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Host lifestyle affects human microbiota on daily
timescales
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Abstract

Background: Disturbance to human microbiota may underlie several pathologies. Yet, we lack a comprehensive
understanding of how lifestyle affects the dynamics of human-associated microbial communities.

Results: Here, we link over 10,000 longitudinal measurements of human wellness and action to the daily gut and
salivary microbiota dynamics of two individuals over the course of one year. These time series show overall
microbial communities to be stable for months. However, rare events in each subjects’ life rapidly and broadly
impacted microbiota dynamics. Travel from the developed to the developing world in one subject led to a nearly
two-fold increase in the Bacteroidetes to Firmicutes ratio, which reversed upon return. Enteric infection in the other
subject resulted in the permanent decline of most gut bacterial taxa, which were replaced by genetically similar
species. Still, even during periods of overall community stability, the dynamics of select microbial taxa could be
associated with specific host behaviors. Most prominently, changes in host fiber intake positively correlated with
next-day abundance changes among 15% of gut microbiota members.

Conclusions: Our findings suggest that although human-associated microbial communities are generally stable,
they can be quickly and profoundly altered by common human actions and experiences.

Background
The temporal dynamics of host-associated microbial

communities (the microbiota) are of growing interest

due to these communities’ relevance for health [1-5].

Normally, human microbiota remain stable for months,

and possibly even years [6-8]. However, studies across

mice and humans suggest that common aspects of the

modern Western lifestyle, including antibiotics [1,9-11]

and high-fat diets [2], can persistently alter commensal

microbial communities. In turn, those microbial distur-

bances may increase pathogen susceptibility [3], obesity

[4,12], and auto-inflammatory disease [5], maladies

which are becoming more frequent in the developed

world.

In spite of their potential health impact, a full list of

lifestyle factors capable of altering human microbiota

remains incomplete. Interventional studies are regularly

performed to identify host behaviors that affect micro-

bial dynamics, and they have notably demonstrated hu-

man gut microbial sensitivity to antibiotics [9-11], bowel

surgery [13], and short-term diet shifts [14,15]. However,

interventions by design only test a small number of

hypotheses; thus, a large, and potentially unfeasible,

number of interventional studies are needed to fully ex-

plore the rich diversity of human actions and behaviors.

An alternative approach for efficiently linking numer-

ous host factors to microbial responses is to longitu-

dinally observe both the host and microbiota, and to

infer relationships between them. Such observational

studies have recently been used to show that menstrual

cycles are the primary driver of vaginal microbial

dynamics in women [16], and to show that infant gut

microbiota begin transitioning towards adult communi-

ties after weaning [17]. In these time series, the quantity

of host lifestyle variables that can be related to microbial

dynamics is only bound by the number of host factors

that can be tracked. Still, host tracking is non-trivial for

ethical and logistical reasons, such as the need to repea-

tedly survey participants and the enforcement of subject
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compliance. Hence, many microbiome time series have

featured limited longitudinal host metadata [8,18], making

it difficult to link microbial dynamics to host behavior.

Here, we address the dearth of coupled longitudinal

datasets of human lifestyle and microbiota by tracking

individuals and their commensal microbial communities

each day over the course of 1 year. To let subjects com-

prehensively record their daily lives, we equipped them

with iOS devices and a diary app that we configured to

simplify personal record keeping. Paired with a simple diet

record parsing algorithm that we wrote, this app allowed

subjects to record data each day across 349 health and

lifestyle variables spanning fitness, diet, exercise, bowel

movements, mood, and illness (see Additional file 1 for a

full list of measured variables). Even with our streamlined

diary tools, we anticipated self-tracking to be incon-

venient, and so we screened for study participants who

would reliably collect daily records. Our screening yielded

a small cohort of two healthy, unrelated male volunteers

(Subjects A and B; see Additional file 2 for more demo-

graphic information). Yet, despite this small cohort size,

the 10,124 measurements of subjects’ daily activity

collected over the course of 1 year provides an un-

precedented window into the health and lifestyle fac-

tors potentially regulating human-associated microbial

environments.

Each day, subjects were asked to collect stool and saliva

samples in order to measure the dynamics of gut and oral

microbial communities. Each sample was terized using

high-throughput sequencing of amplified 16S ribosomal

RNA, and the resulting reads were grouped into oper-

ational taxonomic units (OTUs) at 97% sequence simi-

larity [19,20]. After sample quality filtering, we obtained a

dataset of 299 gut and 272 saliva samples from Subject A

and 180 gut samples from Subject B (Figure 1).

Results and discussion
Evidence for long-term, overall community stability

We initially confirmed the general hypothesis that gut

and saliva microbiota are usually stable [6,8,9,18]. First,

differences between individuals were much larger than

variation within individuals over the course of 1 year

(Figure 1A). Second, dynamics within individuals were

subdivided into five periods of high overall similarity

(Figure 2A-C, regions marked I-V). Third, within these

stable periods, median distances between samples ra-

pidly reach an asymptote; these dynamics are consistent

with communities whose state is not changing over time

(Additional file 3). Fourth, a small subset of highly abun-

dant core taxa can be found within each stable period

(Additional file 4). For example, 195 OTUs are found in

95% of Subject A’s saliva microbiota samples over 1 year.

These taxa only represent a small minority of the total

OTUs detected in Subject A’s saliva, which is consistent

with a previous study of human microbiota dynamics

[8]. Still, these core OTUs dominate the community and

comprise 99.7% of total counted bacteria.
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Figure 1 Gut and salivary microbiota dynamics in two subjects over 1 year. (A) Stream plots showing OTU fractional abundances over time.
Each stream represents an OTU and streams are grouped by phylum: Firmicutes (purple), Bacteroidetes (blue), Proteobacteria (green), Actinobacteria
(yellow), and Tenericutes (red). Stream widths reflect relative OTU abundances at a given time point. Sampled time points are indicated with gray dots
over each stream plot. (B) Horizon graphs of most common OTUs’ abundance over time. Horizon graphs enable rapid visual comparisons between
numerous time series [21]. Graphs are made by first median-centering each OTU time series and dividing the curve into colored bands whose width is
the median absolute deviation (Inset, step 1). Next, the colored bands are overlaid (step 2) and negative values are mirrored upwards (step 3). Thus,
warmer regions indicate date ranges where a taxon exceeds its median abundance, and cooler regions denote ranges where a taxon falls below its
median abundance. Colored squares on the vertical axis correspond to stream colors in (A). Time series in both the stream plots and horizon graphs
were smoothed using Tukey’s running median. Lower black bars span Subject A’s travel abroad (days 71 to 122) and Subject B’s Salmonella infection
(days 151 to 159).
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We used an Augmented Dickey-Fuller (ADF) test [22]

to quantitatively characterize individual OTU dynamics

during periods of apparent overall community stability.

The ADF test rejects the existence of a unit root process,

such as a random walk, by testing whether time series

tend to return to an equilibrium value following fluctua-

tions. Importantly, processes like competition, which

leads to the sustained growth of successful taxa and the

decline of outcompeted ones, will lead to a failure of the

ADF test to reject the null hypothesis. Thus, a significant

ADF test suggests a restoring force governing a bacterial

species’ dynamics.

