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Abstract | The urinary tract is a common site of bacterial infections; nearly half of all women experience 
at least one urinary tract infection (UTI) during their lifetime. These infections are classified based on the 
condition of the host. Uncomplicated infections affect otherwise healthy individuals and are most commonly 
caused by uropathogenic Escherichia coli, whereas complicated infections affect patients with underlying 
difficulties, such as a urinary tract abnormality or catheterization, and are commonly caused by species 
such as Proteus mirabilis. Virulence and fitness factors produced by both pathogens include fimbriae, toxins, 
flagella, iron acquisition systems, and proteins that function in immune evasion. Additional factors that 
contribute to infection include the formation of intracellular bacterial communities by E. coli and the production 
of urease by P. mirabilis, which can result in urinary stone formation. Innate immune responses are induced 
or mediated by pattern recognition receptors, antimicrobial peptides, and neutrophils. The adaptive immune 
response to UTI is less well understood. Host factors TLR4 and CXCR1 are implicated in disease outcome and 
susceptibility, respectively. Low levels of TLR4 are associated with asymptomatic bacteriuria while low levels 
of CXCR1 are associated with increased incidence of acute pyelonephritis. Current research is focused on the 
identification of additional virulence factors and therapeutic or prophylactic targets that might be used in  
the generation of vaccines against both uropathogens. 
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Introduction
The urinary tract is one of the most common sites of 
bacterial infection in humans.1 Lower urinary tract infec­
tions (UTIs), such as cystitis, are typically characterized 
by symptoms including frequency, urgency, and dysuria.2 
If left untreated, these infections can progress to an upper 
UTI, known as acute pyelonephritis or kidney infection, 
which can be associated with additional symptoms such 
as fever, nausea, vomiting, and flank pain. These infec­
tions also carry the risk of possible progression to bacter­
emia. An estimated 40% of women and 12% of men will 
experience a symptomatic UTI during their lifetime, and 
approximately a quarter of affected women will suffer 
recurrent UTI within 6–12 months.3 Infants and children 
are also susceptible to UTI. Febrile UTIs in children tend 
to be associated with vesicoureteral reflux and the poten­
tial for renal scarring. Pediatric UTI might predispose 
patients to adult disease.4 In 2006, UTIs were the cause of 
more than 11 million physician visits, 1.7 million emer­
gency room visits, and almost half a million hospitaliza­
tions; the societal cost of these infections is 3.5 billion 
dollars annually in the US alone.5,6

UTIs can be classified as uncomplicated or compli­
cated. Uncomplicated infections occur in patients who 
are otherwise considered healthy. Complicated UTIs, on 
the other hand, occur in patients who are compromised 
in some way, for example, if they have anatomical or 

functional abnormalities in their urinary tract, are suf­
fering from another illness, are immuno compromised, 
or are undergoing long­term catheterization. The 
vast majority of uncomplicated UTIs are caused by 
Escherichia coli. By contrast, complicated UTIs, especially 
those associated with long­term catheterization, might be 
polymicrobial.7,8 These infections are typically caused by 
Proteus mirabilis, Providencia stuartii, Morganella mor-
ganii, Klebsiella pneumoniae, E. coli, and Pseudomonas 
aeruginosa, among others.

This Review will focus on uropathogenic E. coli 
and P. mirabilis as representative pathogens causing 
uncompli cated and complicated UTI, respectively. Here, 
we summarize the common mechanisms of uropatho­
genesis utilized by uropathogenic E. coli and P. mirabilis, 
including adherence, toxin production, motility, metal 
acquisition, and evasion of host immune defenses. In 
addition, we will highlight differences between the two 
pathogens, such as the formation of intracellular bacterial 
communities by uropathogenic E. coli and the production 
of urease by P. mirabilis. The innate immune response to 
UTI will be outlined, including the pattern recog nition 
receptors Toll­like receptor (TLR) 4, 5, and 11. Host 
factors that impact human disease outcomes, namely 
TLR4 and CXC chemokine receptor type 1 (CXCR1), 
will also be explored. Finally, current prophylactic and 
treatment strategies will be briefly outlined and the need 
for vaccine development, as well as recent advances in the 
field, will be addressed.
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Uropathogenesis and virulence factors
The vast majority of UTIs are ascending infections; 
both E. coli and P. mirabilis can be found in the intes­
tinal tract, which is likely to be the source of organisms 
infecting the urinary tract. Uropathogenic E. coli are a 
specific subset of extraintestinal pathogenic E. coli; that 
is, not all strains of E. coli are capable of causing UTI.9 By 
contrast, it appears that all strains of P. mirabilis, regard­
less of isolate origin, are capable of infecting the urinary 
tract.10 Prototypical strains of each pathogen have been 
sequenced: E. coli strains CFT073,11 536,12 UTI89,13  
IAI 39,14 and Umn026,14 and P. mirabilis strain HI4320.15 
Horizontally acquired genetic elements have been 
identi fied in both species: uropathogenic E. coli strains 
have up to 13 pathogenicity islands16–19 and an integra­
tive and conjugative element was recently identified in  
P. mirabilis.20 Horizontal gene transfer is relevant to bac­
terial pathogenesis because these horizontally transferred 
genes often encode traits that contribute to virulence, 
niche specificity, or antibiotic resistance.21

