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I would like to dedicate this thesis to the living memory of Professor Marie Skłodowska-
Curie, whose death 80 years ago was directly linked to her ground breaking research on 

radioactivity.

She was the first woman to become professor at the University of Paris, the first woman to 
be awarded the Nobel Prize and the first and only person to date to be awarded it twice in 
multiple science categories. 

A true pioneer in translational work, she contributed to the development of radiological 

cancer treatments and constructed mobile diagnostic X-ray units, which she herself put to 

use near the battle front of the first world war.

To me, she represents the scientific endaevor at its very best; the pursuit of new knowledge, 
the relentlessness in the face of adversity and the vision of a better world for all people. 

Her words from the opening of the Radium Institute in Warsaw 29 May 1932 are as true 

today as they were then:

 

“Therapy should be permanently backed up by scientific research without which no 
progress is possible. Moreover, the search for pure knowledge is one of the important 
needs of mankind.”
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ABSTRACT

Humans and animals acquire the parasite Toxoplasma gondii through contaminated food 

or water, upon which the parasite rapidly disseminates in the host. In immunocompetent 

individuals, this acute phase is transient and leads to chronic colonization of preferentially 

the central nervous system (CNS). The latent chronic infection may reactivate in 

immunocompromised individuals, causing potentially lethal encephalitis. It has been 

established that dendritic cells (DCs) are exploited by T. gondii as “Trojan horses” to 

facilitate dissemination in the host. T. gondii infected DCs exhibit a hypermigratory 

phenotype that is a major determinant for enhanced dissemination of the parasite. The 

host cell pathways involved in the onset and maintenance of this phenotype are largely 

unknown. This thesis has investigated potential mechanisms of host cell subversion, 

addressing dissemination during the acute phase of infection and reactivated infection 

in the brain upon immunosuppression. The main findings of the thesis are listed below.

Significant CD8+ T cell infiltration and activation of CNS resident microglia and astrocytes 
was observed in close vicinity of reactivated T. gondii foci in mouse brain. Cortical microglia 

exhibited hypermigration upon T. gondii infection in vitro, as previously shown for DCs. 

Infected microglia and astrocytes showed increased sensitivity to T cell mediated killing, 

allowing parasite transmission to surrounding cells. Thus, resident and infiltrating cells 
may act as Trojan horses, potentiating local T. gondii dissemination in the encephalitic 

brain.

We developed a motility assay in which cells are tracked while migrating in a collagen 

matrix. In this assay, T. gondii infected DCs displayed increased velocities as early as 

10 min post invasion. This “hypermotility” coincided with the redistribution of actin 

and integrins. Infected DCs also chemotaxed along a gradient of CCR7 ligand CCL19. 

Collectively, this series of cellular events contributes to a shift in the migratory capacity of 

T. gondii infected DCs, expanding the concept of the hypermigratory phenotype.

We showed that DCs express functional γ-aminobutyric acid (GABA) receptors and are 
capable of producing and secreting GABA. T. gondii infection enhanced GABA secretion, 

while inhibition of GABA production, transport or GABA receptors abolished the 

hypermigratory phenotype. This autocrine GABAergic activation was crucial for DCs to 

act as Trojan horses in T. gondii dissemination in vivo. 

This thesis describes the expression of the voltage dependent Ca2+ channel Ca
V
1.3 in murine 

DCs. We found that GABAergic activation was linked to Ca
V
1.3 and that selective blockade 

or knockdown of the latter abolished T. gondii induced hypermotility in DCs. This fast-

acting signaling axis may allow rapid parasite manipulation of host cell migration.
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In summary, we have shown that T. gondii exploits non-canonical migration-related host 

signaling pathways to enhance its dissemination. Several cell types are likely involved as 

Trojan horses at different stages of the infection process, e.g. DCs, T cells and microglia. 
This work also illustrates that the study of parasite-host interactions may further our 

understanding of basic cellular mechanisms, such as motility, and uncover novel signaling 

pathways in the host.
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POPULÄRVETENSKAPLIG 

SAMMANFATTNING

Toxoplasma gondii är en intracellulär parasit som kan infektera alla varmblodiga djur, 
inklusive uppskattningsvis 30 % av världens befolkning (15-25 % i Sverige). Parasiten 
sprids genom smittad mat eller vatten och orsakar potentiellt livslång latent infektion i 

hjärnan. De flesta upplever milda till obefintliga symptom vid smittotillfället men personer 
med nedsatt immunförsvar riskerar att drabbas av livshotande toxoplasmos i hjärnan. Att 
smittas under graviditet innebär också risk för att parasiten infekterar fostret, vilket kan 
leda till missfall eller allvarliga fosterskador.

Vi studerar de tidiga stadierna av infektionsförloppet då parasiten sprids i kroppen och 

når viktiga organ som hjärnan och livmodern. Under denna fas infekterar parasiten 
bl.a. vita blodkroppar (immunceller) och använder dem som ”trojanska hästar” för att 
färdas i kroppen på ett snabbare och säkrare sätt. Toxoplasma manipulerar cellerna 

och förmår dem att röra sig fortare (bli ”hypermigratoriska”), vilket kräver sofistikerad 
kommunikation mellan parasit och värdcell. Det senare skulle sannolikt kunna utgöra 
en angreppspunkt för behandling av Toxoplasma-infektion. Målet med min avhandling 

har varit en mer detaljerad beskrivning av spridningsförloppet vid akut infektion och i 

den immunnedsatta hjärnan, med fokus på värdcellers rörelseförmåga och intracellulära 
kommunikation.

Vi har tidigare modellerat sjukdomsförloppet vid immunnedsättning hos en bärare av 
Toxoplasma med hjälp av möss som behandlats med ett kortison-besläktat preparat. I 
modellen blossar den latenta infektionen upp, vilket orsakar kraftig inflammation i hjärnan 
och attraherar immunceller till platsen. I den föreliggande studien visade vi att en grupp 

celler nära den aktiva infektionen i hjärnan, s.k. mikroglia, också blev hypermigratoriska 
när de infekterades. När immunceller förstörde Toxoplasma-infekterade celler undkom 

parasiten för att sedan infektera själva immuncellerna, vilket potentiellt bidrar till 
parasitens spridning.

Vi har visat att ett signalsystem som hämmar signalöverföring i hjärnan, det s.k. GABA-
systemet, även används av de immunceller vi studerar. GABA:s fysiologiska funktioner i 
dessa celler är fortfarande okända men våra resultat indikerade att systemet utnyttjas av 
Toxoplasma för sin spridning. Blockering av systemet hämmade infekterade immuncellers 
rörelseförmåga och samma blockering ledde i våra djurförsök till fördröjd spridning av 

parasiten i värddjuret. 

I en detaljerad undersökning av immunceller direkt efter kontakt med parasiter, kunde 
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vi se att cellerna radikalt ändrade sitt utseende och rörelsemönster inom 10 minuter efter 
infektion. Denna tidsrymd kan jämföras med immuncells-aktivering vid inflammation 
som är i storleksordningen timmar, eftersom cellens uttryck av gener förändras. Transport 
av information i celler kan även ske i form av flöden av molekyler och joner. Genom att 
visualisera dessa flöden i immunceller identifierade vi en ny jonkanal med koppling 
till GABA-systemet. I likhet med detta ledde blockering till förlust av rörelseförmåga 

hos infekterade immunceller. Aktivering av jonkanaler kan innebära mycket snabb 
intracellulär överföring av information, vilket stämmer överens med att immuncellerna 
reagerade snabbt på Toxoplasma-infektion.

Sammanfattningsvis har vi visat att Toxoplasma utnyttjar intracellulär kommunikation 
för att förändra sina värdcellers beteende och sannolikt öka sina möjligheter till överlevnad 
och spridning. Vi kan också konstatera att våra studier lett oss till upptäckten av en ny 
signalväg i immunceller som kan utgöra en hittills outforskad länk mellan hjärnan och 
immunförsvaret. Att undersöka en parasit som utvecklats tillsammans med däggdjur 
under miljontals år kan därmed vara en viktig källa till kunskap om oss själva.
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AIMS OF THE THESIS

Main hypothesis 

Toxoplasma gondii modulates motility-related host cell signaling to disseminate in the 

organism.

The work has been carried out according to 3 specific aims:

1) To further characterize T. gondii infected immune cells and their role in parasite 

dissemination during acute and reactivated infection in vitro and in vivo.

2) To investigate the role of GABAergic signaling in dendritic cells in relation to T. gondii 

infection and the hypermigratory phenotype.

3) To study the role of Ca2+ signaling in dendritic cells infected by T. gondii, specifically 
focusing on migratory mechanisms.
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AIDS  Acquired Immunodeficiency Syndrome
ALCAM  Activated Leukocyte Cell Adhesion Molecule

Arp  Actin Related Protein

ATP  Adenosine Triphosphate

BBB  Blood Brain Barrier

Ca
V
  Voltage Dependent Ca2+ Channel

CCL  C-C Motif Chemokine

CCR  C-C Chemokine Receptor

CD  Cluster of Differentiation
CDC  Cell Division Control Protein

CNS  Central Nervous System

CRAC channel Ca2+ Release-Activated Ca2+ Channel

CXCL  Chemokine (C-X-C motif) Ligand

DC  Dendritic Cell

DNA  Deoxyribonucleic Acid

ECM  Extracellular Matrix

EGFR  Epidermal Growth Factor Receptor

ELISA  Enzyme-Linked Immunosorbent Assay

ER  Endoplasmic Reticulum

ESA  Excreted-Secreted Antigens

Fln  Filamin

GABA  γ-Aminobutyric Acid
GAD  Glutamate Decarboxylase

GAT  GABA Transporter

GPCR  G-Protein Coupled Receptor

GPI  Glycosylphosphatidylinositol

GRA  Dense Granule Protein

GTP  Guanosine Triphosphate

HIV  Human Immunodeficiency Virus
HSPC  Hematopoietic Stem and Progenitor Cell

ICAM  Intercellular Adhesion Molecule

IFN  Interferon

IL  Interleukin

iNOS  Inducible Nitric Oxide Synthase

IP
3
  Inositol Trisphosphate

IVIS  In Vivo Imaging System

LFA  Lymphocyte Function-Associated Antigen

LPS  Lipopolysaccharide

LIST OF ABBREVIATIONS
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MAPK  Mitogen Activated Protein Kinase