We found that most OTUs rejected the ADF null hy-

pothesis, confirming the visual appearance of microbiota

stability. The ADF results indicated that between 75% and

88% of bacteria exhibited stationary dynamics during the

examined date ranges (Figure 2A-C). Thus, most mem-

bers of gut and saliva microbial communities may remain

stable for periods lasting months. Moreover, we found no

correlation between ADF test results and bacterial abun-

dances, indicating that low- and high-abundance taxa are

equally likely to be stationary. If OTUs inhabit non-

overlapping niches, the observed stationary dynamics may

reflect variation in niche sizes due to daily fluctuations in

diet and other host factors.

Stability at the level of OTUs, however, does not ne-

cessarily indicate a lack of competition and drift. In fact,

the remaining 6% to 21% of non-stationary OTUs that

fail to reject the ADF null hypothesis may represent

competing species in overlapping niches. If genetically

similar species are more likely to compete for resources,

then these non-stationary OTUs should cluster together

phylogenetically. Indeed, we observe support for phy-

logenetic clustering of non-stationary OTUs in several

time ranges (Figure 2D-F) and dynamics consistent with

ecological competition (Figure 2G-I). In several cases,

species replacement occurred within days (Figure 2G,H).

This is surprising because it contrasts with the general
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Figure 2 Stability testing of gut and saliva microbiota time series. (A-C) Pairwise Jensen Shannon Distances between samples from Subject A’s
gut (A), Subject B’s gut (B), and Subject A’s saliva (C). Dark green regions indicate date ranges with similar microbiota. To quantify how stable individual
microbial taxa were across the labeled date ranges, we performed the Augmented Dickey Fuller (ADF) test, which evaluated the null hypothesis that a
given OTU is non-stationary (that is, the OTU tends to return to an equilibrium value). The majority of tested OTUs were stationary according to the ADF
test (88%, 85%, 84%, 79%, and 94% for date ranges I-V, P <0.05). (D-F) Phylogeny of stationary and non-stationary OTUs. Inner rings denote phyla (the
Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria and Tenericutes are colored purple, blue, green, yellow, and red, respectively). Outer rings are
white for stationary OTUs and red for non-stationary ones. Non-stationary taxa clustered phylogenetically for date ranges II (D), III (E), and V (F) (P <0.05,
P-test), supporting the hypothesis that closely-related taxa are more likely to be in competition. (G-I) Time series of closely-related, non-stationary OTUs
(Greengenes prokMSA ids given in boxes). An artificial abundance floor of 1e-5 was added to improve visibility. Shown are members of the genus
Lachnospira over date range II (G), the genus Akkermansia over date range III (H), and the genus Leptotrichia over date range V (I). The summed abundances
of the selected Lachnospira and Leptotrichia are stationary over the given date ranges (P <0.05, ADF test).
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stability of OTU abundances and suggests that OTU

stability is not simply due to slow microbial dynamics.

In addition to competition between species, competi-

tion may occur among populations of bacteria within a

single OTU. A recent study of marine bacteria showed

significant competition between closely-related popula-

tions that would not be distinguishable as distinct OTUs

in this study [23]. Thus, our findings support a model in

which most OTUs are attracted to an equilibrium level,

although ecological competition may occur within OTUs

and is sometimes seen among genetically related species.

Travel and enteric infection are associated with profound

community disturbance

Despite the overall evidence for microbiota stability, win-

dows spanning notable host actions and health changes

show evidence of broad community disturbance. The first

window coincides with Subject A relocating from a major

American metropolitan area to the capital of a developing

nation in Southeast Asia between days 71 and 122 of the

study. This subject was exposed to a novel diet and en-

vironment while traveling and had diarrhea on days 80 to

85 and 104 to 113. The second disruptive window accom-

panies an episode of food poisoning for Subject B, during

which the subject tested culture positive for Salmonella

sp. Consistent with this diagnosis, reads from the Entero-

bacteriaceae (Salmonella’s parent family) accounted for a

median of 10.1% of daily reads during the diarrheal illness

and peaked at 29.3% of reads on day 159 (Additional

file 5). Over the entire year, reads from the Enterobacteria-

ceae accounted for a median of 0.004% of each day’s reads.

Subject B did not use antibiotics during the diarrheal

episode.

The two subjects had qualitatively different responses to

perturbation. To summarize the broad effects of distur-

bance across thousands of microbial taxa, we grouped

OTUs into a limited number of clusters by their abun-

dance across Subject A’s travel period (Methods). Subject

A’s travel strongly perturbed community structure up to

the phylum level, coinciding with marked increases and

decreases in Bacteroidetes- and Firmicutes-rich clusters,

respectively (Figure 3A,B); ultimately, the Bacteroidetes to

Firmicutes ratio increased from 0.37 (pre-travel) to 0.71

(mid travel, days 90 to 103; Additional file 6). Despite

these changes in species abundance, there was not a large

gain or loss of bacterial species (Figure 3C). Of the 352

OTUs present in 95% of samples collected prior to travel,

322 (91%) had non-zero median abundances during the
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stable travel period. Similarly, of the 359 OTUs present

mid-travel, 329 (92%) had non-zero median abundances

prior to travel. The emergence of a Proteobacteria-rich

cluster of bacteria coincident with diarrhea was a notable

exception to the trend of shared species composition

before and during travel (Figure 3B), but these species did

not persist following return from travel. Thus, dominant

post-travel bacterial species were already in place before

Subject A’s return.

By contrast, clustering Subject B’s gut microbiota across

Salmonella infection revealed colonization of new species

and the reduction of many commensal species below

the sequencing detection limit (Figure 3G). Following

infection, OTUs that previously accounted for 44% of pre-

infection reads (Cluster 4) made up <1% of reads, while

OTUs accounting for only 15% of pre-infection reads

(Cluster 7) expanded to represent 65% of post-infection

reads (Figure 3F). Enteric infection in Subject B also

affected the presence and absence of common pre-

infection OTUs. Of the 202 OTUs found in 95% of sam-

ples prior to infection, 112 (55%) had a median value of 0

following infection and 28 (13.9%) were not observed

again. New OTUs appeared after infection, as 17 (14.7%)

of the 116 OTUs found in 95% of post-infection samples

had zero median abundance prior to infection. However,

these new taxa account for just 1.3% of post-infection

reads, indicating that collapses in OTU abundance follow-

ing enteric infection were primarily compensated for by

increased abundances of already present OTUs.

To understand the mechanisms underlying subjects’

departure from their initial microbiota states, we exa-

mined the reversibility of each perturbation in the con-

text of recent theories of microbiome ecology. It has

been hypothesized that new microbial community states

are reached when disturbances either change gut envi-

ronmental parameters, altering the presence or absence

of equilibrium points on a state landscape, or when they

alter gut microbiota themselves, shifting communities

between fixed equilibria (Figure 3D,H) [9,13,25]. Under

the environmental disturbance model, reversal of habitat

perturbation will restore the original microbiota state.

