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Abstract
In a time with decreasing biodiversity, especially among insects, a detailed under-
standing about specific resource utilization strategies is crucial. The physiological and 
behavioural responses to host switches in phytophagous insects are poorly under-
stood. Earlier studies indicate that a host plant switch might be associated with dis-
tinctive molecular and physiological responses in different lineages. Expanding the 
assessment of such associations across Lepidoptera will reveal if there are general 
patterns in adaptive responses, or if each switch event is more of a unique charac-
ter. We investigated host plant preference, fitness consequences, effects on expres-
sion profiles and gut microbiome composition in two common wood white (Leptidea 

sinapis) populations with different host plant preferences from the extremes of the 
species distribution area (Sweden and Catalonia). Our results show that female 
Catalonian wood whites lack preference for either host plant (Lotus corniculatus or 

L. dorycnium), while Swedish females laid significantly more eggs on L. corniculatus. 

Individuals from both populations reared on L. dorycnium had longer developmental 
times and smaller body size as adults. This indicates that both environmental and ge-
netic factors determine the choice to use a specific host plant. Gene expression anal-
ysis revealed a more pronounced response to host plant in the Catalonian compared 
to the Swedish population. In addition, host plant treatment resulted in a significant 
shift in microbiome community structure in the Catalonian population. Together, this 
suggests that population specific plasticity associated with local conditions underlies 
host plant utilisation in wood whites.

K E Y W O R D S

gene expression, host plant, Lepidoptera, microbiome, speciation, wood white

www.wileyonlinelibrary.com/journal/mec
https://orcid.org/0000-0002-2970-4189
https://orcid.org/0000-0002-2447-4388
mailto:﻿
https://orcid.org/0000-0002-0961-8427
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:niclas.backstrom@ebc.uu.se
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fmec.15745&domain=pdf&date_stamp=2020-12-14


500  |     NÄSVALL et AL.

1  | INTRODUC TION

In a time with decreasing biodiversity, especially among insects, it is 
important to increase our understanding of the mechanisms under-
lying resource utilization and the ability to shift to novel resources. 
Insects feeding on plants (phytophagous) are generally specialized 
on particular species or groups of host plants (Ehrlich & Raven, 1964; 
Janz, 2011). This can be a result of genetic, physiological, ecolog-
ical and geographical restrictions in the specialists (Schoonhoven 
et al., 2005; Steward et al., 2019; Weingartner et al., 2006) and, cru-
cially, the ability to overcome host plant defence mechanisms involv-
ing toxic metabolites (Ehrlich & Raven, 1964; Govind et al., 2010; 
Kirsch et al., 2011). Female butterflies generally identify the appro-
priate host plant species via chemoreception. To use a specific plant, 
butterflies have thus developed mechanisms both for recognition of 
plant-specific chemical cues and for detoxification of, or tolerance 
to, potentially harmful plant metabolites (Renwick & Chew, 1994). 
Chemical cues can be unique to specific host plants, but similarity in 
composition is expected in closely related plant species (Renwick & 
Chew, 1994). The potential for utilization of novel host plants thus 
depends on (i) the similitude of plant chemical composition; (ii) its 
recognition by adult females; and (iii) the fitness of the larvae feed-
ing on the plant (Pearse et al., 2013; Wiklund, 1975). Costs associ-
ated with host plant switches, and the specific adaptations needed 
by phytophagous species (Govind et al., 2010), imply that host 
plant expansions are unlikely, unless they include plant taxa with 
similar compositions of chemical cues and toxic metabolites (Janz 
& Nylin, 1998). Consequently, butterflies that overcome the recog-
nition and detoxification barriers associated with novel host plant 
use may enter an unexplored “adaptive realm”, which could lead to 
comparatively rapid diversification, if the novel host plant is part 
of a diverse plant lineage where most species have similar chemi-
cal composition (Ehrlich & Raven, 1964; Janz, 2011). Host plant ex-
pansions can also result in so-called (eco)evolutionary traps, when 
adult female butterflies start to prefer invasive or anthropogenic 
plant species for egg-laying that are suboptimal for larval develop-
ment or survival (Singer & Parmesan, 2018; Steward et al., 2019). 
Furthermore, female host preference and larval performance are 
not necessarily coupled and females may also oviposit on unsuitable 
host plants (Wiklund, 1975).

Although the theoretical foundations for host plant switch ef-
fects on butterfly diversity have been laid out in some detail (Ehrlich 
& Raven, 1964; Janz, 2011; Janz & Nylin, 1998; Pearse et al., 2013; 
Weingartner et al., 2006), the physiological and behavioural re-
sponses to such food resource switches in phytophagous insects, is 
poorly understood. The immediate response to a host plant switch is 
commonly governed by gene expression tuning, mutualistic interac-
tions with gut microbiota, or other plastic mechanisms not directly 
associated with changes in the genome sequence per se (Mack & 
Nachman, 2017; Romero et al., 2012). Groundwork gene expression 
analyses in Lepidoptera suggest that host plant shifts are accom-
panied by differential regulation of genes involved in transcription 

and translation, membrane transport and detoxification (Alon 
et al., 2012; Celorio-Mancera et al., 2012, 2013; Zhong et al., 2017). 
Interestingly, the relatedness of utilized host plants is associated 
with expression profiles in the comma butterfly (Polygonia c-album) 
(Heidel-Fischer et al., 2009), but not in the painted lady (Vanessa car-

dui) (Celorio-Mancera et al., 2016). Feeding on closely related host 
plants can also result in gene expression changes, which depend 
on the concentration of secondary metabolites, as has been shown 
in the monarch butterfly (Danaus plexippus) and the small cabbage 
white (Pieris rapae) (Okamura et al., 2019; Tan et al., 2019). Such a 
response is generally more pronounced in a generalist, like the to-
bacco budworm (Heliothis virescens), as compared to a specialist, like 
the large (cabbage) white (Pieris brassicae) (Schweizer et al., 2017). 
The potential for host plant expansion hence depends on caterpillar 
plasticity. However, whether this is underpinned by standing varia-
tion or de novo selection when exposed to novel hosts is generally 
unknown.

Many herbivores depend on microbial function to process their 
food. Changes in the diversity and composition of the microbiome 
are probably important for diet shifts and/or expansions. In leaf 
eating insects in general, overall effects of microbiome composi-
tion on fitness might be limited (Hammer et al., 2017), and diet has 
been shown to have a negligible effect on the microbiome diversity 
in many butterflies (Chaturvedi et al., 2017; Minard et al., 2019; 
Phalnikar et al., 2018). However, detoxification of secondary me-
tabolites and other functions associated with adaptation to specific 
host plants could be mediated by a rather limited set of functionally 
important microbial species (Xia et al., 2013, 2017). Both transcrip-
tion profiling and microbiome quantification studies hence indicate 
that host plant switches might be associated with distinctive molec-
ular and physiological responses in different lineages. Expanding the 
assessment of such associations across the butterfly tree of life will 
reveal if there are general patterns in adaptive responses or if each 
switch event is more of a unique character.