MHC  Major Histocompatibility Complex

MIC  Microneme Protein

MMP  Matrix Metalloproteinase

MyD88  Myeloid differentiation primary response gene (88)
NF-κB  Nuclear Factor κB
NK cell  Natural Killer cell

PGE  Prostaglandin E

PIP
2
  Phosphatidylinositol 4,5-bisphosphate

PKC  Protein Kinase C

PV  Parasitophorous Vacuole

RON  Rhoptry Neck Protein

RyR  Ryanodine Receptor

shRNA  Short Hairpin RNA

TLR  Toll-Like Receptor

RNA  Ribonucleic Acid

SDF  Stromal Cell Derived Factor

SOCE  Store-Operated Ca2+ Entry

STIM  Stromal Interaction Molecule

T
H
  T Helper Cell

TNF  Tumor Necrosis Factor

TRPM  Transient Receptor Potential Melastatin

VCAM  Vascular Cell Adhesion Molecule

VDCC  Voltage Dependent Ca2+ Channel

WASp  Wiscott-Aldrich Syndrome Protein
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1) DENDRITIC CELL MIGRATION IN 

HEALTH AND DISEASE 

Since their initial description in lymphoid organs (278), dendritic cells (DCs) have been 

recognized as a vital component of the immune system. DCs exhibit a unique combination 

of immune surveillance and migratory capacity. By identifying potentially dangerous 

agents and initializing an immune response, DCs mediate a link between the innate and 

adaptive immune system (46). Below, some key aspects of DC functions are introduced, 

with an emphasis on the role of migration in these processes.

1.1) The Role of DCs in the Immune Response 

There is considerable heterogeneity among DCs and several ways of categorizing different 
subsets have been proposed. Based on lineage, a distinction can be made between 

conventional DCs, including tissue resident subsets, and non-conventional DCs, e.g. 

inflammatory DCs (153). Tissue residing DCs, e.g. in gut mucosa and skin, sample the local 
environment by pinocytosis (soluble antigens), or phagocytosis (non-soluble antigens) 

(85, 207, 277). Inflammatory DCs derive from monocytes and are recruited to sites of 
inflammation where they perform similar functions as tissue resident DCs (268). 

DCs express a broad range of pattern recognition receptors, e.g. Toll-like receptors 

(TLRs) and nucleotide-binding and oligomerization domain (NOD)-like receptors, which 

recognize conserved molecular patterns associated with infection and tissue damage. 

Well studied examples include gram-negative bacterial lipopolysaccharide (LPS, TLR4) 

and double stranded or endogenous RNA (TLR3) (48). TLR triggering induces transient 

DC arrest and enhances uptake of antigen (87), which is then processed to peptides and 

presented on the cell surface on major histocompatibility complex (MHC) molecules. 

DCs having undergone this process are commonly referred to as “mature” and will leave 

the periphery, enter the lymphatics and migrate to secondary lymphoid organs (62). T 

lymphocytes (T cells) that have not been exposed to antigen circulate continuously and 

encounter mature DCs in the lymph nodes, whereupon antigen loaded MHC molecules 

interact with T cell receptors (202). Recognition of a presented peptide by the T cell 

receptor in this “immunological synapse”, along with DC co-stimulatory signals such 

as CD86 and CD40, induces differentiation into effector T cells. Generally, exogenous 
antigens are loaded on MHC class II and presented to CD4+ T cells and endogenous 

antigens are presented on MHC class I to CD8+ T cells (125). Presentation of exogenous 

antigens on MHCI, so-called cross-presentation, can also occur (259). 
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1.2) Migratory Activity of DCs

Migration can be considered a hallmark feature of DCs, as several of their core functions 

(e.g. antigen sampling and trafficking to lymph nodes) depend on motility. As such, 
migration is a highly regulated process that adapts to external and internal factors (244). 

All motile cells polarize along the axis of migration, extending a ‘leading edge’ in the 

direction of movement and retracting the ‘trailing edge’ at the opposite end. Mechanisms 

of cell migration can be situated on a scale between adhesion-dependent (mesenchymal) 

and adhesion-independent (amoeboid) locomotion (126, 164). The integrin family of 

transmembrane receptors is a major contributor to cell adhesion and adhesion-mediated 

signal transduction. They are heterodimers of one α subunit (18 described) and one β 
subunit (8 described) (127). Binding specificity is determined by the subunit composition 
and includes components of the extracellular matrix (ECM) and surface receptors on other 

cells (126). Integrins are anchored to the intracellular actin-binding proteins talin and 

filamin (Fln), providing a direct link between extracellular stimuli and the actin cytoskeleton 
(52, 204).

Mesenchymal migration operates by consecutive cycles of attachment and detachment, 

during which the cell exerts force on the extracellular substrate in order to move along or 

penetrate through it. Cell attachment and force transmission is mainly through integrins 

(260). Podosomes are transient actin bundle structures that are considered focal points of 

cell-ECM interactions, degradation and invasion in DCs, macrophages and other myeloid 

cells. They coordinate several actin-related proteins and integrins in a ring around the 

actin core with a diameter of about 500 nm and a half-life of 10 min (307). A recent 

study also proposed a role for podosomes in forming protrusions involved in DC antigen 

sampling (15).

Highly motile cells, such as DCs and T cells, employ amoeboid migration when migrating 

in interstitial tissues. This rapid mode of migration is not proteolytic and depends less on 

cell-matrix interactions, being powered by a focused flow of actin (163, 330).  The type of 
migration employed depends on the extracellular environment and activation status of the 

cell. Lämmermann and colleagues have shown that long-distance interstitial DC migration 
does not depend on integrins, in contrast to cell surface attachment, crossing of tissue 

barriers and concerted cell movement (162, 163, 165). Also, macrophages migrating in a 3D 

matrix employ a podosome-dependent proteolytic mechanism or  podosome independent 

amoeboid migration, depending on the density and composition of the matrix (306).

1.3) Chemotaxis 

Chemotaxis is defined as cell migration directed by gradients of chemoattracting 



 191) Dendritic Cell Migration in Health and Disease 

molecules. Many of these are chemotactic cytokines (chemokines), which control the 

migration patterns of various cell types in the body. Chemokine receptors are G protein 

coupled receptors (GPCRs) that relay the directional information encoded in chemokine 

gradients, likely through polarized expression towards the leading edge of migrating 

cells (208). The expression of chemokine receptors is dynamic, as exemplified by DCs, 
where maturation induces down-modulation of C-C chemokine receptor (CCR) 5 and up-

regulation of CCR7 (251), which mediates a switch in chemokine responsiveness (73). As 

a result, CCR7 ligands C-C motif chemokine ligand (CCL) 19 and CCL21 selectively recruit 

mature DCs to secondary lymphoid organs where T cell interactions occur (93, 133, 248, 

255, 322). The expressed set of chemokine receptors thus determines the directionality of 

movement in tissue (135).

1.4) Molecular Mediators of DC Migration

Rho family GTPases cycle between the active (GTP-bound) and inactive (GDP-bound) form 

as important regulators of central cellular processes, most prominently actin dynamics 

(317). Rho GTPases Cdc42, Rac1 and Rac2 play important roles in chemotaxis (7, 295, 

321) and it was recently shown that DC trafficking to lymph nodes in vivo is abolished 

in Cdc42-/- cells (165). It has been proposed that Rac1 and Rho confers directionality 

sensing in chemotaxis while Rac2 and Cdc42 regulate actin dynamics (239, 285). CCR7 

ligation induces RhoA dependent activation of the integrin lymphocyte-associated antigen 

(LFA)-1, inducing a state of high affinity for the ligand intercellular adhesion molecule 
(ICAM)-1 (101). This process has been implicated in leukocyte rolling and diapedesis 

during transendothelial migration (113). Also, DC ICAM-1 binds LFA-1 on T cells during 

immunological synapse formation, increasing interaction affinity and providing an 
additional co-stimulatory signal for T cell activation (147).

At the center of cell migration is the force generation necessary for the dynamic formation 

of membrane protrusions. According to present models, membrane protrusions are 

formed by polymerization of monomeric actin into filamentous (F) actin or by hydrostatic 
pressure caused by contraction of the actin network (115, 155, 166). Actin contraction is 

mainly mediated by type II myosin motor proteins (216), which have been proposed to be 

essential for DC passage through narrow gaps and pores (88, 163). Polymerization of actin 

is catalyzed by Rho GTPase activated nucleation factors, such as formins and the actin-

related protein (Arp) 2/3 complex, producing un-branched and branched actin filaments 
respectively. The polymerization process is precipitated by profiling-mediated recruitment 
and activation of monomeric actin (231). Cdc42 regulates Arp2/3 via activation of Wiskott-

Aldrich Syndrome protein (WASp), which is required for the formation of podosomes 

in macrophages and DCs (39, 174, 186). WASp deficient DCs also display impaired 
migration to lymph nodes and as a result, reduced T cell priming (35, 63). Flns 
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participate in crosslinking actin filaments and Lamsoul and colleagues recently showed 
that FlnA expression increases in DCs upon maturation and is associated with podosome 

formation and proteolytic degradation (167).

The diaphanous-related (Dia) formin mDia1 has been shown to be involved in DC 

transmigration and in vivo chemotaxis (297). In tumor cells, Rho GTPases differentially 
regulate the mode of migration, RhoA promoting an amoeboid contraction dependent 

phenotype while Rac1 is associated with mesenchymal migration (252). mDia1 positive 

feedback on RhoA has also been shown to promote matrigel invasion in a metastasizing 

cell line (146). The relevance of Rho GTPases in the context of infection is illustrated by 

the fact that they are targeted by many bacterial infections including Yersinia, Salmonella, 

Clostridium and Escherichia (139, 169, 242, 312). 
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2) TOXOPLASMA GONDII

Toxoplasma gondii is an obligate intracellular protozoan parasite belonging to the 

apicomplexa family. T. gondii has a broad range of hosts, as any warm-blooded vertebrate 

can serve as intermediate host and it can survive and replicate in virtually any nucleated cell 

(3). It is studied both as a pathogen in its own right and as an important model organism 

for other apicomplexan parasites, such as Plasmodium and Cryptosporidium (145). T. 

gondii is a global zoonotic pathogen, causing infection on all populated continents (217). 

