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Abstract

Animals live in symbiosis with numerous microbe species. While some can protect hosts

from infection and benefit host health, components of the microbiota or changes to the

microbial landscape have the potential to facilitate infections and worsen disease severity.

Pathogens and pathobionts can exploit microbiota metabolites, or can take advantage of a

depletion in host defences and changing conditions within a host, to cause opportunistic

infection. The microbiota might also favour a more virulent evolutionary trajectory for invad-

ing pathogens. In this review, we consider the ways in which a host microbiota contributes to

infectious disease throughout the host’s life and potentially across evolutionary time. We fur-

ther discuss the implications of these negative outcomes for microbiota manipulation and

engineering in disease management.

Introduction

An infection by pathogens (and parasites) can vary from relatively benign to lethal. The degree

of harm caused during infection can be driven by aspects of pathogen biology, such as trans-

missibility [1], infective dose [2], or whether they are facultative/obligate [3], as well as by host

biology, and the surrounding biotic or abiotic environment [4]. While hosts can be genetically

predisposed to susceptibility [5], disease outcomes can be made worse if hosts have a comor-

bidity [6] or an impaired or over-reactive immune response [7]. When invading a host, patho-

gens will also interact with other microbial species [8]. The outcome of infection is thus held

in the balance by the complex interactions between a host, its microbiota, and both the biotic

and abiotic environment [4].

Microbiota are vital to the functioning of their multicellular host organisms. This realisa-

tion has fuelled great interest in the effects of microbes on plant [9] and animal host health

[10]. Microbe-mediated protection against infection is a widespread phenomenon across host

species [11], with components of the microbiota and their interactions with a host and the

wider microbial community mediating susceptibility to invading pathogens and internal

pathobionts [12,13]. There are several ways to categorise and define pathogens based on their

biology [3]. Here, we use the term “pathobiont” to mean normally harmless components of

the microbiota which have pathogenic potential in some contexts [14–16]. We distinguish

these from “invading pathogens,” by which we mean pathogens (including parasites) acquired

from a source external to the host (i.e., from a different host or from the environment).
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It is well established that host microbiota generally play a beneficial role in preventing or

fighting infection [17–20]. Microbe-mediated protection can be mediated via resource compe-

tition [21,22], interference competition [23], or the host immune response [24,25]. However,

the relative magnitude of these benefits might decrease when microbiota components, in some

cases, directly or indirectly facilitate the onset of disease caused by invading pathogens or

pathobionts (Table 1). Although some invading pathogens can exploit cues or changes in the

resource/immunological environment shaped by the microbiota itself, the context of host

health is also an important determinant of infection. Diminished host health can remove the

beneficial services the microbiota normally provides. Changes in host health can correlate with

dysbiosis of host microbiota [26–28], and opportunistic microbiota components can transition

to become harmful among the perturbation [26,29–31]. This perturbation and transition of

commensals towards pathogenicity can sometimes even be caused by invading pathogens

[32,33]. Moreover, protective microbes can become relatively costly to their host in the absence

of the invading pathogens they would otherwise suppress [31,34,35] (i.e., the same microbial

species is protective in one context, but costly in another; see “Costly protective symbionts”).

To understand the multifaceted contributors to infectious disease, the potentially harmful

aspects of the microbiota and its components warrant consideration. Microbe-based therapies

for disease are being investigated as alternatives to antimicrobials for a wide range of animal

hosts, from endangered amphibians to humans [36–38]. A thorough evaluation of the poten-

tial for host microbiota to contribute to infectious disease is necessary to establish their utility

in disease management as anti-infective prophylactics, probiotics, and prebiotics. In this

review, we will discuss the conditions under which microbiota can promote or worsen infec-

tion outcomes, with evolutionary consequences. We will then discuss the implications of this

potential to facilitate pathogen invasion and infection from within for microbiota

manipulation.

Promotion of pathogen invaders

Microbiota components modify the within-host environment

Metabolic environment. Microbiota metabolites are beneficial to hosts in myriad ways.