The common wood white (Leptidea sinapis) is a widespread but-
terfly species that occurs over most of Eurasia (Dincă et al., 2011). In 
Europe, karyotype, mating behaviour, and host plant choice differs 
between populations in what can be described as a northeast-south-
west gradient. Adult female wood whites preferentially lay eggs 
on vetches and trefoils (pea family; Fabaceae) with some regional 
preference differences being present. In Catalonia, wood white 
females preferentially lay eggs on the locally abundant, woody pe-
rennial shrub Lotus dorycnium (until recently classified as Dorycnium 

pentaphyllum), while Swedish L. sinapis females generally oviposit 
on herbaceous perennials such as Lotus corniculatus and different 
Lathyrus species (Friberg & Wiklund, 2009). The wood whites hence 
constitute an ideal system that we use in this study to investigate; 
(i) whether female host plant preference differs between the two 
populations; (ii) whether host plant diet affects larval growth; (iii) 
whether host plant diet results in population specific alterations of 
gene expression; and (iv) whether diet and population origin shape 
gut microbiome composition.
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2  | MATERIAL S AND METHODS

2.1 | Host plant preference test

Wild caught, recently mated females (only females with no or very 
limited wing wear were used as dissection of deceased females 
showed a single spermatophore present in the bursa copulatrix) of 
both populations were used for preference and acceptance tests 
using two experimental set-ups. In the first experiment, females 
were placed in small cages (40 × 40 × 40 cm) with one stand of each 
host plant (Lotus corniculatus [from Sweden] and L. dorycnium [from 
Catalonia]), randomly placed at either end of the cage. This experi-
ment ran for 48 hr with an 18 hr light + 6 hr darkness light regime 
at constant temperature (23°C) for females from both populations 
(nCatalonia = 15; nSweden = 10). A follow-up experiment was conducted 
for Swedish females (n = 10) where they were exposed to either 
L. corniculatus or L. dorycnium for 48 hr using the same light settings. 
The number of eggs laid on each host plant was used for assessment 
of host plant acceptance among females and the two experimental 
set-ups were treated as separate tests for the Swedish females. The 
reason for only using females from Sweden for the second test was 
that we had few survivors after the initial test and we needed more 
eggs laid on L. dorycnium for the follow-up analysis.

2.2 | Scoring of developmental time and size of 
adult F1

All offspring (F1) resulting from the eggs laid by the females on either 
L. dorycnium or L. corniculatus were kept under identical environmen-
tal conditions (+23°C, 18 hr daylight + 6 hr darkness) and monitored 
daily. As a measure of growth rate/developmental time, the times-
pan (in days) from egg laying to emerging adult was assessed for all 
offspring individuals. In total, we measured the developmental time 
of 537 specimens, represented by 310 Catalonian and 227 Swedish 
individuals (Table S1). Adults (F1) were marked when emerging from 
the chrysalis, and kept in large cages until they died. After drying 
individuals in + 50°C for 36 hr, wings from all adults were removed 
by pulling both forewings simultaneously towards the anterior end 
of the butterfly, using a stork-bill fine blunt forceps. This method 
ensures that wings break off at the same spot for all samples, right 
at the joint between the forewing and thorax. The right forewing of 
each sample was photographed with a Nikon Digital Sight DS-VR 
camera (Nikon Corp.) mounted on a Nikon SMZ800N stereo micro-
scope (Nikon Corp.), using standardized distance (160 mm), zoom 
(4×) and light settings, and pictures were stored as high-resolution 
JPEG files. Wing size was estimated using two different measure-
ments. First, the distance between the base (centre of joint) and 
tip (edge of wing where vein R4 ends) of the wing was measured to 
get the total length. Second, we counted the total number of pix-
els covered by the entire wing. Both of these measures were done 
in Photoshop CC 2017 (Adobe Systems Inc.). In total, we meas-
ured the wing size (length + area) of 509 specimens, represented 

by 292 Catalonian and 217 Swedish individuals (Table S1). It should 
be noted that neither body size nor development time is a direct 
measure of fitness, especially in controlled laboratory conditions. 
However, there is ample evidence that body size is positively associ-
ated with female fecundity and negatively associated with stress in 
several butterfly species (Carnicer et al., 2019; Johnson et al., 2014; 
Niitepõld, 2019), including Leptidea sp. (Friberg & Wiklund, 2009; 
Lukhtanov et al., 2018). Using development time as a proxy for fit-
ness is perhaps less straightforward for a specific system, although 
we do expect an association in general. Trade-offs of using the plant 
producing the largest body size and shortest development time may 
exist, for example predation pressure at different life stages, syn-
chrony with host plant availability and a match between generation 
time and regional climate conditions.

2.3 | Rearing of larvae for gene expression 
profiling and microbiome characterization

Eggs from a subset of L. sinapis females were used in a split brood 
design to assess gene expression variation associated with the type 
of host plant used by larvae. Specifically, eggs from each of seven 
Swedish and seven Catalonian females were divided into cohorts 
where each cohort was raised on either L. dorycnium or L. cornicu-

latus and larvae were harvested immediately after entering larval 
stages instar III and instar V. The aim was to get at least four bio-
logical replicates, i.e., one offspring from at least four different fe-
males in each respective cohort and treatment. This set-up allows 
for assessing biological variance for each population and host plant 
treatment category and control for maternal effects. The number 
of larvae for each developmental stage, treatment and population 
ranged between four and seven (Table S2).

2.4 | RNA extraction, library 
preparation and sequencing

RNA was extracted from instar III and instar V larvae. Before the 
extractions the cuticle was disinfected by sequentially immersing 
the sample in 500 µl 1% bleach, molecular grade (double-deionized) 
water (ddH2O) and 70% ethanol to reduce the risk of contamina-
tion from surface microorganisms in the characterization of the gut 
microbiome. Each larva (n = 66 in total) was dissected to separate 
the head, gut and abdomen. The abdomens were homogenized in 
RNeasy lysis buffer with added dithiothreitol (DTT, Acros Organics) 
using a micropestle and QiaShredder. RNA was extracted using the 
RNeasy Mini Kit according to the manufacturer's protocol (Qiagen, 
Inc.). After quality control on a Bioanalyzer (Agilent) to verify the 
integrity of the RNA, total RNA was sent for library preparation 
(TruSeq RNA with poly-A selection) and multiplex sequencing on a 
single Illumina NovaSeq6000 S1 lane with 150 base pairs (bp) paired-
end reads at the National Genomics Infrastructure (NGI), Science for 
Life Laboratory (SciLife) in Stockholm. The sequencing of one sample 
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failed (Catalonian III-instar on L. dorycnium) and 65 sample libraries 
were used in all downstream analyses.