Seroprevalence varies greatly between countries, e.g. 14,0 % in Stockholm, Sweden and 

74,7 % in Recife, Brazil (84, 232).

2.1) Life Cycle and Population Structure

As definitive hosts, felines permit parasite gametogenesis and sexual recombination, 
followed by formation of environmentally stable oocyts, which are then shed with the 

feces. An ingested oocyst will rupture in the small intestine and release sporozoites that 

invade cells of the intestinal epithelium and differentiate into tachyzoites (78). During 
the acute phase of infection, tachyzoites disseminate throughout the host, reaching 

distant and immunopriviledged sites such as the brain, eyes, testes and placenta. This 

dissemination entails the crossing of multiple biological barriers, such as the intestine, 

the blood brain barrier (BBB), the blood-retina barrier and the placenta (18). Tachyzoites 

eventually develop into cyst-forming and slow-dividing bradyzoites (235), which is the 

parasite stage associated with latent chronic infection, and may reside within the host for 

a long period of time (282). Tissue cysts are preferentially formed in the central nervous 

system (CNS) and in muscle tissue, but are also observed in visceral organs. Ingestion of 

tissue cysts by a feline through predation of an infected intermediate host completes the 

life cycle of T. gondii (78).

While T. gondii is the only species assigned to the Toxoplasma genus, early population 

genetics studies identified three dominant clonal lineages (types I, II and III) with distinct 
virulence and species distributions (120, 270). Genotyping has identified type II as the 
most prevalent in human infections (119, 120), although discrepancies have been observed 

in patients with certain clinical manifestations (106, 143). These and similar observations, 

along with analysis of a wider range of host species, has revealed a more complex population 

structure with several “atypical”, and often disease-causing, strains represented in the 

gene pool (326). Still, the canonical three types remain the best characterized and are used 

experimentally to represent some of the genetic diversity within the T. gondii population 

structure. In this thesis, the three types have been represented by the strains RH-LDMluc 

(type I), PTGluc and PRU-RFP (type II) and CTGluc (type III) (69, 116, 222).
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2.2) Toxoplasmosis

Infection via ingestion of tissue cysts in infected meat or oocysts from environmental 

contaminations generally produces mild or no symptoms in otherwise healthy human 

hosts. Likewise, the establishment of the chronic phase is not associated with clinical 

manifestations in immunocompetent individuals (196). However, epidemiological studies 

have linked T. gondii seropositivity to a higher incidence of psychiatric conditions such 

as self-directed violence, violent suicide attempts and schizophrenia (219, 303). The most 

serious clinical outcomes are seen in immunocompromised patients, e.g. AIDS patients or 

organ transplant recipients on immunosuppressive drugs, where latent tissue cysts may 

reactivate in the CNS. The switch from latent bradyzoites to rapidly dividing tachyzoites 

causes potentially fatal toxoplasmic encephalitis (10, 334). Infection during pregnancy 

can result in miscarriage, still birth or, particularly when infected during the first or 
second trimester of pregnancy, congenital toxoplasmosis (196). Congenital infection is 

associated with birth defects such as chorioretinitis, intracranial calcification and other 
CNS abnormalities (112).

2.3) Lytic Cycle

Tachyzoite motility is based on a parasite intrinsic mechanism termed “gliding motility”, 

powered by actin polymerization and a myosin motor protein, which are also necessary for 

host cell invasion (75, 192, 249). Invasion is a multi-step process involving the orientation of 

the tachyzoite apical end towards the host cell membrane followed by sequential discharge 

of secretory organelles termed micronemes, rhoptries and dense granules (40, 199). 

Several microneme proteins (MICs) contain adhesion domains that have been proposed 

to mediate initial generic binding to the host cell (42). Rhoptry neck proteins (RONs) and 

MICs are involved in the formation of a tight junction between the host cell and parasite, 

which the parasite passes through using mainly actinomyosin propulsion (4, 26, 81). This 

“moving complex” forms when RON2 is injected into the host cell membrane, where it 

interacts with apical membrane antigen (AMA) 1 and RONs 4, 5 and 8 (26, 156, 157). 

T. gondii profilin-like protein (toxofilin) has been proposed to contribute to tachyzoite 
invasion by depolymerizing host actin and facilitating entry (70).

Upon active invasion, the parasite establishes an intracellular compartment termed the 
parasitophorous vacuole (PV) that is non-fusogenic due to exclusion of proteins required 

for recruitment of endo/lysosomes (197, 198). However, Zhao and colleagues recently 

demonstrated that even phagocytosed tachyzoites are capable of actively “invading” the 

host cell from the phagolysosome, thus forming a PV (343). The parasite also blocks 

autophagy-mediated degradation by activating the epidermal growth factor receptor 

(EGFR) cascade (201). The PV recruits host organelles such as endoplasmic reticulum 
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(ER) and mitochondria and allows for parasite replication, salvaging of nutrients from the 

host and export of parasite effector molecules that subvert host cell functions (56, 94, 123). 

Parasite egress from the host cell employs several of the molecular mediators involved in 

invasion (118, 269). Permeabilization of the PV membrane and host cell plasma membrane 

is induced, followed by active parasite exit, although the role of gliding motility in natural 

egress is unclear (31). The factors triggering egress are incompletely understood, although 

sensing of host cell ion balance, likely indicative of the extracellular environment, plays 

an important role (98, 179, 191). Egress is also triggered by host cell exposure to CD8+ 

T lymphocyte killing mechanisms, i.e. Fas receptor-Fas ligand interaction or perforin, 

protecting the parasite from immune destruction (227). Tomita and colleagues reported 

that the time between invasion and egress in vivo is considerably shorter than in vitro, 

which was attributed to premature egress induced mainly by inflammatory macrophages 
(302).

2.4) Immune Response to T. gondii

DCs play a key role in immunity against T. gondii as important producers of the pro-

inflammatory cytokine interleukin (IL)-12 (5). Indeed, depletion of DCs abolishes 
IL-12 production during T. gondii infection, severely impairing host survival (176). 

IL-12 promotes a T helper cell type 1 (T
H
1) response by inducing T cell differentiation 

and stimulating their secretion of interferon (IFN)-γ (344). Early studies identified 
production of IFN-γ as a major protective factor in T. gondii infection (205, 289). Beiting 

and colleagues recently showed that infection with the closely related apicomplexan 

parasite Neospora caninum activates TLR3 and an IFN-α/β response, which is actively 
suppressed in favor of an IFN-γ response during N. caninum/T. gondii co-infection (21). 

Several immune cells contribute to the production of IFN-γ at different stages of T. gondii 

infection, including neutrophils, natural killer (NK) cells and T cells, enhancing growth 

restriction and destruction of intracellular parasites (335). NK cells are also able to kill 

extracellular tachyzoites and infected cells, which however does not appear to significantly 
contribute to parasite control (149). IFN-γ receptor KO mice are unable to control even 
low doses of a low virulent type III parasite, rapidly exhibiting high parasite loads in 

visceral organs and in the brain (69). In mice, toxofilin is recognized by TLR11 and TLR12, 
inducing MyD88 mediated IL-12 production (148, 336). Toxofilin has been implicated 
in parasite motility and invasion and is secreted during these early processes (70, 178, 

229). Additionally, TLR2 and TLR4 are activated by glycosylphosphatidylinositol (GPI)-

linked surface proteins and the endosomal TLR7 and TLR9 by T. gondii RNA and DNA (9, 

64, 200). Humans lack functional expression of TLR11 or TLR12 and as these have been 

considered crucial for parasite control in mice, the details of innate immune detection of 

T. gondii in humans are less well understood (100, 335). 
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Protective immunity against T. gondii is characterized by the maintenance of balance 

between inflammatory and anti-inflammatory mediators. T
H
1 cells produce auto-

regulatory IL-10, which down-modulates production of inflammatory cytokines (e.g. 
IL-12) by DCs and macrophages (212). IL-10 also protects the small intestine from 

necrosis during T. gondii infection (290). Loss of the T
H
2 associated cytokines IL-4 and 

IL-33 increase parasite loads and the levels of IFN-γ and pro-inflammatory mediators, 
causing aggravated pathology (138, 241, 292). Production of IL-27 during inflammatory 
conditions of high IL-12 has anti-proliferatory effects that dampen T cell expansion and 
associated pathology (124). Adequate T cell responses are also necessary for long-term 

control of T. gondii latent infection, as seen in depletion studies and in patients with AIDS 

or on immunosuppressive therapy (90, 99, 223). Antibody responses against T. gondii 

contribute to parasite control by blocking parasite invasion and opsonizing extracellular 

parasites, increasing killing by phagocytosis and the complement cascade (57, 254, 310).