Under the community disturbance model, microbiota

can persist in new stable states after the perturbation

abates. We investigated which of these models were best

supported by community recovery dynamics.

The gut microbiota shift associated with Subject A’s

travel reversed upon return home, consistent with the

environmental disturbance model of microbiome state

transition (Figure 3D). Subject A’s gut microbiota reverted

to its pre-travel state in roughly 14 days according to a

distance-based analysis (Additional file 7). The reversible

state change may have resulted in part from Subject A’s

temporary adoption of a regional diet while living abroad.

Subject A resumed a normal eating pattern upon

returning home, as none of the subject’s tracked dietary

variables exhibited significant differences between the

months preceding and following travel (q >0.05, Mann–

Whitney U test). A microbiota disturbance model driven

by regional diet is supported by recent cross-sectional

studies, which hypothesize that varying nutritional profiles

of non-Western and Western diets promote distinct

microbiota in the developed and developing world [26,27].

Exposure to novel bacteria, including possibly diarrheal

pathogens, may have also contributed to Subject A’s

altered microbiota. However, elevated beta-diversity scores

among samples taken after moving abroad, but before the

onset of frank illness, suggests a role for geographic

change in altering Subject A’s microbiota (Additional

file 7).

In contrast, Subject B’s gut microbiota did not return to

its pre-infection state, which is consistent with the com-

munity disturbance model (Figure 3H). Indeed, Salmonella

is known to induce an inflammatory response in the host,

which disturbs commensal species and may facilitate

pathogen colonization [28]. Subject B’s microbiota per-

sisted in its altered state for the remaining 3 months the

subject collected regular fecal samples (Figure 2B).

What forces might enable Subject B’s post-infection gut

microbiota to persist? One possibility is that Subject B’s

diet changed after infection. However, we did not observe

significant changes among Subject B’s dietary variables in

the month following infection relative to the month

preceding infection (q >0.05, Mann–Whitney U test). An

alternative explanation is that the bacterial species lost

were replaced by competitors. To test this hypothesis, we

reasoned that closely related taxa are likely to share eco-

logical traits [29]. Therefore, we tested whether the bac-

teria gained (Cluster 7) and lost (Cluster 4) after infection

exhibited phylogenetic grouping.

The bacterial taxa that expanded in Subject B after

infection were indeed closely related to the taxa that were

lost, indicating a conservation of function rather than

species following infection. We found that taxa from both

clusters were primarily associated with a single clade of

Firmicutes (Figure 4; P <0.001, Fisher’s Exact Test). The

increase in Cluster 7 taxa from the Firmicutes subtree

after enteric infection (6.9% to 40.1% of reads) nearly mir-

rored the decline in Cluster 4 taxa from the same subtree

(37.2% of reads to 0.04%). Overall, Cluster 4 and 7 taxa

from this subtree accounted for 44.1% of reads prior to

infection and 40.2% of reads after infection. Thus, we

hypothesize that functional stability can be preserved even

when compositional stability is lost.

Lifestyle choices can affect select microbial taxa on daily

timescales

We only identified two host experiences that triggered

large shifts from stable points, but we found multiple host
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health and behavior factors that contributed to fluctua-

tions around stable points. Most host factors we tracked

behaved randomly over time (Additional file 8), support-

ing the notion that normal adult lifestyles present micro-

biota with an idiosyncratic array of daily perturbations.

We developed a novel analysis pipeline to identify putative

causal links between host factors and microbial time series

(Methods). This analysis was designed conservatively and

included several steps aimed at filtering out false positive

interactions. The pipeline also did not include dates

spanning travel or infection events, and it relied on OTU

clusters distinct from the ones assembled for the major

perturbation analyses. Pipeline development focused on

Subject A’s time series because that subject more densely

collected metadata than Subject B.

Our analysis identified a subset of gut and salivary

OTUs sensitive to host diet and behavior in Subject A

(q <0.05, Spearman correlation; Table 1 and Additional

files 9, 10, 11). Of the 28 groups of correlations we iden-

tified, 25 involved bacterial abundance shifts 1 day after

a change in host health or behavior. One notable excep-

tion to this pattern is a putative relationship between

salivary taxa and host exercise forward in time, which is

likely to be a false positive result. For Subject A’s salivary

microbiota, we observed flossing to be associated with

reduced concentrations of Streptococcus species, includ-

ing the dental pathogen S. mutans in the saliva. Flossing

has previously been shown to lower S. mutans oral load

[30]. Unexpectedly, we found body fat and weight nega-

tively correlated with a cluster of oral bacteria. One pos-

sible reason for this link is that subject hydration affects

body fat measurements on the scales we distributed to

subjects, as well as the flow rate, protein levels, and

osmolarity of saliva [31]. Changes to these environmen-

tal variables may in turn impede the growth of select

oral microbes.

In Subject A’s gut, fiber-rich foods positively correlated

with next-day abundances of clusters comprising more

than 15% of total community reads. These clusters were

enriched for Bifidobacteria, Roseburia, and Eubacterium

rectale species, which previous studies have identified

as fiber-sensitive [15,32-34]. Four Clostridiales OTUs,

including Faecalibacterium prausnitzii, were positively

correlated with eating citrus. F. prausnitzii is notable for

its potential therapeutic role in colitis [35] and is also

known to grow on pectin [36], a carbohydrate found in

citrus fruit [37]. We also detected a positive correlation

between consuming yogurt and Bifidobacteriales, which

are a common live culture in yogurts.

Using the same gut and salivary OTU clusters tested for

metadata interactions, we also explored potential links

between gut and saliva microbiota themselves. Healthy

humans swallow between 1 L and 1.5 L of saliva daily,

making it feasible that oral microbiota are regularly intro-

duced into the digestive tract [38]. Nevertheless, we did

not observe any significant temporal correlations between

Subject A’s gut and salivary OTU clusters across lag

periods ranging from −7 to +7 days (q <0.01, Spearman

correlation). Thus, our dataset did not support short-term

temporal interactions between gut and salivary microbiota

within an individual.

Conclusions
Despite the relationships inferred above, it is perhaps sur-

prising that given the multiple of tracked host variables,

we did not observe more correlations between host behav-

ior and the microbiota. For example, we did not observe

extensive links between gut microbiota and variables like

sleep, exercise, or mood. These findings suggest that

future longitudinal studies of human microbiota will not

have to exhaustively control for host behavior, as a wide

range of lifestyle attributes are unlikely to broadly disrupt

individuals’ microbiota. We note, however, that false nega-

tive interactions in this study may have been due to our

conservative analysis pipeline, which we biased against

inferring false positive correlations. It is also possible that

Figure 4 Phylogenetic evidence for competing gut bacterial

taxa. OTUs clustered by their dynamics across Subject B’s enteric
infection (Figure 3) were plotted on a reference phylogeny built using
16S rRNA sequences (Methods). Taxonomic assignments for each OTU
are shown on the inner ring and correspond with the color coding
from Figure 1. Taxa associated with increasing (Cluster 7, orange) or
decreasing (Cluster 4, blue) abundance after infection are indicated on
the outer ring. A monophyletic subtree within the Firmicutes (arrowed
and shaded) is significantly associated with taxa from the two clusters
(P <0.001, Fisher’s Exact Test).
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subjects’ self-awareness due to daily tracking skewed our

results. To guard against this outcome, we instructed sub-

jects not to deviate from their normal behavior during the

study. Moreover, subjects were not aware of their micro-

bial data as the study progressed. Lastly, even though we

tracked subjects closely, the range of health and behavioral

choices we measured was limited to the individual choices

of only two people over 1 year; larger and longer observa-

tional studies may cover a broader range of human behav-

iors and account for temporal effects, like seasonality.