2.5 | DNA extraction, library 
preparation and sequencing

DNA was extracted from the guts of the same 66 samples used for 
expression profiling. The gut was homogenized in TRIzol Reagent 
(Thermo Fischer Scientific) with glass beads (∅ = 1 mm) using the 
TissueLyser II (Qiagen, Inc.) at 30 Hz for 1 min. The organic phase of 
the lysate was re-extracted using standard Proteinase K digestion 
and a modified phenol chloroform/chloroform purification proto-
col (Green & Sambrook, 2017). Negative extraction controls were 
performed for every eight samples (n = 8 in total). The amount and 
purity of the extracts were controlled with Qubit (Thermo Fischer 
Scientific) and NanoDrop (Thermo Fischer Scientific), respectively, 
and the extracts were stored at −20°C. Custom amplicon primers 
(Eurofins Genomics) were used to obtain a single amplicon of 460 bp 
from the V3 and V4 region of the 16S ribosomal RNA gene from the 
extracted DNA (Klindworth et al., 2013):

forward primer = TCGTCGGCAGCGTCAGATGTGTATAAGAGA
CAGCCTACGGGNGGCWGCAG;

reverse primer = GTCTCGTGGGCTCGGAGATGTGTATAAGAGA
CAGGACTACHVGGGTATCTAATCC.

We performed the amplification in triplicates with the follow-
ing PCR-protocol; 2.5 µl sample DNA (approximately 5 ng/µl), a 
final concentration of 0.2 µM of each primer, and 12.5 µl 2X KAPA 
HiFi HotStart ReadyMix (KAPA Biosystems, Roche Inc.) for a total 
volume of 25 µl. The PCR was performed in a 2720 Thermal Cycler 
(Applied Biosystems) using the following settings: initial denatur-
ation at 95°C for 3 min, 30 cycles of 95°C for 30 s, 55°C for 30 s, 
72°C for 30 s, and a final elongation step at 72°C for 5 min. PCR 
products were run on a 1.5% agarose gel to ensure accurate frag-
ment size (550 bp) and yield, and cleaned with 20 µl AMPure XP 
beads per sample, according to the manufacturer's recommenda-
tions (Beckman Coulter Life Sciences). Finally, unique dual-index 
barcodes and Illumina sequencing adapters, Nextera XT Index Kit 
(FC-131–1002, Illumina) were added to each amplicon target for 
individual identification after pooling (Table S3). The individual li-
braries for each sample were prepared using 5 µl PCR product, 5 µl 

Nextera XT Index Primer 1 (N7xx), 5 µl Nextera XT Index Primer 2 
(S5xx), 10 µl 2x KAPA HiFi HotStart ReadyMix (KAPA Biosystems) 
and 25 µl ddH2O, for a total volume of 50 µl. A limited cycle PCR 
was performed with initial denaturation at 95°C for 3 min, eight 
cycles of 95°C for 30 s, 55°C for 30 s, 72°C for 30 s, and a final 
elongation step at 72°C for 5 min. The final cleaning step of the 
libraries was performed with AMPure XP beads (56 µl per sample) 
according to the protocol provided by the manufacturer (Beckman 
Coulter Life Sciences). Libraries were pooled in equimolar concen-
trations and sequenced on one lane using a 300 bp paired-end 
read approach on an Illumina MiSeq platform (Illumina, Inc.) at 
NGI, SciLifeLab, Stockholm.

2.6 | Gene expression profiling

Overall quality of the RNA-seq reads was assessed with fastqc ver-
sion 0.11.5 (Andrews, 2016). Initial filtering of raw RNA-seq reads 
was performed using trimgalore version 0.4.4 (Krueger, 2017). 
This step included trimming 12 nucleotide bases from the 5’ 
end of each sequence, trimming sequences with overall Phred 
score < 30, filtering out adapter sequences and sequences shorter 
than 30 bp. fastq masker (http://hanno nlab.cshl.edu/fastx_toolk 
it/; accessed 2019-05-01) was used to mask (replace with N) low 
quality (threshold = 10) nucleotides in the reads. prinseq version 
0.20.4 (Schmieder & Edwards, 2011) was then used to trim re-
maining poly-A tails and cutadapt version 2.5 (Martin, 2011) was 
applied to filter out long stretches of A/T nucleotides (thresh-
old = 10 bp) inside reads. condetri (Smeds & Künstner, 2011) was 
then used to filter out reads with Phred Score < 30 in more than 
80% of the read. Remaining sequences of ribosomal origin (rRNA) 
were removed using sortmerna version 2.1 (Kopylova et al., 2012). 
Finally, fastq Screen (Wingett, 2017) with bowtie2 version 2.3.5 
(Langmead & Salzberg, 2012) was used to identify and screen 
for contaminants. The most likely contaminants were identified 
based on previous gene expression studies in L. sinapis (Höök 
et al., 2019; Leal et al., 2018). The filtered data set was screened 
for contaminants of the following origin: rRNA, human, Drosophila 

melanogaster, Wolbachia sp., L. corniculatus, L. dorycnium, L. japoni-

cus, Illumina adapters and primers. The fraction of potential con-
taminant reads detected was <0.01% in all libraries and therefore 
not a concern for subsequent analytical steps. The entire pipeline 
for treatment of RNA-seq reads before expression profiling is pro-
vided in Figure S1.

Filtered reads were indexed and mapped with star version 
2.7.2b (Dobin et al., 2013), using previously available L. sinapis 

genome (Talla et al., 2017) and transcriptome (Höök et al., 2019; 
Leal et al., 2018) assemblies. Gene specific counts of mapped 
RNA-seq reads were obtained using stringtie version 1.3.6 (Pertea 
et al., 2015). The raw gene counts were used as input for a stan-
dardized differential gene expression analyses carried out using 
deseq2 version 3.6 (Love et al., 2014) as implemented in r version 
3.4.3 (R Core Team, 2013). Genes for which only one sample in the 
entire sample set had nonzero read counts and genes with zero 
counts in all samples in a specific cohort were removed. A count 
of one (1) was added to every gene/sample, to stabilize variance at 
low expressed genes. Low coverage genes with baseMean (count 
average across all samples) <2 (to account for the 1 count added 
to every gene/sample) were removed before carrying out the dif-
ferential expression analysis.

deseq2 was run with default settings. This protocol normalizes 
counts per gene by library size (the number of reads in a specific 
library) and carries out significance testing for individual genes 
using the Wald test (Love et al., 2014). The analysis implements 
the method of Benjamini and Hochberg (1995) to account for mul-
tiple testing, and generates false discovery rate (FDR) adjusted 
significance levels (padj) for each gene. In order to investigate the 

http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/
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effect of host plant diet on gene expression in the different pop-
ulations and assess potential population specific effects, the con-
trasts were analysed using (i) the Swedish and Catalonian samples 
together; (ii) Catalonian samples only; and (iii) Swedish samples 
only. Each of these data sets was also divided into instar III, in-
star V male and instar V female samples, to characterize differ-
ences between ontogenetic stages and sexes. The deseq2 analysis 
outputs four result values for each gene: baseMean, log2Fold-
Change (ratio of gene expression values across treatments, in log 
2 scale), p-value, and FDR-adjusted p-value (padj). Genes with a 
baseMean > 10, absolute log2FoldChange > 1.0 and padj < 0.05 

were considered significantly differentially expressed between 
treatments. Enrichment of specific gene functions in differentially 
expressed gene sets was assessed with the Bioconductor pack-
age topgo version 2.38.1 (Alexa & Rahnenfuhrer, 2016) in r version 
3.4.3 (R Core Team, 2013) using the database org.Dm.eg.db from 
the r-package “AnnotationDbi” (Pagès et al., 2019) for orthologous 
genes for the gene ontology (GO) categories biological process, 
cellular component and molecular function.