They help to prime the immune system, act as antimicrobials to combat infection, and aid host

metabolism [24,80–82]. However, microbiota metabolites can also provide a convenient and

easily attainable source of food for invading pathogens to exploit. Metabolic cross-feeding, in

which a product of metabolism from one strain is used by another strain, generates novel

niches that may benefit pathogens [83]. This assimilation of resources can enhance energy pro-

duction within the pathogen, enabling increased virulence and rapid growth, and thus more

severe disease. For example, the human gut commensal Bacteroides thetaiotaomicron (Bt) can

exacerbate infection caused by enterohaemorrhagic Escherichia coli (EHEC) via metabolic

cross-feeding [84]. Btmodifies the metabolic environment at the site of EHEC infection,

increasing metabolites involved in gluconeogenesis which are then sensed by the virulence-

regulating transcription factor Cra. Virulence is up-regulated as a result and, concurrent with

invasion of the gut epithelial barrier (also facilitated by Bt), EHEC induces a greater degree of

host pathology and higher risk of mortality.

Individual species of the microbiota cannot always be pinpointed for their role in facilitat-

ing infection. While Bt was specifically identified in the previous example as a contributor to

EHEC infection [84], microbial metabolites from multiple components of the microbiota can

also collectively enhance EHEC virulence [85]. A comparison between human and mouse

microbiota metabolites illustrated that the increased severity of EHEC infection in humans,

compared to that in mice, is driven by distinct human gut microbiota metabolites [29]. These
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metabolites specifically induce increased expression of flagellin in the pathogen, increasing its

ability to invade host tissues. Distinct microbial communities can thus shape different infec-

tion outcomes via metabolite production.

The metabolic environment within a host is a crucial contributor to the pathogenesis of

invading organisms. It can be extensively modified by components of the microbiota to both

the detriment and the benefit of the host. Changes in host health can likewise alter the within-

host metabolic environment, contributing to disease onset from resident commensals [62].

Given the diversity of species housed by the animal gut, there are complex interactions to pick

Table 1. Summary of the drivers and mechanisms by which the microbiota facilitate harmful infection.

Pathway to

pathogenesis

Driver Mechanism Due to change

in host health?

Illustrative example Other

relevant

references

Facilitate

pathogenic

invaders

Niche exploitation Invading pathogen cross-feeds

off microbiota metabolites

No Human microbiota metabolites increase severity

of Escherichia coli infection [29]

[39–43]

Invading pathogen exploits host

transmission of microbiota

components

No Trypanosomatid parasite Leptomonas
pyrrhocoris exploits host transmission of

mutualist Coriobacteriaceae microbial

symbionts between firebug hosts to aid its own

transmission [44]

[45,46]

Provide cues Pathogens require contact with

microbiota to initiate infection

No Bacterial surface structures (Type 1 fimbriae)

bind to proteins at the poles of Trichuris muris
worms’ eggs and trigger hatching [47]

[48]

Alter immunological

environment

Microbiota components increase

activity of specific immune cells,

enhancing susceptibility to

infection

No Lactobacillis bacteria in mouse microbiome

elevates regulatory T-cell frequencies known to

result in greater helminth establishment [49]

Lower ecological resistance Lower microbiota diversity

reduces colonisation resistance/

competitive exclusion

Yes Loss of specific microbiota components

correlate with onset of Clostridioides difficile
infection in a mouse model [50]

[51–53]

Facilitate

infection from

within

Transitions from (low

abundance) commensal to

(high abundance)

pathobiont

Lower microbiota diversity from

biotic or abiotic stress to hosts

Yes Stress in the brook charr fish Salvelinus
fontinalis induces microbiota dysbiosis, causing

reduction in beneficial bacteria and increase in

opportunists [28]

[36,54–56]

Metabolic changes in

pathobionts

No Bacterial nucleoside catabolism of gut luminal

uridine to uracil and ribose facilitates the

commensal-to-pathogen transition in

Drosophilamicrobiota components [57]

[58–60]

Pathobiont takes advantage of

disruption to host homeostasis

Yes High fat diet and subsequent inflammation in

the human gut leads to increase in opportunism

from within the microbiota [26]

[61–65]