T. gondii control in the CNS is dependent on infiltrating immune cells and resident brain 
cells such as microglia and astrocytes (41). Microglia have been described as CNS resident 

macrophages and are involved in homeostatic processes, e.g. tissue remodeling and 

immune functions, e.g. antigen presentation and cytokine production (234). Astrocytes are 

the most abundant brain cell type and form part of the blood brain barrier (BBB, Chapter 

3.2) (329). Neurons, astrocytes and microglia are permissive to parasite proliferation and 

stage conversion in vitro, although in brain tissue, cysts are preferentially found in neurons 

(41, 89, 193). Microglia and astrocytes produce IFN-γ, in addition to infiltrating CD8+ and 

CD4+ T cells observed upon parasite infection in the CNS (286, 319). CD8+ T cell can also 

directly eliminate T. gondii cysts (291). Several resident cell types have been proposed to 

recruit T cells to the infected brain (141). Blood vessel endothelial cells up-regulate ICAM-

1, vascular cell adhesion molecule (VCAM) and MHCII in response to IFN-γ (65). Several 
chemokines are up-regulated in the encephalitic brain, including CCL2 and CXCL10 by 

astrocytes and CCL5 and CXCL9 by microglia. Also, CCL5-expressing leukocytes have 

been observed in close vicinity of T. gondii cysts in the brain (280). IL-10 production 

by microglia and infiltrating T cells contributes to immunomodulation similarly to the 
periphery (66, 258). 
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3) TROJAN HORSE DISSEMINATION OF 

T. GONDII

3.1) Dissemination During Acute Stage Infection (paper III)

The route of dissemination of T. gondii has long been the subject of investigation and 

debate, yet is only partially understood. Extracellular tachyzoites are migratory and can 

penetrate ECM and polarized cell monolayers, which is dependent on MIC2-ICAM-1 

interactions and intrinsic gliding motility (17, 19, 96, 108). The parasite is detected in 

mesenteric lymph nodes, spleen and brain within hours to days of infection via oral, 

intraperitoneal or intragastrical administration (50, 79, 107, 284, 339). Recent work has 

shown that intracellular tachyzoites are the major contributors to dissemination and that 

CD11b+ and CD11c+ cells are parasitized early and to a greater extent relative to other cell 

types (47, 58, 305). Trafficking to secondary lymphoid organs is also a key function of DCs, 
making them a potentially attractive target cell for parasite subversion as a Trojan horse 

(Chapter 2.1). Upon invasion by a T. gondii tachyzoite, DCs exhibit a “hypermigratory 

phenotype” characterized by enhanced transmigration through porous membranes and 

penetration of polarized monolayers, as well as increased parasite dissemination in vivo 

(see Chapter 6.2 for definitions). Infected DCs thus contribute to the shuttling of parasites 
within the host and allow more rapid access to restricted organs such as the brain (160, 

161). Early studies showed that the hypermigratory phenotype is abolished by pertussis 

toxin treatment but is independent of MyD88-mediated TLR activation and signaling via 

chemokine receptors CCR5 and CCR7 (160). This should also be viewed in the context that 

knockouts of TLRs 1, 2, 4, 6 or 9 did not impact parasite loads in mice inoculated with 

extracellular tachyzoites (116). The induction of hypermigration has been confirmed for a 
number of T. gondii isolates belonging to types I, II and III. Interestingly, type II strains 

consistently induced a higher degree of transmigration in DCs than type I strains, type 

III strains being intermediate (161). Also, infection of DCs with N. caninum induces an 

increased rate of transmigration across an in vitro model of the placental barrier, as well 

as potentiates parasite dissemination in vivo (53).

In order to better understand the signaling pathways involved in the onset of the 

hypermigratory phenotype, we resolved to study the early events following parasite 

invasion in DCs. We developed a motility assay where DCs migrate through a collagen  

matrix cast on a chamber slide and are followed by live imaging (Chapter 6.1). Using 
fluorescent parasite lines, cell tracking thus allows differentiation between infected 
and non-infected DCs and monitoring of individual DCs on a time scale of minutes 

post infection. The onset of the hypermigratory phenotype was previously related to an 

increased rate of DCs transmigration at 3 h post incubation with T. gondii (160). We 
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showed that infected DCs display a significantly increased motility as early as 10 min post 
incubation with tachyzoites. In agreement with this finding, the onset and maintenance 
of hypermotility was independent of de novo protein synthesis by the host cell and by 

the parasite, for at least 6 h (Paper III). This suggests that the proteins necessary for a 

rapid migratory response are present in DCs at the point of invasion. Koshy and colleagues 

recently showed that T. gondii is capable of injecting rhoptry proteins into cells it does 

not productively invade (150), however we did not observe any migratory activation in the 

non-infected bystander population. Using the recently described drug 4-bromophenacyl 
bromide (237), we showed that parasite attachment without rhoptry secretion was 

insufficient to induce hypermotility (Paper III). Parasite invasion was thus a requirement 
for hypermotility, in line with previous results that neither exposure to parasite lysate, 

excretory/secretory antigen (ESA), infected DC supernatant or phagocytosis of heat-killed 

parasites is sufficient to induce the hypermigratory phenotype in DCs (160, Paper II, Paper 
III). Collectively, these results indicate that the molecular trigger(s) of hypermotility are 

not secreted prior to invasion and are not present in the extracellular environment.

The onset of hypermotility coincided with a dramatic rearrangement of the DC cytoskeleton, 

including the dissolution of adhesive podosome structures, rounding of the cell body, the 

appearance of veils and displacement of CD18 and CD11c integrins (Paper III). In this 

context, we interpret the cytoskeletal alterations observed in T. gondii infected DCs as 

indicative of a shift in migratory capacity and mode of migration. Indeed, previous reports 

indicate that RhoA dependent loss of podosomes is a prerequisite for fast amoeboid 

migration in mature DCs (39, 308, 309). Podosome dissolution has previously been linked 

to prostaglandin signaling (308) and T. gondii infection in macrophages induces PGE2 

production (221). However, we saw no effect on podosome dissolution or hypermotility 
when DCs were treated with inhibitors of cyclooxygenase, the PGE2 synthesizing enzyme 

(Paper III).

3.2) Chronic Stage and Reactivated Infection (paper I)

Reactivated (recrudescent) toxoplasmosis in the CNS is the most common cause of focal 

brain lesions in patients infected with HIV, leading to significant morbidity and mortality 
(223). In contrast to the acute phase, where peripheral organs carry high parasite loads, 

parasite replication during the recrudescent phase is mainly localized to the CNS (69). 

The CNS is separated from the circulating blood by the BBB, which controls the transport 

of nutrients and signaling molecules as well as trafficking of immune cells. Structurally, 
the BBB consists of the tight junction linked capillary endothelium, surrounded by the 

perivascular ECM of the basement membrane and pericytes. Lining microglia and cellular 

processes from astrocytes and neurons modulate BBB properties, such as permeability 

and transport (Fig 1) (1). Parasite dissemination within the CNS during the recrudescence 
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process is poorly understood, though it is likely of importance for disease progression. CNS 

resident microglia have been proposed to act as Trojan horses in an ex vivo model system 

for CNS infection by Listeria monocytogenes, carrying the bacteria inside the tissue (238). 

Similar observations have been made for monocytes that migrate to the brain in an IFN-γ 
dependent manner (76, 77). During toxoplasmic encephalitis, microglia up-regulate the 

ICAM-1 ligands LFA-1 and macrophage-1 antigen (Mac-1), as well as ICAM-1 itself (67). 

Human immunodeficiency virus (HIV)-1 has also been reported to use a Trojan horse 
mechanism to enter the CNS (211, 225). HIV-1 trans-activator protein induces secretion of 

CCL2 and other chemokines in microglia, eliciting migration through autocrine activation 

of CCR2 (60, 83). This was recently confirmed by overexpression of CCR2 in primary 
microglia (134). These results may also play a role in the T. gondii recrudescence process 

since HIV is a common underlying infection in patients with toxoplasmic encephalitis 

(311). 

In order to study parasite-host cell interactions during recrudescent toxoplasmosis we 

used a combined approach of a mouse model of chronic T. gondii infection and primary 

cultures of glial cells. The recrudescence model is based on chronic infection with a non-

virulent, cyst forming and luciferase expressing strain (CTG luc) of T. gondii. Infection 

progression is monitored through bioluminescence imaging and when the chronic stage 

is reached, the animals are immunosuppressed by dexamethasone treatment (69). The 

distribution of reactivated cysts thus produced resembles those observed in human 

patients (206).

FIGURE 1. Schematic representation of the blood-brain barrier. Transvers (left) and 

longitudinal (right) cross sections are shown. The capillary endothelium is depicted in red, 

astrocytes in blue and microglia in green.

Immunohistochemical analysis of recrudescent brain tissue showed significant activation 
of astrocytes and microglia in and around foci of replicating parasites (Paper I). Given the 

important roles ascribed to these CNS native cells during T. gondii infection (Chapter 2.4), 
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we proceeded to investigate their role in the recrudescence process. To directly assay the 

ability of microglia and astrocytes to function as Trojan horses, we compared their in vitro 

transmigration capacity and observed that microglia responded to infection with increased 

transmigration, as shown for DCs, while astrocytes did not. Infection also enhanced the 

capacity of microglia to penetrate astrocyte monolayers (Paper I). 

Characterizing microglia maturation markers, we showed that T. gondii infection induces 

moderate up-regulation of CD54 (ICAM-1) and MHCI, while expression of co-stimulatory 

CD86 and MHCII was maintained (Paper I). Since IFN-γ is secreted by many cell types, 
including microglia (286), during immune responses against T. gondii (Chapter 2.4), we 

compared maturation marker expression of IFN-γ-stimulated infected and non-infected 
microglia. We observed a down-modulation of the IFN-γ response in the infected cells 
for all four markers as early as 6 h post infection. To establish whether this modulation 

of molecules involved in T cell interactions (Chapter 1.1) affected parasite spread, we 
employed a T cell killing assay. Infected microglia and astrocytes displayed increased 

sensitivity to CD8+ T cell mediated killing, which correlated with increased numbers of 

infected T cells (Paper I). The data suggest that T. gondii escapes the host glial cell targeted 

for killing, only to infect the effector T cell, as previously shown for infected DCs and NK 
cell or T cell mediated killing (51, 226, 227). In accordance with these and previously 

published results (257), we observed recruitment of CD8+ T cells to replicative parasite 

foci, which puts them in close proximity of activated (and potentially infected) microglia 

and astrocytes in the CNS of encephalitic mice (Paper I). 

T. gondii infected microglia display a similar migratory activation as infected DCs, 

suggesting an extension of the Trojan horse concept to this resident CNS cell type, as 

was previously done with macrophages (159). It is tempting to speculate that these 

similarities are connected to the shared origin of microglia, macrophages and DCs in 

myeloid progenitors during embryonal development (102). The results also highlight 

the role of host-parasite interactions in the actual pathology of the infection. Zhang and 

colleagues recently showed that activated microglia significantly contribute to neuronal 
damage during toxoplasmic encephalitis. The neurotoxic activity was connected with the 

production of pro-inflammatory cytokines and induction of iNOS (342). A similar role 
has been described in cell death during neuronal development, where microglia also 

participate in clearance of dying cells and debris (187, 316). T. gondii infection induces NF-

κB dependent matrix metalloproteinase (MMP) secretion in astrocytes, causing fibronectin 
degradation in vitro (181, 182). Release of chemokines and growth factors from dying 

neurons attracts microglia and stimulates phagocytosis (209, 210). Microglia also exhibit 

immunomodulatory activities during chronic and acute T. gondii infection (Chapter 2.4). 