The apparent robustness of human microbiota to many

host actions emphasizes the importance of the select host

factors that could be linked to microbial dynamics.

Notably, two linked host factors, fiber intake and host

geography, are thought to influence differences in gut

microbiota observed between the Western and developing

world. We found that bacteria sensitive to fiber intake

could respond to diet shifts within a single day, which is

consistent with the hypothesis that fiber plays a major

role in shaping gut microbiota [14,26,27]. However, a gut

microbe commonly found in the developing world and

linked to fiber intake, Prevotella, did not correlate with

subject fiber consumption in our study. In support of the

hypothesis that geography plays an important role in

Table 1 Significant correlations between Subject A’s metadata and microbiota

Body site Lag (days) Host factor Representative OTUs (n) ρ P value Abun. (%) Cluster ID Total OTUs

Subject A Gut 0 Stool: Hardness Eggerthella/Clostridium (11) -0.30 1.0E-06 0.2144 10 23

0 Stool: Time Of Day Eggerthella/Clostridium (11) 0.27 7.4E-06 0.2144 10 23

1 Nutrition: Fiber Clostridium (6) -0.38 7.4E-06 0.0442 6 9

1 Nutrition: Fiber Ruminococcaceae/F. prausnitzii (4) -0.44 1.1E-07 0.3745 8 8

1 Nutrition: Fiber Eggerthella/Clostridium (11) -0.39 3.3E-06 0.2144 10 23

1 Nutrition: Fiber Ruminococcus/R. gnavus/Clostridium (4) -0.51 2.9E-10 0.5479 51 12

1 Nutrition: Fiber Ruminococcus/R. gnavus/Clostridium (5) -0.51 3.8E-10 0.3495 52 7

1 Nutrition: Fiber Blautia (3) -0.38 7.6E-06 0.0346 53 3

1 Nutrition: Fiber Bifidobacteriales (13) 0.36 1.6E-05 6.0786 86 13

1 Nutrition: Fiber Coprococcus (8) 0.44 7.2E-08 4.2192 89 12

1 Nutrition: Fiber Clostridium (1) -0.42 4.6E-07 0.0716 111 1

1 Nutrition: Fiber Ruminococcus/R. gnavus/Clostridium (6) -0.44 1.2E-07 2.0690 118 14

1 Nutrition: Fiber Roseburia/E. rectale (30) 0.37 8.4E-06 5.0446 127 40

1 Food: OrangeJuice Clostridium (1) 0.28 4.7E-06 0.0457 106 2

1 Food: BreakfastBar Ruminococcus/R. gnavus/Clostridium (4) -0.27 6.6E-06 0.5479 51 12

1 Food: BreakfastBar Ruminococcus/R. gnavus/Clostridium (5) -0.40 2.9E-11 0.3495 52 7

1 Food: BreakfastBar Bifidobacteriales (13) 0.27 9.5E-06 6.0786 86 13

1 Food: BreakfastBar Clostridium (1) -0.43 5.3E-13 0.0716 111 1

1 Food: Yogurt Bifidobacteriales (2) 0.45 2.7E-14 0.0069 85 2

1 Food: Fruits: Fresh Clostridiales (4) -0.27 1.1E-05 0.1866 120 9

1 Food: Fruits: Citrus Ruminococcaceae/F. prausnitzii (4) 0.36 1.7E-09 1.7152 107 4

1 Food: Soup Clostridiales (1) -0.25 3.3E-05 0.0014 62 2

1 Food: Soup Blautia (21) -0.26 2.4E-05 3.8126 68 31

1 Food: Soup: Other Clostridiales (1) -0.27 1.3E-05 0.0014 62 2

1 Food: Soup: Other Blautia (21) -0.28 4.2E-06 3.8126 68 31

Subject A Saliva -7 Exercise: TookPlace S. mutans/S. sanguinis (2) -0.28 1.6E-05 0.0142 21 2

1 OralCare: Flossing S. mutans/S. sanguinis (2) -0.30 2.5E-06 0.0142 21 2

1 Fitness: BodyFat Prevotella (4) -0.36 1.4E-06 1.5761 35 14

Non-parametric statistics were used to identify metadata variables significantly correlated with clustered OTUs lagged forward or backwards in time (q <0.05,

Spearman correlation). Representative taxonomic names from each cluster are shown along with the percentage of overall reads accounted for by each OTU

cluster (‘Abundance’). Redundant correlations (for example, yogurt subtypes associated with the same OTU cluster) are shown in Additional file 9, and a full list of

taxa associated with each cluster can be found in Additional files 10 and 11. We excluded Subject A’s travel period and Subject B’s post-infection period from

metadata correlation analysis. No significant correlations were found among Subject B’s microbiota and metadata.
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shaping gut microbiota [26], we observed that travel to

the developing world provided the largest impact to the

gut microbiota of one subject over the course of 1 year.

Once again, however, this microbiota shift was not linked

to changes in the abundance of Prevotella. Instead, travel-

related changes were associated with abundance changes

among already-present bacteria, emphasizing the dura-

bility of gut microbial associations with their host [6].

The strength of microbial associations with a host does

appear limited though, as we find that a Salmonella in-

fection led to persistent declines among more than half

of commensal bacterial taxa. This time series represents

one of the first longitudinal observations of an enteric

bacterial infection in a human adult that includes subject

measurements before illness, and it raises key questions

for future study. Is post-infection recovery driven by

ecological forces such as migration rates and competitive

exclusion, or does the host play an active role in rebuild-

ing a stable ecosystem? If the host exerts top-down

control of the microbiome, how might it be achieved?

Possible mechanisms include pathogen-driven inflamma-

tion that ultimately affects tolerance to commensal bac-

teria [39]. Finally, what are the functional roles carried

out by different bacterial taxa leading to their robustness

in the face of species turnover, and why might members

of certain phyla, like the Firmicutes, be more susceptible

to local extinction? Additional studies of human micro-

biota response to infection are needed to address these

questions and should help elucidate the host and eco-

logical forces governing the dynamics of human-asso-

ciated microbial communities.

Methods
Ethical review

We obtained written informed consent from both subjects

enrolled in the study. This study was approved by the

MIT Committee on the Use of Humans as Experimental

Subjects (Study #0903003155) and complied with the

Helsinki Declaration.