Overexpansion of resident

pathobiont

Sometimes Resident Staphylococcus aureus overexpansion

on the skin corresponds to onset of atopic

dermatitis in humans [66]

[67–70]

Antibiotic treatment Yes Antibiotic-mediated alteration of the gut

microbiota changes the metabolic profile of this

environment to one that favours expansion of C.

difficile in a mouse model [71]

[72–75]

Within-host translocation Disruption to gut barrier

function and/or bacterial

overgrowth

Yes� InManduca sexta (tobacco hornworm),

disruption of the gut epithelial barrier led to

translocation of the gut microbiota component

Enterococcus faecalis, ultimately leading to sepsis

[76]

[32,33,77–79]

Illustrative examples for each mechanism and other relevant references provided. We highlight whether a change in host health affects the pathogenic potential of the

microbiota.

� Infection by invading pathogens can cause this disruption to host health.

https://doi.org/10.1371/journal.ppat.1009514.t001
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apart. Research is moving towards characterising the functionality of the microbiome by holis-

tically sampling its taxonomic and genomic repertoire in addition to the chemical phenotype.

Progress has been made in uncovering pathogen-induced disease phenotypes that are

enhanced by the microbiota through application of multi-omics strategies [86,87] (see

Table 2). Nonetheless, data integration and interpreting meaningful biological signatures of

infection (e.g., biomarkers of infection) remain a challenge [88].

Immunological environment. Microbiota can prime the host immune response, altering

their susceptibility to invading pathogens. Pathogen infectivity can be indirectly reduced by

host microbiota this way [89–93]. Conversely, launching the immune response can inadver-

tently boost infection by some infectious agents [49]. Reynolds and colleagues [49] found that

Lactobacillaceae species abundance in the mouse duodenum positively correlated with suscep-

tibility to the nematode parasiteHeligmosomoides polygyrus and heightened immunosuppres-

sive regulatory T-cell and Th17 responses. Subsequent treatment of mice with Lactobacillus
taiwanensis—a rodent commensal dominant in infected mice—elevated regulatory T-cell fre-

quencies and promoted the establishment ofH. polygyrus. The fact that microbiota composi-

tion changed afterH. polygyrus exposure towards more “helpful” bacterial species suggests that

parasites could actively modify the microbiota to improve their survival. This manipulation

could occur directly via antimicrobials [94] or by pathogen-induced host inflammation [95].

Physical disruption of the host site might also cause changes in resource availability, shifting

microbiota composition [96].

Invading pathogens might evolve in response to host microbiota

Microbes can evolve quickly [100] because of their large population sizes and rapid generation

times. Microbiota components can evolve within their host’s lifetime with consequences for

host health [101]. For example, a mildly pathogenic strain of the gut microbiota component

Enterococcus faecalis has been shown in nematode hosts to evolve to become more protective

due to competitive interactions with a virulent pathogen [23]. Likewise, the pathogen Candida
albicans was shown to evolve towards protective mutualism when introduced to a new host in

a mouse model [102].

Table 2. Representative examples of omics approaches used to deduce the role of microbiota components in facilitating infection and worsening infection

outcomes.

Approach Description Example findings

Proteomics Characterises the protein profile of community being studied.

Potential use in identifying biomarkers of infection within the

microbiome.

The saliva proteome of human hosts was found to reflect the

dynamics of the oral microbiome, including community changes

that lead to disease. Identification of biomarkers within the saliva

proteome could be used to diagnose oral infections [97].

Metabolomics Elucidates specific metabolites present under study conditions.

Gives insight into metabolites required for pathogenesis/

mutualism by microbiota components.

Antibiotic-mediated alteration of the human gut microbiota

shifts the global metabolic profile in this niche towards one that

favours C. difficile infection. Specific metabolites were identified

that change in abundance following antibiotic treatment. These

changes in tandem benefit C. difficile [71].

Transcriptomics (also referred

to as functional gene

expression)

Enables characterisation of the abundance of RNA

(transcriptional activity) of both coding and noncoding regions

of the genome. This approach is more informative than gene

presence/absence.