This, in combination with our finding that activated microglia and astrocytes are found in 
close vicinity of foci of replicating tachyzoites (Paper I), suggests that neuronal damage 
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in recrudescent encephalitis is a consequence of a disturbed host-parasite balance, where 

both the parasite and the immune system contribute to tissue destruction.

3.3) DC Chemotaxis in T. gondii Dissemination (paper II and III)
 
The rapid dissemination of T. gondii to secondary lymphoid organs, along with a reported 

link between infection and chemotactic responses in DCs (71) prompted us to investigate 

the role of chemotaxis in the hypermigratory phenotype. We found that DCs chemotax 

along a gradient of CCL19 at 24 h post T. gondii infection, to the same extent as LPS 

stimulated DCs. The velocity at which infected DCs chemotaxed was however significantly 
higher than that of LPS-matured DCs (Paper II), which is in line with previous results 

stating that the hypermigratory phenotype is regulated independently of chemotaxis 

(160). In agreement with these findings, infected DCs also up-regulated CCR7 and down-
regulated CCR5 (Paper II, Paper III). 

Interestingly, a down-modulation of CCR5 was observed in the non-infected bystander 

DCs in the infected population, while these cells did not exhibit chemotaxis or upregulation 

of CCR7 (Paper II, Paper III). It is tempting to speculate that since the down-modulation 

of CCR5 occurs shortly after infection compared to the up-regulation of CCR7 (Paper III), 

they contribute to different aspects of T. gondii dissemination. The loss of CCR5 and the 

onset of hypermotility could allow parasitized DCs to rapidly leave the periphery, while 

CCR7 expression directs them to secondary lymphoid organs, a hot spot of immune cell 

interactions.

It has been known for some time that soluble T. gondii cyclophilin-18 induces chemotaxis 

and IL-12 production in DCs via CCR5 ligation (6). Also, treating DCs with ESA or 

concentrated recombinant T. gondii dense granule protein (GRA) 5 has been shown to 

upregulate CCR7 expression and chemotaxis (72, 224). These events collectively contribute 

to a shift in the migratory patterns of DCs (Chapter 1.2). It is not surprising therefore, 

that the process of altering the chemokine receptor profile in DCs is complex and highly 
controlled, and that the individual steps may be independently regulated.

In summary, we have built on previous observations that DCs become hypermigratory 

upon T. gondii infection, by showing that they also migrate at higher velocities in a 

collagen matrix (hypermotility) (160, Paper III). This migratory activation coincides with 

morphological alterations, including redistribution of actin and integrins, and differential 
expression of chemokine receptors (Paper II, Paper III). Thus, it appears that the 

hypermigratory phenotype progresses over time and that DCs acquire traits at different 
stages of this process, acting in conjunction or synergistically. How each trait specifically 
contributes to parasite dissemination in vivo will be the subject of further studies.
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3.4) T. gondii Dissemination to the CNS

In a detailed investigation of T. gondii infected mice, an increased number of DCs was 

found around plaques of replicating parasites in infected villi in the small intestine, 

while very few DCs were detected inside plaques (105). The authors propose an early DC 

migration wave out of parasite plaques as a potential cause of this observation, which goes 

well in line with our findings concerning the early onset of the hypermigratory phenotype 
of DCs (Paper III). Also, Coombes and colleagues observed influx of neutrophils into the 
small intestine of T. gondii infected mice. When infected, these neutrophils remained 

motile and could carry parasites across the intestinal epithelium into the lumen (55).

While the mechanisms by which tachyzoites enter the CNS are still largely unknown, three 

hypothetical models have been proposed (158): extracellular tachyzoites disseminate 

and traverse of the BBB (i), a Trojan horse is used for transmigrating across the BBB 

(ii) or Trojan horse mediated dissemination is followed by induction of host cell lysis at 

the BBB and extracellular tachyzoite transmigration (iii). Although the involvement of 

(i) and (iii) has not been disproven, much recent investigation has focused on potential 

molecular mediators of (ii) (190). Brain endothelium upregulate ICAM-1 and VCAM-1 

during toxoplasmic encephalitis and IFN-γ stimulation (67, 154). Severity of toxoplasmic 
encephalitis also correlates with increased VCAM-1 and activated leukocyte cell adhesion 

molecule (ALCAM) expression and higher permeability of the BBB (273). In line with this, 

Wang and colleagues have shown that CD8+ T cell recruitment into the CNS is severely 

impaired in T. gondii infected IFN-γ-/- mice, which was rescued with recombinant IFN-γ 
treatment. Also, blocking α4 integrin/VCAM-1 binding abolishes recruitment of CD8+ and 

CD4+ T cells (246, 318). Up-regulation of CCL21 has been observed in filamentous structures 
in the encephalitic brain, associated with CD8+ T cells (328). The putative attraction of 

DCs by these structures was not addressed in this study. Lachenmaier and colleagues 

showed that T. gondii infected antigen presenting cells shuttles parasites across an in vitro 

BBB model and carries parasites to the brain when injected intravenously (154). DCs also 

enter the encephalitic brain through a mechanism dependent on LFA-1 but independent 

of chemokine receptors CCR2, CXCR3, CX3CR1, CCR5 and CCR6 (137). T. gondii infected 

DCs migrate across retinal vascular endothelium in a CAM dependent manner (95). 

Infected monocytes under shear stress have been shown to adhere to and transmigrate 

through human endothelial monolayers in a Mac-1/ICAM-1 dependent manner (109, 

304). T. gondii C18 induces CCR5 dependent macrophage migration and infection with 

a C18 overexpressing T. gondii strain enhanced recruitment to the intraperitoneal cavity 

(128, 129). Infected macrophages also exhibit altered adhesion properties and trafficking 
to mesenteric and cervical lymph nodes (61).

These studies lend support to model (ii), stressing the importance of CAMs, cytokines 
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and chemokines in modulating immune cell trafficking to the CNS. They also indicate the 
potential involvement of immune cell types other than DCs as Trojan horses, e.g. T cells, 

monocytes, macrophages and neutrophils. The contribution of the three hypothetical 

modes of CNS entry awaits thorough in vivo evaluation and may differ with T. gondii 

strains, since the types differ in tachyzoite migratory capacity and induction of the 
hypermigratory phenotype (19, 161).
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4) THE GABAERGIC SYSTEM IN CELL 

MIGRATION

4.1) GABA in the CNS and in the Periphery

γ-aminobutyric acid (GABA) is a small molecule that was initially described as a plant 
metabolite before its role as the main inhibitory neurotransmitter in the CNS was 

discovered in the 1950s (91). Several prokaryotes, e.g. lactic acid bacteria, also produce 

GABA as part of their metabolism (172). GABA is derived from glutamate by the enzyme 

glutamate decarboxylase, stored in vesicles and released by so-called GABAergic neurons 

into the cleft of inhibitory synapses, from where it is cleared by the GABA transporter family 

(GAT) of plasma membrane solute carriers (38, 262). GABA signals through ionotropic 

(GABA
A
) and metabotropic (GABA

B
) receptors expressed throughout the CNS. GABA

A
 

receptors are heteropentameric Cl- channels assembled as combinations of 19 different 
subunits, however only a small subset of the potential combinations are observed in vivo 

(272). GABA
B
 receptors are G

i
PCRs and thus signal via adenylate cyclase (36). Outside the 

CNS, GABA receptors are found in a variety of compartments, especially endocrine tissues 

including the pancreas, adrenal gland, prostate and uterus (103, 214). Mounting evidence 

also suggest that GABA, and other neurotransmitters such as dopamine, adrenaline, 

acetylcholine, serotonin and glutamate, play important roles in the immune system (170).

4.2) The GABAergic System in Immune Cells

Although the role of GABA as an immunomodulator is not well understood, several 

types of immune cells have been shown to express components of the GABAergic system  

(recently reviewed in (136)). T cells were the first immune cells for which evidence of GABA 
receptor activity was presented (23) and the role of GABA has mainly been investigated in 

the context of T cell activation and proliferation (30, 299, 320). In connection with these 

results, GABA has been implicated in the severity of autoimmune inflammation in models 
of diabetes, multiple sclerosis and rheumatoid arthritis (27, 300, 301). Other studies have 

proposed that macrophages, neutrophils and T cells themselves produce GABA (74, 236, 

281).

GABA/GABA receptor activity has been linked to cell migration in the CNS, where its 

role depends on the mode of migration, cell type involved, stage of maturation and region 

of the brain (185). This complexity is mirrored in the few studies performed so far on 

immune cells, restating the fact that immune cell migration is highly context dependent. 

Neutrophils express GABA
B
 receptors that co-localize with Akt and, when activated, induce 

phosphorylation of Akt and chemotaxis (236). In adult hematopoietic stem and progenitor 
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cells (HSPCs), SDF-1α-induced chemotaxis was blocked by GABA and GABA
B
 receptor 

agonists, which has also been shown for GABA
A
 receptors in monocytes (263, 327). GABA 

itself, however, acted as a chemoattractant for umbilical cord HSPCs (338). The role of 

GABA in DC migration has not previously been addressed.

4.3) GABAergic Signaling in the Hypermigratory Phenotype 
(paper II)

Investigating potential molecular mediators of the T. gondii-induced hypermigratory 

phenotype, we showed by ELISA that murine and human DCs are capable of producing 

and secreting GABA into the extracellular milieu (Paper II). This confirms previous results 
that DCs express GAD65 (27). Upon T. gondii infection we observed up to a 5-fold increase 

in supernatant GABA concentration that was sensitive to inhibition of GAD or GAT. This 

response was observed upon infection with representative strains from types I, II and 

III. No increase in GABA production was seen in the non-infected bystander population 

(Paper II). 

Next, we showed by whole cell patch clamping that DCs respond to GABA by producing 

GABA
A
 receptor currents and that this response is blocked by GABA

A
 specific inhibitors. 

We detected up-regulation of GAT4 at 2 h post infection and increased GABA production 

at 3 h post infection (Paper II), at which time DCs are also hypermigratory (160). In line 

with this observation, blocking the GABAergic activation of infected DCs using inhibitors 

of GABA synthesis, secretion or GABA
A
 receptors abrogated the hypermigratory phenotype 

in these cells. Antagonizing GABA
B
 receptors produced a minute decrease in infected DC 

transmigration, suggesting that GABA
A
 receptor activity accounts for the majority of the 

migratory induction (Paper II). Together with the induction of DC GABA production upon 

infection, this suggested an autocrine/paracrine GABA signaling cascade, similar to what 

has been proposed for neuronal migration (184).