Common strategies of pathogenesis employed by both 
uropathogenic E. coli and P. mirabilis include adher­
ence, motility, acquisition of metals, toxin production, 
and immune evasion (Figure 1). For the purpose of this 
article, we define a virulence factor as a protein (such as 
a toxin) or macromolecular structure (such as a fimbria 
or flagellum) that contributes to the ability of the patho­
gen to cause disease and a fitness factor as a protein 
or macro molecular structure that, while not required 
for virulence, offers a competitive advantage during 
infection. Additionally, each pathogen displays unique 
character istics not shared by the other, namely, uropatho­
genic E. coli can form intracellular bacterial communi­
ties and P. mirabilis synthesizes urease. elucidation of  
these pathogenic mechanisms resulted from years  
of work carried out by many investigators. much of this 
work was made possible by the availability of sequenced 
genomes, develop ment of genetic screens, and use of 
animal models of UTI. The outcome of infection by these 
bacteria is dictated by the immune response to UTI and 
host factors that influence susceptibility to disease.

uropathogenic E. coli
Adherence via fimbriae
Fimbriae are complex surface structures that, in general, 
mediate adherence of bacteria to host epithelial recep­
tors. The recognized uropathogenic E. coli reference 
strain CFT073 encodes 13 distinct fimbrial gene clusters, 
including type 1, P, F1C, Dr, Auf, S, and m fimbriae.9,11 
These gene clusters, or operons, encode all of the genes 
necessary for assembly of the fimbriae, including struc­
tural subunits as well as chaperone and usher proteins 
that aid in their secretion.

Type 1 fimbria, a definitive virulence factor in the 
murine model of ascending UTI,22 facilitates adherence 
to the bladder cell surface glycoprotein uroplakin and 
other host proteins that contain mannosides.23 expression 
of type 1 fimbriae is phase variable (Box 1). Although 
type 1 fimbriae are almost always present in uropatho­
genic strains of E. coli isolated from human patients, the 
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presence of type 1 fimbriae does not corre late with viru­
lence because these fimbriae are found equally in UTI 
and fecal strains.9 P fimbriae are associated with E. coli 
strains that cause acute pyelonephritis in humans, are 
produced and displayed during infection, and trigger a 
mucosal response to infection in humans, although they 
play only a subtle role in pathogenesis in the murine 
model.24 The Dr family of adhesins is comprised of 
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Figure 1 | Overview of uropathogen virulence factors. The left hand side of this 
schematic bacterial cell represents uropathogenic Escherichia coli, and the right 
hand side represents Proteus mirabilis. Proteins that contribute to each 
mechanism of pathogenesis—immune evasion, toxin production, iron acquisition, 
adherence, and motility—are highlighted for each pathogen. Some strains of 
uropathogenic E. coli strains encode the proteins SisA and SisB, which suppress 
the host inflammatory response during early stages of infection. P. mirabilis 
produces urease, which plays a role in the formation of urinary stones.
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surface structures (both fimbrial and afimbrial) that 
bind to the bladder epithelium and type Iv collagen on 
basement membranes.25 Dr adhesins are associated with 
cell invasion in vitro and contribute to pathogenesis in 
animal models of UTI.26,27 F1C fimbriae are expressed 
in vivo during human UTI, but their role in pathogenesis 
is unknown.28 Auf fimbriae are expressed by uropatho­
genic E. coli found in the urine of infected mice and are 
antigenic, but they play no apparent role in coloniza­
tion of the murine urinary tract.29 In addition to these 
fimbrial adhesins, the nonfimbrial adhesin UpaG is an 

autotransporter that promotes cell aggregation and the 
formation of biofilms and mediates adhesion to human 
bladder epithelial cells. However, UpaG is not required 
for colonization.30 These various fimbriae encoded by 
uropathogenic E. coli bind to different receptors and are 
therefore speculated to aid in colonization of different 
areas in the host urinary tract.

Toxins
Three main types of toxin are produced by uropatho­
genic E. coli: hemolysin, cytotoxic necrotizing factor 1 
(CnF1), and secreted autotransporter toxins. Hemolysin, 
encoded by the hlyCABD operon, is a prototypical 
calcium­ dependent repeats­in­toxin secreted protein 
that is found more commonly in uropathogenic strains 
of E. coli than fecal strains.31 This toxin inserts into host 
cell membranes and is active against many cell types, 
including uro epithelial cells.32,33 Hemolysin, which is 
also implicated in invasion, stimulates cytokine produc­
tion and leads to an inflammatory response.34,35 Although 
hemolysin is not required for colonization in experi­
mental UTI, it does contribute to virulence because it 
is responsible for epithelial damage and bladder hemor­
rhage in vivo and has been implicated in causing renal 
damage and increasing risk for septicemia.36,37

CnF1 activity leads to constitutive activation of 
members of the Rho family of GTP­binding proteins, 
resulting in cytoskeleton rearrangements in host cells.38,39 
CnF1 has been implicated in adherence to and inva­
sion of host cells.40,41 This toxin also causes apoptosis 
of bladder cells, which might stimulate their exfoliation 
in vivo, thereby exposing underlying tissue.42 CnF1 is not 
required for infection, but might be a fitness factor.43,44 In 
addition, CnF1­positive strains cause more inflammation  
than strains lacking this toxin.44

Three autotransporter toxins (Sat, Pic, and Tsh) have 
been characterized in uropathogenic E. coli and six addi­
tional autotransporters (not including UpaG, described 
above) have been predicted but remain uncharacter­
ized.11,45 Sat (secreted autotransporter toxin) is a serine 
protease that mediates cytopathic effects on bladder and 
kidney cell lines in vitro and elicits tissue damage and an 
immune response in infected mice.46 Pic, another auto­
transporter with serine protease activity, is expressed 
during infection but is neither required nor advanta­
geous for colonization.45,47 The autotransporter Tsh 
(also referred to as vat [vacuolating autotransporter 
toxin] in CFT073), which lacks detectable serine pro­
tease activity, is expressed during infection in mice47 but 
is not required for colonization (e. C. Hagan and H. L. T. 
mobley, unpublished work).