2.7 | Processing of microbiome data and 
characterization of microbiome composition

Raw sequence data (fastq files) were imported to “dada2” version 
1.14.0 (Callahan et al., 2016) and processed as described in the fol-
lowing. Forward reads were clipped to 295 bp (maxEE = 1, maxN = 0, 
truncQ = 2 and phiX removal activated) and backward reads were 
omitted due to quality issues in the 3’ region of the backward reads. 
Chimeric sequences were removed by applying the “removeBi-
meraDenovo” function as implemented in “dada2”. Taxonomy was 
assigned to each amplicon sequence variant (ASV) using “idtaxa” 
(Murali et al., 2018) as implemented in the r package decipher ver-
sion 2.14.0 (Wright, 2016) with GTDB (r89; Parks et al., 2018) as 
reference database. The ASVs were aligned using “AlignSeqs” from 
the DECIPHER package and phylogenetic tree reconstruction was 
performed applying a general time reversible model with gamma 
optimization and stochastic rearrangement (“optim.pml” command) 
as implemented in “phanghorn” version 2.5.5 (Schliep, 2011). Next, 
ASVs with kingdom not belonging to bacteria were removed as well 
as all ASVs with unknown phylum assignment. To clean the data fur-
ther from spurious taxa assignments and potential contaminations, 
all ASVs belonging to family Mitochondria or genus Chloroplast were 

removed. In a final step, samples with less than 500 contigs were 
removed and singleton ASVs (occurring with one contig in only one 
sample) were removed. Additionally, one sample (sample ID 1024) 
was identified as a clear outlier (using unweighted “UniFrac” as 
measure, described below) and removed completely from the data 
set. Alpha diversity (Shannon, 1948) was estimated using phyloseq 

version 1.30.0 (McMurdie & Holmes, 2013) and further evaluated 
in a linear mixed model framework (“lme” package version 3.1–143) 
with a nonparametric test (Wilcoxon test). Beta diversity was as-
sessed using the unweighted “UniFrac” (function in phyloseq) 

distance (Lozupone & Knight, 2005) on subsampled data (rarefied 
to 500 contigs per sample), as suggested by Weiss et al. (2017) 
Permutational multivariate analysis of variance using distance ma-
trices (PERMANOVA) was performed using the “adonis” command 
in “vegan” version 2.5–6 (Oksanen et al., 2019) with 99,999 boot-
strap permutations. Differences in taxonomic abundances were in-
vestigated using nonparametric testing (Wilcoxon test). All analysis 
were performed in r version 3.6.1 and p-values were corrected using 
Benjamini-Hochberg correction (“p.adjust” function in r).

3  | RESULTS

3.1 | Host plant preference and effects on growth in 
Leptidea sinapis

Females from the Catalonian population did not show preference for 
either of the two host plants (Wilcoxon test: W = 115, p-value = 0.93). 
Swedish females, however, laid significantly fewer eggs on L. doryc-

nium than on L. corniculatus in both the direct choice (mean 0.9 ± SD 
1.9 on L. dorycnium versus 23.2 ± 11.2 on L. corniculatus; W = 0, p-
value = 1.3 × 10−4) and the single exposure acceptance test (4.2 ± 5.9 

versus 15.2 ± 10.7; W = 21, p-value = 9.9 × 10−3; Figure 1).
Both the Catalonian and the Swedish individuals had a significantly 

reduced developmental rate when feeding on L. dorycnium than on 
L. corniculatus (Figure 1). The mean developmental time for Catalonian 
individuals was 34.1 ± 3.1 days on L. dorycnium and 29.8 ± 2.4 days 
on L. corniculatus (W = 21,425, p-value < 2.2 × 10−16) and the corre-
sponding values were 30.8 ± 3.4 and 27.9 ± 2.6 days, respectively, for 
the Swedish individuals (W = 5,967.5, p-value = 5.8 × 10−7; Figure 1). 
These results also show that wood whites from the Swedish popula-
tion in general had shorter developmental time than the Catalonian 
individuals (see numbers above), a statistically significant rate dif-
ference both on L. dorycnium (W = 1541, p-value = 1.2 × 10−8) and 
L. corniculatus (W = 7,910, p-value = 1.3 × 10−11) (Figure 1). The in-
dividuals reared on L. dorycnium also had significantly shorter wing 
length and smaller wing area, indicating overall smaller body size, than 
the individuals utilizing L. corniculatus; this was observed in both the 
Catalonian and the Swedish cohorts (Figure 1).

3.2 | Gene expression profiling

In total, we obtained >336 million reads from the 65 samples. The 
proportion of reads with Q-value >30 was 89.03%–94.11% across 
samples. The number of reads per sample varied from 8.32 to 18.44 
million which corresponds to an estimated per site coverage of 
≈248×, assuming an entire coding gene set in L. sinapis consisting of 
15,000 genes with an average length of 1,000 bp (Leal et al., 2018). 
To visually inspect the variance associated with population, devel-
opmental stage, sex and host plant diet, the global gene expres-
sion profiles of individual samples was used in a PCA. This showed 
that developmental stage was the only determinant resulting in 
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visible clustering, separating instar III and instar V samples along PC1 
(Figure S2). The PCA also revealed a larger variance in the Catalonian 
than in the Swedish samples, indicating a more variable global gene 
expression profile in Catalonian larvae (Figure S2).

Differences in gene expression profiles between treatment 
groups were quantified to characterize the expression response to 
host plant utilisation. The analyses aimed at assessing both general 
and population specific effects, as well as potential variation across 
developmental stages and sexes. Initially, individuals from both pop-
ulations were merged to detect potential general effects between 
developmental stages and sexes. The numbers of significantly dif-
ferentially expressed genes between the two host plant treatments 
in instar III, instar V male and instar V female were 50, 58 and 42, 
respectively (Figure 2, Table 1, Table S4). Among these genes, a sig-
nificantly larger fraction of genes showed higher expression levels in 
cohorts fed on L. dorycnium than on L. corniculatus in instar V males 
and instar V females (84% and 90%, respectively) but not in instar III 
larvae (52%) (Figure 2, Table 1, Table S4). To obtain a better insight 
into population-specific effects of host plant usage with respect to 
gene expression, we analysed the Catalonian and Swedish samples 
separately. In the Swedish samples, the number of differentially ex-
pressed genes was lower in general (Figure 2, Table 1, Table S4). The 
number of differentially expressed genes in the Catalonian contrasts 
was, however, at the same level or higher than the numbers observed 
in the joint analysis of all individuals (Figure 2, Table 1, Table S4). In 
the samples from Catalonia, but not from Sweden, there was also a 
larger fraction of genes with higher expression levels in response to 
L. dorycnium than to L. corniculatus (Table 1).