GABA production by DCs should also be viewed in the context of immune cell interactions, 

since it may affect other immune cells expressing GABA receptors, such as T cells (30, 
299). It would be interesting to study the impact of increased DC GABA secretion upon T. 

gondii infection on T cell function, as both cell types are key players in protective immunity 

against the parasite (Chapter 2.2) as well as potential Trojan horses (227, Paper I).

Finally, adoptive transfers showed that GABAergic inhibition of infected DCs abrogated 

the Trojan horse disseminatory advantage in vivo to a similar extent as DC immobilization 

(160, Paper II). This indicates a central role for GABAergic signaling in the hypermigratory 

phenotype.
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MacRae and colleagues recently described a metabolic GABA shunt in T. gondii 

tachyzoites, suggesting that GABA plays a role in the energy metabolism of the parasite 

(183). In accordance with our results (Paper II), the authors did not detect parasite 

secretion of GABA, indicating that the increase in GABA seen in DC supernatant upon T. 

gondii infection is due to stimulated production in the DC itself.

4.4) Cell Motility and Migration – What is the Role of GABA? 
(paper II & III)

Studies evaluating the invasive and metastasizing capacity of cancer cell lines have shown 

both positive (13, 131, 177, 274, 340) and negative (49, 122, 298) effects of GABA receptor 
stimulation. A common feature in these studies is the emphasis on the role of MMPs and 

MAPK activation in invasion and metastasis. Further studies will address the potential 

role of GABAergic signaling in DC MMP activity and invasive capacity. We interpret the 

varying experimental outcomes presented in studies performed on neuronal, immune and 

metastasizing cells as indicative of differential regulation by GABA of different modes of 
cell migration.

The observation that non-infected bystander DCs are not hypermigratory, despite being 

exposed to the same elevated GABA concentration as the infected population (160, Paper 

II) suggests that GABAergic activation is necessary but not sufficient for the T. gondii 

induced hypermigratory phenotype. Accordingly, stimulation of GABA receptors in non-

infected DCs does not significantly alter their transmigration rate. GABAergic inhibition 
reduced the motility of non-infected DCs but not their transmigration capacity (Paper II). 

Also, GABA deprived DCs underwent similar morphological changes as untreated DCs 

upon T. gondii infection (Paper III). These observations implicate parasite subversion of 

separate signaling pathways in DCs, collectively promoting the hypermigratory phenotype. 

This interpretation is corroborated by the rapid onset of hypermotility (Paper III), while 

our data also show that the hypermigratory phenotype is transcriptionally regulated over 

time (Paper II).

We showed that GABAergic inhibition did not abolish directionality in chemotaxing 

infected DCs but reduced the velocity at which they migrated (Paper II). GABA did not 

act as a chemoattractant to naïve, LPS-matured or infected DCs (Paper II), in contrast 

to embryonic neurons, neutrophils and HSPCs (20, 236, 338). These results suggest that 

GABAergic activation and chemotactic signaling are independently regulated but operate 

in conjunction in infected DCs, where the former gives the signal for hypermotility and 

the latter provides directionality of movement. A similar mechanism has been shown 

for gonadotropin releasing hormone-1 neurons, in which GABA
A
 receptors and the 

chemokine receptor CXCR4 interact to guide the neurons to form an organized pattern in 
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the developing brain (43). 

In vivo migration exposes DCs to a complex and dynamic environment, including varying 

concentrations of GABA in different organs and compartments (29, 92), which likely 
requires constant adaptation (Chapter 1.2). The presence of low ambient GABA production 

by non-infected DCs in our in vitro cultures raises the possibility of a concentration 

dependent GABA receptor response. This has been proposed for extrasynaptic GABA
A
 

receptors in the CNS, where the GABA
A
 channel conductance depends on the extracellular 

GABA concentration (175). It would be interesting to experimentally address the impact 

of varying extracellular GABA concentrations on DC function in organs where GABAergic 

signaling is prevalent, such as the brain or the pancreas.

4.5) GABAergic Activation During Toxoplasmosis
Future experiments will examine whether the GABAergic activation described here is 

generalizable to other cell types and parasite stages. One of the most tempting scenarios 

to explore would be neurons harboring bradyzoites in the chronically infected brain, 

keeping in mind the role of GABA as a neurotransmitter. The ‘fatal attraction’ hypothesis 

proposes that T. gondii actively subverts host innate fear responses in order to increase 

the probability of spread by predation (felines in particular as definitive hosts of T. gondii, 

(323)). Alterations of GABAergic signaling in the brain has been linked to changes in 

mood, anxiety level and fear responses (37, 140, 203). Also, astrocytes produce GABA, 

which reduces secretion of inflammatory cytokines in microglia (168). This, together with 
the fact that microglia exhibit a hypermigratory phenotype upon T. gondii infection (Paper 

I), adds an additional layer to the roles of glial cells during toxoplasmosis. Further studies 

will address whether astrocytes respond to infection with GABAergic activation and the 

potential effects of GABA on microglial migration. Recent microarray data show alterations 
in neurotransmitter and neuropeptide systems in neuroepithelioma cells infected by T. 

gondii (332). While no significant changes in transcription of GABA related genes were 
detected, these systems are also post-translationally regulated (324). Finally, T. gondii 

has been shown to produce dopamine through an endogenous tyrosine hydroxylase, which 

is also detected in brain tissue cysts, and by up-regulating microRNA-132, which alters 

host cell dopamine metabolism (233, 333). Collectively, these results describe a complex 

interplay between the rodent host and the tparasite, which should be further characterized 

in relation to host behavior.
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5) CALCIUM (Ca2+) SIGNALING IN 

IMMUNE CELL FUNCTION

5.1) Ca2+ - A Ubiquitous Second Messenger

The Ca2+ ion is one of the most ubiquitous second messengers in cellular signaling (130). 

Signals are relayed through so called ‘on’ reactions where Ca2+ entry from the extracellular 

space or Ca2+ release from intracellular stores located in the ER cause transient increases 

in the cytosolic Ca2+ concentration ([Ca2+]
c
). These are then translated into cellular 

responses by Ca2+ sensitive proteins, after which ‘off’ reactions restore the ambient [Ca2+]
c
 

via ion transporters and pumps (25). The modes of Ca2+ signaling are determined by the 

initiating stimuli and range from singular peaks in [Ca2+]
c
 to oscillatory patterns of specific 

frequencies (275). 

Ca2+ release from intracellular stores and extracellular Ca2+ entry can be triggered by 

multiple kinds of stimuli and are often intertwined. Phospholipase C is activated by GPCRs 

and cleaves phosphatidylinositol 4,5-bisphosphate (PIP
2
) into the second messengers 

diacyl glycerol and inositol 1,4,5-trisphosphate (IP
3
). IP

3
 activates the IP

3
 receptor in the 

ER, which releases Ca2+ through the receptor pore (195). Intracellular store release can 

also function as amplification of extracellular Ca2+ entry, particularly via Ca2+ sensitive 

ryanodine receptors (RyRs) on the ER (8). Inversely, intracellular stores can activate influx 
of extracellular Ca2+, a process known as store-operated Ca2+ entry (SOCE). The main 

SOCE mediator described is the Ca2+ release activated Ca2+ (CRAC) channel, consisting of 

the Ca2+ binding stromal interaction molecule (STIM) in the ER membrane and the plasma 

membrane Ca2+ channel Orai. When the intracellular stores are released, STIM interacts 

with Orai, which triggers influx of extracellular Ca2+ (24).

5.2) Ca2+ Signaling in Cell Migration 

Cell migration is intimately linked to Ca2+ fluxes through several key signaling pathways 
(260). A gradient of [Ca2+]

c
 is observed along the axis of migrating cells, likely ensuring 

differential activity of Ca2+ dependent effector proteins at the leading edge and rear (261). 
Chemotaxis is a Ca2+ dependent process, since chemokine receptor ligation induces 

influx of extracellular Ca2+ and release of intracellular stores in DCs (218, 256). Similar 

observations have also been made in microglia for CCR5 engagement (114, 265). Blockade 

of Ca2+ permeable transient receptor potential melastatin (TRPM) 2 or the IP
3
 receptor, 

abolishes DC chemotaxis and homing to lymph nodes (283). Also, potassium channel 

K
Ca

3.1 and Cl- channel Ano6, both of which are Ca2+ induced, are involved in CCR7 mediated 

chemotaxis (264, 296). TRPM4 is a Na+ permeable channel that regulates  [Ca2+]
c
 by altering 



38 Thesis for Doctoral Degree (Ph.D.) by Jonas Fuks

the electrochemical driving force of Ca2+ entry. Barbet and colleagues showed that loss of 

this regulation in TRPM4-/- mice abrogates DC migration and trafficking to lymph nodes 
(16). TRPM4 deficient mast cells are also deficient in migration and displayed impaired 
actin recruitment (266). Zebrafish primordial germ cells migrate via a plasma membrane 
blebbing mechanism (Chapter 1.2) dependent on local STIM induced [Ca2+] increases 

(32). Microglial podosomes co-localize with several Ca2+ related proteins and inhibition of 

CRAC channels interferes with podosome formation and transmigration (271).

5.3) Membrane Potential and Voltage Dependent Ca2+ Channels

The membrane potential (E
m

) is defined as the electric potential difference between the 
cytosolic side and the extracellular side of the plasma membrane. Cells maintain an 

electrochemical gradient across the plasma membrane, mainly by active separation of K+ 

and Na+ through the K+/Na+ ATPase, resulting in a high intracellular K+ concentration ([K+]
i
) and 

high extracellular Na+ concentration ([Na+]
e
). The resulting unequal distribution of charge 

is known as the resting potential (245). Mathematically, the membrane potential can be 

expressed by the Goldman-Hodgekin-Katz equation for k positively charged monovalent 

ions and l negatively charged:

where R denotes the ideal gas constant, F Faraday’s constant, T the temperature in degrees 

Kelvin and P
x
 the membrane permeability of ion x. Considering only K+, Na+ and Cl- gives:

Decreasing the absolute value of E
m

 below the resting potential is termed “depolarization”, 

while an increase is termed “hyperpolarization”. Experimentally, depolarization of the cell 

membrane can be induced by increasing  [K+]
e
, which reduces the electrochemical driving 

force of K+ diffusing out of the cell (Fig 1A&B). In excitable cells (neuronal, muscle and 
endocrine cells), E

m
 changes are induced during an action potential, which is the basic 

mode of information transfer in the CNS (245). 