Differential transcript expression identified in amphibian host

populations with different disease history relating to ranavirus

infection. Provides information about how hosts respond to

infection [98].

Genome-scale metabolic

modelling

Integrates genomic information with metabolomics data to

create predictive models of metabolism in a given study

condition.

Identification of nutrient conditions in a multispecies biofilm

model of the human gut that results in C. difficile–associated

dysbiosis. Statistical modelling predicted the experimentally

observed metabolic changes causative of an increase in C. difficile
abundance and the subsequent decrease in abundance of

protective microbiota components [99].

https://doi.org/10.1371/journal.ppat.1009514.t002
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Invading pathogens, in turn, may evolve to overcome or exploit the host microbiota. They

can readily overcome barriers to their establishment, including from host resistance [103],

antibiotic treatments [104], and vaccines [105]. Theory has shown that pathogens can evolve

virulence factors to overcome commensals in the host microbiota, either directly killing their

competitors [106] or inducing host inflammation as a form of “proactive invasion” [95].

Experimental evolution approaches in animal model systems have produced mixed evidence

on the ability of evolving pathogens to escape suppression by protective microbes. Martinez

and colleagues [107] found that niche blocking byWolbachia inDrosophila melanogaster effec-

tively suppressed the pathogen Drosophila C virus (DCV), which did not evolve to overcome

the protective symbiont. In contrast, Rouchet and Vorburger [108] found the parasitoid wasp,

Lysiphlebus fabarum, readily counteradapted to the protection given by sympatric Hamilto-
nella defensa in aphids. A variety of pathogens may have evolved to exploit host microbiota for

replication and transmission. Poliovirus and Trichuris muris, for example, have been empiri-

cally found to depend on interactions with mouse intestinal microbiota to trigger replication

and hatching, respectively, at key host sites [47,48]. Poliovirus was able to better associate with

host cells, and its replication was enhanced by up to 500% after binding lipopolysaccharide on

enterobacterial surfaces [48]. Similarly, fimbriae on the surface of gut colonisers E. coli and Sal-
monella typhimurium were found to bind to proteins at the poles of eggs of the parasitic nema-

tode, T.muris. This interaction with enterobacteria provides an essential cue, triggering the

emergence of infective larvae [47].

Microbiome-mediated protection can drive the evolution of increased [109] and decreased

[110] pathogen virulence. McNally and colleagues [109] found that manipulating the micro-

biota generated increased competition between commensal competitors and increased the

intensity of bacterial warfare. Using theory, they found that stronger competition selected for

increased expression of pathogen weapons (virulence factors). Enhanced production of viru-

lence factors by many pathogenic bacteria can inadvertently harm the host. For example,

release of Shiga toxin-encoding phage by shigatoxinagenic E. coli [111], and similarly TcdA

released by Clostridioides difficile, can clear commensals both directly and via provocation of

host inflammation [112,113].

Host microbiota has the potential to influence the evolutionary trajectory of invading path-

ogens. Manipulating host microbiota offers a promising route to treat or prevent infection, but

such approaches should be scrutinised in light of the evolutionary potential of target

pathogens.

Harmful infection from within

Transitions of commensal microbes to pathogens. Commensals in the microbiota can

transition along the parasite–mutualist continuum [66,76,114]. Transitions towards pathoge-

nicity can be influenced by changes to the within-host environment—onset of illness or com-

promised immunity [7], diet [26], antibiotic treatment [115], or stress [28,116]—as well as

changes in the external environment [28]. Infection by invading pathogens can also induce

otherwise commensal bacteria to become pathogenic [33,117].

A well-studied example of a transition to pathogenicity is that of C. difficile, the causative

agent of colitis. C. difficile can be at very low abundance in the human gastrointestinal tract. A

healthy gut microbiota usually provides colonisation resistance against C. difficile expansion

[52]. However, following a period of antibiotic treatment which diminishes the protective

power of the microbiota, this bacterium can proliferate extensively to dominate the intestinal

niche [71]. In this context, it is a highly problematic pathogen which can cause recurrent dis-

ease. Faecal microbiota transplants have proven useful in such cases, whereby the dysbiotic gut
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microbiota of a C. difficile patient is replaced with that of a healthy donor to eliminate the

infection [118].

