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Abstract

Background: Our understanding of the gut microbiota of animals is largely based on studies of mammals. To

better understand the evolutionary basis of symbiotic relationships between animal hosts and indigenous microbes,

it is necessary to investigate the gut microbiota of non-mammalian vertebrate species. In particular, fish have the

highest species diversity among groups of vertebrates, with approximately 33,000 species. In this study, we

comprehensively characterized gut bacterial communities in fish.

Results: We analyzed 227 individual fish representing 14 orders, 42 families, 79 genera, and 85 species. The fish gut

microbiota was dominated by Proteobacteria (51.7%) and Firmicutes (13.5%), different from the dominant taxa

reported in terrestrial vertebrates (Firmicutes and Bacteroidetes). The gut microbial community in fish was more

strongly shaped by host habitat than by host taxonomy or trophic level. Using a machine learning approach

trained on the microbial community composition or predicted functional profiles, we found that the host habitat

exhibited the highest classification accuracy. Principal coordinate analysis revealed that the gut bacterial community

of fish differs significantly from those of other vertebrate classes (reptiles, birds, and mammals).

Conclusions: Collectively, these data provide a reference for future studies of the gut microbiome of aquatic

animals as well as insights into the relationship between fish and their gut bacteria, including the key role of host

habitat and the distinct compositions in comparison with those of mammals, reptiles, and birds.
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Background
Multicellular eukaryotes appeared 1.2 billion years ago,

followed by a long evolutionary history of mutual inter-

actions between multicellular and single-celled organ-

isms [1]. According to Van Valen’s “Red Queen

hypothesis,” evolution is driven by competition among

taxa for survival under constantly changing environ-

ments [2]. Indeed, co-existence with microbes poses one

of the greatest challenges for animals. At the same time,

hosts and microbes can establish symbiotic relationships,

in which each species benefits from mutualistic interac-

tions [3]. The symbiotic microbiota contributes to ani-

mal adaptation to various habitats by providing

complementary functional resources (e.g., by digesting

indigestible dietary fiber, producing essential vitamins,

protecting against enteropathogens, maintaining im-

mune homeostasis, and contributing to intestinal matur-

ation) over a long period of co-evolution [4–10].

In the last decade, numerous studies have explored gut

microbial communities of various animal hosts. How-

ever, these studies have mostly focused on the gut

microbiota of mammals [11], which represent less than

10% of all vertebrate diversity. By contrast, there are

more than 33,000 species of fish, representing the
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greatest species diversity among groups of vertebrates

[12, 13]. This focus on a single class of animals allows

only limited insight into the vertebrate gut microbiota.

To understand the co-evolution of vertebrates and gut

microbes, broad analyses of fish are essential. The gut

microbiota has been evaluated in a few model fish spe-

cies, such as zebrafish [14], guppy [15], and rainbow

trout [16], and in economically valuable aquatic animals,

such as carp [17], Atlantic salmon [18], sturgeon [19],

and Atlantic cod [20]. However, these studies are insuffi-

cient to comprehensively understand the composition of

the gut microbiota in fish and patterns of co-evolution.

Here, we aimed to resolve long-standing questions

about the gut microbiota in fish. For example, is the gut

microbiota in fish shaped by the host habitat? Do genetic

factors in fish affect the structure of the gut microbiota

and, if so, to what extent? How does the gut microbiota

of fish differ from those of other vertebrates? To resolve

these issues, we comprehensively characterized the gut

microbiota of 227 individual fish representing 85 species

obtained from lakes, a stream, and seas (i.e., habitats

with distinct differences in nutrient availability, salinity,

temperature, and depth) (Figs. 1 and 2). We used a clus-

tering approach to find the primary determinants of the

structures of the gut microbiome and verified these de-

terminants using unsupervised and supervised machine

learning approaches, likes PAM clustering and random

forest classification. To gain a wider perspective, we

compared gut microbial communities in fish and other

vertebrates (mammals, reptiles, and birds) by using prin-

cipal coordinate analysis (PCoA). These data serve as a

reference for future studies of the gut microbiota of fish

and other aquatic animals. Our findings also support the

notion that symbiotic relationships between microbes

and vertebrates are important for adaptation and provide

insights into the nature of interspecific microbiome vari-

ation in various fish species.

Results
Overview of data related to the gut microbiota in fish

taxa

We analyzed the bacterial community composition of

the intestinal contents of 227 individual fish inhabiting

six different environments (23 different sampling spots;

Fig. 1a). The collected fish were taxonomically grouped

into two classes (ray-finned and cartilaginous fish), 14

orders, 42 families, 79 genera, and 85 species. Overall,

1,014,240 raw 16S rRNA gene sequence reads were ob-

tained from the intestinal contents of fish, and 653,281

high-quality sequence reads were obtained after the re-

moval of low-quality and chimeric sequences. The high-

quality sequences were clustered into 3273 operational

taxonomic units (OTUs), with a mean number of OTUs

per sample of 91 (± 6 SD), applying a threshold of 97%

sequence identity.

To determine whether the sampling depth was suffi-

cient to give an overview of the fish gut microbiota, rar-

efaction curves were generated for the number of OTUs

per individual or species (Additional file 1: Supplemen-

tary Fig. S1). The cumulative number of identified OTUs

reached a plateau at approximately 150 individuals or 60

fish species. This pattern was not affected by the fish

habitat, indicating that the sampling depth was sufficient

to capture the global bacterial diversity of the gut micro-

biota of wild fish.