Flagella-mediated motility
much like adherence, bacterial motility is another trait 
often associated with virulence of bacterial pathogens 
(Box 2). motility is mediated by complex surface struc­
tures called flagella. Like many pathogens, uropatho­
genic E. coli is capable of flagella­mediated motility and 
flagella contribute to the fitness of uropathogenic E. coli  
during UTI.48,49 Flagellar genes are poorly expressed 

Box 1 | Phase variation of fimbriae by uropathogens

Type 1 fimbriae in uropathogenic Escherichia coli and MR/P fimbriae in Proteus 
mirabilis undergo phase variation.109,185 In each species, expression of these 
fimbrial operons is under the control of a promoter located on an invertible element 
upstream of the genes of interest. When the promoter is in the correct orientation, 
referred to as ‘on’, fimbrial genes are transcribed, and fimbriae are synthesized. In 
the opposite orientation (‘off’) expression and production of fimbriae does not occur.

In uropathogenic E. coli, the orientation of the promoter is controlled by multiple 
recombinase enzymes. Two of these enzymes, FimB and Fime, are encoded 
upstream of the fimbrial operon.186 Two additional recombinases, IpuA and IpbA, 
mediate switching of the invertible element independent of FimB and Fime.187 FimB 
and IpuA can mediate bidirectional switching of the promoter, while Fime and IpbA 
can only turn expression off and on, respectively. The regulation of this process is 
complex, affected by a multitude of environmental factors (including pH, osmolarity, 
temperature, and oxygen levels) and at least three regulatory proteins (Lrp, IHF, and 
H‑NS).9 By contrast, there is only one recombinase, MrpI, in P. mirabilis that acts on 
the invertible element containing the promoter of the MR/P fimbrial operon.80 Like 
expression of type 1 fimbriae in uropathogenic E. coli, expression of MR/P fimbriae 
is increased under oxygen limitation.188

This type of regulation of virulence factors could be advantageous in the host, 
especially in the presence of antibodies directed against a protein constituent of 
MR/P or type 1 fimbriae. Bacteria with their promoters in the ‘on’ position that are 
expressing fimbrial genes could be targeted, whereas bacteria with their promoters 
in the ‘off’ position would not be recognized by these antibodies, essentially 
escaping this mechanism of the host defense.

Box 2 | Coordinated regulation of motility and adherence

In general, fimbriae mediate adherence and flagella mediate motility. Both adherence 
and motility are important pathogenic traits, but they have apparently opposing 
functions. It has been proposed that one bacterium should not be simultaneously 
adherent and motile. Thus, it is hypothesized that regulation of these traits must be 
coordinated; indeed, proteins have been identified in both uropathogenic Escherichia 
coli and Proteus mirabilis that seem to function in this way. 

Sequencing of the MR/P operon in P. mirabilis revealed the presence of a 
transcriptional regulator, MrpJ, at the 3' end of the fimbrial operon.  
Overexpression of MrpJ led to a reduction in the expression of flagellin protein 
(FlaA), production of flagella, and motility.189,190 MrpJ appears to bind to the 
promoter of the flhDC operon, which encodes the so‑called ‘master regulator’ of 
flagellar motility, FlhDC. Interestingly, the genome sequence of P. mirabilis HI4320 
revealed the presence of 14 MrpJ paralogs, most of which repress motility when 
overexpressed.15,190 At least one of these proteins binds to the flhDC promoter, 
suggesting this mechanism might be shared by at least some of these MrpJ 
paralogs.190 Based on the sequences of these proteins, a conserved sequence was 
identified, and most residues in this conserved sequence seem to be necessary for 
the function of MrpJ.190

The 3' end of the P fimbrial operon of uropathogenic E. coli encodes a protein with 
similar function to MrpJ, PapX, which represses production of flagella and motility 
when overexpressed.191 PapX also functions at the transcriptional level, binding as 
a repressor to the promoter sequence of flhDC in uropathogenic E. coli.191
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during chronic uropathogenic E. coli infection in mice, 
where they are generally downregulated in vivo com­
pared with their expression during culture in rich labora­
tory medium.50 However, the synthesis of flagella appears 
to be tightly regulated and coincides with ascension of 
bacteria from the bladder to the kidneys in mice. Thus, 
flagella contribute to ascending E. coli infection.51 

Metal acquisition
Iron, an essential nutrient for all living things, is seques­
tered by the host, and successful bacterial pathogens 
must have the means to acquire it. Uropathogenic E. coli 
is no exception and the CFT073 genome contains at least 
10 characterized iron uptake systems and several putative 
transporters.11 Uptake of heme, enterobactin, and other 
siderophores contribute to the fitness of uropathogenic 
E. coli during infection, but because of the functional 
redundancy of iron acquisition systems, no single system 
is absolutely required for virulence.52–56 

much like iron, zinc is an essential nutrient, and the 
importance of zinc acquisition has recently been demon­
strated for a number of human pathogens. Indeed, the 
high­affinity zinc transport system ZnuACB was shown 
to contribute to the fitness of uropathogenic E. coli 
during experimental UTI.57