Microbial sampling

Subject A collected gut microbiota samples between

days 0 and 364 of the study and saliva microbiota sam-

ples between days 26 and 364. Subject B primarily col-

lected gut microbiota samples between study days 0 and

252. Gut microbiota were sampled non-invasively using

fecal collection. Stool samples were taken in duplicate

by coring out feces with inverted sterile 1 mL pipette

tips. These tips were then deposited in 15 mL Falcon

tubes. Saliva was sampled by 10 s of oral rinsing with

10 mL of sterile phosphate-buffered saline and also

stored in 15 mL Falcon tubes. Samples collected at

home were stored temporarily at −20°C until transport

to the laboratory, where they were then stored in −80°C

freezers. Subject A’s samples collected abroad were

stored at −20°C, shipped to the United States on dry ice,

and then stored at −80°C.

DNA extraction

We used the QIAamp DNA Stool Mini Kit (Qiagen) and

a modified version of its protocol to isolate bacterial

DNA from fecal and saliva samples. For stool, we in-

cluded a bead-beating step at the beginning of DNA

extraction, in order to increase cell lysis. First, we used a

chilled centrifuge to remove frozen stool cores from the

1 mL pipette tips (30 s at 3,000 g and 4°C). Once sam-

ples thawed to 20°C, we added 700 μL of buffer ASL per

100 mg of stool. Next, we used a digital vortex (VWR)

and 2 mL of garnet beads (MoBio Laboratories) to break

apart stool samples (10 s at 3,000 rpm). We then bead-

beat the suspended stool with a Vortex Genie2 (MoBio

Laboratories) and 2 mL of 0.1 mm glass beads (MoBio

Laboratories) for 10 min at the setting ‘10’, in order to

physically lyse cells. Each tube was subsequently heated

at 95°C for 6 min to lyse remaining unbroken cells.

Afterwards, the Qiagen InhibitEX tablet was added and

we followed the QIAamp kit protocol.

For saliva, we initially captured bacterial cells from

saliva samples using a 0.22 μm filter (Millipore) and a

syringe to apply positive pressure. We placed these

filters into 180 μL of lysis buffer (without lysozyme) and

bead-beat on a Mini-beadbeater (Biospec products) with

0.1 mm glass beads for 1 min at room temperature and

at maximum speed. Next, we added another 180 μL lysis

buffer with 40 mg/mL lysozyme and spun for 1 h at

450 rpm and 37°C. Since filtered saliva likely contains

fewer PCR inhibitors than stool, we skipped addition of

the Qiagen InhibitEX tablet and then followed the

remainder of the QIAamp kit protocol.

DNA sequencing

We used the V4 region of the 16S ribosomal RNA gene

subunit to identify bacteria in a culture-independent man-

ner. Extracted DNA was amplified using custom barcoded

primers and sequenced with paired-end 100 bp reads on

an Illumina GAIIx according to a previously published

protocol [19].

OTU picking

We used the QIIME analysis pipeline (v1.3) to process

raw DNA reads into OTU counts [20]. We wrote a Py-

thon script to format raw sequence files for input into

QIIME. We used the split_libraries_illumina.py QIIME

script to initially process reads. To minimize the effects

of sequencing errors, we retained only high-quality,

full-length reads (max_bad_run_length was set to 0 and

the min_per_read_length was assigned to 101). We next

used the script parallel_pick_otus_uclust_ref.py to pick
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OTUs; this script relies on UCLUST [40], which can

perform gapped alignments against reference sequences.

We used as a reference a set of OTUs assembled at

97% similarity from the Greengenes database [41]

(constructed by the nested_gg_workflow.py QiimeUtils

script on 4 Feb 2011 [20]). We trimmed the reference

FASTA file to span only the 16S region sequenced by

our primers.

Sample quality control

We used pairwise similarity between samples to identify,

and subsequently correct or exclude cases of mislabeling or

mishandling that may have occurred in our sample process-

ing pipeline. Based on this analysis, we excluded Subject B

gut samples from days 229 and 230, which showed an un-

expected similarity to those of Subject A. We also excluded

a subset of gut samples stored in either ethanol (Subject A

gut days 75 and 76) or RNAlater (Subject A gut days 258 to

270) prior to DNA extraction. We chose not to include

these samples in our analysis since their storage protocol

differed from other samples and could introduce a bias in

our results. Finally, samples with unusually low read counts

(<10,000) were excluded from further analysis.

Host metadata

We collected metadata chronicling host health and beha-

vior using iOS devices. We modified a database iOS app

(TapForms) to facilitate recording subjects’ daily health

and behavior across 13 metadata categories: ailments,

bowel movements, daily notes, diet, exercise, fitness, loca-

tion change, medication, mood, oral hygiene, sleep, uri-

nation, and vitamin intake (described in more detail in

Additional file 12). At the beginning of the study, subjects

were familiarized with the TapForms app and instructed

to carry their iOS devices at all times. We asked subjects

to record daily health markers and actions relevant to the

metadata categories. We then used a custom Python script

to parse the TapForms SQL database and generate meta-

data time series for correlation with OTUs. A template of

the TapForms forms used in this study can be downloaded

and installed from the GitHub repository [42].

Augmented Dickey-Fuller (ADF) stationarity testing

We used the ADF test [22] to determine if and when

microbial taxa were at equilibrium. We employed the

ADF test implemented in the Statsmodels Python mod-

ule [43]. This method (‘adfuller’) was run on time series

mean-centered in log10-space and was called with

regression parameters of no constant and no trend

(regression = ‘nc’). The number of lags was chosen

using the t-statistic (autolag = ‘t-stat’). Test results were

compiled for the 100 most abundant OTUs in each

microbial community. We chose not to include less-

abundant OTUs in these analyses because the dynamics

of OTUs near our detection limit are more likely to be

noisy. We used the P-test [44] implemented in PyCo-

gent [45] (set to 1,000 permutations and the ‘corrected’

P value) to measure the significance of non-stationary

OTU clustering on the reference Greengenes 16S rRNA

tree.

Host factor/OTU correlation detection

We constructed a time series analysis pipeline to detect

relationships between host metadata and the micro-

biota. Our pipeline integrated steps to account for nu-

merical artifacts associated with microbiota studies, low

abundance OTUs, auto-correlated time series, and to

reduce multiple hypothesis testing (Additional file 13).

We designed several of these steps to avoid finding

spurious correlations between variables, which can

commonly occur in time series analysis [46,47]. To

facilitate understanding novel components of our

pipeline, we have provided online demonstrations and

Python code for time series normalization [48] and

detrending auto-correlated time series [49].

