded
below each graph.
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to examine the role of expressed IgA on microbiota com-

position and to determine if host genetic influence on

IgA rearrangements or their expression played any role in

shaping microbiota composition. The abundance of tran-

scripts from rearranged and expressed IgA receptors

among B-cells resident in the ileal tissue were measured

by pyrosequencing of amplicons generated from cDNA

using a primer immediately upstream of the IgA con-

stant region (IgAC) in combination with the universal

variable region (Vh) primer. The resulting sequences

were then binned initially by BLAST analysis of each

read against the VH region repertoire and each bin was

subsequently normalized by the total number of reads

per animal. The means of the log-transformed abun-

dances of these 67 IgA traits (Additional file 6) varied

from -3.38 (B196, IghV3-4) to -1.226 (B59, IghV1-53)

and accounted for >90% of the total reads across most

mice. Over all individuals, however, the minimum value

for the IgA abundances was -5.082 (B218, IghV5-6-2), and

the maximum individual value was 0.015 (B79, IghV1-72).

ANOVA showed no significant effect of diet on the IgA

abundance.
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Figure 4 QTL on Chr 9 show complex interactions with diet. (A-F) Plots of genotypic values at the QTL peak (X axis) are shown for six different
OTUs that have peaks at the same or similar location on Chr 9 and which show differential effects depending on whether the G10 mice were fed the
control or the high-fat diet. Relative abundances of the OTUs for animals having the HR/HR parental, HR/B6 heterozygote, or B6/B6 parental genotypes
at QTL peak are plotted on the Y-axis. (A) OTU17740. (B) OTU25269. (C) OTU25483. (D) OTU13989. (E) OTU29084. (F) OTU41353. Error bars based on
standard error.
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Estimates of the variance components (Additional file 7)

differ considerably among the 67 IgA expression traits,

with values for the cohorts varying from 0 to 19.1% and

being the least important (mean = 2.8%) of the four com-

ponents. Parity (differences between successive litters) was

slightly more important (mean = 3.6%), but these two

sources of environmental variation (cohorts and parity)

jointly contribute just 6.4% of the total variation. Family

differences vary from 0 to 32.4% and average 12.1%,

greater than that for the microbiome traits. Again, how-

ever, the largest contribution is from residual (within fam-

ily) variation, the estimates in the range of 59.7% to 99.4%,

and averaging 81.6%.

As shown in Table 2, QTL analysis of IghV utilization

patterns identified a total of 56 QTLs that had LOD

scores reaching at least the 10% experimentwise thresh-

old. Only one QTL (affecting B81, IghV1-75) showed a

marginally significant interaction with sex, and none sig-

nificantly interacted with diet, which was expected given

the lack of dietary effects on the individual IghV abun-

dance. Remarkably, 36 of the 56 QTLs had LOD scores

>10, with 34 of these highly significant QTLs localized

to a segment on Chr 12 that encompasses the IgH re-

gion. In addition, two highly significant QTLs mapped to

segments on Chr 17. While this 7 Mb confidence interval

spans >400 genes/pseudogenes, it includes the mouse

Major Histocompatibility locus (MHC) with 74 class I, II,

and III genes. Given the known involvement of MHC in

controlling immunoglobulin production, it seems reason-

able that diversity in one of the class II genes could give

rise to variation in the IgH V-region utilization patterns.

With highly significant QTLs overlapping well-known

sites contributing to regulation of immunoglobulin pro-

duction, the IgA-specific IghV region utilization patterns

appear to be robust phenotypes. However, none of the 56

overall QTL for IgA overlapped with any of the QTL for

microbiota. Also, correlations between the abundances of

each of these 67 IgA variable regions and the microbiota

comprising the CMM, all were non-significant (P >0.05).

Importantly, the lack of QTLs with pleiotropic effects on

IgA and the microbiota implies that genetic variation in-

fluencing IghV region utilization and expression has little

effect on broad compositional features of the microbiota

in the mouse population that was studied.
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Figure 5 QTL on Chr 1, Chr 4, and Chr 9 show complex patterns of gene X diet interactions. (A-D) Plots of genotypic values at the QTL
peak (X axis) are shown for four different OTUs where the QTL shows differential effects depending on whether the G10 mice were fed the control or
the high-fat diet. Relative abundances of the OTUs for animals having the HR/HR parental, HR/B6 heterozygote, or B6/B6 parental genotypes at QTL
peak are plotted on the Y-axis. (A) QTL for OTU15028 at 49.1 Mb on Chr 1. (B) QTL for Butyricoccus at 127 Mb on Chr 1. (C) QTL for OTU17889 at
12.5 Mb on Chr 4. (D) QTL for OTU13989 at 40.7 Mb on Chr 9. Error bars based on standard error.
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Table 2 QTL statistics for the IgA traits in the G10 mouse population

Trait IghV gene Ch Location (Mb) CI (Mb) LOD A d % Interaction

B182 IghV2-6-1 1 70.1 69.2-73.1 4.21 0.206 0.166 6.44

B48 IghV14-4 4 117.5 106.0-124.5 4.64* 0.037 -0.234 6.66

12 112.3 108.8-118.1 4.63* 0.210 -0.082 8.60

B30 IghV1-26 6 137.8 130.6-143.3 4.59* 0.221 0.112 8.91

12 114.5 109.1-120.0 3.94 0.147 -0.022 7.47

B122 IghV1S17 7 4.3 3.6-16.2 4.57* -0.139 0.188 7.22

B81 IghV1-75 8 91.5 90.6-92.8 4.07 0.144 0.367 6.51 Sex (M,F)