How can these transitions to pathogenicity occur among pathobionts? Metabolic changes

in components of the microbiota can underpin the transition. Recent work on the Drosophila
gut microbiome demonstrates that catabolism of host gut luminal uridine by pathobionts

drives the generation of uracil and ribose. These metabolites respectively trigger an inflamma-

tory host immune response and increased expression of virulence genes in pathobionts. Quo-

rum sensing regulates both processes and is therefore necessary for a transition to virulence.

Deletion of genes involved in nucleotide metabolism in strains of enteric Drosophila patho-

bionts blocked quorum sensing and thus the commensal-to-pathogen transition. Metabolites

such as uracil and ribose may therefore act as pathogen-specific indicators, used by metazoan

hosts to distinguish good from bad within the gut. Recognition of these indicators equips hosts

to modulate immunity and gut-microbe homeostasis in response to changes within the micro-

biota [58].

In polymicrobial infections, metabolic cross-feeding can be an essential source of nutrients,

enhancing the ability of commensal microbes to establish infection. The pathobiont Aggregati-
bacter actinomycetemcomitans, for example, requires L-lactate produced by the commensal

bacterium Streptococcus gordonii to establish polymicrobial periodontal infection in a murine

abscess model [119]. A. actinomycetemcomitans also exhibits enhanced respiratory metabolism

in the presence of S. gordonii [120], as the latter increases the bioavailability of oxygen to the

opportunist by providing electron acceptors. A. actinomycetemcomitans uses these electron

acceptors to increase energy yield in the form of ATP production, which promotes increased

virulence. With more energy available, the pathobiont can invest in the production of toxins,

adhesins, and immunomodulatory proteins, among many other virulence factors [120].

Pathobionts have an array of tools available to adapt to environmental change within their

niche [69,121–123]. Factors which contribute to the commensal bacterial lifestyle can be

repurposed upon immune compromisation in the host or upon nutrient limitation or commu-

nity disruption of the microbiota. Such changes within the host environment can lead to

pathobionts proliferating beyond their niche to invade host tissues [69,123]. Adhesive proteins,

for example, are required for asymptomatic colonisation of a new host, yet are also important

in attaching to host cells to initiate invasion [123,124]. They can additionally contribute to the

development of bacterial biofilms [69,70] to facilitate persistence of an infection under adverse

conditions (e.g., antibiotic treatment). Likewise, toxins play a significant destructive role in the

onset of disease. Toxins induce host cell lysis and stimulate inflammation, and they are recog-

nised as major drivers of the symptoms of bacterial infection [125]. Recent research has also

highlighted the contribution of toxins to pathobiont colonisation or persistence in different

niches within the host during asymptomatic carriage, thus they aid both the commensal and

pathogenic lifestyles of pathobionts [126]. Gene expression changes underpin transitions to

pathogenicity and are driven by the need to adapt to changing conditions [121,122]. Infection

can therefore be instigated by pathobionts within the host microbiota, following a transition

from commensalism to a pathogenic state.

Costly protective symbionts. In wild animal systems, beneficial microbiota components

otherwise known as defensive/protective symbionts have been shown to prevent pathogen

establishment and reproduction [127]. They are so effective at defending that the evolution of

host resistance is slowed in the face of pathogen infection [128]. Many of these symbionts can,

however, impose a physiological burden upon their host that is measured in the absence of an

invading threat. [127]. For example, while the endosymbiontWolbachia in numerous arthro-

pod hosts defends against parasitic viruses [129], bacteria [130], and nematodes [131],Wolba-
chia in Drosophila fruit flies can cause a reduction in colonised host fertility, fecundity, and
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egg hatch rates, mediated by high symbiont densities [31]. A trade-off emerges in many host-

microbe systems whereby increased conferred protection means the symbiont can become

more pathogenic [34,35] (albeit, see Cayetano and colleagues [132]). Mathé-Hubert and col-

leagues [133] further showed that the cost of carrying a protective symbiont (Spiroplasma) in

pea aphids can be alleviated by concurrent colonisation with a second symbiont (Regiella insec-
ticola), as co-colonisation improves host lifetime reproduction and population growth.