Normalization

Sequencing-based 16S rRNA surveys are usually

normalized by converting OTU sequence counts into

fractional abundances for each sample. However, this

standard technique leads to what is known as compos-

itional effects [50], and may cause false relationships

between OTUs, or between OTUs and metadata. For

example, suppose a host switches to a higher fiber diet,

which causes fiber-sensitive gut bacteria to multiply,

but does not affect fiber-independent OTUs. Standard

normalization will suggest the diet shift leads to more

fiber-sensitive bacteria and fewer fiber-independent

bacteria because the latter group comprises a smaller

fraction of the post-diet shift bacterial community. One

might then falsely conclude that fiber actively inhibits

fiber-independent OTUs when in fact those OTUs do

not respond to changes in the nutrient’s availability.

To avoid normalization artifacts when comparing

host metadata and microbiota, we developed a novel

normalization technique that does not assume sample

reads sum to the same fixed value (see subsection

below, Comparison to SparCC, for more details on how

this method differs from our previous work on micro-

biota correlation). The method we introduce here as-

sumes at least half of the OTUs held in common

between two communities do not change in abundance.

We then use statistics robust to the effect of outliers to

estimate the median OTU fold-change between com-

munities and rescale all OTUs by that value (Additional

file 14). Mathematically, we model OTUs in two sam-

ples x (the observed) and y (the reference) as yi =mixi and

find the median mi, which we call m. We then rescale all
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xi by m. Unlike the standard normalization, our technique

does not infer abundance changes in all OTUs when only

a small number actually change. Moreover, since our

method does not require that each samples’ reads sum to

the same value, we can compare total bacterial load

between samples.

Our regression technique is implemented as follows.

First, we normalized time points in the standard manner

so that all fractional OTU abundances each day sum to 1.

Second, we restricted our analysis to a subset of highly-

abundant OTUs, since regularly undetected OTUs will

have a zero or undefined mi. We then sorted OTUs by

abundance and selected the first set of OTUs that

accounted for 90% of median daily reads. Third, we

randomly chose time points to normalize. We normalized

each time point to a reference community (rather than a

single time point), to minimize the effects of anomalous

time points during normalization. We did not use the

same reference community for each time point since mul-

tiple microbiota states may exist in a single time series

(for example, Subject B before and after diarrheal infec-

tion). Rather, we computed a reference for each sample

based on other time points with similar community struc-

ture. We used a weighted median across all time points to

compute reference OTU values, where we set time point

weights to be (1 - j)2 and j was the pairwise JSD score to

the sample being normalized. Our OTU abundance data

appeared heteroscedastic, meaning that the variance of

more abundant OTUs was higher than the variance of less

abundant OTUs. We applied a common solution to this

problem, which was to solve for mi in log-space. Fourth,

we discarded time points with an uncertain estimate of m

(median(|yi - mxi|) > 0.4).

Because no gold standard dataset matches sequen-

cing-base 16S surveys to overall bacterial load in the

human gut, we used simulated data to test our

normalization scheme. We modeled synthetic microbial

communities on microbiota observed in our ex-

periments. Each OTU in our synthetic community

behaved according to an Ornstein-Uhlenbeck (OU)

process, which can be thought of as a random-walk

modified to mean-revert over time. We simulated an

OU process using the following function [51], where Si
is OTU abundance at time i, λ describes how quickly

the process returns to the mean, μ is the mean, σ the

average magnitude of fluctuations, and δ is the time

between simulation steps (we set to 1):

Siþ1 ¼ Sie
−λδ þ μ 1−e−λδ

� �

−σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−e−2λδ

2λ

r

N0;1

We calculated maximum likelihood OU parameters

for 3,383 OTUs drawn from Subject B’s gut time

series using the following system of equations [51]:
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� �
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To test our normalization technique in the face of

microbiota perturbations, we simulated two OU pro-

cesses for each OTU: one calibrated using Subject B’s

pre-infection samples and one using post-infection

samples. We joined these processes (each with 50 time

points) into a single time series (100 time points). Lastly,

we simulated daily microbiota surveys by randomly

sampling OTUs according to their fractional abundance

at each time point. We randomly chose total read counts

from the set of read counts observed in Subject B’s

microbiota time series.

Our robust regression accurately normalized the simu-

lated time series. We evaluated our method by first trac-

king changes in bacterial load over time within our

simulated communities. We compared these changes to

bacterial load predictions from normalized time series of

synthetic sequencing runs. We note that the standard

normalization approach cannot infer bacterial load

changes, since it predicts each samples’ OTU abundances

sum to the same value. Over four separate synthetic data-

sets, the Spearman correlation between simulated bacter-

ial loads and our inferred bacterial loads was never less

than 0.58 (all P values ≤1.37e-10; Additional file 15), even

after accounting for the autocorrelated nature of total

bacterial load (see section below on Autocorrelation

elimination).

Comparison to SparCC

Surveys of 16S rRNA are usually treated as fractional

abundances, rather than absolute ones. This traditional
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approach leads to read totals that sum to 1, meaning

fractions cannot change independently of each other; this

in turn could lead to false relationships between OTUs, or

between OTUs and metadata [52]. We have previously de-

veloped a method, termed SparCC, for inferring correla-

tions between OTU from genomic survey data [50].

However, SparCC applies to independent samples, while

this study is concerned with autocorrelated time series.

Moreover, in this study we are interested in inferring cor-

relations between OTUs and metadata, whereas SparCC

focuses solely on inter-OTU correlations. We therefore

introduced here a new method for normalizing 16S rRNA

time series, as well as finding metadata-OTU correlations.

OTU filtering

We only tested relationships between common OTUs

(present in at least half of a given period’s samples) and

host metadata. Focusing on common OTUs increased

the likelihood we detected true interactions, since we

could analyze shifts in bacterial abundance and not

simply OTU presence or absence. Moreover, filtering

out OTUs reduced the total number of statistical tests

we performed and thus reduced the burden of multiple

hypothesis testing. After filtering, 750 OTUs, 621 OTUs,

and 289 OTUs remained from Subject A’s gut, Subject

B’s gut, and Subject A’s salivary microbiota time series,

respectively.

Autocorrelation elimination

Autocorrelated processes occur when measurements

taken at one time point are correlated with measurements

at previous or future time points. For example, subjects’

weights in this study are autocorrelated, as their weight on

a given day is likely to be highly similar to their weight the

previous day. This poses a challenge for finding statistical

relationships between host metadata and their microbiota,

because it is well-known in time series analysis that cross-

correlations between autocorrelated variables have unreli-

able P values [46,47]. To avoid this problem, we fitted

time series models to each variable and computed cross-

correlations on the differences (residuals) between mod-

eled trends and the observed data [47]. For the microbial

time series, we use the R (ver. 2.15.1) ‘forecast’ package to

fit standard time series models known as autoregressive

integrated moving average (ARIMA) models [53]. ARIMA

models are commonly used tools in econometrics and

time series analysis to model longitudinal data [46]. We fit

ARIMA parameters using the ‘auto.arima’ function with a

maximum p of 2, a maximum q of 2, and a d of either 0

or 1. We chose which value of d to use by minimizing a

common measure of model complexity (Bayesian infor-

mation criterion). We applied a similar procedure to the

host metadata, except in the case of variables whose be-

havior appeared binary (that is, in at least 75% of the time

series, the variable had a value of zero). Because ARIMA

models may not be appropriate for non-continuous time

series [54], we used a logistic regression model designed

for binary longitudinal data (the R ‘bild’ package [55]). We

calculated two kinds of serial dependence models (first-

order and second-order) for each metadata variable and

again picked the one that minimized a measure of model

complexity (the Akaike information criterion). In all cases,

if the autocorrelation of the residual time series was higher

than the autocorrelation of the original time series itself,

we discarded the residual series and worked only on the

original data.