12 114.5 114.0-120.0 21.29* -0.530 0.257 38.01

19 42.8 42.1-47.7 3.94 -0.197 0.199 5.67

B207 IghV5-12-1 9 27.3 18.8-32.9 3.98 -0.081 -0.325 6.37

12 114.5 114.0-120.0 26.11* 0.689 0.306 42.76

B218 IghV5-6-2 9 22.8 13.7-31.8 4.13 -0.067 -0.351 6.65

12 114.5 114.0-120.0 24.85* 0.701 0.271 41.87

B44 IghV14-2 12 114.5 114.0-120.0 13.74* -0.325 0.128 23.17

B76 IghV1-7 12 114.5 114.0-120.0 5.07* 0.158 -0.036 9.55

B88 IghV1-81 12 114.5 114.0-120.0 19.31* -0.472 0.174 36.27

B89 IghV1-82 12 114.5 110.9-120.0 5.07* 0.160 0.019 10.26

B57 IghV1-52 12 114.5 114.0-120.0 4.78* 0.187 -0.027 9.63

B23 IghV1-22 12 114.5 114.0-120.0 10.35* -0.028 0.009 20.36

B17 IghV1-20 12 114.5 114.0-120.0 13.74* 0.344 0.030 26.70

B37 IghV1-34 12 114.5 114.0-120.0 26.32* 0.540 0.258 43.19

B14 IghV1-18 12 114.5 114.0-120.0 14.55* -0.337 0.141 28.03

B80 IghV1-74 12 112.3 108.8-118.1 6.12* -0.256 0.058 11.84

B42 IghV1-4 12 114.5 114.0-120.0 15.14* -0.432 0.142 27.61

B71 IghV1-63 12 114.5 114.0-120.0 7.87* 0.300 0.069 14.67

B91 IghV1-84 12 114.5 114.0-120.0 23.21* 0.505 0.170 40.59

B72 IghV1-64 12 114.5 114.0-120.0 42.12* -0.728 0.446 55.90

B54 IghV1-5 12 114.5 114.0-120.0 12.00* 0.361 0.061 23.32

13 37.6 35.4-41.8 4.50* -0.213 0.031 8.41

B87 IghV1-80 12 114.5 114.0-120.0 34.33* -0.700 0.488 49.98

B15 IghV1-19 12 114.5 114.0-120.0 8.66* -0.294 0.171 16.25

B78 IghV1-71 12 114.5 114.0-120.0 5.45* -0.279 0.083 9.80

B93 IghV1-9 12 114.5 114.0-120.0 52.78* -0.913 0.630 70.88

B61 IghV1-55 12 114.5 114.0-120.0 43.09* -0.791 0.484 61.04

B79 IghV1-72 12 114.5 114.0-120.0 46.20* -0.846 0.558 61.53

B73 IghV1-66 12 114.5 114.0-120.0 12.00* -0.382 0.108 22.15

B43 IghV14-1 12 114.5 114.0-120.0 9.53* -0.386 0.194 16.72

B55 IghV1-50 12 114.5 118.3-120.9 13.31* -0.436 0.166 22.83

B46 IghV14-3 12 114.5 114.0-120.0 52.85* 0.979 0.529 65.56

18 82.1 77.7-84.3 4.48* -0.421 0.675 11.98

B92 IghV1-85 12 114.5 114.0-120.0 31.70* -0.794 0.465 51.35

B64 IghV1-59 12 114.5 114.0-120.0 15.30* -0.541 0.172 26.78

B60 IghV1-54 12 114.5 114.0-120.0 27.34* -0.699 0.537 45.98

B82 IghV1-76 12 114.5 114.0-120.0 29.75* -0.606 0.338 48.99
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Because antibody specificity is generated through re-

combination of the V, D, and J regions, along with hyper-

mutation, it was possible that IghV region utilization alone

did not provide the specificity necessary to detect associ-

ation with the microbiota. To test this possibility, we

employed a higher resolution approach to bin the IgA se-

quences, using the K-mer based strategy in CD-hit [39] to

cluster predicted protein sequences from the 2,644,330

quality-filtered IgA reads. With a 99% identity cutoff for

clustering, this yielded 4,505 different clusters. The vast

majority of these clusters exhibited low abundances and

were often present in only a single animal, or were

sparsely distributed. However, 71 clusters were observed

across the majority of the animals (>5 reads shared across

75% of the mice), presumably arising from convergent

clones expanded across multiple animals. Some correla-

tions of the abundances of these 71 clusters with the 300

most abundant species and OTUs from the 16S rRNA-

derived microbiota data (Figure 6) were significant (r >0.5)

among several of the IgA clusters themselves and among

several of the individual microbial taxa, but no sig-

nificant associations were observed between any of the

IgA clusters and microbial taxa. The lack of overlapping

QTLs and the absence of correlation collectively imply

that genetic variation influencing the immunoglobulin

repertoire plays little role in the individuality of micro-

biome composition.

Discussion
Our study population presented a unique opportunity to

examine a combination of deterministic factors that shape

composition of the gut microbiome in G10 descendants of

an advanced intercross population that had previously

been studied at G4. Several aspects of the overall micro-

biome composition were notably different between the G4

and G10 animals. While the overall species compositions

differed significantly (substantially higher in members of

the Bacteriodetes at G10 versus G4), the most striking dif-

ference was the variation between breeding cohorts, ac-

counting for an average 26% of the total variation across

taxa in the G4 but only 9.6% of the total variation in the

G10. It is possible that changes in the pyrosequencing re-

agent stream that were introduced by the supplier during

the 18 months between the G4 and G10 populations con-

tributed to the unique compositional features, but these

changes would most likely manifest as biases in taxonomic

compositions and not their distributions across the popu-

lations. Resequencing a small number of G4 samples with

similar reagents used for G10 samples showed quite simi-

lar taxonomic content, suggesting this was not a factor.