Changes in the abiotic environment can also reveal the costs of these resident protectors in

the microbiota. One extreme example is a species of the nematode-infecting bacterium Leuco-
bacter, which under dry laboratory conditions is a protective bacterium against another highly

virulent Leucobacter species, but in aqueous conditions causes hosts to become irreversibly

fused by their tails leading to death [134]. The abiotic environment can therefore mediate

host-associated microbe function to both favour and oppose pathogenicity.

Microbiota community structure as an early warning signal

Healthy microbiota community compositions can differ between individuals and population

groups and also within individuals over time [135]. It is consequently not always feasible to

establish what a “typical” dysbiotic microbiota looks like during infectious disease. However, a

recent study in apiculture has demonstrated how early microbiota perturbations can have sus-

tained negative consequences on host development and increase pathogen susceptibility

within a population [116]. Schwarz and colleagues administered the commensal species Snod-
grassella alvi to newly emerged worker bees as a potential probiotic therapy to protect against

the parasite Lotmaria passim. Yet, despite S. alvi being part of the usual core microbiota of

bees, inoculation of this species alone in young hosts led to microbiota perturbation, possibly

reducing the protective benefits normally conferred and ultimately increasing parasite suscep-

tibility [116].

While microbiota dysbiosis in general may correlate with infectious disease onset, microbial

taxonomic signatures for specific infections may not always be a reliable indicator of disease

[136]. The Anna Karenina principle [137] (“all happy families look alike, but each unhappy

family is unhappy in its own way”) has been applied to explain observations in which micro-

biota community composition varies more between diseased individuals than healthy individ-

uals. Nonetheless, in some instances, pathologies may be predicted by a specific reduction in

certain key taxa. Bacterial vaginosis (BV) in humans is one such example, a condition caused

by dysbiosis within the vaginal microbiota that affects approximately one-third of reproductive

age women [138]. Vaginal microbiota composition varies across demographics [139], but

onset of BV is typically associated with a reduction in Lactobacillus species, accompanied by

the dominance of anaerobes and increased alpha diversity [140]. In these lactobacilli-depleted

communities, the presence of biogenic amines can increase [141]. These amines, and the

microbial community composition with which they are associated, could be useful biomarkers

of disease in the early stages of BV development. Indeed, multi-omic approaches have been

used to characterise the metabolic profiles corresponding to different symptomatic BV types

[142]. Yeoman and colleagues [142] took this approach and identified distinct microbial taxa

and metabolites which correlated to 2 different symptomatic BV types (and also to host behav-

iour). The characteristic odour of BV infection was linked toDialister spp., the presence of dis-

charge was linked withMobiluncus spp., and Gardnerella spp. were linked with the symptom

of pain. These findings provide both potential diagnostic markers for the onset of disease and

insights into the determinants of BV.

Moving beyond correlative relationships between microbes and infections to establishing

causation remains a major challenge [143–146]. Due to the complexities of microbial
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communities within a host, including the high species richness within a niche and the multi-

tude of microbe–microbe and host–microbe interactions, it is often difficult to attribute spe-

cific microbes to a causative role in disease. Furthermore, in some cases, infection may not be

attributable to one species, but to polymicrobial interactions which are difficult to pick apart

[30]. Host heterogeneity in genotype, lifestyle, and diet further compounds the ability to infer

causality. Not all components of the microbiota are culturable in the laboratory setting and are

only identifiable as members of the community through sequencing. They are thus often

excluded from culture-dependent laboratory experiments aiming to determine causality

[86,147–150].

To bridge this gap between correlation and causation in elucidating the relationship

between microbiota and infection, current research is benefitting from combining laboratory

experiments with multidisciplinary and multi-omic approaches (see Table 2). Tractable, con-

trolled experimental models of defined microbial communities will be important in this transi-

tion [151]. Synthetic microbial communities composed of native microbiota components are

now being developed for use in model organisms [147,152–154]. Such resources will allow in-

depth dissection of host–microbiota interactions in model organisms, using tools which are

easily controlled while remaining representative of natural systems. The combination of exper-

imental models with corresponding omics data will further allow functional verification of

bacterial phenotypes within the microbiota [155]; this mechanistic insight will be essential in

determining causality in microbial infections.