The fish gut microbiota included 21 bacterial phyla,

with three dominant phyla (Proteobacteria, Firmicutes,

and Cyanobacteria) accounting for over 70% of all se-

quence reads (Fig. 1b and Additional file 2: Supplemen-

tary Table S1). Notably, the detailed microbial

community composition of the fish gut differed consid-

erably from the typical composition of the gut micro-

biota in vertebrates, mainly composed of Firmicutes and

Bacteroidetes [21–23]. Proteobacteria was the most fre-

quent taxon in the fish gut at the phylum level (detected

in 219 fish samples), followed by Firmicutes, Cyanobac-

teria, and Planctomycetes. Although Fusobacteria was

present in less than 50% of total samples, it was fre-

quently detected in freshwater fish (Figs. 1c and 2).

Host habitat is the major determinant of the gut

microbiota of fish

Environmental factors and host genetics shape the gut

microbiota of various animal taxa [21, 24, 25]. However,

the extent to which these factors contribute to the

microbiome composition of fish is unclear. To evaluate

the relative importance of various factors, we first exam-

ined the similarity of the microbial community using

within-sample distances for various clustering scenarios.

We found significant variation at both within and be-

tween groups; however, the largest differences in micro-

bial communities were obtained for factors related to

the host habitat (salinity and sampling sites), and some

groups even showed contrasting relationships with these

factors (Additional file 1: Supplementary Fig. S2). These

results indicate that environmental factors, particularly

those associated with properties of the habitat, interact

to shape the gut microbiota of fish.

We next performed a clustering analysis using the par-

titioning around medoids (PAM) clustering algorithm

based on the Calinski–Harabasz index and the silhouette

score [26] to identify the optimal number of clusters and

to evaluate the importance of environmental and genetic

factors. The PAM clustering results showed that the gut

microbiota of fish could be clustered into two groups,

and the clusters were more consistent with variation in

the host habitat (freshwater vs. seawater) than host class
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(Actinopterygii vs. Chondrichthyes) (Additional file 1:

Supplementary Fig. S3a). To validate the importance of

host habitat in shaping the gut microbiota of fish, we fur-

ther assessed cluster validity for k-clusters, according to

the following categories: habitat (number of variants, n =

2; freshwater vs. seawater), sampling site (n = 6; Fig. 1a),

host order (n = 8), host family (n = 18), and host genus (n

= 30). Among various categories, the habitat had the high-

est proportion of correctly matched constituents (Add-

itional file 1: Supplementary Fig. S3b), indicating that

habitat was the primary determinant of the fish gut micro-

biome. Compared with the former unsupervised learning

approach (PAM clustering), we additionally evaluated as-

sociations between the various candidate factors and gut

microbiota using the R statistic from analysis of similar-

ities (ANOSIM) based on unweighted and weighted Uni-

Frac distances. While all of the factors significantly (p <

0.001) affected the microbial structure of the fish gut,

habitat and host species had the greatest ability to distin-

guish among samples (Fig. 3a).

We then performed a comparative analysis of habitat

signatures in the gut microbiota of fish. With respect to

α-diversity indices, the gut microbiota of freshwater fish

exhibited significantly higher values for microbial rich-

ness (Shannon index), non-phylogenetic diversity (ob-

served species), and equitability (Simpson evenness)

than those of seawater fish, while Faith’s phylogenetic di-

versity was comparable across habitats (Additional file 1:

Fig. 1 Overview of the data. a Regional map showing the approximate locations of 23 sampling sites (227 fish). b Pie chart of the relative

abundance of bacterial phyla (> 0.3%) in the gut microbiota in all fish samples. c Dot plot of the overall distribution of the relative abundance

(left) and frequency of occurrence (right) of taxa in total fish (bar) and freshwater fish or seawater fish (dot) at the bacterial phylum level. FWF

freshwater fish, SWF seawater fish
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Supplementary Fig. S4). As expected from the R values

presented in Fig. 3a, a PCoA plot of unweighted UniFrac

distance metrics revealed that the gut microbial commu-

nities of freshwater fish and seawater fish clustered sep-

arately (ANOSIM, R = 0.471, p < 0.001; Fig. 3b).

Furthermore, distinct clustering of gut microbial com-

munities was apparent when considering a more detailed

habitat category, the sampling site, which reflects the

type of freshwater and seawater (e.g., stream, lake, coast,

or deep sea) and the geographical region (Additional file

1: Supplementary Fig. S5).

Next, we investigated differences in the composition of

the gut microbiota with respect to the habitat. Indeed, a

phylum-level difference between freshwater fish and sea-

water fish was detected (Figs. 2 and 3c). To determine

whether the taxa with differences in abundance could

serve as biologically relevant biomarkers for freshwater

and seawater fish, we performed a linear discriminant

analysis (LDA) effect size (LEfSe) analysis at all taxo-

nomic levels. The phylum Proteobacteria was enriched

in seawater fish with a relatively high LDA score (LDA

> 3.8), while the phyla Firmicutes and Fusobacteria were

Fig. 2 Overview of the gut microbiome of fish. UPGMA tree was constructed with 227 fish samples. Phylum-level profiling of the gut microbiome

composition and host taxonomic attributes are presented with representative photos of fish species included in this study. Detailed color index

of host genera was abridged. Fish photos courtesy of the National Institute of Fisheries Science (NIFS), Korea
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significantly enriched in freshwater fish (Additional file