The impact of Cl- channels, e.g. GABA
A
 receptors, on E

m
 depends on the intracellular Cl- 

concentration ([Cl-]
i
), as has been shown in the developing CNS. In pre-natal neurons [Cl-]

i
 

is high and triggering GABA
A
 receptors will thus induce Cl- efflux and depolarization (Fig 
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1C), while in mature neurons the reverse is true (Fig 1D). This developmental switch is 

driven by alterations in the Cl- homeostasis of the cells via differential expression of the 
Cl- transporters NKCC1 (Cl- uptake) and KCC2 (Cl- extrusion) (reviewed in (22)), and the 

energy metabolism of the cell (345). 

Voltage-dependent Ca2+ channels (VDCCs) are plasma membrane proteins that respond to 

membrane depolarization by a conformational change that opens the channel (44). VDCC 

nomenclature is based on sequence homology of the pore-forming and voltage-sensing α1 
subunit, grouping them into the 3 subfamilies Ca

V
1, 2 and 3 (82). Expression of VDCCs has 

been considered as a hallmark of excitable cells and has therefore been mostly studied in 

the CNS where the different subfamilies have distinct functions in synaptic transmission 
(45). However, mounting evidence points towards VDCCs, particularly the Ca

V
1 subfamily, 

playing important roles in cells of the innate and adaptive immune system (Table 1), 

although few details are known about their function (288). 

5.3) VDCC Signaling in Immune Cells

Several B cell subsets exhibit Ca
V
1 dependent Ca2+ influx upon ligation of the B cells 

receptor (104, 117). 

Murine CD8+ and CD4+ T cells express Ca
V
1.1, Ca

V
1.2 and Ca

V
1.4, although differential 

expression is observed upon transition from naïve to effector cells (14, 151, 279). Ca
V
1 

expression also varies between T cell subsets, as T
H
2 polarized cells express a wider 

repertoire than T
H
1 polarized cells (240, 253). Activation of Ca

V
1 through ligation of the T 

cell receptor is implicated in T cell survival, expansion and homeostasis (213, 240).

Ligation of the mast cell IgE receptor induces a Ca
V
1.2 mediated transient [Ca2+]

i
 increase 

and reduces apoptosis by blocking cytochrome c release (287, 294). TNF-α secretion by 
peripheral blood monocytes is blocked upon inhibition of Ca

V
1.2 and Ca

V
1.3 and Ca

V
1 

activity has been linked to monocyte secretion of apolipoprotein A1 (54, 267).

DC maturation is Ca2+-dependent (59, 86, 314) and blocking Ca
V
1 in human monocyte-

derived DCs inhibits engulfment of apoptotic bodies and IL-12 secretion (230). Curiously, 

Ca
V
1 inhibition in LPS-matured DCs stimulated IL-12 secretion in a MAPK-dependent 

manner (2). DCs also express RyR1, which is activated by Ca
V
1.2 and rapidly stimulates 

MHCII expression (313).

Agonist/antagonist studies have also implicated Ca
V
1 activity in immune functions of 

neutrophils, macrophages, and microglia (12, 114, 243). However, the relevance of these 

results depends on the number of different inhibitors used, inhibitor concentrations and 
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whether antagonist and agonist data concur and should thus be interpreted carefully. Also, 

several well-established VDCC inhibitors have off targets that likely become increasingly 
prominent at higher concentrations (337, 341). 

TABLE 1. VDCC expression on immune cells.

Summary of literature reports of VDCCs identified in immune cells. Methods of 
characterization are abbreviated as Ph (pharmacological), WB (western blot), IF 

(immunofluorescence) and K (gene knockout or knockdown).
 

Cell type Ca
V
1 identified Characterization Function References

Neutrophils Unknown Ph IgG-mediated 

phagocytosis

(243)

NK cells Unknown Ph, WB, FACS Release of 

cytolytic factors

(346)

DCs Human: 1.2

Mouse: 1.3

Ph, WB, IF

Ph, PCR, IF

IL-12 production, 

MHCII expression

DC hypermotility

(230, 313, 

Paper IV)

Monocytes Human: 1.2, 1.3 Ph, PCR, WB TNF-α production (54)

Macrophages Unknown Ph NO/ROS 

production

(12, 132)

Mast cells Mouse: 1.2 Ph, PCR, K Anti-apoptotic (293, 294)

Microglia Unknown Ph CCL5 signaling,

Neurotoxicity

(111, 114)

B cells Rat: 1.3 rat Ph, FACS B cell receptor 

activation

(80, 247)

T cells Human: 1.2, 

1.3, 1.4

Mouse: 1.1, 1.2, 

1.4

Ph, PCR, IF, K NFAT-dependent 

maturation, 

cytokine 

production

(14, 28, 151, 

279)

5.5) Ca2+ and GABAergic Signaling in T. gondii Infected DCs 
(paper IV) 

To investigate the role of Ca2+ signaling in the hypermigratory phenotype, we first showed 
that transmigration and motility of T. gondii infected DCs is severely compromised in the 

absence of extracellular Ca2+. Ni2+ blockade of plasma membrane Ca2+ channels confirmed 
this finding (Paper IV). Known links between GABAergic signaling and VDCCs in the CNS 
(33, 144) prompted us to test whether this concept applies to DCs as well, particularly 
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since VDCCs have not been previously studied in the context of DC motility.

We confirmed VDCC activity on DCs by high KCl-induced depolarization and showed that 
inhibiting Ca

V
1 by nifedipine or verapamil abrogated hypermotility to the same extent as 

GABA deprivation (Paper IV). DCs may thus be an interesting exception to the trend that 

immune cell VDCCs do not respond to artificial depolarization (14, 279, 346). Importantly, 
hypermotility could not be restored by exogenous GABA in DCs where Ca

V
1 was inhibited 

by nifedipine, in contrast to GABA deprived DCs. Next, we showed that KCl restored 

hypermotility in GABA deprived DCs, but again not in DCs where Ca
V
1 was inhibited (Paper 

IV). These data indicate that Ca
V
1 activity occurs downstream of GABA receptor signaling 

and is required for T. gondii induced hypermotility. Inhibition of purinergic receptors 

did not reduce infected DC motility, despite inducing Ca2+ entry when stimulated with 

ATP (250, Paper IV). This suggests that Ca2+ entry through Ca
V
1 specifically is required for 

hypermotility. While we could not directly observe influx of Ca2+ upon stimulation with 

exogenous GABA, the fact that KCl could substitute GABA in restoring hypermotility in 

GABA deprived cells indicates that they stimulate the cell in a similar way (Paper IV). This 

is further supported by previous results that human DCs respond with depolarization to 

KCl and necrotic cell extracts (313). In our hands, measuring total cytosolic Ca2+ changes 

may also lack sufficient spatial resolution and sensitivity to detect the fluctuations we 
propose occur downstream of GABA

A
 receptor activation.

We screened VDCC subtypes by quantitative reverse transcription PCR and found Ca
V
1.3 to 

be predominantly expressed, with all other subtypes being low or undetectable. Ca
V
1.3 was 

also identified by immunofluorescence, whereas staining patterns in T. gondii-infected and 

non-infected DCs did not differ (Paper IV). This is in contrast to human DCs where Ca
V
1.2 

expression has been reported (313), although these share the highest degree of sequence 

homology among Ca
V
1 (82).  To investigate whether Ca

V
1.3 is the functionally dominant 

VDCC in murine DCs, we used a recently described inhibitor with high specificity against 
Ca

V
1.3 compared to other VDCCs (142). Treatment at a concentration recommended for 

optimal Ca
V
1 selectivity (142) abrogated hypermotility and hypermigration (Paper IV). 

We then employed RNA interference using short hairpin RNA (shRNA) packaged in a 

lentiviral delivery system (171). DCs transduced with shRNA targeting Ca
V
1.3 failed to 

become hypermotile upon T. gondii infection, which could not be rescued by addition of 

GABA (Paper IV). While we cannot completely exclude participation of other Ca2+ entry 

pathways, such as SOCE (121), the shRNA data together with the relative specificity shown 
by purinergic receptor inhibition suggest dependence on Ca

V
1.3. We thus conclude that 

Ca2+ is a second messenger to GABAergic signaling in DCs and that Ca
V
1.3 is the major 

contributor to the Ca2+ entry necessary for the hypermigratory phenotype. 

VDCC triggering allows for very rapid signal transduction (11), which is in line with 
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some of the proposed functions in immune cells (Table 1) as well as the rapid onset of 

hypermotility in T. gondii infected DCs (Paper III). Migratory activation has been reported 

in conjunction with cytoskeletal rearrangement in a metastatic breast cancer cell line (97). 

Both of these processes were sensitive to GABA receptor blockage or Ca
V
1 inhibition. 

Further experiments will address whether the T. gondii-induced morphological changes 

in DCs (Paper III) are dependent on Ca
V
1 activity.

Manipulation of host Ca2+ signaling pathways by T. gondii is not a phenomenon unique to 

DCs but has been reported in other cell types. Infection in mast cells was recently shown 

to inhibit antigen-mediated degranulation by reducing Syk kinase phosphorylation of 

PLCγ and thus inhibiting ER Ca2+ release (276). This inhibition requires attachment but 

not invasion of tachyzoites, in contrast to the onset of hypermotility in DCs (276, Paper 

III). Haroon and colleagues have shown that T. gondii infected neurons exhibit altered 

responses to glutamate stimulation and that the majority of neurons that carry cysts in the 

chronically infected mouse brain are functionally silent (110). The authors connected these 

results with behavioral alterations that occur in chronically infected mice, characterized 

by the loss of fear of cat odor (110, 315). In macrophages, Ca2+ signaling is required for 

protein kinase C (PKC)-dependent MAPK signaling and IL-12 expression induced by 

T. gondii (188). Tachyzoite invasion also alters the macrophage Ca2+ signaling pattern 

independently of MyD88 and CCR5 (189). As macrophages exhibit hypermigration upon 

T. gondii infection (159) and likely express VDCCs and GABA
A
 receptors (12, 27), further 

studies will examine whether this pathway is subverted by the parasite in a similar way 

as in DCs. Lin and colleagues recently showed that ectopic expression of T. gondii GRA1 

in a macrophage cell line alters Ca2+ signaling in these cells, providing a potential link 

between parasite invasion and Ca2+ signaling modulation (173). T. gondii is thus capable 

of subverting different host Ca2+ signaling pathways, in order to inhibit cellular responses 

or to enhance them.