Microbiota manipulation: Always a silver bullet?

Microbial approaches to managing disease in both humans and animals are gaining traction.

The application of protective microbes directly to a host, or into a host’s habitat or food source,

has been investigated for the control of infectious disease in endangered amphibians [36],

aquaculture [156], and apiculture [157] as well as in the prevention and treatment of infectious

and noninfectious human disease [38].

Microbe-based solutions have huge potential as alternatives to synthetic drugs

[156,158,159]. However, they can sometimes have off-target effects. Studies on amphibian

infection reveal the need for identification of these effects associated with probiotic use. Inhibi-

tion of the amphibian fungal pathogen Batrachochtyrium dendrobatidis (Bd) by bacteria can

differ based on pathogen genotype and microbial community composition [160,161]. Single

bacterial strains show both growth inhibition or promotion depending on Bd genotype. Becker

and colleagues [37] exposed the critically endangered Panamanian golden frog, Atelopus zeteki,
to fungal Bd and candidate probiotic bacteria identified based on their Bd inhibitory activity in

vitro. Results of the in vivo study showed no difference in Bd-induced mortality in probiotic-

treated versus untreated groups. Several probiotics, however, showed a (nonsignificant) trend

towards exacerbating Bd-induced mortality when compared to Bd alone. More recently, a pro-

biotic treatment for the emerging fungal pathogen of amphibians Batrachochytrium salaman-
drivorans (Bsal) was shown to slow disease progression, but did not improve individual

survival within populations [36]. A longer period of infection resulting from treatment was

suggested to likely extend the shedding period of Bsal into the environment, increasing its

transmission. Research has also shown that colonisation resistance of the native skin micro-

biota can be metabolically costly and cause amphibians to lose body mass during probiotic

treatment for chytridiomycosis [162]. These amphibian studies demonstrate the difficulty in

applying protective microbes in the natural environment. There could be a mismatch between

in vitro and in vivo outcomes, genetic variation in the effectiveness of protective microbes, or

probiotic treatment could alter the infection dynamics in a way that benefits transmission.
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Transplantation of entire microbial communities has shown promise in treating human

disease. Faecal microbiota transplants are currently used to successfully treat recurrent C. diffi-
cile infection [118]. However, the long-term and off-target effects of this intervention remain

unknown [158]. One potential side effect is the unintentional transfer of pathobionts from

donor to recipient [163], for which follow-up studies are lacking [164]. Evidence is also emerg-

ing of extra-intestinal and systemic effects of intestinal microbiota replacement [165], includ-

ing obesity [166], autoimmune disorders [167], and depression [168]. Observations of such

varied off-target effects reveal the complex and systemic consequences which microbiota

manipulation may have on hosts.

The use of known protective microbes as probiotics also needs to be monitored for unex-

pected consequences. Bifidobacterium longum subsp. longum has been investigated for its

potential to prevent lethal infection from enteric pathogens. This bacterium is a component of

the human gut microbiota which positively modifies the metabolic environment within the

gut to inhibit translocation of invading EHEC from the gut to the blood [169]. Severe and ulti-

mately lethal infection is prevented in this manner, but cases of infection caused by this species

have been reported [30]. Tena and colleagues [30] reflected that B. longummay often be over-

looked as a cause of disease in polymicrobial infections due to being labelled as a commensal.

Administration of protective microbes used clinically as probiotics could be particularly

problematic for immunocompromised, critically ill, or otherwise vulnerable hosts [170]. Safety

concerns include the potential for a probiotic to cause infection by translocation [171], to pass

antibiotic resistance genes or other virulence-associated genes onto other microbiota compo-

nents, and the possibility for production of metabolites that can be toxic [172]. There is also

the possibility of permanent colonisation [173] and long-term side effects. Such safety con-

cerns will be essential to account for in cases where probiotic treatments are being investigated

to treat vulnerable hosts. Furthermore, the applied probiotic will interact with host microbiota

and invading pathogens. As probiotics are inherently “live microorganisms” [174], they retain

the ability to evolve, and it is largely unclear how they might change in a new host [175].