Strategies for evading host defenses
In addition to colonizing the host and damaging sur­
rounding tissue, a hallmark of pathogens is the ability to 
avoid the host immune response. For example, as noted 
above, iron is a critical nutrient that must be acquired by 
uropathogenic E. coli during infection, and the sidero­
phore enterobactin represents one mechanism of iron 
acquisition. However, the host protein lipocalin­2, which 
is expressed and released by neutrophils, specifi cally 
binds to and sequesters enterobactin, thereby render­
ing it unable to supply uropathogenic E. coli with iron.58 
Interestingly, uropathogenic E. coli is capable of modi­
fying enterobactin by glycosylation, and this modified 
enterobactin, known as salmochelin, is not recognized 
and sequestered by lipocalin­2 (Figure 2). Thus, uro­
pathogenic E. coli that synthesize salmochelin escape the 
host defense mechanism mediated by lipocalin­2.59,60

Uropathogenic E. coli also synthesize factors that 
inhibit cytokine responses61–63 and enhance tolerance to 
reactive oxygen and nitrogen species.64–67 extracellular 
polysaccharides have also been implicated as contribut­
ing factors to evading host defenses, but definitive roles 
for these various surface molecules during UTI are not 
yet clear.9 Additionally, some uropathogenic E. coli strains 
encode the proteins SisA and SisB, which suppress the 
host inflammatory response during early stages of infec­
tion. A strain of uropathogenic E. coli in which functional 
copies of these genes were deleted caused signifi cantly 
more inflammation during experimental infection and 
was more easily cleared from the host than the wild­type 
strain.68 In addition, the complement compo nent C3 can 
be bound by uropathogenic E. coli, which can then enter 
epithelial cells via C3 receptors.69 Finally, phase variation 
of type 1 fimbrial genes might contribute to the ability of 

uropathogenic E. coli to avoid detection by the immune 
system (Box 1).

Intracellular bacterial communities
Uropathogenic E. coli are capable of forming intra­
cellular bacterial communities (IBCs) and quiescent  
intra cellular reservoirs (QIRs).70 IBCs have been identi­
fied in experimentally infected mouse bladders and 
in voided uro epithelial cells collected from human 
patients.71,72 IBCs appear to be the result of clonal inva­
sion of bladder epithelial cells. Because they remain 
intracellular in what are proposed to be biofilm­like 
structures, IBCs are protected from components of 
the host immune response, including neutrophils and 
antibiotics. Thus, this mechanism might contribute to 
the recalcitrance of uropathogenic E. coli UTIs to anti­
biotic therapy.73 IBCs and QIRs might also contribute 
to the recurrence of UTIs owing to bacteria fluxing out 
of infected host cells and seeding new invasive events.74 
However, it is currently difficult to pinpoint whether the 
source of recurrent infections is intestinal colonization, 
vaginal colonization, or intra cellular bacteria within the 
urinary tract. 
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Figure 2 | Known mechanisms of immune evasion. a | Uropathogenic Escherichia 
coli strategies for evading the host immune response include phase variation of 
type 1 fimbriae and the production of salmochelin. In its minimally evasive state, 
uropathogenic E. coli expresses type 1 fimbriae, which can be bound by antibodies, 
and produces enterobactin, which can be bound and sequestered by the host 
protein lipocalin‑2. In its maximally evasive state, uropathogenic E. coli does not 
produce type 1 fimbriae and is thus resistant to type 1 fimbria‑specific antibodies. 
Furthermore, salmochelin, which is resistant to lipocalin‑2, is synthesized rather 
than enterobactin. b | Proteus mirabilis MR/P fimbriae are also phase variable and 
can be targeted by host antibodies. Thus, P. mirabilis can evade host defenses 
when it does not produce these fimbriae. Additionally, P. mirabilis can avoid the 
immune response by producing recombinant FlaAB flagellum that is not recognized 
by anti‑FlaA antibodies. P. mirabilis can also synthesize the protease ZapA, which 
can degrade a broad range of host proteins, including antibodies.
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P. mirabilis
Adherence via fimbriae
The sequencing and annotation of P. mirabilis HI4320 
revealed that this strain can potentially express a diverse 
array of fimbriae. The genome predicts 17 distinct fim­
brial operons and 13 additional orphan fimbrial genes 
not associated with complete operons.15 of these, only a 
handful have been studied: mannose­resistant Proteus­
like (mR/P), uroepithelial cell adhesin (UCA; also called 
nAF for nonagglutinating fimbriae), ambient tempera­
ture fimbriae (ATF), Proteus mirabilis fimbriae (PmF), 
and Proteus mirabilis P­like fimbriae (PmP).75 

Perhaps the best understood are mR/P fimbriae, 
which are synthesized in vivo, elicit a strong immune 
response during infection, and have been implicated in 
auto aggregation and biofilm formation.76–78 Although 
not absolutely required, mR/P fimbriae contribute to 
virulence.79, 80 UCA fimbriae facilitate binding to uro­
epithelial cells and bind to host factors such as asialo­
Gm1, asialo­Gm2, lactosyl ceramide, and galectin­3.81–83 
However, the role of UCA fimbriae in the virulence of 
P. mirabilis in vivo has not been reported. PmF fimbriae 
represent a fitness factor during experimental UTI, but 
their exact role in adherence to host cells is unclear.84,85 
ATF are optimally expressed at ambient temperature, 
as opposed to host body temperature,86 so perhaps it 
is not surprising that these fimbriae do not play a role 
in coloniza tion of the urinary tract.87 PmP fimbriae 
were identified from a canine UTI isolate, but the genes 
encoding this fimbria have also been found in at least 
one human clinical isolate.15,88 However, their role during 
UTI has not been reported. Given the important role of 
many fimbriae on the pathogenic processes, it will be 
interesting to see what roles, if any, the other potential 
fimbriae encoded in the genome of P. mirabilis HI4320 
have during UTI. 