Ca2+ signaling in the T. gondii tachyzoite itself has been implicated in several phases of 

the lytic cycle, most notably the invasion process (180, 228). Recently Pace and colleagues 

showed that a transient increase in tachyzoite [Ca2+]
c
 is required for invasion and is partly 

mediated by nifedipine-sensitive entry of extracellular Ca2+ (215). In our experimental 

setup, all Ca2+ signaling inhibitors were added 2-3 h post T. gondii challenge, which reduces 

the probability that the inhibition of hypermotility we observed is due to drug effects on 
the parasites. Thus, we could also show that the GABAergic activated Ca2+ influx upon T. 

gondii infection is necessary not only for the induction but also for the maintenance of 

hypermotility (Paper IV).
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5.6) A Hypothetical Model for T. gondii Induced DC 
Hypermotility (paper IV)

To situate the mechanistic findings presented here in a host-parasite interaction 
perspective, we propose the following model for the GABA-induced Ca2+ signaling upon 

T. gondii infection (Fig 2).

The active invasion of a T. gondii tachyzoite rapidly stimulates GABA synthesis (I), likely 

by GAD65, which is activated by phosphorylation by Ca2+ independent PKC isoform ε 
(324). It remains to be investigated whether T. gondii induces this non-conventional PKC, 

as has been shown for a conventional PKC (188). An alternative hypothesis is that the 

parasite directly activates GAD65 via effector molecules secreted into the host, as several 
of these are active kinases (220).

FIGURE 3. Proposed initial steps of migratory activation of DCs upon T. gondii infection. 

Tachyzoite entry induces GAD dependent synthesis of GABA, which is excreted by GAT. 

Extracellular GABA activates GABA
A
 receptors in an autocrine manner, causing Cl- efflux 

and membrane depolarization. This triggers Ca
V
1.3 dependent Ca2+ entry, which signals a 

shift in migratory capacity.

Next, GAT mediated secretion of GABA into the extracellular environment occurs (II). The 

Parasitophorous

vacuole

GADGlutamate

GABA

GABA

transporter

GABA
A
R

Cl-

Membrane

depolarization

Ca
V
1.3

Ca2+

(I)

(IV)

(V)

–
–

–

–

+
+

+

+

Plasma

membrane

(II)

(III)



 455) Calcium (Ca2+) Signaling in Immune Cell Function

rapid upregulation of GAT4 upon infection supports the hypothesis that GABA secretion is 

connected with the onset of the hypermigratory phenotype. Extracellular GABA activates 

GABA
A
 receptors in an autocrine manner (III), causing Cl- efflux, which depolarizes the 

plasma membrane (IV). This triggers voltage sensitive Ca
V
1.3 mediated influx of Ca2+ (V) 

and downstream activation of migratory pathways. 
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6) METHOD DEVELOPMENT AND 

CONSIDERATIONS

Investigation of the Trojan horse hypothesis of T. gondii dissemination requires 

appropriate assays that model host cell migration under varying conditions (Chapter 3.4). 

The assays employed in this thesis to quantify cell motility and migration are discussed 

below. As all in vitro models, they represent attempts to mimic different facets of the in 

vivo setting under defined conditions. For more detailed descriptions of the methods 
and procedures employed in the different studies, the reader is referred to the methods 
sections of the respective papers.

6.1) Assays to Measure Cell Migration 

Motility Assay (paper III & IV)

This assay was developed to allow quantification of cell migration on a single cell level 
and to distinguish non-infected cells from T. gondii infected ones (Fig 4). Infection with 

fluorescent parasites is done in a 96 well format, after which the cells are embedded in 
a collagen I matrix and transferred to multiwell glass slides. Live cell imaging is then 

performed and cells are manually tracked to minimize errors associated with automated 

tracking solutions. During the optimization phase we defined optimal incubation volumes 
and times for the different steps, concentration of collagen, imaging intervals and tracking 
method. We then evaluated the reproducibility of the assay and found that DCs increase 

their velocity by a factor 2,9±0,9 upon infection in 12 experiments performed over a period 

of 6 months. Velocities of non-infected DCs in the motility assay are generally lower than 

what has been observed in vivo, although closer to DCs migrating in interstitial tissue than 

those in lymph nodes (163, 194). We conclude that, while the motility assay underestimates 

the motile capacity of DCs in vivo, it is a robust and useful assay to study the migratory 

activation of DCs and other cells upon T. gondii infection.

Transmigration Assay (paper I, II, III & IV)

The transmigration assay is performed in a chamber divided into a top and bottom 

compartment by a porous membrane, on which cells are deposited. Counting the number 

of cells in the lower compartment after a period of incubation gives the transmigration 

rate. The assay can be made to more closely model a biological barrier by coating the 

membrane with ECM components, e.g. collagen or matrigel, and/or a monolayer of cells, 

e.g. endothelial cells, astrocytes or BeWo (53, 160, Paper I). A potential drawback of the 

assay is the relatively long incubation times and binary output, compared to the motility 

assay.
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Chemotaxis Assay (paper II & III)

From the many assays described in the literature that measure chemotaxis, we prefer a 

commercially available system set in microfabricated channels on a glass slide (μ-Slide, 

Ibidi). The arrangement of two perpendicular channels, one containing the cell suspension 

and the other a chemokine gradient, admits superior control of gradient formation 

compared to commonly used Boyden chamber systems.

Adoptive Transfers and Bioluminescence Imaging (paper II)

To evaluate the impact of different factors on T. gondii Trojan horse dissemination in vivo, 

we adoptively transfer cells infected in vitro with parasite strains expressing luciferase. 

Parasite dissemination and replication is followed through bioluminescence imaging 

(IVIS, PerkinElmer), allowing repeated observations of the same animals in contrast 

to plaquing assays (68). On the level of individual organs, however, the plaquing assay 

remains a more sensitive technique due to the lower detection threshold of replicating 

parasites (Paper II).

FIGURE 4. Motility assay work flow. Graphical representation of the steps from 
experimental setup to cell tracking and data analysis.

6.2) Defining the Hypermigratory Phenotype

Using the assays described above allows us to dissect the hypermigratory phenotype 
observed upon T. gondii infection into more precise terms. The increased velocity and 

transmigration rate observed in the motility and transmigration assays upon infection, 

we have termed “hypermotility” and “hypermigration” respectively. Also, infected DCs 

acquire the capacity to chemotax along a CCR7 gradient (Chapter 3.3). Importantly, 

infection of DCs promotes parasite dissemination in vivo, which can be linked to in vitro 

hypermigration, hypermotility and chemotaxis by pharmacological studies (160, 161, 

Paper II). The hypermigratory phenotype can thus be defined as presenting as subset or 
all of these traits collectively (325).
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7) CONCLUSIONS AND FUTURE 

PERSPECTIVES

The requirement for tachyzoite dissemination from the small intestine to distant sites 

where pathology develops is a prerequisite for clinical manifestations of T. gondii 

infection, e.g. chorioretinitis (the eye), congenital toxoplasmosis (the placenta) and 

toxoplasmic encephalitis (the brain). Having previously confirmed the disseminatory 
advantage given by the hypermigratory phenotype in vivo, we here modeled this process 

using different in vitro approaches. A key step in understanding T. gondii dissemination 

will be the linking of different aspects observed in vitro, e.g. morphological alterations, 

hypermotility, hypermigration and chemotaxis, to corresponding cellular activities in vivo. 

The differential regulation of these traits, indicated by our results, suggests that they could 
be selectively targeted in therapeutic strategies. This would however require knowledge of 

which processes actually mediate the enhanced dissemination observed in vivo. Similarly, 

the impact of the proposed Trojan horse mediated local dissemination in the CNS on the 

clinical course of toxoplasmic encephalitis should be evaluated. 

The work presented in this thesis features a GABAergic-Ca2+ signaling axis previously 

undescribed in DCs. While several of its components have been associated to migratory 

properties in other cell types, the role of this pathway in basal DC migration remains to be 

studied. As Ca2+ signaling modulates cellular motility on many different levels, dissecting 
the cascades downstream of GABAergic activation is challenging. Simultaneous work to 

identify T. gondii derived factors that participate in the initiation of the hypermigratory 

phenotype will likely facilitate this task. From a therapeutic perspective, the implication 

of GABA receptors and VDCCs in T. gondii dissemination is interesting, since these have 

been successfully studied as drug targets. Two compounds that were found to inhibit the 

hypermigratory phenotype in Paper IV, nifedipine and verapamil, have been used to treat 

hypertension since the 1970s and 80s respectively.  

Work by us and others have described a role for GABA in regulating the immune system. 

The term ”neuroimmunotransmitter” has been proposed to denominate the growing class 

of signal transducers that relay information both in the CNS and in the immune system 

(170). In the specific case of GABA, however, it is important to note that while it has been 
widely studied as a neurotransmitter in the vertebrate CNS, it has been described in 

prokaryotes, plants, fungi and protozoa (34, 152, 172, 331). Being a simple γ-amino acid 
that is interconvertible with key metabolic molecules such as glutamate and oxaloacetate, 

the apparent evolutionary retention of GABA is not surprising. Whether this ubiquitous 

presence may enable interactions across species, e.g. between commensal or parasitic 

organisms and their hosts, remains to be investigated. However, this could provide a new 
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dimension to the expression of GABA receptors on a variety of immune cells.

Finally, T. gondii has been employed as a model for other apicomplexan parasites for over 

15 years (145). This thesis has examined potential mechanisms of T. gondii dissemination. 

In the light of the hypermigratory phenotype, this parasite could also be considered as a 

tool for studying motility and migration of immune cells.
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