Conclusions

The “microbiome revolution” is revealing the interconnectedness between a host’s health and

its resident microbial species. Microbiota components can form an effective non-immunologi-

cal line of defence against infection [11,17–20]. Although the microbiota can aid pathogens,

worsen infection outcomes, or become harmful themselves in the situations we describe, over-

all it is acknowledged that the benefits of microbiota substantially outweigh any costs.

There is a need to distinguish the different conditions under which microbiota might facili-

tate infection. Some pathogens and pathobionts can directly exploit the metabolic and immu-

nological environment shaped by the host microbiota. Whether these outcomes are specific to

the interacting host and pathogen species/genotype is unclear. A change in host health status

may dictate whether microbiota have the potential to allow for harmful infection [176,177].

Poor health, the application of antibiotics, or infection by invading pathogens might cause a

loss of microbiota diversity (and thus protective traits) or physical disruption to the environ-

ment allowing for the expansion of harmful microbes. The integration of bioinformatics with

lab experiments in model systems will help to characterise genomic, proteomic, and metabolic

features of the microbiome in different contexts of infection [147,152,154,155,178,179]. Func-

tional gene expression studies [180–182] and genome-scale metabolic models are also proving

increasingly powerful in characterising the microbiota profiles of healthy versus diseased indi-

viduals [183,184]. Overall, these approaches will allow predictions to be made about microbial
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phenotypes (e.g., metabolic traits, toxin production, and antibiotic resistance) in different con-

texts and the relevance of these phenotypes to infectious disease.

There are further outstanding questions regarding the contribution of microbiota compo-

nents to infection in real time. In vitro and in vivo coculture experiments using communities

representative of native host microbiota [152] can reveal antagonistic, competitive, and benefi-

cial interactions between species within the microbiota, as well as between microbiota and

invading pathogens [185,186]. Interactions between microbiota and host immunity can also

be more intricately explored in model animal systems to study the role of the immunological

environment in infection promotion [187–189]. With a better understanding of the interac-

tions and dynamic processes that govern the microbiota, it may be possible to predict when

harmless components will promote invading pathogens or become pathogenic themselves.

Direct experimental tests in tractable systems will help to move our understanding beyond

correlations of microbiota structure with infection outcomes and host health.

Thinking on an evolutionary timescale is essential for tackling why pathogens can benefit

from the host microbiota. Systems in which pathogenic invaders depend on microbiota to

start replicating [47,48] may indicate a coevolutionary relationship in which host-associated

microbial species and pathogens cooperate to promote their establishment within the host.

The potential for coevolution between protective microbes and pathogens has been demon-

strated experimentally [190]. The extent to which pathogen exploitation of microbiome metab-

olites and immune priming is incidental, or the product of adaptation, remains unclear.

Perhaps pathogens can evolve to improve their exploitation of host microbiota. Pathogens

might also gain a competitive advantage by modifying their within-host environment (“niche

construction” [191]) to select host-associated microbes most favourable to their survival [192].

The long-term effectiveness of a manipulated microbiota will also be vulnerable to pathogen

evolution. Does engineering the microbiota or therapeutically applying microbes drive

unwanted evolutionary changes in the target pathogen? Reductions in pathogen virulence

could be desirable. However, any pathogen adaptation and increased within-host fitness might

enhance their transmissibility in the host population. Most of our current understanding of

the evolutionary biology in this area is based on theory and empirical work in model systems.

Its relevance to human infections is an open question.

Microbiota are an important driver of variation in the prevalence and severity of some

infections. Pathogen-suppressive forces generally dominate, but the interactions within the

microbiota and between microbiota and invading pathogens are complex and need more

direct empirical investigation. Nevertheless, shining a light on the potential ways in which the

microbiota can sometimes facilitate infection by pathogens or pathobionts is critical for under-

standing patterns of infection in natural and applied settings.
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