Second, it is possible that population-specific characteris-

tics of the microbiota were brought about by phenotypic

and/or genotypic drift or they reflect the degree to which

recombination has dispersed the variation from parental

lines across the progeny. For the latter case, the dispersal

Table 2 QTL statistics for the IgA traits in the G10 mouse population (Continued)

B10 IghV1-14 12 114.5 114.0-120.0 29.75* 1.098 0.843 69.66

B40 IghV1-37 12 114.5 110.9-120.0 4.02 0.230 -0.048 7.37

B153 IghV1S61 12 114.5 114.0-120.0 62.17* 1.189 0.733 74.98

B234 IghV6-3 12 114.5 114.0-120.0 5.60* -0.235 0.154 11.23

B83 IghV1-77 12 114.5 114.0-120.0 15.01* -0.400 0.254 28.59

B114 IghV1S135 12 114.5 114.0-120.0 43.97* 0.988 0.471 64.30

B217 IghV5-6-1 12 114.5 114.0-120.0 34.60* -0.766 0.438 54.28

B223 IghV5-9 12 114.5 114.0-120.0 19.14* 0.544 0.280 33.41

B63 IghV1-58 12 114.5 114.0-120.0 22.02* -0.667 0.222 38.12

B189 IghV2-6-8 12 114.5 114.0-120.0 9.23* 0.376 0.098 16.43

B175 IghV2-3 12 114.5 114.0-120.0 14.48* -0.481 0.277 26.82

B196 IghV3-4 12 114.5 112.3-120.0 12.45* 0.445 0.100 24.31

B75 IghV1-69 17 33.7 31.6-38.0 4.70* 0.177 0.108 8.02

B195 IghV3-3 17 33.7 31.9-42.6 12.83* 0.348 0.394 18.80

17 45.6 43.6-48.7 12.81* 0.447 0.495 29.33

18 82.1 79.6-84.3 6.38* -0.445 0.724 18.79

B178 IghV2-4-1 18 53.9 52.9-58.5 4.25* 0.089 0.173 6.98

B59 IghV1-53 19 42.1 37.9-42.8 4.20 -0.008 -0.118 5.73

Shown are all QTLs affecting the IgA traits that had LOD scores reaching the suggestive or significant (*) experiment-wise level of significance. The chromosome

(Ch) location of the peak and confidence intervals (CI) of each QTL is given in Mb (from NCBI Build 37). Also shown is the percentage contribution (%) of each QTL

to the total variance of each trait, and its additive (a), dominance (d) genotypic effects (bolded values indicate significance). Sex (M,F) = an interaction of the QTL

with sex, where the QTL is significant in both sexes but has a greater effect in females.
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of parental genomic variation through accumulating re-

combinations by G10 could result in a more evenly distrib-

uted microbiota. The increased dispersion of genomic

variation could also be augmented independently by ‘mat-

uration’ of the microbiome, going from more chaotic dis-

tributions during the first few generations in the facility to

more stable configurations after 10 generations of breed-

ing in the same facility.

Effect of high-fat diet on the gut microbiota of the G10

population

A high-fat diet was incorporated into the experimental

design to test for interactions between genotype and

diet. This design also provided an opportunity to exam-

ine closely effects of the high-fat diet alone across an

intercross population, in contrast to studies using a sin-

gle inbred line. Single line studies often show substantial

changes in the microbiota [31] marked by blooms of re-

lated taxa, whereas the effects of a high-fat diet across

the large numbers of animals from our intercross popu-

lation showed a modest effect on alpha-diversity and

small, but statistically significant differences across a

large number of taxa. Whether the magnitude of the diet

effect was muted in our study because of the genetic di-

versity from the intercross or some other factor is not

clear. Recent studies across 100 different mouse lines

showed dietary effects dispersed across several taxa and

these effects were unique to certain lines [40]. Clearly,

understanding the effects of diet on the microbiome will

require much more study in different types of popula-

tions to understand these complex interactions.

Microbiota QTLs

The results of our analysis defined 42 QTLs that affected

the relative abundances of 39 of the 203 taxa. We were

conservative in using only 5% and 10% genome-wide

thresholds rather than chromosome-wide thresholds to

determine significance. Because we analyzed so many

traits, however, it was not surprising that the FDR proced-

ure suggested that as many as roughly 1/2 of the QTLs

affecting these traits may be false positives. On the

other hand, this also means that about 20 QTLs re-

flect true underlying genetic variation affecting the micro-

biota composition. The greatest support (lowest FDR

values) was for QTLs on Chr 9, especially one at 37.3 Mb

affecting OTU41353.

The mapping precision of the QTLs we discovered

was enhanced in our advanced intercross population at

G10 compared to that in the G4 population. Thus the

mean confidence interval of 9.85 Mb calculated for these

QTLs is considerably less than that of 20.7 Mb found by

Benson et al. [10] in the G4 mice, and would have

dropped to about 7 Mb if we had used a 1-LOD (rather

than 1.5-LOD) drop criterion as was done in the G4

study. It therefore is clear that the additional mapping

precision expected from the accumulated recombina-

tions in the G10 population was in fact achieved.