3.3 | Gene ontology (GO)/functional inference

To get information about functional categories associated with 
differentially expressed genes, a GO enrichment analysis was per-
formed on each experimental group (instar III, instar V male and in-
star V female) for each population independently. In total we found 
104 significantly enriched terms (padj < 5.0 × 10−2) associated with 
63 differentially expressed genes: biological process = 61 terms and 
26 genes, cellular component = 17 terms and 15 genes, molecular 
function = 26 terms and 22 genes (Table S5). For biological process, 
the most common ontology terms (i.e., terms associated with more 
than one gene or experimental group) included sarcomere organisa-
tion, neurotransmitter regulation, metabolic process, translational 
regulation, larval lymph gland haematopoiesis, cell-cell adhesion 
and compound eye development. For cellular component, enriched 
ontology terms included integral component of plasma membrane, 

extracellular region, Golgi cis cisterna and Z disc. The molecular 
function category contained enriched terms associated to trans-
membrane transporter activity, calcium ion binding, spectrin bind-
ing, actin filament binding and hydrolase activity (Table S5). Genes 
that were differentially expressed in more than one cohort (n = 8) 
were explored for functionality using BLAST (Table S5). Only two 
genes (lava lamp, cadherin) had functional annotation included in 
the GO-analysis. Three of the genes matched annotated genes in 
other taxa, a neurotransmitter-receptor (synaptic vesicle glycoprotein 

2A-like), a histone modification enzyme (histone-lysine-N-metyltrans-

ferase) and a lipid binding protein, possibly involved in cell-cell adhe-
sion in epidermis (filaggrin-2like) (Table S5).

3.4 | Host plant effects on microbiome composition

The total number of contigs remaining after preprocessing ranged 
from 519 to 199,575 (mean and median = 3,901 and 30,266) be-
tween samples. The fraction of chloroplast contigs ranged from 
0% to 99% and the fraction of mitochondrial contigs between 0% 
and 5%. After both preprocessing, quality filtering and exclusion of 
nonbacterial contigs, the final data set for microbiome diversity and 
compositional analysis comprised of 178 amplicon sequence variants 
(ASVs) across 54 samples, with NCat = 36 and NSwe = 18. We found 
that Wolbachia sp. was the most common taxon in all samples, with 
a proportional abundance ranging between 0.83–1.00. There was a 
significant difference in relative abundance of two bacterial phyla 
(Wilcoxon test: Proteobacteria, padj = 1.35 × 10−3; Actinobacteria, 
padj = 1.19 × 10−3) when comparing the Catalonian cohorts feed-
ing on different host plants. This pattern was consistent with ob-
servations at family level (Anaplasmataceae, padj = 1.71 × 10−3; 

Micrococcaceae, padj = 1.79 × 10−2). At genus level, the differ-
ence between treatments was significantly different for Wolbachia 

(padj = 2.23 × 10−3), but not for Kocuria (padj = 8.79 × 10−2) (Figure 3). 
A more detailed analysis of the distribution showed that the dif-
ference was mostly due to an increase in relative abundance of 
Micrococcaceae (Kocuria; 0.2% to 1.1%), and a reduction in the rela-
tive abundance of Anaplasmataceae (Wolbachia; 99.5% to 96.8%) 
in the Catalonian larvae reared on L. dorycnium compared to larvae 
reared on L. corniculatus (Figure 3). A similar trend (Kocuria 0.5% to 
1.2%; Wolbachia 98.4% to 96.7%) was observed in the samples from 
the Swedish population, but the differences were not statistically 
significant (Figure 3). No overall differences in relative abundance 
were observed between populations (padj > 5.0 × 10−2).

The α-diversity metrics were consistent between the differ-
ent populations, and there was a trend towards higher diversity in 

F I G U R E  1   Boxplots showing the number of eggs laid (y-axis) on the two different host plants Lotus dorycnium (dark green) and 
L. corniculatus (light green) in the different preference tests (a). Females from Catalonia are represented by the two leftmost panels and 
Swedish females are represented by the remaining panels. The results from the direct choice test in the middle panels (Sweden) and when 
exposed to either L. dorycnium or L. corniculatus in the rightmost two panels (Sweden_no_choice). Boxplots depict the development time 
(b), wing length distribution (c) and wing area distribution (d) in the Catalonian and Swedish L. sinapis individuals reared on L. corniculatus 

(dark green) or L. dorycnium (light green). p-values were obtained with a Wilcoxon test for each cohort [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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F I G U R E  2   Volcano plots showing the gene expression differential (log2 fold change, x-axis) and corresponding adjusted p-value (padj, 
y-axis) for cross-treatment (L. dorycnium versus. L. corniculatus as host plants) comparisons of (a) instar III (III); (b) instar V female (Vf); and (c) 
instar V male (Vm) L. sinapis larvae. Each panel is divided according to origin of samples, Catalonia (Cat) and Sweden (Swe) [Colour figure can 
be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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larvae reared on L. dorycnium compared to L. corniculatus in both 
populations (Figure 4). A mixed effect model revealed a significant 
association between larval developmental stage and α-diversity 
(p-value = 2.08 × 10−2, population and host plant as random fac-
tors), with higher Shannon diversity metrics in the gut microbiome 
of instar III compared to instar V larvae. This difference was con-
sistent regardless of treatment (Figure 4). The multivariate analysis 
based on the unweighted UniFrac dissimilarity matrix revealed a 
significant effect of host plant on microbiome β-diversity (Figure 4; 
permanoVa: r2 = 7.57 × 10−2, p-value = 2.23 × 10−3). The effect of 
population was smaller and marginally significant (r2 = 3.70 × 10−2, 
p-value = 5.05 × 10−2). We also found a significant interaction 
effect between host plant and population (r2 = 7.69 × 10−2, p-
value = 1.79 × 10−3). The associations between effects were further 
explored by modelling each population separately, which revealed a 
shift in community structure in the Catalonian samples when reared 
on different host plants (r2 = 2.21 × 10−2, p-value = 1.00 × 10−4) 
(Figure 4). No such host plant effect could be detected in the 
Swedish samples (Figure 4), and there was no effect of developmen-
tal stage on the composition of the microbiome in either population 
(p-values > 5.0 × 10−2).