1: Supplementary Fig. S6a). At the family level, Moraxel-

laceae, Vibrionaceae, and Enterobacteriaceae (all in the

class Gammaproteobacteria), and Alcaligenaceae (Beta-

proteobacteria) were significantly more abundant in

seawater fish than in freshwater fish, whereas Aeromona-

daceae (Gammaproteobacteria) was significantly more

abundant in freshwater fish. The family Clostridiaceae

(Clostridia) was more abundant in freshwater fish than

in seawater fish, whereas Leuconostocaceae (Bacilli) was

Fig. 3 Fish gut microbiota is determined by the host habitat. a Analysis of the contributions of host environmental or genetic factors to the fish

gut microbiota. Variation was determined by between-sample unweighted or weighted UniFrac distances. The size effect and statistical

significance were calculated by ANOSIM using the R “vegan” package in the QIIME pipeline. b PCoA of unweighted UniFrac distances for 227 fish

samples (ANOSIM, R = 0.47, p < 0.001) and boxplots illustrating PC1 coordinates of freshwater and seawater fish. The center line shows the

median, the boxes cover the 25th to 75th percentiles, and the whiskers extend to 1.5× the interquartile range c Bar charts of the relative

abundance of bacterial phyla in the gut microbiota of fish from different habitats. d OTU network-based analysis of the microbial communities in

fish from different habitats. The edges connecting nodes representing fish samples (circles) to species-level OTUs in a particular sample are

colored according to the host habitat type (edge-weighted spring embedded model in Cytoscape v. 3.0.1). FWF freshwater fish, SWF seawater fish
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more abundant in seawater fish. Furthermore, most

OTUs belonging to Fusobacteriaceae, showing a higher

frequency in freshwater fish than in seawater fish, were

assigned to Cetobacterium at the genus level (Additional

file 1: Supplementary Fig. S6b and Additional file 2: Sup-

plementary Table S1).

We then used a network-based approach to test

whether gut microbial communities clustered by fish

habitat at the OTU level. In the analysis, a node repre-

sents an individual fish and the OTUs are connected to

the host fish in which they were detected. In agreement

with the compositional differences noted above, in the

OTU network-based analysis, the host nodes were more

likely to connect to nodes of other hosts sharing the

same habitat than to those from different habitats (Fig.

3d). Based on the OTU network-based analysis, we

found that freshwater fish had a significantly higher

number of connections (i.e., degree) and higher be-

tweenness centrality than those of seawater fish, while

seawater fish had higher neighborhood connectivity

(Additional file 8: Supplementary Table S7). These re-

sults suggested that microbial diversity in freshwater fish

is greater than that in seawater fish, analogous to the re-

sults based on alpha-diversity estimates.

In ecology, the trophic level is the position occupied

by an organism in the food chain. Primary consumers,

usually herbivores, occupy lower trophic levels, while

predatory species (e.g., carnivores) occupy higher levels

[27, 28]. Hence, we further investigated the trophic level

of individual fish species to assess the effect of the host

dietary gradient on the microbial community. A PCoA

plot considering the trophic level, as determined using

FishBase [13], revealed a distinct microbial gradient

based on the ecological position of fish in the food chain

(Additional file 1: Supplementary Fig. S7). These results

suggested that the host trophic level is weakly but sig-

nificantly (ANOSIM, R = 0.14, p < 0.001) associated with

the gut microbial community assemblage.

Host divergence had little influence on the gut

microbiota of fish

We observed a statistically significant relationship be-

tween the gut microbial community structure and the

host genetic variation in the cytochrome c subunit I

(CO1) gene, although the degree of distinguishability did

not exceed that for the habitat, as determined by the R

value from ANOSIM. The host taxon-dependent vari-

ation in the gut microbial community was greater at

lower taxonomic levels than at higher taxonomic levels

(Fig. 3a). Remarkable variation in both the microbial

community composition and structure was observed

with respect to the host order (Additional file 1: Supple-

mentary Fig. S8a). Differences in the relative abundances

of several bacterial taxa depended on the host order. For

example, Epsilonproteobacteria was relatively enriched in

Tetraodontiformes, whereas the relative abundance of

Gammaproteobacteria was higher in Lampriformes and

Osmeriformes than in other host orders. Firmicutes,

mainly represented by the class Clostridia, was relatively

more abundant in Siluriformes, Gadiformes, Cyprini-

formes, and Osmeriformes than in other host orders.

The phylum Cyanobacteria was enriched in Perciformes,

Rajiformes, Clupeiformes, and Lophiiformes, whereas

the phylum Fusobacteria was over-represented in Perci-

formes, Tetraodontiformes, Siluriformes, Cypriniformes,

and Lophiiformes. Microbial communities showed sig-

nificantly greater clustering within the same host order

than across different host orders (ANOSIM, R = 0.20, p

< 0.001) (Additional file 1: Supplementary Fig. S8b).

Considering the host species-specificity of the gut

microbiota in fish, we next investigated the existence of

phylosymbiosis, or a relationship between host phyl-

ogeny and the gut microbiota. A scatter plot of weighted

UniFrac distances plotted against host genetic related-

ness based on variation in the CO1 gene showed no sig-

nificant association between similarity in the gut

microbial community composition and host phylogen-

etic distance (Fig. 4a). Regardless of the phylogenetic dis-

tance among hosts, the dissimilarities of gut microbial

communities between fish taxa were randomly

distributed.

Habitat can be linked to host taxonomy because almost

all fish inhabit specialized niches. To test whether this as-

sociation confounds the distinguishability of the habitat/

host taxonomy based on the gut microbiota, we next com-

pared the microbial communities in Perciformes and

Cypriniformes. In the current study, the order Perciformes

was represented by 10 species (at least three individuals

per species) caught in freshwater or seawater, and the

order Cypriniformes included various freshwater species

collected at multiple sampling sites (a stream and lakes).