Toxins
Two toxins encoded by P. mirabilis have been character­
ized: hemolysin (HpmA) and Proteus toxic agglutinin 
(Pta). HpmA is secreted from the bacterium (in a process 
mediated by HpmB) and has calcium­ independent hemo­
lytic and cytotoxic activities.89,90 Pta, an autotransporter 
with subtilisin­like serine protease activity, remains 
anchored at the bacterial surface and mediates auto­
agglutination of bacteria as well as toxi city against cul­
tured human bladder and kidney cells in vitro.91 HpmA 
and Pta both contribute to tissue damage observed during 
infection.92 Pta contributes to the ability of P. mirabilis to 
colonize the urinary tract; HpmA does not.91,92 

Flagella-mediated motility
Perhaps the most defining characteristic of P. mira bilis 
is swarming motility, a specialized form of flagella­
 mediated movement that requires the differentiation of 
cells into an elongated morphotype teeming with fla­
gella.93 These elongated cells seem to be in the minor­
ity during infection.94 However, P. mirabilis is capable 
of swarming across the surface of urinary catheters.95 
Perhaps this phenomenon represents the mechanism by 

which bacteria gain access to the host, which suggests 
that this morphotype might be encountered, at the very 
least, during early stages of human infection. 

The roles of swarming and swimming motility during 
infection are difficult to distinguish because both types 
of motility are mediated by flagella. Strains lacking fla­
gella are weakened in the murine model, implying a role 
for flagella during ascending UTI.96 However, a strain 
of P. mirabilis lacking flagella has been isolated from a 
human patient, suggesting that flagella are not strictly 
required for virulence of this uropathogen.97

Metal acquisition
Historically, it was thought that P. mirabilis did not 
produce any of the siderophores known to be produced 
by other members of the Enterobacteriaceae family.98 
However, sequencing and annotation of HI4320 revealed 
that this strain of P. mirabilis encodes two seemingly 
complete siderophore synthesis operons.15 Careful re­
examination of siderophore synthesis has revealed that 
P. mirabilis does, in fact, produce siderophores, and 
the structure of these siderophores is currently under 
investiga tion (S. Himpsl and H. L. T. mobley, unpub­
lished work). Additionally, P. mirabilis can utilize heme 
and hemin via the receptor HmuR2, which contributes to 
the fitness of P. mirabilis during experimental UTI.99

P. mirabilis produces α­hydroxyisovaleric acid, which 
has been suggested to function in iron acquisition.98 
α­keto acids, formed by the deamination of amino acids 
by the enzyme amino acid deaminase (Aad), can also be 
utilized as lower affinity siderophores by P. mirabilis.100,101  
Surprisingly, the aad gene is not affected by iron 
concentra tions, leading to speculation that perhaps 
iron acquisition is not the sole function of Aad.101 
Interestingly, it has been speculated that Aad might 
be essential because multiple attempts to generate an 
isogenic mutant lacking aad were unsuccessful.101 Thus, 
the role of Aad during infection, or even its unequivocal 
role in iron uptake, has not been confirmed. 

Similarly to uropathogenic E. coli, the ZnuACB high­
affinity zinc transport system has recently been shown to 
be a fitness factor for P. mirabilis. This system contributes 
to, but is not required for, experimental UTI.102

Strategies for evading host defenses
At least three known mechanisms utilized by P. mira-
bilis contribute to immune evasion during infection 
(Figure 2). one is the production of ZapA, a zinc metallo­
protease that is capable of cleaving a broad range of host 
proteins, including serum and secretory IgA1, IgA2, and 
IgG, complement proteins, and antimicrobial peptides.103 
ZapA activity has been detected in the urine of infected 
patients and contributes to the ability of P. mirabilis to 
colonize the urinary tract.104,105 

Another mechanism requires recombination of two 
independent copies of flagellin genes, flaA and flaB.106 
FlaA is the predominate version of flagellin expressed 
by P. mirabilis; the flaB locus is normally silent.107 
However, upon recombination of these genes, P. mira-
bilis produces flagella that are antigenically distinct 
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and therefore potentially capable of subverting the  
immune response.107,108 

Lastly, mR/P fimbriae are capable of undergoing 
phase variation, which might facilitate immune response  
avoidance (Box 1).109 

Urease production
one of the hallmarks of UTI caused by P. mirabilis is 
urolithiasis, the production of stones in the urinary tract. 
The formation of these stones is the result of activity of 
the bacterial enzyme urease, which hydrolyzes urea into 
ammonia and carbonate (Figure 3). The production 
of ammonia significantly raises the local pH, resulting  
in the precipitation of ions that are normally soluble in 
urine. These stones, such as magnesium ammonium 
phosphate (struvite), can block the flow of urine through 
catheters and result in renal scarring owing to calculus 
formation within the renal pelvis. Additionally, bacteria 
can be found within these urinary stones, where they 
are thought to be protected from host defenses and anti­
biotic treatment.110 Indeed, following antibiotic therapy,  
bacteria from the stones can reseed the urine.