QTL replication

Despite the population-specific features of the G4 and G10

microbiota, normalizing the levels of taxonomic inquiry in

the G4 and G10 microbiotas produced four different gen-

omic segments where QTLs overlapped from the two
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Figure 6 Correlation matrix between microbiota composition and IghV region expression. For each of 308 mice, the relative abundance of
67 IghV regions shared among the expressed IgA population of >75% of the animals and the relative abundance of the most abundant taxon of
the microbiota were used to calculate the correlation coefficient (r). Red and blue coloring corresponds to the r value for each pair-wise comparison
according to the color gradient.
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studies. At three of these loci, the taxa controlled in the

G4 or G10 populations shared taxonomic relatedness at

the family or order level. In addition to the replication we

observed in these populations, recent QTL analyses of the

skin microbiome identified two out of the 14 QTLs con-

trolling taxa of the skin microbiome that overlap those we

had previously found in the G4 population [41]. Of the

two shared QTLs, only the QTLs on Chr 14 appear to

control taxonomically related organisms (G4 QTL con-

trols Lactococcus whereas the skin microbiome QTL con-

trols an OTU belonging to the Firmicutes).

From a broad perspective, the ability of host loci to con-

trol a variety of microbial taxa would support multiple

possible outcomes of microbiome assembly, with each as-

semblage potentially sharing a common core of metabolic

and functional niches despite the diversity in taxonomic

composition. From the host perspective, the ability to sup-

port multiple possible assemblages would be advantageous

and allow the assembly process to work upon the micro-

bial capital it happens to encounter early in life.

Pleiotropic patterns

A prominent feature of several QTLs we discovered was

that they affected more than one taxon. While it is pos-

sible that some of this apparent pleiotropy is due to link-

age disequilibrium, it seems unlikely that this would

explain all of the pleiotropic loci. Correlated traits are

often related by their contribution to similar pathways

or functions, but in the case of microbial traits, corre-

lated microbial taxa could be controlled by the same

QTL due to common physiological characteristics (for

example, common sensitivity to defensins secreted in

the mucosa), or common metabolic traits (for example,

ability to degrade mucins). One could even envision plei-

otropy occurring indirectly, whereby host genetic factors

favor colonization by a given taxon and this initial event

sets the stage for colonization by a second taxon (for

example, metabolic end product of one taxon serving

as a substrate for a second taxon). This could be the

case at the complex of overlapping QTLs we identified

on Chroe 9. Here we observed distinct effects on two

different sets of correlated taxa (Figure 3). While both

sets of correlated taxa (colored red or blue in the

matrix) comprise OTUs belonging to the class Bacter-

iodetes, early colonization by OTU17740 (blue cluster),

may favor subsequent colonization by OTUs 25269

and 25483 whereas colonization by OTU41353 favors

subsequent colonization by 29084. Colonization by

Peptococcus (OTU13989) may actually favor a third

pathway in which strains belonging to the red or blue

correlated clusters are tolerated. Defining the under-

lying basis of these QTLs will therefore provide clues

to important characteristics of gut microbes and the

niches that they occupy.

Microbiota QTLs, obesity, and diet

Given the known association of gut microbes with obes-

ity and various metabolic disorders [42], it is reasonable

to expect that some of the microbiota QTLs might ex-

hibit pleiotropic effects on body weight or composition.

To examine this possibility, we compared the locations

of the microbiota QTLs (Table 1) with QTLs previously

found for body weight and the percentage of fat and lean

tissue in these same (8-week-old) mice [33]. This compari-

son revealed four instances of overlaps for QTLs on

Chr 5, Chr 9, Chr 11, and Chr 18, details of which are

summarized in Table 3. Several potential candidate genes

for these QTLs are listed in the Table, but it will require

additional effort to discover whether these or other genes

underlying the QTLs actually affect both kinds of traits,

and if so, what pathways might be involved.

Regardless of which candidate genes contribute to these

phenotypes, our discovery of putative pleiotropic effects

of QTLs on microbiome composition and body weight/

fatness/leanness illustrates the theoretical potential for

genetic predisposition to obesity to be manifested in part

by susceptibility to aberrant colonization of the gut.

Perhaps the most significant finding in our study was

the identification of several microbiota QTLs exhibiting

interactions with diet. While only eight of the 42 total

microbiota QTLs (19%) showed these interactions, this

low proportion is identical to that for QTLs affecting

body weight or the percentage of fat or lean tissue in this

same mouse population [32]. Because of the apparent plei-

otropy of these QTLs, however, as few as four different

genes (two on Chr 1, one on Chr 4, and one on Chr 9)

may be involved.

Among the microbiota QTLs showing interactions with

the dietary environment, the four on Chr 9 each affecting

a different taxon were most impressive. These QTLs all

mapped to the same precise position (40.7 Mb), and thus

likely represent the same underlying gene. The QTL

affecting OTU13989 showed the most restricted confi-

dence interval of just 1.9 Mb that according to the Mouse

Genome Informatics database [43] contains 11 protein

coding genes. Of these 11, Bsx, brain specific homeobox (at

40.9 Mb), would seem to represent an outstanding candi-

date for the QTLs. Bsx mutants exhibit increased fat mass,

decreased food intake after fasting, and reduced loco-

motor activity [44].

From a broader perspective, our discovery of gene X

diet interactions on microbiota composition supports the

idea that dietary modifications can potentially modify or

even overcome allelic effects on microbiome composition.