PCoA and UPGMA trees revealed that gut microbial com-

munities from a single host order showed clearer cluster-

ing by habitat than by host species (Additional file 1:

Supplementary Figs. S9 and S10), further supporting the

greater role of the environment than host genetic factors

in shaping the gut microbial community in fish.

In addition, we used a machine learning algorithm

(the random forest classifier) to evaluate the predictive

value of the microbial composition for host habitat or

taxonomy. Owing to a large class imbalance in the num-

ber of variants per factor, precision-recall curves (PRC)

were generated, and classification accuracy was calcu-

lated based on the area under the curve (AUC). The

classification ability of the composition of the fish gut

microbial community was better for discriminating the

host habitat (freshwater vs. seawater) than for discrimin-

ating the sampling site or host taxonomy (Fig. 4b).
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Functional profiling of microbial communities

We used the PICRUSt pipeline [29] to investigate

whether the habitat-dependent differences in the micro-

bial taxonomic composition are related to differences in

functional profiles. Kyoto Encyclopedia of Genes and

Genomes (KEGG) ortholog groups (KOs) predicted from

the 16S rRNA gene sequences were assigned to broad

functional categories based on the BRITE hierarchy.

PCoA based on KOs predicted by PICRUSt revealed that

the host habitat significantly affects the functional gene

distribution (ANOSIM, R = 0.37, p < 0.001) (Fig. 5a).

Most gene functions were related to metabolism (49.5%),

environmental information processing (17.6%), and gen-

etic information processing (14.5%) (Additional file 1:

Supplementary Fig. S11 and Additional file 3: Supple-

mentary Table S2). Gene families in the following cat-

egories were enriched in seawater fish: membrane

transport, xenobiotic biodegradation and metabolism,

amino acid metabolism, lipid metabolism, and transport

and catabolism. By contrast, gene families in the follow-

ing categories were enriched in freshwater fish: nucleo-

tide metabolism, carbohydrate metabolism, metabolism

of cofactors and vitamins, energy metabolism, transla-

tion, replication and repair, and cell motility (Fig. 5b).

We then used a machine learning approach to exam-

ine whether the functional profiles of the gut microbiota

could be used to predict the environment or host taxon.

The AUCs of PRC calculated using the functional pro-

files showed better prediction accuracy for the host

habitat than for other factors, consistent with the results

of the random forest classifier analysis based on micro-

bial taxonomic profiles (Fig. 5c).

Comparison of the gut microbiota of fish across

geography and vertebrate clades

We evaluated the generalizability of our results for 85

fish species at a global scale by a comparative analysis

with data for fishes caught in different regions (China,

Saudi Arabia, Austria, and the USA) [30–34]. The first

principal coordinate based on Bray–Curtis distances re-

vealed that the gut microbial communities in this study

had highest microbial diversity among reported gut

microbiomes (Additional file 1: Supplementary Fig. S12).

Lastly, we examined the impact of vertebrate evolution

on gut microbes by comparing the microbial taxonomic

profiles among fish and other vertebrate species. We

compared the microbiota data for fish obtained in the

current study with data for humans (Human Gut Micro-

biota Project [HMP] data [35, 36]), 66 aquatic mammals

[37], 39 non-human mammals [38], 41 iguanas and

snakes (reptiles) [39, 40], and 124 wild birds [41]. PCoA

of the Bray–Curtis dissimilarity index and the binary Jac-

card index revealed that the fish gut microbiome clus-

tered separately from the other microbiomes (PERM

ANOVA, p < 0.001 and p < 0.001, respectively). Further-

more, the gut bacterial communities from other animals

were clearly separated (Additional file 4: Supplementary

Table S3). Clustering by phylogenetic relationships

Fig. 4 Limited evidence for an association between the fish gut microbiota and host genetic factors. a Pairwise comparison of phylogenetic

distances between the fish gut microbiota based on weighted UniFrac distances and host genetic variation (CO1 gene). The relationship was not

statistically significant (p = 0.884 and σ = 0.003, Spearman correlation). b AUC of PRC for random forest classifiers for various discriminative factors

of the taxonomic profiles of the fish gut
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Fig. 5 KEGG categories derived from the 16S rRNA sequences of the fish gut microbiome by PICRUSt. a PCoA of the binary Jaccard dissimilarity

of the functional profiles (ANOSIM, R = 0.37, p < 0.001). b Box-and-whisker plots of the relative abundance of the selected KOs for samples from

two different habitats determined by the LEfSe analysis (LDA score > 3.0). The center line shows the median, the boxes cover the 25th to 75th

percentiles, the whiskers extend to 1.5× the interquartile range, and the outer points are outliers. Asterisks indicate significant differences

between freshwater and seawater fish according to a two-tailed Mann–Whitney U test. **p < 0.01; ***p < 0.001. c Bar plot of the AUC of PRC for

random forest classifiers for various discriminative factors of functional profiles of the fish gut. FWF freshwater fish, SWF seawater fish
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among hosts was clearly evident in a PCoA of the binary

Jaccard index at the family level (Fig. 6), and significant

differences were observed (ANOSIM, R = 0.64, p <

0.001). As shown in Fig. 6a, the gut microbiome of fish

showed slight overlap with the gut microbiomes of

aquatic mammals (dolphins and sea lions) and snakes,

while the avian gut microbiome was distinct from those

of other vertebrates. When examining the microbial

composition of each host group, the components of the

gut microbiota of each host differed at the microbial

phylum level. Proteobacteria was most abundant in fish,

Firmicutes was enriched in birds and reptiles, and Bac-

teroidetes was enriched in humans (Fig. 6b–d).