Overview of host defenses
The vast majority of work characterizing host defenses 
against UTI has focused on uropathogenic E. coli infec­
tions. Less is known about the response to P. mirabilis, 
but because both organisms affect the same organ system, 
aspects of the host defense might be similar in response 
to both pathogens.

urine flow and cell exfoliation
organisms infecting the urinary tract must overcome the  
mechanical force of the flow of urine. Paradoxically,  
the shear stress of urine flow enhances the binding 
interactions of FimH (the tip adhesin of type 1 fimbria), 
and therefore adherence of uropathogenic E. coli.111 
Superficial umbrella cells in the bladder are covered 
with membrane proteins known as uroplakins.112 Type 1 
fimbriae of uropathogenic E. coli bind to uroplakin­1a,113 
triggering exfoliation of the bladder epithelium. The 
process of exfoliation serves to remove adherent bacteria 
but also allows access to underlying tissue that is nor­
mally not exposed, despite rapid differentiation of these 
underlying cells into superficial facet cells in response 
to exfoliation.114,115 During uropathogenic E. coli infec­
tion, this exfoliation is the result of an apoptosis­like  
mechanism promoted by FimH.114,116

innate and adaptive immune responses to uTi
These topics have been covered extensively in other 
review articles.117,118 A limited overview will be presented 
here (Figure 4).

Innate immune response to UTI
Antimicrobial peptides are short, positively charged 
peptides that bind to and disrupt bacterial membranes. 
β­defensin 1 and the cathelicidin LL­37, for example, 
have both been implicated in the response to UTI.119–121 
As discussed above, iron is an essential nutrient that 

the host sequesters. This iron sequestration is medi­
ated by factors such as lactoferrin, transferrin, and 
lipocalin­2.122 Tamm­Horsfall protein, also known as 
uromodulin, is a high­molecular­weight glycoprotein 
present in human urine that binds to type 1 fimbriae, 
thereby limiting interaction of uropathogenic E. coli with 
host receptors.123 Tamm­Horsfall protein is also effective  
against P. mirabilis.124

A large panel of cytokines and chemokines are upregu­
lated in response to uropathogenic E. coli infection in 
mice.125 most of these peak by 1 day postinfection and 
return to levels near baseline by 2 weeks postinfection, 
except for IL­17A, which was recently shown to contrib­
ute to innate clearance of uropathogenic E. coli.126 IL­8, 
the main neutrophil attractant in humans, is secreted by 
both bladder and kidney cell lines in response to uro­
pathogenic E. coli.127–129 Indeed, neutrophils are the most 
rapid and robust responders to UTI and their migra­
tion to the site of uropathogenic E. coli infection in the 
urinary tract is dependent on IL­8.130–133

Pathogen recognition receptors, specifically TLR4 and 
TLR5 in humans, as well as TLR11 in mice, have been 
implicated in the response to UTI. By contrast, TLR2 
does not appear to be required for a normal response 
to UTI.134 TLR4 knockout mice infected with uropatho­
genic E. coli have higher bacterial burdens because TLR4 
is important for clearance and the inflammatory response 
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Figure 3 | Formation of urinary stones is the result of bacterial urease. a | Urease 
catalyzes the hydrolysis of urea into ammonia and carbonate. The production of 
ammonia significantly raises the local pH, resulting in the precipitation of ions that 
are normally soluble in urine. b | Scanning electron micrograph of a segment of 
mouse bladder after experimental Proteus mirabilis infection. A stone can be seen 
at the inferior end of the bladder. c | 100‑fold larger magnification of the stone 
shown in panel B, in which bacterial cells, erythrocytes, neutrophils, and host cell 
fragments are visible. d | Hematoxylin and eosin‑stained section of a P. mirabilis‑
infected mouse bladder carrying a lumenal stone. Permission obtained from 
American Society for Microbiology © Li, X. et al. Infect. Immun. 70, 389–394 (2002).
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in the bladder and kidneys.135–137 TLR4 signaling can be 
induced by multiple mechanisms, including a P fimbriae­
 dependent and lipopolysaccharide­ independent 
pathway138–140 and a lipopolysaccharide­dependent and 
type 1 fimbriae­dependent pathway.128,141 In addition, 
FimH can directly interact with TLR4.135,142 Regardless 
of the source of stimula tion, TLR4­mediated signal­
ing results in the activation of nFκB and expression of 
proinflammatory genes, such as IL­6 and IL­8.143 TLR5 
recognizes flagella, is involved in the response to uro­
pathogenic E. coli infection, and results in the production 
of proinflammatory factors.144,145 mice lacking TLR11 are 
more susceptible to uropathogenic infection; however, it 
appears that humans lack functional TLR11 owing to an 
early stop codon.146

Adaptive immune response to UTI
In general, data regarding the adaptive immune response 
to UTI are limited. Results from one seminal study suggest 
that the protection derived from infection is antibody­
mediated.147 In addition, there is evidence that uropatho­
genic E. coli clearance is also antibody­mediated.148–151 At 
this point, it is unclear if the immune response is skewed 
toward a TH1­mediated or TH2­mediated response, and 
the role of TReG cells has not been elucidated.