In fact, recent studies on the microbiome of infants show

that dietary modulation of microbiome composition and

function can influence expression patterns of innate re-

sponse genes [45]; and in adults, dietary modulation can

also affect metabolic and inflammatory markers in the
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blood [35]. Combined, these findings are of special sig-

nificance to human health because they suggest that diet-

ary intervention could overcome heritable components of

disease predisposition that are manifest through the gut

microbiome. Similarly, with respect to animal agricul-

ture, our discovery implies that dietary modulation could

overcome the effects of undesirable genotypes associated

with weight gain or even with colonization by zoonotic

pathogens.

The microbiota and IgA

Secretory IgA (SIgA) plays important roles in barrier

defense against enteric pathogens by binding to cell sur-

face molecules of the pathogen and precluding attachment

[46,47]. Such a barrier defense would not necessarily be

limited to pathogens and could play a role in homeostasis

by limiting exposure of the epithelial layer to the mass

of microbial cells in the microbiota. Indeed null mu-

tations that block class switching to IgA have signifi-

cant effects on microbiota composition [48,49]. More

recently, FoxP3+ Tcell-dependent production of high-

affinity IgA was found to be associated with shaping the

microbiota, specifically by enriching for members of the

Firmicutes [29]. Remarkably, this IgA-mediated enrich-

ment seems to be mediated through a positive influence

of the IgA on the microbiota as opposed to the removal of

potential competitors.

Unlike studies in isogenic derivatives of a single line, our

study provided a unique opportunity to examine specificity

of the expressed IgA repertoire with respect to the micro-

biome across a population with genetic diversity dispersed

randomly across the progeny. Genetic variation had a sig-

nificant outcome on variable region utilization patterns

but it did not affect composition of the gut microbiome.

Likewise, we could not detect association between VDJ

rearrangements and composition of the contemporary

microbiota. Of course, it is quite possible that specificity

of IgA-microbe interaction is below our level of sensitivity.

While we can approximate species-level resolution with

our OTU-pipeline, specificity of the interaction may be

dictated at the strain-level. The IgA-mediated enrichment

of the microbiota observed by Kawamoto et al. [29] was

detected by sequencing of antibody-bound taxa, implying

that the high-affinity IgA responsible for shaping the

microbiota in their studies was directed toward cell

surface molecules. Indeed, cell surface molecules such as

teichoic acids, extracellular polysaccharides, and surface

proteins tend to be some of the most highly variable and

strain-specific traits of a bacterial species, making it

unlikely that we would have detected such interactions. In

the absence of strong associations between the microbiome

composition and expressed IgA molecules, the correlation

among Vh usage patterns and convergent VDJ rearrange-

ments that we observed across individuals becomes even

more intriguing. Convergence among expressed VDJ re-

gions between individuals has been observed in antibody

repertoires of zebrafish [50] and mice [51] and it can be

observed in vaccine responses as well as anamnestic sera

from patients recovering from epidemics, implying that

microbes may be capable of eliciting specific signatures of

IgH rearrangements. If so, then the convergent responses

observed in our animal population could either reflect sig-

natures of strain-level interactions between the contem-

porary microbiota and the mucosal immune system or,

they could reflect interactions with the microbiota early in

life, prior to contemporary microbiota we measured in the

mature animals.

Conclusions
Detailed analysis of the taxonomic abundance of the gut

microbiota at G4 and G10 of the C57BL/6J X HR intercross

have provided insight into the impact of host factors, diet-

ary factors, and stochastic factors on gut microbiota com-

position. Major differences in dominant taxa of the gut

microbiota occurred over time between G4 and G10. This

was particularly the case for the distributions of these taxa,

which were highly cohort-dependent and variable (wide

ranges) in G4 animals but less cohort-driven with modest

ranges at G10, suggesting that the microbiome may have

progressed from a more to less chaotic assembly over time.

Table 3 Possible candidate genes for QTLs affecting microbiome and body weight/composition traits in the G10 mice

Chrom Microbiome trait Position (Mb) CI (Mb) Body trait Position (Mb) Candidate gene(s) Position (Mb)

5 OTU3615 115.2 112.9-118.1 % Fat 116.6 Pla2g1b 115.4

Nos1 117.8-117.9

9 Lactococcus lactis 113.3 112.3-115.0 Weight 112.3 Glb1 114.4

11 OTU22207 97.8 93.4-114.0 % Lean and % Fat 105.1 and 107.3 Igf2bp1 96.0

Gast 100.3

Pyy 102.1

18 OTU30840 68.4 65.4-70.2 Weight, % Lean and % Fat 69.1 and 69.6 Mc4r 66.9

For each of four chromosomes (Chrom), the positions in Mb are shown for QTLs affecting microbiome abundances and body weight and composition traits as

well as possible candidate genes for these QTLs. The confidence intervals (CI) also are given for the QTLs affecting the microbiome traits.
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Despite these differences, four overlapping QTLs were still

detected among both G4 and G10 mice.

A high-fat diet in one-half of the G10 animals brought

about a modest impact on the microbiota that resulted

from cumulative incremental changes in many taxa as op-

posed to large swings in taxonomic abundance. The gen-

omic region at 40.7 Mb on Chr 9 had overlapping G4/G10

QTLs and many of the G10 QTLs in this region showed

significant interactions with diet, as did additional QTLs

on Chr 1 and Chr 4. Detection of these gene X diet inter-

actions implies that it may be possible to modify the herit-

ability of microbiota composition via dietary modulation.

Quantitative analysis of the patterns of Vh utilization

in the expressed IgA transcripts of G10 animals showed

a remarkable number of convergent VDJ rearrangements

that were shared between individuals. The convergence

could reflect common exposure of earlier assemblages of

the microbiota as no associations were detected among

the Vh utilization patterns and any of the microbiota

that were measured contemporary with the Vh patterns.