Discussion
We characterized the gut microbial communities of vari-

ous wild fish. Few studies have focused on the fish gut

microbiota, despite the importance of fish in the evolu-

tionary history of vertebrates and the tremendous spe-

cies diversity, accounting for nearly half of all vertebrate

species [13]. The gut microbiota of vertebrates is host-

specific and arose as a result of co-evolution between

hosts and microbes [42, 43]. Even in invertebrate species

(e.g., shrimp or insect species), the gut microbiota is dis-

tinguished by the presence of specific commensal bacter-

ial consortia [44, 45]. As expected, we found that the gut

microbiota of wild fish is a host-specific and

Fig. 6 Fish gut microbiota clustered separately from the microbiotas of other vertebrates. a PCoA of the binary Jaccard indices of the gut

microbiota from fish and various vertebrates (iguanas, snakes, aquatic mammals, birds, terrestrial mammals, and humans; sequences were

obtained from the NCBI SRA and the Qiita server). b–d PCoA plots colored by the relative abundance of the phyla Proteobacteria (b), Firmicutes

(c), and Bacteroidetes (d). Color intensity is proportional to the relative abundance (%) of each phylum
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deterministic microbial assemblage. Furthermore, we

showed that the gut microbiota is primarily determined

by the fish environment, rather than by genetic factors.

The gut microbiota of most vertebrates, including am-

phibians, reptiles, mammals, and birds, is dominated by

the phyla Firmicutes and Bacteroidetes [22, 36, 46, 47].

Indeed, a bloom of Proteobacteria is considered a sign of

dysbiosis or instability of the gut microbial community

in mammals [48]. Many commensal Proteobacteria can

become pathobionts, infecting the host under specific

conditions and facilitating inflammation [49, 50]. How-

ever, in the current study, Proteobacteria dominated the

gut microbiota of the majority of fish, in agreement with

recent studies of the gut microbiota of fish [14, 15].

These compositional differences at the phylum level can

be explained by a partial projection of the vast diversity

of marine Proteobacteria associated with the unseg-

mented digestive system of fish, unlike that of mammals

[51, 52]. A stochastic assemblage of environmental mi-

crobes in the fish gut microbiota is unlikely because the

predominant bacterial taxa in the ocean or other aquatic

habitats, such as SAR11 (Pelagibacter ubique

HTCC1062), SAR116 (Puniceispirillum marinum

IMCC1322), and SAR86, were absent or not abundant in

the fish gut (Additional file 5: Supplementary Table S4)

[53, 54]. Our results were based on observations of both

the gut digesta and mucosa of collected fish, which are

essentially microbial reservoirs including allochthonous

and autochthonous microbes, respectively. Nonetheless,

predominant environmental microbes were rarely ob-

served [55]. These findings prompt the question of

whether Proteobacteria outcompete other environmental

bacterial taxa in the aquatic habitat or whether they have

been selected by the host itself [56–58].

We found that host habitat was the predominant de-

terminant of the fish gut microbial community. Assess-

ments of the discriminative structuring factors of the gut

microbiota using both unsupervised and supervised

learning approaches, such as PAM clustering, ANOSIM,

and random forest classifier analysis, supported the im-

portance of habitat, and this was particularly apparent in

fish with a similar genetic background (e.g., Perciformes

and Cypriniformes). Nevertheless, various other factors

that were examined, including host taxonomy and

trophic level, contributed to the fish gut microbial com-

munity (Fig. 3a). Environmental factors could not ex-

plain a large portion of the total variance (Fig. 3b;

variation explained by PC1 at 7.43%) in the fish gut

microbiota. Hence, intrinsic genetic factors are also im-

portant, and the species-specificity of the gut microbiota

is a result of the intrinsic genetic background of the

host.

Differences in the microbial compositional with re-

spect to salinity can be explained in terms of host

adaptation to the environment. The dominant taxa

might reflect the affinity of the host for gut bacteria that

contribute to the maintenance of immune function and

metabolic activity. For example, the high proportion of

Fusobacteria in freshwater fish might be associated with

vitamin B12 (cobalamin). Cetobacterium somerae (order

Fusobacteriales) is widely distributed in various fresh-

water fish, and its prevalence is negatively correlated

with the dietary availability of vitamin B12 [59, 60]. Dif-

ferent environmental conditions affect vitamin B12 avail-

ability, and freshwater fish harbor more vitamin B12-

synthesizing bacteria, such as C. somerae, to satisfy their

dietary needs. The importance of metabolic properties is

consistent with the predicted functions of gut bacteria in

freshwater fish, which showed a relatively high abun-

dance of genes related to the metabolism of cofactors

and vitamins. This suggests that basic nutrient availabil-

ity in the environment drives selection of the fish gut

microbiota to account for the nutritional deficiencies of

the host. Based on the performance of classifiers, better

results are obtained when using functional profiles as a

training trait than when using taxonomic profiles. Envir-

onmental factors (e.g., habitat type) result in functional

redundancy, with the host physiology governed by the

ability to adapt.

We also observed high similarity between the gut

microbiota of hosts that share feeding preferences. The

average trophic level of seawater fish collected in the

current study was higher than that of freshwater fish.