Genetic variations that influence UTI
This topic has been reviewed thoroughly elsewhere,134,152 
but a brief overview will be presented here, focusing 

on two host factors that can impact susceptibility and 
outcome of disease: TLR4 and CXC chemokine recep­
tor type 1 (CXCR1). Susceptibility is also affected by the 
density of epithelial cell receptors—patients who are 
prone to UTI seem to have higher numbers of receptors 
for bacterial fimbriae.153

As described above, TLR4 signaling is important for 
the host response to UTI. Interestingly, infection of mice 
with mutations in TLR4 resulted in an asymptomatic 
carrier state.143,154 However, it should be noted that these 
mice were not spared from death following these infec­
tions.155 TLR4 might also be associated with asymptom­
atic infections in humans, as children with asymptomatic 
infections have lower expression of TLR4 mRnA and 
protein in neutrophils than age­matched controls.156 

CXCR1, the receptor for IL­8, is essential for the 
migration and activation of neutrophils. In mice lacking 
the IL­8 receptor, infection with uropathogenic E. coli 
resulted in higher bacterial titers and progression to 
bacteremia and renal scarring than in infected wild­
type mice, suggesting that functional CXCR1 plays a 
role in protecting the host from severe infection.157–159 In 
human patients, CXCR1 mRnA and protein levels are 
significantly lower in neutrophils isolated from the blood 
of children who are prone to pyelonephritis.157 Further 
work revealed that these UTI­prone children had single 
nucleotide polymorphisms in their CXCR1 genes.160 In 
addition, CXCR1 expression was also lower in relatives 
of these children, suggesting that low expression, and 
perhaps also the resultant increased susceptibility to 
acute pyelonephritis, is inheritable.161

Treatment and prevention of UTI
Current prophylaxis and treatment strategies
Beyond continuous or intermittent (postcoital) anti biotic 
usage, current prophylactic strategies are limited to con­
sumption of cranberry juice and, for post menopausal 
women, estrogen treatment.162 The utilization of differ­
ent compounds for the prevention of UTI in animal 
models has been reported, including the glucose analog 
n­butyldeoxynojirimycin,163 forskolin,164 small molecule 
inhibitors,165 and anti­FimH antibodies.166 none of these 
compounds have been tested in human UTI patients, to 
our knowledge. Treatment with protamine sulfate is 
associated with increased exfoliation of umbrella cells 
and, in mice, reduced bacterial burden in the bladder.70 
However, this treatment caused significant discomfort 
in human volunteers.167 The standard treatment for UTI 
remains antibiotic therapy, which unfortunately can 
also disrupt the microbiota and result in the selection of  
resistant strains.

Catheter-associated complicated uTis
more than 5 million patients are catheterized each year, 
and each one is at significant risk for UTI.168 The first 
steps to reducing the risk of these infections are to limit 
the use of urinary catheters, which are generally over­
used, and to make sure they are removed promptly when 
no longer medically necessary.168,169 There has been much 
interest in developing catheter coatings to reduce bac­
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Figure 4 | Uropathogenic Escherichia coli interaction with components of the host 
immune system. In the lumen of the bladder, uropathogenic E. coli must face such 
challenges as binding by THP, attack by antimicrobial peptides (such as 
β‑defensin 1 and the cathelicidin LL‑37), and competition with host iron‑
sequestering proteins (such as lipocalin‑2, transferrin, and lactoferrin). 
Uropathogenic E. coli can be detected by the bladder epithelium via binding to 
TLR4 (mediated by either type 1 or P fimbriae), TLR5 (mediated by flagella) and 
uroplakin‑1a (via type 1 fimbriae). These interactions with the uroepithelium result 
in secretion of cytokines and chemokines, including IL‑8, which results in the 
recruitment of neutrophils to the bladder. Although not as much is known about  
the adaptive immune response to UTI, antibodies have been implicated in this role. 
Abbreviations: THP, Tamm‑Horsfall protein; TLR, Toll‑like receptor.
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terial colonization, but, to date, no single surface has been 
demonstrated to effectively prevent long­term coloniza­
tion.168 early studies employing the catheter balloon, 
rather than the surface of the catheter, as a reservoir for 
antimicrobial compounds have been encouraging.170 
In addition, the probiotic use of nonpathogenic E. coli 
strains might prevent catheter colonization by pathogenic 
strains.171 Infection with urease­positive strains, such as 
P. mirabilis, is a further complication because urinary 
stones potentially serve as a reservoir for bacteria, which 
can rapidly colonize replacement catheters.172

vaccines to prevent uTi
Given the large impact of these infections (on both indivi­
dual patients and the health­care system) and the current 
lack of effective, nonantibiotic prophylactic strat egies, 
there is much interest in the development of vaccines 
to prevent both uncomplicated and complicated UTIs. 
Different patient populations are likely to benefit from 
these respective vaccines. we anticipate that a uropatho­
genic E. coli vaccine could be administered to individuals 
who suffer from, or are at increased risk for, recurrent 
infections, whereas a P. mirabilis vaccine would be most 
beneficial to patients at an increased risk of developing 
complicated infections, including indivi duals with known 
functional or anatomical urinary tract abnormalities and 
patients at the onset of long­term catheterization.

Uropathogenic E. coli vaccines
vaccines targeting uropathogenic E. coli have recently 
been reviewed.117 Perhaps the two most successful 
vaccine formulations to date are Uro­vaxom (om 
Pharma, Geneva, Switzerland), a daily oral capsule con­
taining membrane proteins from 18 E. coli strains, and 
SolcoUrovac (Solco Basel AG, Birsfelden, Switzerland), 
a vaginal suppository containing ten heat­killed uro­
pathogenic strains.173,174 However, there is currently no 
licensed uropathogenic E. coli vaccine available in the US 
and active research toward this goal is ongoing. 