On the other hand, very high degrees of association were

detected in the Vh utilization patterns and genetic vari-

ation in regions of Chr 12 and Chr 17 that overlap with

the IgH and MHC loci. Although genetic variation in these

major drivers of immunoglobulin responses had expected

effects on variation in VDJ rearrangements, none of this

variation accounted for variation in the contemporary

microbiota and correspondingly, no overlapping microbiota/

Vh were detected. Collectively, we conclude that host gen-

etics and diet converge to shape microbiota composition,

but the effects of host genetic variation are not manifest

through Vh utilization patterns for immunoglobulin A.

Materials and methods
The population

The population of mice used in this study was generated

from original crosses of inbred C57BL/6J (B6) female

mice with male mice from a strain (HR) selected for a

high level of voluntary wheel running [52]. The mice

were reared through the ninth generation following a

previously-described protocol [53], at which time single-

pair matings were made that produced up to two litters

each in the G10 generation. All G10 pups were weaned at

3 weeks and by 4 weeks, randomly allocated into either

a group fed a high-fat diet or a group fed a control diet

(see Table 1 in [53]). When the mice were approximately

8 weeks of age, fecal pellets were collected for DNA ex-

traction and subsequent pyrosequencing. Mice then were

given access to running wheels during each of 6 consecu-

tive days, with exercise traits measured for all individuals

in one of 13 different sequential cohorts as previously de-

scribed [53]. All G10 mice were sacrificed shortly after the

exercise period (between age 53 to 59 days), tail clips were

taken for genotyping and segments of the ileum were

removed for RNA extraction (described below). All proce-

dures were approved by the Institutional Animal Care and

Use Committee at the University of North Carolina at

Chapel Hill.

SNP genotyping

We used the Mouse Universal Genotyping Array, MUGA

[54], to yield genotypes for 2,058 fully informative SNPs

(average spacing = 1,223 kb). SNPs were checked for sig-

nificant segregation distortion, and for errors using Merlin

[55], with extremely unlikely calls dropped from the ana-

lysis. A list of these SNP markers with their locations (in

Mb) is given in an Appendix in Leamy et al. [53]. Geno-

types of the individual animals are available at the CAGE

microbiome analysis database [56].

Pyrosequencing of microbiota

DNA extraction from fecal pellets and pyrosequencing

analyses were performed as previously described [10,57].

Composition of the microbiota was assessed by deep

pyrosequencing of PCR products originating from the

V1-V2 region of the 16S rRNA gene with bar-coded

fusion primers containing Roche-454 A or B Titanium

sequencing, followed by a unique 8-base barcode se-

quence (B) and, finally, the 5′ ends of primer A-8FM

(5′-CCATCTCATCCCTGCGTGTCTCCGACTCAGBB

BBBBBBAGAGTTTGATCMTGGCTCAG) and of primer

B-357R (5′-CCTATCCCCTGTGTGCCTT-GGCAGTCT

CAGBBBBBBBBCTGCTGCCTYCCGTA-3′). All PCR re-

actions were quality controlled for amplicon saturation

by quantifying and comparing band intensities of the

PCR products after gel electrophoresis with standards

using GeneTools software (Syngene). Amplicons from 48

individual samples were pooled in equal amounts, gel-

purified, quantified by Pico Green analysis, and used for

emulsion PCR (emPCR). After recovery and enrichment

for DNA-containing beads, the emPCR products from the

48-sample pools were sequenced on individual regions of

2-region Picotitre plates on a Roche-GS-FLX machine

using Titanium sequencing chemistry.

Pyrosequencing data processing pipelines

Raw data from the Roche-454 GS-FLX machine were

first processed through specialized scripts that filtered

the data on the basis of the following criteria, with se-

quences not meeting these criteria being removed from

further analysis: (1) a complete forward primer sequence

and barcode; (2) ≤2 ‘N’ in a sequence read, where N is

equivalent to an interrupted and resumed sequencing

signal from sequential flows; (3) a sequence of >200 NT

and <500 NT; and (4) an average quality score ≥20 across

the entire length of the sequence.

After filtering, reads were trimmed to remove 5′ and

3′ adapter and primer sequences, parsed by barcode into
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corresponding sample files, automatically associated with

a matching .QUAL file containing the quality scores,

and uploaded into a MySQL database and associated

with sample information. MySQL database tables are

stored on a database server and available to the public

through the CAGE microbiome analysis database login

[58]. The raw read and .QUAL files are also available

at the NCBI Sequence Read Archive under Bioproject

Accession PRJNA265870. To help normalize taxonomic

assignment and phylogenetic distance estimates of individ-

ual sequence reads, the entire data set was initially proc-

essed through the Multi-CLASSIFIER algorithm, which

assigns hierarchical taxonomic status to each sequence

read based on a covariance model developed from a train-

ing set [59,60]. This algorithm is capable of processing

very large data sets and was recently shown to provide ad-

equate taxonomic assignments to pyrosequencing data

[61]. After processing through the Multi-CLASSIFIER, se-

quences were parsed into ‘classified’ and ‘unclassified’ sets

based on meeting threshold limits of 0.8 at the genus level

against the Multi-CLASSIFIER model.