Seawater fish show carnivorous and herbivorous dietary

preferences, while freshwater fish tend to show omnivor-

ous dietary preferences [28]. In particular, the family En-

terobacteriaceae was significantly enriched in seawater

fish, consistent with results for other carnivorous fish

[15, 61]. Further, a bloom of marine-associated bacteria,

such as Enterobacteriaceae and Moraxellaceae, is corre-

lated with a low-fiber or animal-based diet in humans

[62, 63]. By contrast, Clostridium and Aeromonadaceae

were predominant in freshwater fish in the current study.

Several Clostridium species are well-known cellulose-

degraders associated with herbivorous vertebrates [64, 65].

Aeromonas is dominant in fish feeding on detritus of plant

origin and in omnivorous freshwater fish (intermediate

trophic level) [15, 66]. Differences in the gut microbiota

are not simply a consequence of the host diet or feeding

preference, as divergence between the gut microbiota of

freshwater and seawater fish can also be a cause of the

functional potential of hosts (Fig. 5).

In a comparison between fish and other vertebrates,

including Reptilia, Avia, and Mammalia, we detected

clearly distinct structures of each gut microbiota (Fig. 6).

This was observed despite analogous taxon with similar

metabolic or biological roles, i.e., a relatively high pro-

portion of Enterobacteriaceae and Moraxellaceae
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(Proteobacteria) in animal-based diet vertebrates [62, 63]

and the dominance of Clostridium species (Firmicutes)

in plant-based diet vertebrates [64, 65]. Unlike the gut

microbial composition of fish, the dominant gut bacteria

of terrestrial mammals and humans belong to the phyla

Firmicutes and Bacteroidetes. Firmicutes is the sole

prominent microbial phylum in the guts of reptiles and

birds. This difference at the microbial phylum level can

be explained by evolved differences between fish and

other vertebrates in the selectivity of the gut environ-

ment [15, 67]. Early fish arose 600 million years ago and

became ancestors of all extant vertebrate clades [12].

Since the appearance of early vertebrates, they have

evolved a number of physiological adaptations for sur-

vival in various environments. During this process, sym-

biotic gut microbes and host species co-evolved to

survive in the continuously changing environment. It is

difficult to experimentally simulate gut microbial selec-

tion and colonization during vertebrate evolution; how-

ever, surveys and experiments involving extant

vertebrate species can provide insight into the contribu-

tion of various environmental and genetic factors to the

gut microbiota.

Our species-wide study included an unprecedented

number of fishes; however, it had several limitations.

Since sample collection focused on East Asia (the

Korean peninsula), the taxa are not representative of

the total species diversity of fish. Although the num-

ber of samples in our study was sufficient for cap-

turing microbial diversity reported in various fishes

from other regions (China, Saudi Arabia, Austria,

and the USA), our findings may not be representa-

tive of all fish species. Further studies including a

broader range of species or more detailed metadata

for the surrounding environment (e.g., precise esti-

mates of salinity, temperature, or prey composition)

are necessary to elucidate the contributions of par-

ticular environmental factors to shaping the fish gut

microbiota. The detailed characterization of eco-

logical niches and metabolic differences among fish

will improve our understanding of the fundamental

assemblage of the gut microbial consortium in fish.

Furthermore, we analyzed the 16S rRNA gene to

evaluate the bacterial composition and predicted

functional profiles using the PICRUSt pipeline. These

analyses indicated that some taxa are linked to spe-

cific biological activities of the fish host. Additional

meta-omics analyses, including shotgun metagenomic

sequencing and metaproteomics and metabolomics

approaches, could yield a more comprehensive data-

set for detailed analyses of the determinants of the

specific consortia of gut microbes in fish and expand

our understanding of fundamental contributions of

microbes to fish biology [68].

Conclusions
In summary, our results provide a comprehensive view

of the fish gut microbiota. In particular, we found that

host habitat (freshwater vs. seawater) has a dominant

role in shaping wild fish gut microbial communities over

host taxonomy and trophic level. Moreover, the micro-

bial functional profiles predicted from 16S rRNA gene

sequences were predominantly determined by host habi-

tat. We further demonstrate that random forest classi-

fiers trained on microbial community composition or

functional features showed better prediction accuracy

for the host habitat than for other factors. In addition,

the fish gut microbiome in a PCoA plot clustered separ-

ately from those of other vertebrates, such as mammals,

reptiles, and birds. Our findings improve our under-

standing of the long-term co-evolution of vertebrates

and their indigenous microbial communities.

Methods
Sample collection

Gut samples from 227 seawater and freshwater fish were

collected at 23 sites in Korea between June 2013 and

October 2013 (Figs. 1a and 2 and Additional files 6 and

7: Supplementary Tables S5-6). Seawater fish were

caught by the fisheries resource research vessel Tamgu-

20 of the National Institute of Fisheries Science (NIFS),

Korea. During a seasonal fisheries resource investigation

of the deep sea of East Sea, near the seas of Ulleung-do

and Dok-do, and West Sea, 175 seawater fish were

caught by bottom trawling, mid-water (pelagic) trawling,

and trammel. Freshwater fish were collected in collabor-

ation with the Inland Fisheries Research Institute (NIFS)

by using cast net and fish traps. All procedures for the

collection and handling of seawater and freshwater fishes

were approved by the NIFS and performed under the

supervision of authorized and experienced members of

the NIFS staff. The seawater fish were handled in a la-

boratory facility on the fishing vessel and the freshwater

fish were handled at appropriate facilities near the fishing

sites. All fish were stunned and dissected immediately

after catching. Approximately 1.0–1.5 cm of the rectum

was collected using sterile instruments, and the samples,

including the luminal content and mucosa, were stored at

− 80 °C until analyses. An accompanying fish taxonomist

identified the fish host species by briefly assessing fish

morphological characteristics during sample collection.