4  | DISCUSSION

4.1 | General

In this study we combined experimental assessment of female 
egg-laying preference and larval development with current mo-
lecular techniques to investigate the genetic and physiological 

underpinnings of host plant utilisation in the wood white butterfly, 
which exhibits geographical variation in host plant use across the 
distribution range (Friberg & Wiklund, 2009). By combining experi-
mental assays with gene expression profiling and microbiome analy-
sis, we advance our knowledge about the causes and consequences 
of host plant shifts in phytophagous insects.

4.2 | Host plant preference and effects on 
developmental rate and adult size

Our results showed that female Catalonian wood whites did not 
show preference for either host plant, while Swedish females pre-
ferred L. corniculatus. This observation is interesting since both 
Spanish and Swedish larvae showed a significantly reduced growth 
when feeding on L. dorycnium, which is consistent with the hypoth-
esis that female host preference is largely decoupled from larval per-
formance (Wiklund, 1975). While reduced growth might be expected 
in Swedish wood whites, which have not encountered L. dorycnium 

in the wild and only marginally recognize it as a potential host, it 
is notable that Catalonian females utilise L. dorycnium even when 

L. corniculatus is present, despite the effects on developmental rate 
and imago size when feeding on this plant. This shows that other 
factors than nutritional value being involved in female choice of 
host plants for oviposition. Host plant choice is evidently affected 
by interactions of phylogenetic, ecological, chemical and environ-
mental factors as well as relationships with predators and/or par-
asites (Ehrlich & Raven, 1964). In our case, a potential explanation 
for the difference in host plant preference between Swedish and 
Catalonian wood white females could be different climates at the 
sampling sites and the characteristics of the two host plant species. 
While L. corniculatus is a typical herbaceous plant, L. dorycnium is 
a woody shrub with needle-like leaves. Consequently, L. dorycnium 

is substantially more drought resistant than L. corniculatus. The dif-
ferent populations of L. sinapis have most likely diverged in allopa-
try in the different refugia during recurrent Pleistocene glaciations 
and current continuous distribution is due to range expansion and 
secondary contact (Talla et al., 2019). The use of L. dorycnium could 

possibly have emerged as a beneficial resource for the Iberian popu-
lations during the aridification of the Mediterranean basin during 
late Pleistocene (Nieto Feliner, 2014), as this plant is more likely 
to withstand extended drought periods during larval growth. Host 
plant recognition could have evolved as a local adaptation of the 
population in dry Mediterranean refugia where L. dorycnium was a 
more steadfast food source over the longer reproductive season. 
Therefore, although L. corniculatus may be more easily digestible, 
and lead to a faster growth rate and larger overall body size, utiliza-
tion of the hardier L. dorycnium might lead to increased larval survival 
in a drier climate. An alternative explanation is that there is a trade-
off between developmental time and survival or fecundity, similar 
to what has previously been observed in Edith's checkerspot but-
terfly (Euphydryas editha) (Singer & Parmesan, 2018). Other benefits 
of utilising L. dorycnium may include less intra- and/or interspecific 

TA B L E  1   The number of differentially expressed genes in 
the contrasts between treatment groups that were fed on either 
L. dorycnium or L. corniculatus. The number of upregulated genes for 
each treatment (host plant) and the total number of differentially 
expressed genes in each cohort are given

Population/
stage and sex

Total 
number L. dorycnium L. corniculatus

p-

value

All III 50 26 24 NS

All Vf 42 38 4 ***

All Vm 58 49 9 ***

CatIII 57 43 14 **

CatVf 72 66 6 ***

CatVm 39 29 10 *

SweIII 2 1 1 NS

SweVf 3 2 1 NS

SweVm 25 18 7 NS

Note: Abbreviations for population, developmental stages and sexes are 
Cat (Catalonia), Swe (Sweden), III (instar III), Vm (instar V male) and Vf 

(instar V female).
Significance levels for differences in the number of upregulated genes 
between treatments are: NS, p-value > .05, ***p-value < .001, **p-
value < .01, *p-value < .05.
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competition. Also, L. dorycnium is currently widely distributed in the 
Mediterranean and it seems a reasonable hypothesis that the use 
of this plant significantly extends the potential habitat of L. sinapis, 
even more so given recent summer drought episodes (Meehl & 
Tebaldi, 2004). In Catalonia, L. sinapis uses mainly L. dorycnium, but 
also, less frequently, L. corniculatus and L. hirsutus (Vila et al., 2018). 
All three plants are closely related phylogenetically and the latter is 
also not present in Sweden. Given that L. sinapis is relatively wide-
spread and common in the Mediterranean, and that it is present dur-
ing virtually all spring and summer in up to three generations, it is 
evident that longer development time and smaller adult size when 
feeding on L. dorycnium does not have a negative impact in natural 
populations, or that it is compensated by other benefits. An interest-
ing parallelism apparently takes place in the sibling butterfly spe-
cies Leptidea reali, which frequently uses Onobrychis sp. as host plant 
in Catalonia, in addition to the presumed core host plant Lathyrus 

pratensis (Vila et al., 2018). Onobrychis plants are also more drought 
resistant and widespread than L. pratensis, which is restricted to rela-
tively humid and shady patches. It is thus possible that host plant 
shifts/expansions have extended the niche in both Leptidea species 

and allowed them to cope with climate change effects on regional 
host plant communities.

We found a significantly shorter developmental time in Swedish 
compared to Catalonian individuals on both host plants. Whether 
this pattern is consistent across a wider range of conditions (e.g., 
temperature, day length) is a matter of speculation, since we only 
tested developmental time at a single temperature and a single 
day length. It is possible that the wood whites from Catalonia have 
adapted to develop at higher temperatures or shorter day lengths, 
so that the difference in development times between populations 
would be smaller with other settings. An alternative, but not exclu-
sive explanation, could be that the natal host plant (L. dorycnium) 
in Catalonia, which is a woody shrub, is a less suitable food source 
for fast development than L. corniculatus, and that Catalonian wood 
whites have adapted to a slower development rate.

Previous studies on transgenerational effects in butterflies show 
mixed results (Woestmann & Saastamoinen, 2016). While host plant 
preference seems largely uncoupled from conditions during female 
larval development in some cases (e.g., Melitaea cinxia; Salgado & 
Saastamoinen, 2019), other studies show that host plant quality 

F I G U R E  3   Taxonomic level comparison of gut bacteriome between larvae reared on different host plants, L. dorycnium versus 
L. corniculatus, separated by population origin, Catalonia and Sweden. Note that only the top 25 taxa are included which explains why the 
bars do not reach 100% [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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cues experienced by parents can induce phenotypic adjustments in 
offspring (Coenonympha pamphilus; Cahenzli & Erhardt, 2013) and 
female host plant preference can be positively associated with off-
spring preference (Euphydryas editha; Singer et al., 1988). The impact 
of natal effects seems to be dependent on the studied insect taxo-
nomic group. There was, for example, a limited effect of the maternal 

rearing environment on behaviour in pea aphids (Slater et al., 2019), 
but a significant association between natal origin and oviposition 
preference in water lily beetles (Verschut et al., 2017). It should be 
noted that we used wild-caught females for the preference test and 
we therefore have no control of potential natal effects – i.e., we 
do not know which host plants the females fed on as larvae. The 