Classified reads were then assigned species-level status

using a BLAST pipeline that associated the read with

species-level taxonomic assignment using a curated data-

base developed from RDP and SILVA databases of curated

16S ribosomal RNA sequences [59,62]. Sequences were

considered a species match if they achieved 97% iden-

tity with a reference sequence over a minimum of 200

bases of contiguous BLAST alignment. Sequence reads

that failed to meet the 0.8 scoring threshold at the genus

level from the Multi-CLASSIFIER algorithm (‘unclassified’

reads) were further processed into Operational Taxonomic

Units (OTUs) using CD-Hit to estimate phylogenetic

distances and cluster at 97% cutoff [63]. Taxonomic sta-

tus of these OTUs was approximated by BLAST against

the curated database. For QTL mapping, only domin-

ant taxonomic/OTU bins containing at least five se-

quences in >75% of the mice were used. This reduced the

total number of taxonomic/OTU bins from >18,000 to

203 bins that were log-normally distributed and referred

to herein as the Core Measurable Microbiota (CMM). In

addition to removing sparse data, this threshold step also

had the important function of removing bins that result

from chimeric sequences, artifacts of aggressive clustering,

or sequencing errors. Reads from each bin from the com-

bined ‘classified’ and ‘unclassified’ portions of the pipeline

were then normalized relative to the total number of reads

for each sample. For mapping and statistical analyses, the

abundances were subjected to log10 transformation to

reduce the effects of extensive variation in values across

multiple mice. Microbiota data were available for a total

of 472 mice. Raw data are available at the database ser-

ver [58] and at the NCBI Sequence read Archive under

Bioproject Accession PRJNA265870.

Pyrosequencing of expressed IgA transcripts

RNA was extracted from flash-frozen segments of the

ileum using the Biosprint One-for-all Vet Kits (Qiagen).

Ileum segments were suspended in 1 mL of Trizol in 2 mL

Cryovials along with a single 3 mm sterile tungsten carbide

bead (Qiagen). Samples were homogenized for 4 min at

30 cycles/s in a Tissue Lyzer and immediately placed on

ice. After a 3-min centrifugation at 14,000 rpm, 300 uL of

the supernatant was transferred to individual wells of the

One-for-all Vet kit 96 deep well plates and the remainder

was archived at -80°C. The deep well plates were then

loaded onto the Biosprint 96 and automated RNA extrac-

tion performed according to the manufacturer’s instruc-

tions and purified RNA was eluted into RNAse-free water.

After quantification, cDNA was prepared from 5 ug of

total RNA using oligo-dT(12-18) primers (Invitrogen) and

the Superscript III protocol (Invitrogen). The resulting

cDNA was diluted 1:10 into 50 uL PCR reactions contain-

ing 10% DMSO along with 0. 6 μM of PCR primers for

the IgA constant region (IgAC) [64] and a universal pri-

mer for the Igh variable region (Universal Vh) [65]. The

IgAC and Universal Vh primers also contained the Roche

A and B Titanium adapter sequences (bold) at their 5′

ends. Primer sequence for the Roche B adapter- IgAC

primer is CCTATCCCCTGTGTGCCTTGGCAGTCT

CAGCTCAGGCCATTCAGAGTACA. The primer se-

quences for the Roche A-universal Vh primers also contained

a sample-specific 8-base barcode (b) immediately up-

stream of the Vh region. The primer sequences for the

Roche A-barcode-Universal Vh primers were: CCATCT

CATCCCTGCGTGTCTCCGACTCAGbbbbbbbbAGG

TSMARCTGCAGSAGTCWGG. PCR amplification was

performed in 20 mM Tris-HCl (pH 8.4), 50 mM KCl,

1.5 mM MgCl2, 2.5 U TaqDNA polymerase (Invitrogen

Life Technologies), and 0.2 mM each of dGTP, dATP,

dTTP, and dCTP. The PCR amplification program con-

sisted of 30 cycles of 30 s at 94°C (2 min in first cycle),

1 min at 58°C, and 1 min at 72°C. The program was

followed by 10 min at 72°C to allow extension of all prod-

ucts. After PCR amplification and quality control check by

gel electrophoresis, the amplicons were quantified by Pico-

Green and pooled at a 1:1 ratio in pools of 48 samples each

followed by two cycles of cleanup using Ampure beads.

Each pool was then subject to pyrosequencing on the

Roche-454 FLX Titanium platform. Raw data are available

at the database server [58] and at the NCBI Sequence read

Archive under Bioproject Accession PRJNA265870.

To process the IgA sequence data for QTL analysis, the

data were first filtered to remove low quality reads as for

16S rRNA sequencing. For each read, the predicted amino

acid sequence of the appropriate reading frame was subse-

quently mapped by BLAST analysis against the 268 mouse

Vh region genes from the ImMunoGene Tics web resource

(IMGT) repertoire [66]. This yielded 67 IghV regions that
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were detected across 75% of the animals. For mapping, the

relative abundance of transcripts from each IghV region

bin for each animal was normalized by the total reads in

each sample and log10-transformed.

Preliminary statistical analysis

The log-transformed values for all microbiome and IgA

traits first were subjected to a multivariate analysis of vari-

ance that showed overall significance (P <0.05) for sex,

diet, cohort, parity, and litter size at birth. We therefore

adjusted for the effects of these factors and examined the

distributions of the abundances of the residuals for each

trait. Using an alpha level of 0.01, and the false discovery

rate [67] to adjust the probabilities from Kolmorgorov-

Smirnov tests, all traits were found to be normally distributed.

We therefore calculated means and standard deviations for

all taxa to provide a basic description of their distributions.