The fish host species were re-identified in the laboratory

by a molecular phylogenetic analysis (vide infra).

DNA extraction and pyrosequencing of bacterial 16S

rRNA genes

The gut specimens were squeezed out with sterile in-

struments to collect the luminal content. The gut sam-

ples were cut laterally to remove the mucus layer of the
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fish gut by visual inspection. A cover glass was used to

separate the mucus layer from the gut samples. The lu-

minal content and mucus layer were pooled and trans-

ferred to a sterile conical tube containing 6.5 mM

dithiothreitol for mucus degradation [69]. After incuba-

tion for 1 h at 37 °C, the pellet was collected by centrifu-

gation and re-suspended in 750 μl lysis buffer (500 mM

NaCl, 50 mM Tris-HCl, pH 8.0, 50 mM EDTA, and 4%

sodium dodecyl sulfate). To maximize microbial cell lysis

before DNA extraction, the re-suspended pellets were

homogenized by shaking in a sterile screw-cap tube con-

taining zirconia beads (2.3 and 0.1 mm diameter) and

glass beads (0.5 mm diameter) using FastPrep-24 (MP

Biomedicals, Santa Ana, CA, USA) for 50 s at 6.0 m/s.

Genomic DNA from the homogenized samples was then

extracted by the standard phenol-chloroform extraction

method using the UltraClean Microbial DNA Isolation

Kit (MOBIO, London, UK). The hypervariable regions

V1–V3 of the 16S rRNA gene were amplified from the

extracted genomic DNA of the sampled fish guts by

using a sample-specific barcoded bacterial primer set

[70] and Ex-Taq premix (Takara Bio, Kyoto, Japan). The

polymerase chain reaction (PCR) conditions were as fol-

lows: 94 °C for 10 min; followed by 29 cycles of 94 °C

for 60 s, 50 °C for 30 s, and 72 °C for 1 min 30 s;

followed by a final extension step at 72 °C for 10 min.

Four independent PCR products for each sample were

pooled and purified using the QIAquick PCR Purifica-

tion Kit (QIAGEN, Hilden, Germany). The concentra-

tion of purified PCR products was determined using the

Quant-it PicoGreen dsDNA Assay Kit (Life Technolo-

gies, Carlsbad, CA, USA). The quality and quantity of

DNA were checked using a Bioanalyzer 2100 instrument

(Agilent, Santa Clara, CA, USA) and a DNA 1000 Lab

Chip (Agilent). The pooled DNA was then amplified by

emulsion PCR before 454 pyrosequencing using a GS

FLX Titanium instrument (Roche, Basel, Switzerland) by

a certified service provider (Macrogen, Seoul, Korea), ac-

cording to the manufacturer’s instructions.

Identification of fish host species and phylogenetic

analysis of fish

To identify the fish host species, genomic DNA was ex-

tracted from the fish flesh collected aseptically from each

specimen. Tissue fragments were suspended in 750 μl

lysis buffer and homogenized by using FastPrep-24

(MPbio) with glass beads (0.5 mm diameter) for 40 s at

6.0 m/s. DNA was extracted using a standard phenol-

chloroform extraction method. The CO1 gene was amp-

lified by using AccuPower PCR Premix (Bioneer, Dae-

jeon, Korea) and the CO1 gene primer cocktail set 3

[71]. The PCR conditions were as follows: initial de-

naturation at 95 °C for 3 min; followed by 30 cycles of

94 °C for 30 s, 52 °C for 40 s, and 72 °C for 1 min;

followed by a final extension step at 72 °C for 10 min

[71]. The PCR products were sequenced using the Big-

Dye Terminator Cycle Sequencing Ready Reaction Kit

(Applied Biosystems, Foster City, CA, USA), according

to the manufacturer’s instructions. The reaction prod-

ucts were analyzed using an automated DNA analyzer

system (PRISM 3730XL DNA Analyzer, Applied Biosys-

tems). Sequence fragments were assembled using Seq-

Man (DNASTAR, Madison, WI, USA). The assembled

CO1 gene sequences were then compared with other

CO1 gene sequences in the nucleotide collection (nr/nt)

of the GenBank database by searches using the Basic

Local Alignment Search Tool (BLAST) [72]. The CO1

gene sequences were aligned using the multiple align-

ment program CLUSTAL W (v. 1.4), and a phylogenetic

tree was generated by using MEGA 6 [73, 74] using the

maximum-likelihood algorithm with 1000 bootstrap rep-

licates [75].

Sequence analysis

The raw 16S rRNA sequences generated using the GS

FLX Titanium platform were processed using QIIME (v.

1.8.0) [76]. All raw sequences with average quality scores

below 25 and those shorter than 200 bp or longer than

1000 bp were removed. The quality-filtered sequences

were denoised using the QIIME denoising algorithms

[77]. The sequences were then clustered into OTUs at a

97% sequence similarity threshold using UCLUST [78]

in QIIME. The OTUs were generated by searches

against the Greengenes reference database from August

2013 using a subsampled open-reference method [79].

Before further analysis, chimeric sequences were de-

tected by comparing with a reference database using

USEARCH (v. 7.0.1090) [78] and were removed. A rep-

resentative sequence for each OTU was picked and

aligned with the Greengenes reference database by using

PyNAST [80]. The alignments were used for phylogen-

etic tree construction using the FastTree algorithm [81].