F I G U R E  4   (a) Gut bacteriome 
α-diversity. Error bars represent variance 
of predicted values by the model. Host 
plant and population effects on β-diversity 
visualized by PCoA based on unweighted 
UniFrac dissimilarity matrix for samples 
from Catalonia (b) and Sweden (c); dots in 
b and c are jittered [Colour figure can be 
viewed at wileyonlinelibrary.com]

(a)

(b)

(c)

www.wileyonlinelibrary.com
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Swedish females have obviously not grown up on L. dorycnium, since 
the plant is not present in Scandinavia and it is therefore difficult to 
judge the impact of a potential natal effect in this cohort. The fe-
males from Catalonia most likely grew up on L. dorycnium, since this 
is the preferred host plant in natural conditions (Vila et al., 2018), 
but could of course also have fed on L. corniculatus as larvae since 
this plant is present in the natal range. Still, Catalonian females did 
not discriminate between the two host plants and there was no de-
tectable difference in the number of eggs laid on either host plant 
species. This indicates that natal effects should have limited impact 
on the preference results. In addition, the maternal microbiome can 
potentially influence offspring growth, as shown in the large cab-
bage white (Pieris brassicae) (Paniagua Voirol et al., 2020), but since 
we used wild caught females this effect cannot be estimated here. 
However, if anything, we would expect to see a larger diet-depen-
dent effect on larval growth in the Swedish population since those 
females did not feed on L. dorycnium as larvae.

4.3 | Gene expression variation across 
populations and experimental cohorts

The main factor affecting global expression profiles across all sam-
ples was developmental stage, whereas no effect of sex could be de-
tected. This is in line with previous studies that found considerable 
differences in gene expression profiles between ontogenetic stages 
(Leal et al., 2018), but only a small proportion of sex-biased genes in 
the larval stages (Höök et al., 2019). We did not observe any obvious 
clustering by either population or host plant treatment, in contrast to 
other studies where different host plant use results in clearly distin-
guishable expression profiles (Celorio-Mancera et al., 2013). This is 
somewhat surprising considering the apparent differences in growth 
for larvae fed on the different host plants. An explanation could be 
that L. dorycnium and L. corniculatus are relatively closely related (re-
cently merged into the same genus), and may have similar chemical 
properties that induce only limited differences in gene expression 
profiles. This is a pattern similar to what was observed in the pol-
yphagous V. cardui, where a distinct gene expression profile was 
found when feeding on a core set compared to an extended range 
of host plants (Celorio-Mancera et al., 2016). It should also be noted 
that larvae were harvested at fixed developmental stages rather 
than at specific time points, which has probably reduced the effect 
of overall growth rate differences on gene expression patterns.

In the differential gene expression analyses across treatments, 
several general patterns were observed. First, more genes were dif-
ferentially expressed between treatment groups in the Catalonian 
than in the Swedish population. Second, a larger fraction of the dif-
ferentially expressed genes were upregulated in response to the use 
of L. dorycnium than of L. corniculatus, especially for the contrasts 
involving Catalonian wood whites. Third, GO terms relating to pro-
tein biosynthesis, membrane transport and transporter activity, and 
various metabolic processes occurred repeatedly. Below, each of 
these observations is discussed in more detail.

The number of differentially expressed genes between treat-
ments was higher in the Catalonian than in the Swedish contrast. 
Previous studies suggest that phytophagous insects may attain 
polyphagy via an increase in expression breadth and regulation 
of ribosomal, digestion and detoxification related genes (Celorio-
Mancera et al., 2013). Thus, the more flexible expression response 
in Catalonian individuals may be an adaptation that allows them to 
metabolise a wider suite of host plants. The use of L. dorycnium in 

Catalonia could hence be an example of ecological fitting, where 
plasticity allows for colonization of novel hosts compositionally sim-
ilar to the ancestral host (Janzen, 1985), but with different habitat 
preference and ecology (Heidel-Fischer et al., 2009). In contrast, 
Swedish L. sinapis, which do not encounter L. dorycnium in the wild, 
do not appear to have developed the same plastic response. The 
mechanistic underpinning of this difference between the popula-
tions is so far unknown. We do not know whether the gene expres-
sion plasticity is genetically determined, or whether encounters with 
novel host plants generate a transgenerational higher plasticity, for 
example via maternal effects. Since we neither detected a differ-
ence in adult size between the populations nor a significantly re-
duced growth rate or body size in the Swedish individuals reared 
on L. dorycnium, it is unclear whether the expression response in 
the Catalonian population is beneficial. We used development time 
and adult size as proxies for fitness, and natural selection on these 
traits seems to be multifaceted and extremely complex for butter-
flies (Breuker & Brakefield, 2002; Dennis et al., 2012). Moreover, it is 
likely that other aspects are important for the success of individuals 
in natural settings, for example population-specific standing genetic 
variants, microhabitat choice, appealing to the other sex or degree 
of toxicity of the butterfly, all potentially influenced by host plant 
choice.

There was also a consistent overrepresentation of upregu-
lated genes in response to L. dorycnium, most pronounced in the 
Catalonian contrast. This observation is in line with a general in-
crease in gene expression as a response to a novel host plant in 
the Asiatic rice borer (Chilo suppressalis; Zhong et al., 2017). The 
response could also reflect the defence abilities of the host with 
higher number of upregulated genes in Heliconius melpomene larvae 

reared on their native host plant containing larger amounts of ad-
verse secondary metabolites than a less defended close relative (Yu 
et al., 2016). Catalonian females also showed the highest proportion 
of differentially expressed genes being upregulated in response to 
L. dorycnium, which could indicate that they are particularly plastic in 
response to this host plant.

4.4 | Functional categories of differentially 
expressed genes

Enriched GO terms were mostly associated with protein biosynthe-
sis, metabolism and nutrition, detoxification, neuronal development 
and cuticle integrity. Differential expression of genes associated 
with protein biosynthesis is in line with increased plasticity allowing 
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for utilization of a broader range of host plants (Celorio-Mancera 
et al., 2012; Govind et al., 2010) and altered expression of riboso-
mal genes, which can mediate the effects of ribosome-inactivating 
proteins from the host plant (Zhong et al., 2017; Zhu et al., 2018). 
Several genes associated with metabolic processes, growth, au-
tophagy and starvation, were also differentially expressed. This indi-
cates a difference in nutritional value between the two host plants, 
probably associated with the overall longer developmental time and 
smaller adult size in cohorts feeding on L. dorycnium.