It also was of interest to estimate variance components

for families, parity, and cohorts to determine the contribu-

tion of each of these random factors to the total variance

of each trait. Cohort and parity (differences between first

and second litters in each family) effects are due to envir-

onmental and/or epigenetic factors whereas differences

among families and within litters (residual) are produced

by both genetic and environmental factors. We estimated

cohort, family, parity, and residual components and tested

them for significance via a mixed model that also included

sex, diet, and litter size as fixed factors. Once calculated,

we also expressed each of the four components as a per-

centage of the total variance.

QTL mapping

G4 data were mapped as described [10] with R-QTL and

adjusted for familial structure using the GRAIP algorithm

to adjust the significance thresholds. To map QTLs in the

G10 for the microbiota and IgA expression traits, we used

the newly developed QTLRel program implemented in R

[68,69] with an approach previously described [53]. This

program was specifically developed to account for family

structure and relatedness among individuals, as occurs

in advanced intercross populations, and obviated the need

for GRAIP-adjustments to the significance thresholds. We

used the Haley-Knott interval mapping [70] option in

QTLRel to impute genotypic values between any of the

2,058 total SNPs separated by more than 1 centiMorgan

(cM), effectively increasing the total number of markers to

3,023. At each of these markers, QTLRel evaluated the

phenotypic values of each trait with a model that included

additive and dominance genetic effects as well as sex, diet,

litter size, parity, and cohort to adjust for any effects of

these covariates. The program produced likelihood ratio

values at each of the markers throughout the genome that

were converted into LOD scores.

To evaluate all of these LOD scores for each trait, we

estimated both 5% (significant) and 10% (suggestive)

genomewide thresholds with the traditional permutation

method [71] available in QTLRel. For both the microbiota

and the IgA expression traits, we ran the permutation pro-

cedure with 1,000 iterations on each taxon and recorded

the 95th and 90th percentile LOD values in each of these

runs. In the QTL scans for each trait, the highest LOD

score on each Chr that met or exceeded the suggestive

threshold was considered to represent the site of a puta-

tive QTL. Where the LOD score distributions exhibited

multiple peaks exceeding this value, each peak was consid-

ered to represent the position of an individual QTL if it

was separated by a drop of at least 1.5 LOD units from

other peaks. Confidence intervals for each of the QTLs

also were defined by 1.5 LOD drops on either side of the

peak position [72].

Because we performed multiple (203) QTL scans, we

expected a number of false positive QTL results by chance

alone. To assess how probable this was for each of the pu-

tative QTLs found, therefore, we subjected the probabil-

ities (estimated from permutations) associated with their

LOD scores to the false discovery rate procedure [67]. We

used an n = 203 in this procedure, and it yielded a false

discovery rate (FDR) for each QTL that was useful in indi-

cating its probability of being a false positive result.

QTLRel also computed additive (a) and dominance

genotypic values (d) at the site of each QTL, and tested

these values for significance (P <0.05) via individual t-tests.

An additive genotypic value estimates one-half of the dif-

ference between the phenotypic values for the two homo-

zygotes, which if positive in sign, indicates that the HR

allele increases the mean of the trait (if negative, it de-

creases the mean). A dominance genotypic value estimates

the difference between the mid-homozygous and the het-

erozygous values, and if significant, indicates that the QTL

exhibits dominance [73]. To determine the extent and

type of dominance, it is useful to divide d by a. Thus a d/a

ratio of approximately +1 or -1 indicates complete domin-

ance, a ratio well over +1 (>1.5) indicates overdominance

(heterozygote greater than either homozygote), and a ratio

well less than -1 (<-1.5) indicates underdominance (het-

erozygote less than either homozygote [74]. Besides a and

d values, QTLRel also estimated the percentage of the

total phenotypic variation of the trait explained by each

QTL.

Once QTL locations were determined, we used an op-

tion in QTLRel to test for potential interactions of the

QTLs with sex and with diet. At each of the sites of the

QTLs discovered, QTLRel calculated the -2 ln (likelihood)

for a model containing all terms described above, but in

addition, the interactions of the a and d effects with sex

(or diet). Each likelihood value generated from this model

was compared with that generated in the null model that
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did not include the interaction terms, and the differences

between these likelihoods were evaluated using a chi-

square test. Probabilities from these tests were evaluated

using the conventional level (0.05) of significance [53,74].

We interpreted significant QTL by sex (or diet) interac-

tions as indicating different genotypic effects on the trait

depending on the level of sex (males or females) or diet

(control or high-fat). Where these interactions occurred,

we tested the effect of the QTL in the separate sexes or

diets and used the suggestive threshold values to assess

significance.

Data availability

Sequencing data and associated sample metadata are

available at the NCBI archive under Bioproject Accession

number PRJNA265870. Raw and processed sequencing

data and metadata are also available at (http://gutmicro.

unl.edu/ClientLogin/login.php). Complete instructions for

using this database are available on the login page. Links

to Excel files containing the processed microbiota data

and processed genotype data are also available directly on

the login page (http://gutmicro.unl.edu/ClientLogin/login.

php).
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Additional file 1: Table showing the basic statistics for the

abundances of the 203 microbiota taxa.

Additional file 2: Table showing the contributions of four variance

components to the total variation in the abundances of the 203

microbiota taxa.

Additional file 3: Figure illustrating a phylogenetic analysis of the

microbiota taxa abundances in the G4 and G10 mouse intercross

generations.

Additional file 4: Table showing the basic statistics for the G4 taxa

processed through the same OTU pipeline as the G10 taxa.

Additional file 5: Table showing the QTL statistics for the G4 traits

showing significant QTLs.

Additional file 6: Table showing the basic statistics for the 67 IgA

expression traits.

Additional file 7: Table showing the contributions of four variance

components to the total variation in the 67 IgA expression traits.
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