An even-depth rarefied OTU table matrix (600 se-

quences) was constructed to calculate various diversity

indices [82]. The Ribosomal Database Project classifier

against the Greengenes reference database was used at a

minimal confidence of 60% [83] for the taxonomic as-

signment of representative OTUs. The calculation of α-

diversity indices (phylogenetic diversity, observed species

count, Chao1 richness estimators, and the Shannon and

Simpson indices) and β-diversity indices (Bray–Curtis

dissimilarity and UniFrac weighted and unweighted met-

rics), as well as PCoA, were performed using QIIME

pipelines. The calculated coordination was visualized

using a web-based visualization tool, Plotly (http://plot.

ly). To check for the presence of transient environmental

bacteria in the gut microbiota, the full dataset was

BLAST-searched against SAR11 (GenBank accession no.
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CP000084), SAR86 (JX530677), and SAR116 (CP001751)

sequences. PICRUSt (http://picrust.github.io) [29] was

used to examine the functional profiles of the fish gut

microbial community based on the 16S rRNA gene com-

position. For the PICRUSt analysis, an OTU table was

constructed by closed-reference OTU picking against

the May 2013 Greengenes database using QIIME. The

OTU table was converted into the PICRUSt format and

normalized by the 16S rRNA gene copy number to cor-

rect for the over- and under-estimation of microbial

abundance. The normalized dataset was analyzed using

the KO dataset [84]. Detailed microbiome analytical

scripts and computational environments are provided

online (Additional file 10: Supplementary Method).

Comparison of the gut microbiota among various animals

Gut microbiota data from various organisms were used for

meta-analysis. For comparison with previously reported fish

microbiome studies, we obtained the unprocessed micro-

biome sequence data from NCBI Sequence Read Archive

(SRA) [30–34] (Additional file 9: Supplementary Table S8).

All fish microbiome data were processed by QIIME pipeline

and OTUs were clustered against Greengenes DB (ver. gg_

13_8) with open-reference OTU picking methods (pick_open_

reference_otus.py). Owing to differences in DNA extraction

methods and sequencing platforms among studies, the con-

structed OTU table was collapsed to the genus-level and used

for further analyses. The human gut microbiota dataset was

downloaded from the NIH HMP (http://hmpdacc.org/) [36].

The aquatic mammalian gut microbiota [37] data were ob-

tained from the NCBI SRA. The land and marine iguana gut

microbiota data [39] were downloaded from the Dryad data

package [85]. Non-human mammalian gut microbiota [38],

snake gut microbiota [40], and wild avian gut microbiota [41]

data were obtained from the Qiita database (https://qiita.ucsd.

edu/), as pre-processed data. Closed-reference OTU picking

methods (pick_closed_reference_otus.py) were used to cluster

the OTUs against the same reference sequences (gg_13_8)

using the QIIME pipeline (v. 1.8.0). After discarding the un-

aligned sequences, an even-depth rarefied OTU table was gen-

erated and used for subsequent analyses. A non-phylogenetic

β-diversity metric (the binary Jaccard index) was calculated

and visualized by PCoA.

OTU network-based analysis

For an OTU network-based analysis, OTU network

maps were constructed using QIIME and visualized

using Cytoscape (v. 3.0.1) [86, 87]. Briefly, the OTU table

generated at the 97% sequence similarity threshold was

converted to the Cytoscape format (make_otu_net-

work.py). In the converted OTU network maps, the sam-

ples and OTUs were set to represent network nodes

connected by edges, which represented OTU abundance

in the samples. The edge-weighted spring embedded

model was derived to arrange network constituents.

Topological analysis of OTU network was performed

using Cytoscape and MCODE plug-in toolkit [88].

Statistical analysis

All statistical analyses were performed using GraphPad

Prism (v. 5.0; GraphPad, San Diego, CA, USA). The sig-

nificance of differences between groups was assessed

using two-tailed Mann–Whitney U tests. To compare

the β-diversity indices among multiple groups, one-way

analysis of variance was used, followed by Duncan’s

post-hoc tests. For multiple comparisons, p values were

corrected by the Benjamini–Hochberg false discovery

rate (FDR) procedure, and FDR < 0.05 was considered

statistically significant. ANOSIM and PERMANOVA

tests with the β-diversity matrix were performed using

the QIIME pipeline (compare_categories.py). Statistical

significance for both tests was determined based on

10,000 permutations. Assessment models to identify the

discriminative factors shaping the fish gut microbiota

were constructed using random forest classifiers in

Weka v. 3.8.3 open source software (http://www.cs.

waikato.ac.nz/~ml/weka/index.html) developed at Wai-

kato University, New Zealand [89, 90]. The random for-

est classifiers were trained using individually generated

input tables of the relative OTU abundance and discrim-

inative variables with 10-fold cross-validation. To deter-

mine the optimal number of clusters for evaluating the

cohesiveness of clusters with various metadata, the

Calinski–Harabasz index (CH index) and the silhouette

score were calculated for each set of clusters generated

by PAM clustering [26] (https://enterotype.embl.de/

enterotypes.html#). The differentially abundant taxo-

nomic and functional features were also confirmed using

LEfSe in the Galaxy server (http://huttenhower.sph.

harvard.edu/galaxy/) [91, 92]. The significance threshold

of the α parameter for the Kruskal–Wallis test for clas-

ses was set to 0.05. The threshold for the logarithmic

LDA score for taxonomic features was 3.8, and that for

functional features was 3.0.
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