Differences in host plant chemical composition (e.g., secondary 
metabolites) can also affect growth of the larvae (Jeschke et al., 2017; 
Li et al., 2000). Lepidopterans have evolved several defense sys-
tems against toxins (Pinheiro de Castro et al., 2019; Zagrobelny 
et al., 2018), that are present in various amounts in both L. cornicu-

latus and L. dorycnium (Puri et al., 1998; Salgado et al., 2016). Similar 
to what was previously observed in several generalist insect species 
(Celorio-Mancera et al., 2012, 2013; Dermauw et al., 2013; Govind 
et al., 2010; Puinean et al., 2010; Zhong et al., 2017), there was a gen-
eral upregulation of genes involved in transport activity and cuticle 
structure in L. sinapis when feeding on L. dorycnium. This implies that 
the pathways for managing host plant-specific chemical compounds 
are similar across a wide range of insect taxa and that fine-tuning the 
expression of genes associated with cell transport and cuticle integ-
rity facilitates polyphagy (Celorio-Mancera et al., 2013; Dermauw 
et al., 2013). It should be noted that the GO-terms are derived from 
homologues in distantly related model species and the enrichment 
analysis should be seen as an indication of the range of pathways in-
volved in host plant utilization in wood whites. It is also worth stress-
ing that the gene expression data were based on RNA collected from 
the abdomen and thorax of L. sinapis larvae. If key genes and path-
ways involved in response to differential host plant use are confined 
to a specific organ or tissue, potential differences might have been 
diluted and therefore not detected with our approach.

4.5 | Patterns of microbiome composition

We explored the diversity and composition of the gut microbiome 
and the associations with host plant diet in the two different wood 
white populations. The small proportion of bacteria compared to 
chloroplasts in our study is in accordance with previous studies 
showing low total abundance and complexity of the gut bacteriome 
in Lepidoptera caterpillars compared to other herbivores (Hammer 
et al., 2017; Whitaker et al., 2016). These overall low levels of gut 
bacteria support the notion that the gut microbiome in butterflies 
is transient with limited importance for nutrient turnover and lar-
val growth (Hammer et al., 2017; Phalnikar et al., 2019; Staudacher 
et al., 2016) and that microbiome composition mostly depends on 
diet (Phalnikar et al., 2018) and/or soil bacteria (Hannula et al., 2019) 
acquired when feeding. The high level of plant-derived amplicons 
and the low level of bacterial reads limits our power to detect sig-
nals in the data. Despite that, significant differences in diversity 
and composition were found in some comparisons. The observed 

reduction in α-diversity as ontogeny proceeds is in line with other 
studies (Chaturvedi et al., 2017; Chen et al., 2016), and could be due 
to acclimatization of the microbiome to the specific conditions of 
the caterpillar gut, and/or microbiome competition reducing the 
diversity to a core set of taxa occupying specific ecological niches 
(Itoh et al., 2019). An alternative explanation is that different devel-
opmental stages require distinctive functions from the microbiome, 
but it is unclear why this should result in a reduction in diversity but 
not in the overall composition.

We found a significant effect of host plant diet on both the rela-
tive abundance and the composition (ß-diversity) of the microbiome 
in the Catalonian cohort. This supports the hypothesis that bacte-
rial communities in the gut are associated with larval diet (Minard 
et al., 2019; Staudacher et al., 2016; Szenteczki et al., 2019). The 
relative abundance in the Swedish cohort was also affected by diet, 
but the difference between groups was not significant. This could 
potentially be explained by a lack of power due to the smaller sam-
ple size in the Swedish cohort. Yet, the population specific effects 
on ß-diversity suggest that there is a more complex relationship be-
tween population origin and diet, as previously observed in insects 
(Jones et al., 2019; Phalnikar et al., 2018; Pinto-Tomás et al., 2011). 
The main difference in our analysis was a decrease in the rela-
tive abundance of Wolbachia, and an increase in Kocuria, in larvae 
reared on L. dorycnium compared to L. corniculatus. Wolbachia is a 
common intracellular bacteria found in many arthropods and the 
prevalence is generally high, for example over 90% in L. sinapis 

(Solovyev et al., 2015). The high relative abundance of Wolbachia in 

our samples probably originates from the intestinal wall tissue and 
mimics similar findings in other butterflies (Chaturvedi et al., 2017; 
Narita et al., 2007; Phalnikar et al., 2018; Whitaker et al., 2016). 
The lower relative abundance of Wolbachia in the slowly develop-
ing larvae reared on L. dorycnium is most likely due to differences in 
nutrients or other chemical components between the host plants. 
Although Wolbachia is predominantly known for affecting the sex 
ratio in many insects (e.g., Jiggins et al., 2010; Sakamoto et al., 2011), 
studies in for example bedbugs, mosquitoes and moths show that 
Wolbachia abundance is positively associated with advantageous ef-
fects (Body et al., 2013; Moriyama et al., 2015; Ye et al., 2013; Zhang 
et al., 2017), and we cannot rule out that Wolbachia has a positive ef-
fect on larval growth in L. sinapis. The role of Kocuria is unclear, it has 
been found in lepidopteran gut microbiomes and in various external 
environments, both as a commensal and as a pathogen, but informa-
tion on any functional role is limited (van der Hoeven et al., 2008; 
Kandi et al., 2016).

The relationship between co-opted microbiota and host plant 
shifts has been debated. A change in the microbiome that affects 
the host capability of overcoming plant defence mechanisms, nu-
trient uptake or secondary metabolite sequestration could mediate 
an establishment in novel niches (Paniagua Voirol et al., 2018). In 
contrast, a specialist microbiome could become an “evolutionary 
dead end”, where maladaptation could impair shifts to novel host 
plants. Further, the ability to be self-sufficient in acquiring essential 
nutrients could facilitate the adoption of new niches, in particular 
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when the host organism is not limited by the ecological boundaries 
of microbial symbionts (Bennett & Moran, 2015). This release from 
mutualistic costs could be related to the radiation in the butterfly 
lineage (Hammer et al., 2017). Our study confirms that the bacte-
rial community in the butterfly gut is comparatively small and that 
the complexity is low, supporting a limited general importance of 
specific gut microbiomes in butterflies. However, the differential 
response of the microbiome composition between the cohorts feed-
ing on different host plants cannot exclude a genetic, or population 
specific, element.

In conclusion, our results show that the evolutionary conse-
quences of utilising different or multiple host plants for oviposition 
and as a food source, is multifaceted. Females from the Catalonian 
population displayed equal preference for both host plants, despite 
the reduced growth of the larvae on their natal host. However, 
the clear distinction between host plants by the Swedish females 
shows that there are chemical and/or physical differences that the 
butterflies can detect. This indicates that both environmental and 
genetic factors underpin the choice to use a specific host plant. Both 
L. sinapis populations showed reduced growth when reared on L. do-

rycnium, probably a consequence of differences in host plant compo-
sition. This was reflected in the functional pathways associated with 
differentially expressed genes. The response to different host plants 
includes both population-specific regulation of gene expression and 
microbiome composition, pointing towards increased plasticity con-
nected to local environmental conditions. Further investigation of 
direct functional effects of such tunings are needed to understand 
the microevolutionary forces that affect insect host plant speciali-
sation or generalisation and, consequently, generation and mainte-
nance of biodiversity.
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