Clustering

To further reduce the number of tested microbial and

metadata interactions, we clustered OTUs sharing similar

temporal dynamics. We computed pairwise distances be-

tween OTUs as 1-ρ, where ρ was the Spearman correlation

(‘rcorr’ function in the R ‘hmisc’ package [56]) between the

OTUs’ time series. We rounded negative distances up to 0.

We next passed the OTU distance matrix to the ‘linkage’

function in the SciPy [57] (ver. 10.1) hierarchical clustering

package (scipy.cluster.hierarchy). We used the ‘weighted’

linkage method to compute OTU clustering. Cluster as-

signments were retrieved using the ‘fcluster’ function with

the clustering criterion set to ‘distance’ and a clustering

threshold of 80% of the maximum distance between nodes

in the linkage matrix. This pipeline produced 138 clusters

for Subject A’s gut time series, 90 clusters for Subject B’s

gut time series, and 46 clusters for Subject A’s salivary time

series (Additional file 16). We modeled cluster dynamics

using the median OTU value at each time point over all

the OTUs within the cluster. Lastly, to again guard against

autocorrelations in the cluster time series, we fit ARIMA

models to each cluster and computed residual time series.

Correlation

We used rank-based non-parametric statistics to detect

correlations between time series of detrended OTU clus-

ters and detrended metadata. We lagged the cluster time

series between −7 and +7 days, relative to the metadata,

and computed Spearman correlations again using the

‘rcorr’ function in the R ‘hmisc’ package. Microbial or

metadata variables with high autocorrelation (P <0.01)

were excluded from analysis. We estimated false discovery

rates separately for a given lag and body site (‘fdrtool’

R package [58]). As a final check for spurious cross-

correlations [47], we excluded interactions that when

regressed against each other, exhibited auto-correlated

errors (P <0.01, Durbin-Watson test [59]).

Disturbance analyses

To simplify our analysis of how OTUs responded to pro-

longed travel abroad or enteric infection, we constructed a

David et al. Genome Biology 2014, 15:R89 Page 11 of 15

http://genomebiology.com/2014/15/7/R89



clustering pipeline similar to the one used in our host-

factor/microbiota correlation testing. We inputted stan-

dardly normalized time series into this pipeline because

our robust regression-based normalization routine could

not confidently infer scaling factors during both Subject A

and B’s diarrheal illnesses. We also used a slightly more

permissive clustering threshold than the previous section

(90% of the maximum distance between nodes in the link-

age matrix) because we wanted to study broad bacterial

trends and not more minor OTU dynamical patterns. This

clustering pipeline yielded 11 OTU clusters for both

subjects’ time series (Additional file 17).

We used Fischer’s exact test (SciPy.stats) to determine

if clustered OTUs shared significant phylogenetic simi-

larity. We used the Greengenes 16S tree from OTU

picking as our reference phylogeny and the PyCogent

library [45] to analyze this tree. Closely-related taxa with

similar temporal dynamics could reflect sequencing

errors associated with a single strain; this artifact could

in turn cause falsely-significant phylogenetic grouping.

To control for such errors, we collapsed subtrees of

OTUs sharing the same cluster assignment and leaf

pairwise distances less than 0.2 down to a single leaf.

We then used the collapsed reference tree to construct a

2X2 contingency table with rows counting how many

OTUs were part of, or excluded from, a given set of

clusters and columns counting how many OTUs were

within, or outside of, a given subtree.

Data availability

The read data for all samples have been deposited in the

European Bioinformatics Institute (EBI) European Nucleo-

tide Archive (ENA) under the nucleotide accession number

ERP006059. Subject A’s nutritional metadata (that is, esti-

mated daily intake of calories, total fat, saturated fat, cho-

lesterol, protein, sodium, carbohydrates, fiber, sugars, and

calcium) are provided under the group accession number

SAMEG179160 and can also be found in Additional file 18.

For other metadata requests, please contact the corre-

sponding author.

Additional files

Additional file 1: Host metadata categories. We processed host daily
records into 349 variables grouped into the categories: ailments, bowel
movements, exercise, fitness, specific food intake (parsed by a text-mining
algorithm modeled on a food frequency questionnaire), location, medication,
mood, nutrition (measured via the CalorieKing database), oral hygiene, sleep,
urination, and vitamin supplementation.

Additional file 2: Subject demographic information. Subjects were
unrelated men who volunteered for extensive personal tracking.

Additional file 3: Microbiota similarity over time measured with the

Jensen-Shannon Distance (JSD). (A-C) Pairwise JSD distances between
Subject A gut samples (A), Subject B gut samples (B), and Subject A saliva
samples (C). (D-K) Median pairwise JSD as a function of sample temporal

distance (blue points). The median value for each curve is shown as a
solid red line. Asymptotic curves, which appear to converge on the solid
red lines, are consistent with the notion of a stable microbiota over a
given date range (D-F, H, K). Notably, pairwise JSD curves spanning
distinct stable periods do not exhibit asymptotic behavior (G), or have
relatively high asymptotes (J).

Additional file 4: Highly abundant OTUs are also persistent. Curves
show the fraction of total reads (blue) and the fraction of total OTUs
(green) accounted for by OTUs present in at least a given fraction of
samples. Curves made using (A) Subject A gut samples from days 0 to 69
and 136 to 364, (B) Subject B gut samples from days 0 to 144, and (C) all
Subject A saliva samples.

Additional file 5: Fractional abundance of Enterobacteriaceae over

time in Subject B’s gut. Each colored point represents the abundance of
Enterobacteriaceae on a given date. Subject B suffered from a diarrheal illness
from days 151 to 159 of the study, during which he was culture-positive for
Salmonella. The Enterobacteriaceae, the parent family of Salmonella, account
for a median of 0.004% of daily reads over the entire time series. During days
151 to 159, this family comprises a median of 10.1% of each day’s reads and
peaks at 29.3% of reads on day 159.

Additional file 6: Bacteroidetes to Firmicutes ratio over time in

Subject A’s gut. Subject A’s prolonged travel abroad shown in gray (days
71 to 122). The median Bacteroidetes/Firmicutes ratio in Subject A’s gut was
0.37 for days <70, 0.71 for days 90 to 103, and 0.38 for days >122.