Historically, vaccines against uropathogenic E. coli have 
been directed against known virulence factors, specifi­
cally components of P and type 1 fimbriae. Recently, 
additional vaccine candidates were identified via mul­
tiple ‘omics’ approaches, including genomic, prote omic, 
and metabolomic screens.175 These approaches identified 
a number of protein vaccine candidates that are patho­
gen­specific, antigenic, surface­exposed, and expressed 
in vivo. Interestingly, the top candidates (those identified 
from multiple screens that fit all of the above criteria) were 
outer membrane iron receptors. Intranasal vaccina tion 
with three outer membrane iron receptors protected mice 
from uropathogenic E. coli­mediated UTI.176 Protection 
correlated with production of antigen­specific IgA in the 
urine and class switching from Igm to antigen­specific 
IgG.176 one goal of future research should be to determine 
if these findings will translate to human UTI patients.

P. mirabilis vaccines
early studies showed that initial infection with P. mira-
bilis does not prevent re­infection, and heat­killed 

preparations do not prevent initial infection.177,178 
Immunization with outer membrane preparations pro­
tected mice from renal colonization, tissue damage, and 
death.179 varying degrees of protection were offered by 
immunization with fimbrial structural proteins mrpA, 
UcaA, and PmfA.180,181 one of these recent studies 
employed Lactococcus lactis as an antigen delivery 
vehicle, a novel approach in Proteus vaccinology that, in 
general, is a promising idea for the development of new 
vaccines against mucosal pathogens, since these vaccines  
seem to have fewer side effects than systemic vaccines.180 
one of the most promising vaccines to date has been 
intranasal immunization with the n­terminal domain 
of mrpH, the tip adhesin of mR/P fimbriae.182 Recently, 
an immunoproteomic screen was performed to iden­
tify outer membrane proteins of P. mirabilis that can 
elicit an immune response in infected mice.183 Since 
these proteins are expressed in vivo and are exposed 
to the surface (where they could potentially interact 
with the host), they represent exciting new potential 
vaccine candidates. Indeed, immunization with one of 
these proteins, Pta, protected mice from subsequent  
transurethral challenge.92

Conclusions
Uropathogenic E. coli and P. mirabilis are pathogens of 
the urinary tract, a common site of bacterial infection in 
humans. Proteins that are required for, or contribute to, 
the virulence of each pathogen have been identified, and 
these discoveries have contributed to our under standing 
of the mechanisms of pathogenesis. Such virulence or 
fitness factors include fimbriae (such as type 1 and 
P fimbriae in uropathogenic E. coli and mR/P and UCA 
fimbriae in P. mirabilis) that mediate attachment to host 
tissues, toxins (such as hemolysins and auto transporter 
toxins in both species), flagella, iron acquisition systems, 
and proteins that function to dampen or evade the 
host immune response (such as SisA and SisB in uro­
pathogenic E. coli and ZapA in P. mirabilis). In addi­
tion, each pathogen has some traits not shared with the 
other: uropathogenic E. coli is capable of forming intra­
cellular bacterial communities, and P. mirabilis produces  
the enzyme urease, the action of which can lead to the 
forma tion of urinary stones and block the flow of urine  
through catheters.

To successfully colonize and persist in the host, these uro­
pathogens must overcome host defenses mediated by the 
innate and adaptive immune systems. Innate responses to  
UTI are more well­defined than adaptive responses. 
Tamm­Horsfall protein, antimicrobial peptides, and iron 
sequestration proteins such as trans ferrin and lacto ferrin 
are active in the urinary tract. TLRs can be engaged by 
multiple uropathogenic E. coli components, includ­
ing flagella and both P and type 1 fimbriae. numerous 
cytokines and chemokines are upregulated in response 
to infection; the chemoattractant IL­8 is required for the 
migration of neutrophils to the infected urinary tract. 
not surprisingly, deviations in components of the host 
immune system can impact susceptibility to, or outcome 
of, infection. Reduced levels of TLR4 are associated with 

Reviews

© 20  Macmillan Publishers Limited. All rights reserved10



438 | AUGUST 2010 | volUme 7 www.nature.com/nrurol

the development of asymptomatic bacteri uria, while 
reduced levels of CXCR1 are associated with increased 
susceptibility to acute pyelonephritis.

UTIs cause significant morbidity and are typically 
treated with antibiotics; there is currently not a licensed 
vaccine available in the US against uropathogenic 
E. coli or P. mirabilis. Thus, there has been interest in 
the generation of vaccines against both uropathogens. 
much of current research is focused on pathogen gene 
and protein expression in vivo during infection of the 
host, with the hope of identifying additional virulence 
factors and therapeutic or prophylactic targets. Recently, 
an ‘omics’ approach, consisting of multiple screens, led 
to the identification of several uropathogenic E. coli 
vaccine candidates that were able to protect mice from 
subsequent infection. Similar screens are currently 
underway in P. mirabilis. These types of ‘reverse vaccin­
ology’ approaches have broad appeal and have led to the 

successful identification of potential vaccine candidates 
in other human pathogens, such as Neisseria meningitidis 
serogroup B, Streptococcus agalactiae, and Streptococcus 
pneumoniae.184 In addition, further study will be required 
to elucidate adaptive immune responses in the urinary 
tract. These findings will aid understanding of the disease  
process and might also provide insight toward the 
genera tion of lasting immunity against uropathogens.
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