Additional file 7: Gut microbiota shifts across travel. Plotted over
time is the Jensen-Shannon Distance (JSD) between Subject A gut microbiota
and the median gut microbial community when the subject lived in the
United States. Subject A left the United States on day 70 and returned on
day 122 (travel period shaded in gray); he suffered from diarrheal illnesses
between days 80 and 85 and days 104 and 113 (red shading). The red
dashed line denotes the median JSD between domestic gut microbiota
samples and the median domestic gut microbiota. The JSD increase after
arriving abroad, but before the first diarrheal illness (days 71 to 79) argues that
travel abroad was sufficient to alter Subject A’s gut microbiota. The JSD
declines below the red median JSD line on day 136, suggesting that recovery
of gut microbiota from travel required 14 days.

Additional file 8: Statistics of host metadata dynamics. We measured
day-to-day variability of host factors using the 1-day autocorrelation, which
quantifies the correlation between a variable and its value the following
day. (A) Autocorrelation of metadata variables tracked in Subjects A and B.
Variables are colored by metadata category. Variables whose autocorrelation
is only defined for one subject are shown using single-axis scatter plots.
Most tracked host factors behaved randomly over time: the median
autocorrelation across host factors was 0.14 in Subject A and 0.06 in Subject
B. Exceptions to this trend were subject location, weight and body fat,
which had autocorrelations >0.4 in both subjects. (B) Scatter plots of
day-to-day variation among host factors with varying autocorrelation. Each
point represents metadata value on a given day (t: x-axis) and the following
day (t + 1: y-axis).

Additional file 9: All significant correlations (q <0.05) between

subject metadata and microbiota. Table includes ‘redundant’
correlations involving similar food items and the same OTU cluster (for
example, Food:Yogurt and Food:Yogurt:Non-Activia are both correlated
with OTU cluster 84). A non-redundant list of correlations is presented in
Table 1.

Additional file 10: Taxonomy of Subject A saliva OTUs correlated

with host metadata. Shown are oral bacterial taxa assigned to bacterial
clusters that have significant correlations with host health or lifestyle
(Table 1). Clusters were defined using hierarchical clustering (Additional
file 16) of bacteria with similar temporal dynamics. Taxonomic IDs and
Latin names are drawn from the Greengenes database.

Additional file 11: Taxonomy of Subject A gut OTUs correlated

with host metadata. Shown are gut bacterial taxa assigned to bacterial
clusters that have significant correlations with host health or lifestyle
(Table 1). Clusters were defined using hierarchical clustering (Additional
file 16) of bacteria with similar temporal dynamics. Taxonomic IDs and
Latin names are drawn from the Greengenes database.

David et al. Genome Biology 2014, 15:R89 Page 12 of 15

http://genomebiology.com/2014/15/7/R89

http://www.biomedcentral.com/content/supplementary/gb-2014-15-7-r89-S1.xls
http://www.biomedcentral.com/content/supplementary/gb-2014-15-7-r89-S2.xlsx
http://www.biomedcentral.com/content/supplementary/gb-2014-15-7-r89-S3.pdf
http://www.biomedcentral.com/content/supplementary/gb-2014-15-7-r89-S4.pdf
http://www.biomedcentral.com/content/supplementary/gb-2014-15-7-r89-S5.pdf
http://www.biomedcentral.com/content/supplementary/gb-2014-15-7-r89-S6.pdf
http://www.biomedcentral.com/content/supplementary/gb-2014-15-7-r89-S7.pdf
http://www.biomedcentral.com/content/supplementary/gb-2014-15-7-r89-S8.pdf
http://www.biomedcentral.com/content/supplementary/gb-2014-15-7-r89-S9.xls
http://www.biomedcentral.com/content/supplementary/gb-2014-15-7-r89-S10.xls
http://www.biomedcentral.com/content/supplementary/gb-2014-15-7-r89-S11.xls


5

July

Additional file 12: Description of host metadata categories.

Additional file 13: Flowchart of time series analysis pipeline for

detecting OTU-metadata correlations. We implemented normalization,
low-abundance OTU filtering, and autocorrelation elimination steps to
reduce the likelihood of inferring spurious correlations. We also used
OTU filtering and clustering to reduce the number of hypothetical
OTU-metadata interactions tested.

Additional file 14: Regression-based normalization example. (A) A
toy community with five OTUs (blue dots) sampled on 2 different days is
used to illustrate our normalization scheme. The Day 2 sample is
sequenced twice as deeply as the Day 1 sample. Moreover, the
community is unchanged across these days, except for one OTU that
decreases by 90% on Day 2 (arrowed). Our normalization technique uses
regression to infer relative differences in total bacterial abundance
between samples. We use median-based line-fitting (blue line), which is
robust to outliers and whose slope reflects the two-fold difference in
sequencing depth. A standard least-squares regression through the origin
is affected by the OTU with sharply decreased abundance. (B) Day 2 OTUs
rescaled by the robust regression scaling factor are unchanged relative
to Day 1 (blue dots). By contrast, rescaling Day 2’s OTUs with standard
techniques (Day 2 OTU levels sum to Day 1 OTU levels; green dots)
causes artifactual day-to-day changes among four OTUs (arrowed).

Additional file 15: Results of testing normalization with four

simulated datasets. (A) We simulated bacterial communities over
time using Ornstein-Uhlenbeck processes fit to observed gut bacterial
dynamics in Subject B. Total bacterial load among the synthetic
communities varied over time (blue line; mean-centered on 1). We
simulated 16S sequencing runs using the synthetic time series, and
input the runs into our robust regression-based normalization. Bacterial
load estimated from the normalized communities (red line) closely
tracked the simulated bacterial load, suggesting our normalization
scheme is accurate. (B) Even after accounting for autocorrelations in
bacterial load over time (see Methods section on Autocorrelation

elimination), we observed significant correlations between the simulated
and inferred bacterial loads.

Additional file 16: Hierarchical clustering of detrended OTUs.

Matrices show pairwise Spearman correlations between detrended OTU
time series. Red points correspond with OTU pairs sharing more positive
correlations, and blue points correspond with OTU pairs sharing more
negative pairwise correlations. We used correlation matrices to perform
hierarchical clustering. Clustered OTUs are segregated on this hierarchy
by line color. Clustering yielded 138, 90, and 46 OTU clusters for Subject
A’s gut, Subject B’s gut, and Subject A’s saliva time series, respectively.
These clusters were ultimately tested against host factors to detect
microbiota-lifestyle interactions (Table 1).

Additional file 17: Hierarchical clustering of OTUs across

disturbances. Matrices show pairwise Spearman correlations between
OTUs tracked before and after Subject A’s prolonged travel abroad or
Subject B’s acute enteric infection. Red points correspond with OTU pairs
sharing more positive correlations, and blue points correspond with OTU
pairs sharing more negative pairwise correlations. We used correlation
matrices to perform hierarchical clustering. Clustered OTUs are
segregated on this hierarchy by line color. Clustering yielded 11 OTU
clusters for both time series. Clusters here were used to analyze subjects’
gut microbiota response to large perturbations (Figures 3 and 4).

Additional file 18: Sample and nutritional metadata. Metadata are
provided for nucleotide sequences deposited on the EBI/ENA database
under accession number ERP006059. These metadata include Subject A’s
nutritional data, provided for the day preceding each sample.
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